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GENERATING SPECIAL ARITHMETIC FUNCTIONS BY

LAMBERT SERIES FACTORIZATIONS

MIRCEA MERCA AND MAXIE D. SCHMIDT

Abstract. In this collaborative article, we summarize the known use-
ful and interesting results and formulas we have discovered so far. Sum-
marizing results from two related articles by Merca and Schmidt, we
arrive at so-termed Lambert series factorization theorems. We unify the
matrix representations that underlie two of our separate papers, and
which commonly arise in identities involving partition functions and
other functions generated by Lambert series. We provide a number of
properties and open problems related to the inverse matrix entries de-
fined in Schmidt’s article and the Euler partition function p(n) which we
prove through our new results unifying the expansions of the Lambert
series factorization theorems within this article.

1. Introduction

1.1. Lambert series factorization theorems. We consider recurrence
relations and matrix equations related to Lambert series expansions of the
form [4, §27.7] [1, §17.10]

∑
n≥1

anq
n

1− qn
=
∑
m≥1

bmq
m, |q| < 1,(1.1)

for prescribed arithmetic functions a : Z+ → C and b : Z+ → C where bm =∑
d|m ad. There are many well-known Lambert series for special arithmetic

functions of the form in (1.1). Examples include the following series where
µ(n) denotes the Möbius function, φ(n) denotes Euler’s phi function, σα(n)
denotes the generalized sum of divisors function, λ(n) denotes Liouville’s
function, Λ(n) denotes von Mangoldt’s function, ω(n) defines the number of
distinct primes dividing n, and Jt(n) is Jordan’s totient function for a fixed
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t ∈ C [4, §27.6 – §27.7]1:

∑
n≥1

µ(n)qn

1− qn
= q, (an, bn) := (µ(n), [n = 1]δ)

(1.2)

∑
n≥1

φ(n)qn

1− qn
=

q

(1− q)2
, (an, bn) := (φ(n), n)

∑
n≥1

nαqn

1− qn
=
∑
m≥1

σα(n)qn, (an, bn) := (nα, σα(n))

∑
n≥1

λ(n)qn

1− qn
=
∑
m≥1

qm
2
, (an, bn) := (λ(n), [n is a positive square]δ)

∑
n≥1

Λ(n)qn

1− qn
=
∑
m≥1

log(m)qm, (an, bn) := (Λ(n), log n)

∑
n≥1

|µ(n)|qn

1− qn
=
∑
m≥1

2ω(m)qm, (an, bn) := (|µ(n)|, 2ω(n))

∑
n≥1

Jt(n)qn

1− qn
=
∑
m≥1

mtqm, (an, bn) := (Jt(n), nt).

In this article, our new results and conjectures extend and unify the related
Lambert series factorization theorems considered in two separate contexts
in the references [3, 6]. In particular, in [2] Merca notes that∑

n≥1

qn

1± qn
=

1

(∓q; q)∞

∑
n≥1

(so(n)± se(n)) qn,

where so(n) and se(n) respectively denote the number of parts in all par-
titions of n into an odd (even) number of distinct parts. More generally,
Merca [3] proves that∑

n≥1

anq
n

1± qn
=

1

(∓q; q)∞

∑
n≥1

(
n∑
k=1

(so(n, k)± se(n, k)) ak

)
qn,(1.3)

where so(n, k) and se(n, k) are respectively the number of k’s in all partitions
of n into an odd (even) number of distinct parts.

