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CYCLIC ORTHOGONAL DOUBLE COVERS OF

CIRCULANTS BY DISJOINT UNIONS OF ONE

CATERPILLAR AND CERTAIN NERVE CELL GRAPHS

R. EL-SHANAWANY AND A. EL-MESADY

Abstract. In this paper, we present the definition of a nerve cell graph.
We construct cyclic orthogonal double covers of some circulant graphs
by the disjoint union of a caterpillar and certain nerve cell graphs.

1. Introduction

It is known that graph theory has become topic of interest for many
areas of science such as biology, chemistry, physics, operations research,
engineering, economics, communication, and especially computer science.

A graph labelling is an assignment of integers to the edges, vertices, or
both, subject to certain conditions. There are many kinds of labelling such
as graceful labelling, harmonious labelling, cordial labelling, and orthogonal
labelling. For a survey on orthogonal labelling, see [1, 2, 3].

Suppose that G = (V,E) is a graph, where V is the vertex set and E
the edge set. An orthogonal double cover (ODC) of H by G is a collection
G = {Gv : v ∈ V } of subgraphs of H, all isomorphic to G, such that (i)
every edge in H occurs in exactly two members of G and (ii) if α and β are
adjacent vertices in H, then Gα and Gβ share one edge.

The existence problem of ODCs is known to be difficult in general as it
includes some long-standing open problems such as the existence problems
of biplanes. Also, the ODC problem originally stems from problems in
database optimization, statistical design, and design theory.

The circulant graphs are Cayley graphs on cyclic groups. The circulant
graph Circ(m; {l1, l2, . . . , lk}) has vertex set Zm = {0, 1, . . . ,m − 1} where
{l1, l2, . . . , lk} is a sequence of integers with 1 ≤ l1 < l2 < . . . < lk ≤ bm/2c
and the two vertices a and b are adjacent in Circ(m; {l1, l2, . . . , lk}) when a−
b ≡ ±li (mod m); i ∈ {1, 2, . . . k}. For an edge (a, b) in Circ(m; {l1, l2, . . . , lk}),
the length of this edge is min{|a− b| ,m − |a− b|}. For two edges E1 =
(a1, b1) and E2 = (a2, b2) with the same length l in Circ(m; {l1, l2, . . . , lk}),
the rotation-distance r(l) between E1 and E2 is r(l) = min{r1, r2 : ((a1 +

Received by the editors August, 7, 2016, and in revised form June 22, 2018.
2010 Mathematics Subject Classification. 05C70, 05B30.
Key words and phrases. Circulants; Orthogonal labelling; Nerve cell.

c©2019 University of Calgary

105



106 R. EL-SHANAWANY AND A. EL-MESADY

r1), (b1 + r1)) = E2, ((a2 + r2), (b2 + r2)) = E1}, where addition is calculated
modulo m. Edges E1 and E2 of the same length l are adjacent if r(l) = l.

Orthogonal labelling is introduced by Gronau et al. [2]. Given a graph
G = (V,E) with m − 1 edges, a 1–1 mapping Ψ : V (G) −→ Zm is an
orthogonal labelling of G if (i) G contains exactly two edges of length l ∈
{1, 2, . . . , b(m−1)/2c}, and exactly one edge of length m/2 if m is even, and
(ii) {r(l) : l ∈ {1, 2, . . . , b(m− 1)/2c}}= {1, 2, . . . , b(m− 1)/2c}.

Gronau et al. [2] relates CODCs of Km and the orthogonal labelling by
the following theorem.

Theorem 1. A CODC of Km by a graph G exists if and only if there exists
an orthogonal labelling of G.

Sampathkumar et al. [3] called an orthogonal labelling an orthogonal
{1, 2, ..., bm/2c}-labelling and generalized it to an orthogonal {l1, l2, ..., lk}-
labelling, where {l1, l2, ..., lk} is a sequence of integers with 1 ≤ l1 < l2 <
... < lk ≤ bm/2c.
Case 1: Either m is odd or m is even and lk 6= m/2.

Given a subgraph G of Circ(m; {l1, l2, . . . , lk}) with 2k edges, a labelling
of G, in Zm, is an orthogonal {l1, l2, . . . , lk}-labelling of G if: (i) for every
l ∈ {l1, l2, . . . , lk}, G contains exactly two edges of length l, and (ii) {r(l) :
l ∈ {l1, l2, . . . , lk}} = {l1, l2, . . . , lk} .
Case 2: m is even and lk = m/2.

Given a subgraph G of Circ(m; {l1, l2, . . . , lk−1,m/2}) with 2k − 1 edges,
a labelling of G, in Zm, is an orthogonal {l1, l2, . . . , lk−1,m/2}-labelling of
G if: (i) for every l ∈ {l1, l2, . . . , lk−1}, G contains exactly two edges of
length l, and G contains exactly one edge of length m/2, and (ii) {r(l) : l ∈
{l1, l2, . . . , lk−1}} = {l1, l2, . . . , lk−1} .

The following theorem of Sampathkumar et al. [3] is a generalization of
Theorem 1.

Theorem 2. A CODC of Circ(m; {l1, l2, . . . , lk}) by a graph G exists if and
only if there exists an orthogonal {l1, l2, . . . , lk}-labelling of G.

For a survey on the CODC of the circulant graphs, see [1, 4, 5]. We use the
following notation: Cm to refer to a cycle with m edges, Km,n to a complete
bipartite graph with partition sets of sizes m and n, K1 to an isolated vertex,
and G1 ∪ G2 to the disjoint union of G1 and G2. Let k ≥ 1, n1, n2, . . . , nk
be integers, n1, nk ≥ 1 and ni ≥ 0 for i ∈ {2, 3, . . . , k − 1}, if we have the
path Pk := x1x2 . . . xk and by connecting vertex xi to ni new vertices and
i ∈ {1, 2, 3, . . . , k}, then the resulting graph is called the caterpillar denoted
by Ck(n1, n2, . . . , nk).

Definition 3. Let G be a tree with a unique vertex of highest degree, called
the nerve vertex. The nerve cell graph Cm � G is the graph obtained as a
union of Cm with m copies of G, by collapsing each vertex of Cm with the
nerve vertex of G.
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The main result of this paper can be stated as follows:

Theorem 4. Let n be an integer, divisible by a prime p > 3 such that
n > 2p. Then there is a CODC of Circ(n; {1, . . . , [n/2]}) formed by the
union of a caterpillar and one or two nerve cell graphs.

Remark 5. In Section 2, Theorem 2 will be applied to prove the above
result (as a corollary of Theorem 7, together with similar constructions under
stronger conditions (Theorems 6 and 8).

2. Main Results

In Case 1 of Theorem 6, we construct a CODC of Circ(7kn; {1, . . . ,
b7kn/2c}) by Gn,k1

∼= C3(1, 0, n − 4) ∪ 2(C3 � C3(1, 0, n − 4)) ∪ 2(C 7k−7
2

�

C3(1, 0, n− 4)), where n, k are integers with n ≥ 5, the graph Gn,k1 is shown

in Figure 1. For the graph Gn,k1 if we put k = 1, then we get the graph

Gn,11 shown in Figure 2. In Case 2 of Theorem 6, we construct a CODC
of Circ(mn; {1, . . . , bmn/2c}) by Gm,n2 , where n, k and m are integers with
m ≡ 1, 5 (mod 6),m 6= 7k and n ≥ 5, the graph Gm,n2 is shown in Figure 3.

Theorem 6. Let n, k and m be integers with m ≡ 1, 5 (mod 6) and n ≥ 5.
Then a CODC of Circ(mn; {1, . . . , bmn/2c}) can be obtained by

Gn,k1
∼= C3(1, 0, n− 4) ∪ 2(C3 � C3(1, 0, n− 4)) ∪ 2(C 7k−7

2

� C3(1, 0, n− 4))

if m = 7k, and by

Gm,n2
∼= C3(1, 0, n− 4) ∪ (Cm−1 � C3(1, 0, n− 4))

if m 6= 7k.
Proof.

Case 1: Let us define Ψ : V (Gn,k1 )→ Z7kn by Ψ(vi) = i; i ∈ Z7kn, E(Gn,k1 ) =
{(Ψ(v(α+1)n+1),Ψ(v2(α+1)n−1)), (Ψ(v(α+2)n−1),Ψ(v(2α+3)n−2)), (Ψ(vαn),
Ψ(v2αn−β));α ∈ Z7k , β ∈ Zn\{0, 1, 2}} ∪ {(Ψ(vαn),Ψ(v2αn));α ∈ Z7k\{0}}
Subcase 1.1: n = 5. From the edge set of G5,k

1 , the orthogonal labelling
conditions of Theorem 2 are verified: (i) The edges of length l ∈ {1, . . . , b5 ∗
7k/2c} are repeated twice, (ii) {r(l) : l ∈ {1, . . . , b5 ∗ 7k/2c}} = {1, . . . , b5 ∗
7k/2c} which can be proved as follows, r(5α) = 15α; 1 ≤ α ≤ 7k−1

2 , r(5α+
3) = 15α+ 9;α ∈ Z7k , r(5α+ 4) = 15α+ 13;α ∈ Z7k .