1.2. Matrix equations for the arithmetic functions generated by
Lambert series. We define the invertible n × n square matrices, An, as
in Schmidt’s article according to the convention from Merca’s article as [6,

1Notation: Iverson’s convention compactly specifies boolean-valued conditions and
is equivalent to the Kronecker delta function, δi,j , as [n = k]δ ≡ δn,k. Similarly,

[cond = True]δ ≡ δcond,True in the remainder of the article.
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Table 1. The bottom row sequences in the matrices, A−1
n ,

in the definition of (1.6) on page 34 for 2 ≤ n ≤ 18.

n rn,n−1, rn,n−2, . . . , rn,1
2 1
3 1, 1
4 2, 1, 1
5 4, 3, 2, 1
6 5, 3, 2, 2, 1
7 10, 7, 5, 3, 2, 1
8 12, 9, 6, 4, 3, 2, 1
9 20, 14, 10, 7, 5, 3, 2, 1
10 25, 18, 13, 10, 6, 5, 3, 2, 1
11 41, 30, 22, 15, 11, 7, 5, 3, 2, 1
12 47, 36, 26, 19, 14, 10, 7, 5, 3, 2, 1
13 76, 56, 42, 30, 22, 15, 11, 7, 5, 3, 2, 1, 1
14 90, 69, 51, 39, 28, 21, 14, 11, 7, 5, 3, 2, 1, 1
15 129, 97, 74, 55, 41, 30, 22, 15, 11, 7, 5, 3, 2, 1, 1
16 161, 124, 94, 72, 53, 40, 29, 21, 15, 11, 7, 5, 3, 2, 1, 1
17 230, 176, 135, 101, 77, 56, 42, 30, 22, 15, 11, 7, 5, 3, 2, 1, 1
18 270, 212, 163, 126, 95, 73, 54, 41, 29, 22, 15, 11, 7, 5, 3, 2, 1, 1

cf.§1.2]

An := (se(i, j)− so(i, j))1≤i,j≤n ,(1.4)

where the entries, si,j := se(i, j) − so(i, j), of these matrices are generated
by [3, Cor. 4.3]

si,j = se(i, j)− so(i, j) = [qi]
qj

1− qj
(q; q)∞.

We then have formulas for the Lambert series arithmetic functions, an, in
(1.1) and in the special cases from (1.2) for all n ≥ 1 given by


a1

a2
...
an

 = A−1
n

bm+1 −
∑
s=±1

b
√
24m+1−s

6
c∑

k=1

(−1)k+1bm+1−k(3k+s)/2︸ ︷︷ ︸
:=Bb,m


0≤m<n

.

(1.5)
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In general, for all n ≥ 2 we have recursive formulas for the inverses of the
matrices defined by (1.4) expanded in the form of

A−1
n+1 =

[
A−1
n 0

rn+1,n, . . . , rn+1,1 1

]
,(1.6)

where the first several special cases of the sequences, {rn,n, rn,n−1, . . . , rn,1},
are given as in [6] by Table 1. We mention that unipotent lower triangular
matrices form a group, so the inverses A−1

n are lower triangular with 1 on
diagonal.

Within this article we focus on the properties of the entries, s
(−1)
i,j , of the

inverse matrices, A−1
n , defined by (1.4). We prove several new recurrence

relations and an expansion of an exact formula for the inverse matrices in the
previous equation in the results of Section 2. In Section 3 we computationally
observe and prove that

s
(−1)
n,k :=

∑
d|n

p(d− k)µ(n/d)

where p(n) = [qn](q; q)−1
∞ denotes Euler’s partition function. This key con-

jecture immediately implies the results in Corollary 3.2. More precisely, the
corollary provides exact finite divisor sum formulas for the special cases of
(1.5) corresponding to the special arithmetic functions in (1.2).

1.3. Significance of our new results and conjectures. Questions in-
volving divisors of an integer have been studied for millennia and they un-
derlie the deepest unsolved problems in number theory and related fields.
The study of partitions, i.e., the ways to write a positive integer as a sum of
positive integers, is much younger, with Euler considered to be the founder
of the subject. The history of both subjects is rich and interesting but in
the interest of brevity we will not go into it here.