Subcase 1.2: n = 6. From the edge set of G6,k
1 , the orthogonal labelling con-

ditions of Theorem 2 are verified: (i) The edges of length l ∈ {1, . . . , b (6∗7
k)−1
2 c}

are repeated twice and there is only one edge of length 6 ∗ 7k/2, (ii) {r(l) :
l ∈ {1, . . . , b6∗7k/2c}} = {1, . . . , b6∗7k/2c} which can be proved as follows,

r(6α) = 18α; 1 ≤ α ≤ 7k−1
2 , r(6α + 4) = 18α + 11;α ∈ Z7k , r(6α + 5) =

18α+16;α ∈ Z7k , r(6∗7k/2) = 6∗7k/2, r(6α−3)) = 18α−9; 1 ≤ α ≤ 7k−1
2 .

Subcase 1.3: n > 5 is odd. From the edge set of Gn,k1 , the orthogonal



108 R. EL-SHANAWANY AND A. EL-MESADY

labelling conditions of Theorem 2 are verified: (i) The edges of length
l ∈ {1, . . . , b7kn/2c} are repeated twice, (ii) {r(l) : l ∈ {1, . . . , b7kn/2c}} =
{1, . . . , b7kn/2c} which can be proved as follows, r(αn) = 3αn; 1 ≤ α ≤
7k−1
2 , r((α + 1)n − 2) = (3(α + 1) − 1)n − 1;α ∈ Z7k , r((α + 1)n − 1) =

3(α + 1)n − 2;α ∈ Z7k , r(α) = n + α;α ∈ {3, 4, . . . , n−1
2 }, r(n − α) =

2n − α;α ∈ {3, 4, . . . , n−1
2 }, r((α + 1)n + γ) = (3(α + 1) + 1)n + γ;α ∈

Z7k−2, γ ∈ {3, 4, . . . , n−1
2 }.

Subcase 1.4: n > 6 is even. From the edge set of Gn,k1 , the orthogonal
labelling conditions of Theorem 2 are verified: (i) The edges of length

l ∈ {1, . . . , b7kn−1
2 c} are repeated twice and there is only one edge of length

7kn/2, (ii) {r(l) : l ∈ {1, . . . , b7kn/2c}} = {1, . . . , b7kn/2c} which can

be proved as follows, r(αn) = 3αn; 1 ≤ α ≤ 7k−1
2 , r((α + 1)n − 2) =

(3(α+1)−1)n−1;α ∈ Z7k , r((α+1)n−1) = 3(α+1)n−2;α ∈ Z7k , r(α) =
n + α;α ∈ {3, 4, . . . , n−2

2 }, r(n − α) = 2n − α;α ∈ {3, 4, . . . , n−2
2 }, r((α +

1)n + γ) = (3(α + 1) + 1)n + γ;α ∈ Z7k−2, γ ∈ {3, 4, . . . , n−2
2 }, r(7

kn/2) =

7kn/2, r((α− 1
2)n) = 3(α− 1

2)n; 1 ≤ α ≤ 7k−1
2 .

Case 2: Let us define Ψ : V (Gm,n2 )→ Zmn by Ψ(vi) = i; i ∈ Zmn, E(Gm,n2 ) =
{(Ψ(v(α+1)n+1),Ψ(v2(α+1)n−1)), (Ψ(v(α+2)n−1),Ψ(v(2α+3)n−2)), (Ψ(vαn),
Ψ(v2αn−β));α ∈ Zm, β ∈ Zn\{0, 1, 2}} ∪ {(Ψ(vαn),Ψ(v2αn));α ∈ Zm\{0}}.
Subcase 2.1: n = 5. From the edge set of Gm,52 , the orthogonal labelling con-
ditions of Theorem 2 are verified: (i) The edges of length l ∈ {1, . . . , b5m/2c}
are repeated twice, (ii) {r(l) : l ∈ {1, . . . , b5m/2c}} = {1, . . . , b5m/2c} which
can be proved as follows r(5α) = 15α; 1 ≤ α ≤ m−1

2 , r(5α+3) = 15α+9;α ∈
Zm, r(5α+ 4) = 15α+ 13;α ∈ Zm.
Subcase 2.2: n = 6. From the edge set of Gm,62 , the orthogonal labelling con-
ditions of Theorem 2 are verified: (i) The edges of length l ∈ {1, . . . b6m−1

2 c}
are repeated twice and there is only one edge of length 6m/2, (ii) {r(l) :
l ∈ {1, . . . , b6m/2c}} = {1, . . . , b6m/2c} which can be proved as follows,
r(6α) = 18α; 1 ≤ α ≤ m−1

2 , r(6α + 4) = 18α + 11;α ∈ Zm, r(6α + 5) =

18α+ 16;α ∈ Zm, r(3m) = 3m, r(6α− 3)) = 18α− 9; 1 ≤ α ≤ m−1
2 .

Subcase 2.3: n > 5 is odd. From the edge set of Gm,n2 , the orthogonal
labelling conditions of Theorem 2 are verified: (i) The edges of length
l ∈ {1, . . . , bmn/2c} are repeated twice, (ii) {r(l) : l ∈ {1, . . . , bmn/2c}} =
{1, . . . , bmn/2c} which can be proved as follows, r(αn) = 3αn; 1 ≤ α ≤
m−1
2 , r((α + 1)n − 2) = (3(α + 1) − 1)n − 1;α ∈ Zm, r((α + 1)n − 1) =

3(α + 1)n − 2;α ∈ Zm, r(α) = n + α;α ∈ {3, 4, . . . , n−1
2 }, r(n − α) =

2n − α;α ∈ {3, 4, . . . , n−1
2 }, r((α + 1)n + γ) = (3(α + 1) + 1)n + γ;α ∈

Zm−2, γ ∈ {3, 4, . . . , n−1
2 }.

Subcase 2.4: n > 6 is even. From the edge set of Gm,n2 , the orthogo-
nal labelling conditions of Theorem 2 are verified: (i) The edges of length
l ∈ {1, . . . , bmn−1

2 c} are repeated twice and there is only one edge of length
mn/2, (ii) {r(l) : l ∈ {1, . . . , bmn/2c}} = {1, . . . , bmn/2c} which can
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Figure 1. The graph Gn,k1 .

be proved as follows, r(αn) = 3αn; 1 ≤ α ≤ m−1
2 , r((α + 1)n − 2) =

(3(α+ 1)−1)n−1;α ∈ Zm, r((α+ 1)n−1) = 3(α+ 1)n−2;α ∈ Zm, r(α) =
n + α;α ∈ {3, 4, . . . , n−2

2 }, r(n − α) = 2n − α;α ∈ {3, 4, . . . , n−2
2 }, r((α +

1)n + γ) = (3(α + 1) + 1)n + γ;α ∈ Zm−2, γ ∈ {3, 4, . . . , n−2
2 }, r(mn/2) =

mn/2, r((α− 1
2)n) = 3(α− 1

2)n; 1 ≤ α ≤ m−1
2 . �

For more illustration to Theorem 6,

(1) Let k = 2 and n = 5. Then the CODC of Circ(245; {1, . . . , 122})
can be obtained by G5,2

1
∼= C3(1, 0, 1)∪ 2(C3 �C3(1, 0, 1))∪ 2(C21 �

C3(1, 0, 1)).
(2) Let k = 1 and n = 5. Then the CODC of Circ(35; {1, . . . , 17}) can

be obtained by G5,1
1
∼= C3(1, 0, 1) ∪ 2(C3 � C3(1, 0, 1)), see Figure 4.
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•

Figure 2. The graph Gn,11 .

(3) Let m = 5 and n = 5. Then the CODC of Circ(25; {1, . . . , 12}) can

be obtained by G5,5
2
∼= C3(1, 0, 1) ∪ (C4 � C3(1, 0, 1)), see Figure 5.

In Case 1 of Theorem 7, we construct a CODC of Circ(7kn; {1, . . . , b7kn/2c})
by Gn,k3 , where n, k are integers with n > 2, the graph Gn,k3 is shown in

Figure 6. For the graph Gn,k3 if we set k = 1, then we get the graph

Gn,13
∼= K1,n−1 ∪ 2(C3 � K1,n−1) shown in Figure 7. In Case 2 of The-

orem 7, we construct a CODC of Circ(mn; {1, . . . , bmn/2c}) by Gm,n4
∼=

K1,n−1 ∪ (Cm−1 � K1,n−1), where n and m are integers with m ≡ 1, 5

(mod 6), n > 2 and m 6= 7k, the graph Gm,n4 is shown in Figure 8.