The two branches of number theory, additive and multiplicative, turn out
to be related in many interesting ways. Even though there are a number of
important results connecting the theory of divisors with that of partitions,
these are somewhat scattered in their approach. There are many other ap-
parent connections to convolutions involving these matrix sequences waiting
to be discovered. We propose continuing the study of the relationship be-
tween divisors and partitions with the goal of identifying common threads
and hopefully unifying the underlying theory. Moreover, it appears that, on
the multiplicative number theory side, these connections can be extended to
other important number theoretic functions such as Euler’s totient function,
Jordan’s totient function, Liouville’s function, the Möbius function, and von
Mangold’s function, among others.

Our goal is to obtain a unified view of convolutions involving the par-
tition function and number theoretic functions. To our knowledge, such
an approach has not been attempted yet. Convolutions have been used in
nearly all areas of pure and applied mathematics. In a sense, they measure
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the overlap between two functions. The idea for a unified approach for a
large class of number theoretical functions has its origin in Merca’s article
[3] and in Schmidt’s article [6].

Perhaps our most interesting and important result, which we discovered
computationally with Mathematica and Maple starting from an example
formula given in the Online Encyclopedia of Integer Sequences for the first
column of the inverse matrices defined by (1.4), is stated in Theorem 3.1.
The theorem provides an exact divisor sum formula for the inverse matrix

entries, s
(−1)
n,k , involving a Möbius transformation of the shifted Euler parti-

tion function, p(n−k). This result is then employed to formulate new exact
finite (divisor) sum formulas for each of the Lambert series functions, an,
from the special cases in (1.2). These formulas are important since there are
rarely such simple and universal identities expressing formulas for an entire
class of special arithmetic functions considered in the context of so many
applications in number theory and combinatorics. Generalizations, further
applications, and topics for future research based on our work in this article
are suggested in Section 4.

2. Exact and recursive formulas for the inverse matrices

Proposition 2.1 (Recursive Matrix-Product-Like Formulas). We let si,j :=
se(i, j) − so(i, j) denote the terms in the original matrices, An, found in

Schmidt’s article and let s
(−1)
i,j denote the corresponding entries in the inverse

matrices, A−1
n . Then we have that

s
(−1)
n,j = −

n−j∑
k=1

s
(−1)
n,n+1−k · sn+1−k,j + δn,j

= −
n−j∑
k=1

sn,n−k · s
(−1)
n−k,j + δn,j

= −
n∑
k=1

sn,k−1 · s
(−1)
k−1,j + δn,j .

Proof. The proof follows from the fact that for any n×n invertible matrices,
An and A−1

n , with entries given in the notation above, we have the following
inversion formula for all 1 ≤ k, p ≤ n:

n∑
j=1

sp,j · s(−1)
j,k =

n∑
j=1

s
(−1)
p,j · sj,k = [p = k]δ ,

since the matrices An are lower triangular with 1 on diagonal. �

We can use the third of the three formulas given in the proposition re-
peatedly to obtain the following recursively defined, and then exact sums
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for the inverse matrix entries:

s
(−1)
i,j = −

i∑
k=1

k−1∑
k2=1

k2−1∑
k3=1

si,k−1 · sk−1,k2−1 · sk2−1,k3−1 · s
(−1)
k3−1,j

+
i∑

k=j+2

si,k−1 · sk−1,j − si,j + δi,j .

By inductively extending the expansions in the previous equation and notic-
ing that the product terms in the multiple nested sums resulting from this
procedure are eventually zero, we obtain the result in the next corollary.

Corollary 2.2 (An Exact Nested Formula for the Inverse Matrices). Let
the notation for the next multiple, nested sums be defined as

Σm(i, j) :=
i∑

k1=j+2

k1−1∑
k2=j+2

· · ·
km−1−1∑
km=j+2︸ ︷︷ ︸

m total sums

si,k1−1 · sk1−1,k2−1 × · · · × skm−1,j .

Then we may write an exact expansion for the inverse matrix entries as

s
(−1)
i,j = δi,j − si,j + Σ1(i, j)− Σ2(i, j) + · · ·+ (−1)i+j+1Σi−j(i, j).