Theorem 7. Let n, k and m be integers with m ≡ 1, 5 (mod 6) and n > 2.
Then a CODC of Circ(mn; {1, . . . , bmn/2c}) can be obtained by

Gn,k3
∼= K1,n−1 ∪ 2(C3 �K1,n−1) ∪ 2(C 7k−7

2

�K1,n−1)

if m = 7k, and by

Gm,n4
∼= K1,n−1 ∪ (Cm−1 �K1,n−1)

if m 6= 7k.
Proof.

Case 1. Let us define Ψ : V (Gn,k3 ) → Z7kn by Ψ(vi) = i ; i ∈ Z7kn,

E(Gn,k3 ) = {(Ψ(v(α+1)n+1),Ψ(v(α+1)n+1+i)); i = j + αn, j ∈ Zn\{0}, α ∈
Z7k} ∪ {(Ψ(vαn),Ψ(v2αn));α ∈ Z7k\{0}}.
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Figure 3. The graph Gm,n2 .

Subcase 1.1: n is odd. From the edge set of Gn,k3 , the orthogonal la-
belling conditions of Theorem 2 are verified: (i) The edges of length l ∈
{1, . . . , b7kn/2c} are repeated twice, (ii) {r(l) : l ∈ {1, . . . , b7kn/2c}} =
{1, . . . , b7kn/2c} which can be proved as follows, r(αn) = 3αn;≤ α ≤
7k−1
2 , r(αn+ γ) = (3α+ 1)n+ γ; α ∈ Z7k , γ ∈ {1, 2, . . . , n−1

2 }.
Subcase 1.2: n is even. From the edge set of Gn,k3 , the orthogonal la-
belling conditions of Theorem 2 are verified: (i) The edges of length l ∈
{1, . . . , b7kn−1

2 c} are repeated twice and there is only one edge of length

7kn/2, (ii) {r(l) : l ∈ {1, . . . , b7kn/2c}} = {1, . . . , b7kn/2c} which can be

proved as follows, r(αn) = 3αn; 1 ≤ α ≤ 7k−1
2 , r(αn+γ) = (3α+1)n+γ; α ∈

Z7k , γ ∈ {1, 2, . . . , n−2
2 }, r((α+ 1

2)n) = 3(α+ 1
2)n; 0 ≤ α ≤ 7k−3

2 , r(7kn/2) =
7kn
2 .

Case 2. Let us define Ψ : V (Gm,n4 )→ Zmn by Ψ(vi) = i ; i ∈ Zmn, E(Gm,n4 ) =
{(Ψ(v(α+1)n+1),Ψ(v(α+1)n+1+i)); i = j+αn, j ∈ Zn\{0}, α ∈ Zm}∪{(Ψ(vαn),
Ψ(v2αn));α ∈ Zm\{0}}.
Subcase 2.1: n is odd. From the edge set of Gm,n4 , the orthogonal la-
belling conditions of Theorem 2 are verified: (i) The edges of length l ∈
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Figure 4. An orthogonal {1, . . . , 17} labelling of G5,1
1 w.r.t. Z35.

Figure 5. An orthogonal {1, . . . , 12} labelling of G5,5
2 w.r.t. Z25.

{1, . . . , bmn/2c} are repeated twice, (ii) {r(l) : l ∈ {1, . . . , bmn/2c}} =
{1, . . . , bmn/2c} which can be proved as follows, r(αn) = 3αn; 1 ≤ α ≤
m−1
2 , r(αn+ γ) = (3α+ 1)n+ γ; α ∈ Zm, γ ∈ {1, 2, . . . , n−1

2 }.
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Figure 6. The graph Gn,k3 .

Subcase 2.2: n is even. From the edge set of Gm,n4 , the orthogonal la-
belling conditions of Theorem 2 are verified: (i) The edges of length l ∈
{1, . . . , bmn−1

2 c} are repeated twice and there is only one edge of length
mn/2, (ii) {r(l) : l ∈ {1, . . . , bmn/2c}} = {1, . . . , bmn/2c} which can be
proved as follows, r(αn) = 3αn; 1 ≤ α ≤ m−1

2 , r(αn+γ) = (3α+1)n+γ;α ∈
Zm, γ ∈ {1, 2, . . . , n−2

2 }, r((α+ 1
2)n) = 3(α+ 1

2)n; 0 ≤ α ≤ m−3
2 , r(mn/2) =

mn/2. �

For more illustration to Theorem 7,

(i) Let k = 2 and n = 5. Then the CODC of Circ(245; {1, . . . , 122}) can

be obtained by G5,2
3
∼= K1,4 ∪ 2(C3 �K1,4) ∪ 2(C21 �K1,4).

(ii) Let k = 1 and n = 3. Then the CODC of Circ(21; {1, . . . , 10}) can be

obtained by G3,1
3
∼= K1,2 ∪ 2(C3 �K1,2), see Figure 9.
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Figure 7. The graph Gn,13 .

Figure 8. The graph Gm,n4 .

(iii) Let m = 5 and n = 4. Then the CODC of Circ(20; {1, . . . , 10}) can be

obtained by G5,4
4
∼= K1,3 ∪ (C4 �K1,3), see Figure 10.

Let us define Ψ : V (Gm,n5 ) → Zmn by Ψ(vi) = i ; i ∈ Zmn, E(Gm,n5 ) =
{(Ψ(vαn),Ψ(v2αn));α ∈ Zm\{0}∪{(Ψ(v(α+1)n),Ψ(v(2α+1)n+2)), (Ψ(v(α+1)n+2),
Ψ(v(2α+1)n+2+β)), (Ψ(v4+(α−(m−1

2
))n),Ψ(v(2α+1)n+γ));α ∈ Zm, β ∈ Zn\{0, 2, n−

2, n−1}, γ ∈ {2, 3}}. In Theorem 8, we construct a CODC of Circ(mn; {1, . . . ,
bmn/2c}) by Gm,n5 , where n and m are integers with m ≡ 1, 5 (mod 6) and
n ≥ 7.



CODCS BY NERVE CELL GRAPHS 115

Figure 9. An orthogonal {1, . . . , 10}-labelling of G3,1
3 w.r.t. Z21.

Figure 10. An orthogonal {1, . . . , 10}-labelling of G5,4
4 w.r.t. Z20.

Theorem 8. Let n and m be integers with m ≡ 1, 5 (mod 6) and n ≥ 7.
Then a CODC of Circ(mn; {1, . . . , bmn/2c}) can be obtained from Gm,n5 .
Proof.
Case 1: n is odd. From the edge set of Gm,n5 , the orthogonal labelling condi-
tions of Theorem 2 are verified: (i) The edges of length l ∈ {1, . . . , bmn/2c}
are repeated twice, (ii) {r(l) : l ∈ {1, . . . , bmn/2c}} = {1, . . . , bmn/2c}
which can be proved as follows, r(αn) = 3αn; 1 ≤ α ≤ m−1

2 , r(αn + 2) =

(3α + 1)n − 2; 0 ≤ α ≤ m−1
2 , r(αn − 2) = (3α − 1)n + 2; 1 ≤ α ≤

m−1
2 , r(αn+1) = (3α+1)n−1; 0 ≤ α ≤ m−1

2 , r(αn−1) = (3α−1)n+1; 1 ≤
α ≤ m−1

2 , r(αn+ γ) = (3α+ 1)n+ γ;α ∈ Zm, γ ∈ {3, 4, . . . , n−1
2 }.
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Case 2: n is even. From the edge set of Gm,n5 , the orthogonal labelling condi-
tions of Theorem 2 are verified: (i) The edges of length l ∈ {1, . . . , bmn−1

2 c}
are repeated twice and there is only one edge of length mn/2, (ii) {r(l) :
l ∈ {1, . . . , bmn/2c}} = {1, . . . , bmn/2c} which can be proved as follows,
r(αn) = 3αn; 1 ≤ α ≤ m−1

2 , r(αn+2) = (3α+1)n−2; 0 ≤ α ≤ m−1
2 , r(αn−

2) = (3α − 1)n + 2; 1 ≤ α ≤ m−1
2 , r(αn + 1) = (3α + 1)n − 1; 0 ≤ α ≤

m−1
2 , r(αn−1) = (3α−1)n+1; 1 ≤ α ≤ m−1

2 , r(αn+γ) = (3α+1)n+γ;α ∈
Zm, γ ∈ {3, . . . , n−2

2 }, r((α + 1
2)n) = 3(α + 1

2)n; 0 ≤ α ≤ m−3
2 , r(mn/2) =

mn/2. �

3. Conclusion

In conclusion, this paper gives new constructions of cyclic orthogonal
double covers of certain circulant graphs by the union of a caterpillar and
graphs belonging to a class that we call “nerve cell” graphs because these
graphs are similar to the nerve cell in the human body.
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