Proof. The proof is easily obtained by induction on j and repeated applica-
tions of the third recurrence relation stated in Proposition 2.1. �

The terms in the multiple sums defined in the corollary are reminiscent
of the formula for the multiplication of two or more matrices. We may thus
potentially obtain statements of more productive exact results providing
expansions of these inverse matrix terms by considering the nested, multiple
sum formulas in Corollary 2.2 as partial matrix products, though for the
most part we leave the observation of such results as a topic for future
investigation on these forms. However, given the likeness of the nested sums
in the previous equations and in Corollary 2.2 to sums over powers of the
matrix An, we have computationally obtained the following related formula
for the corresponding inverse matrices A−1

n :

A−1
n =

n−1∑
i=1

(
n− 1

i

)
(−1)i+1Ai−1

n , n ≥ 2.

Given that An is unipotent, this formula is not surprising. We do not provide
the proof by induction used to formally prove this identity here due to the
complexity of the forms of the powers of the matrix An which somewhat limit
the utility of the formula at this point. We also notice that the corollary
expresses the complicated inverse entry functions as a sum over products of
sequences with known and comparatively simple generating functions stated
in the introduction [3, cf.Cor. 4.3]. The results in Section 3 provide a more
exact representation of the entries of these inverse matrices for all n obtained
by a separate method of proof.
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3. Some experimental conjectures

Figure 1. The first 29 rows of the function s
(−1)
i,j where the

values of Euler’s partition function p(n) are highlighted in
blue and the remaining values of the partition function q(n)
are highlighted in purple (in both sequences) or pink.

3.1. Several figures and exact formulas. Based on our experimental
analysis and some intuition with partition functions, we expect that the in-

verse matrix entries, s
(−1)
i,j , are deeply tied to the values of the Euler partition

function p(n). In fact, we are able to plot the first few rows and columns
of the two-dimensional sequence in Figure 1 to obtain a highlighted listing
of the values of special partition functions in the sequence of these matrix
inverse entries. A quick search of the first few columns of the table in the
figure turns up the following special entry in the online sequences database
[7].

Conjecture (The First Column of the Inverse Matrices). The first
column of the inverse matrix is given by a convolution (dot product) of the
partition function p(n) and the Möbius function µ(n) [7, A133732, A133732].
That is to say that

s
(−1)
n,1 =

∑
d|n

p(d− 1)µ(n/d) 7−→ {1, 0, 1, 2, 4, 5, 10, 12, 20, 25, 41, 47, . . .},

i.e., so that by Möbius inversion we have that

p(n− 1) =
∑
d|n

s
(−1)
d,1 7−→ {1, 1, 2, 3, 5, 7, 11, 15, 22, . . .}.



38 MIRCEA MERCA AND MAXIE D. SCHMIDT

n\k 1 2 3 4 5 6 7 8 9 10 11 12

1 1 0 0 0 0 0 0 0 0 0 0 0
2 1 1 0 0 0 0 0 0 0 0 0 0
3 2 1 1 0 0 0 0 0 0 0 0 0
4 3 2 1 1 0 0 0 0 0 0 0 0
5 5 3 2 1 1 0 0 0 0 0 0 0
6 7 5 3 2 1 1 0 0 0 0 0 0
7 11 7 5 3 2 1 1 0 0 0 0 0
8 15 11 7 5 3 2 1 1 0 0 0 0
9 22 15 11 7 5 3 2 1 1 0 0 0
10 30 22 15 11 7 5 3 2 1 1 0 0
11 42 30 22 15 11 7 5 3 2 1 1 0
12 56 42 30 22 15 11 7 5 3 2 1 1
13 77 56 42 30 22 15 11 7 5 3 2 1
14 101 77 56 42 30 22 15 11 7 5 3 2
15 135 101 77 56 42 30 22 15 11 7 5 3
16 176 135 101 77 56 42 30 22 15 11 7 5
17 231 176 135 101 77 56 42 30 22 15 11 7
18 297 231 176 135 101 77 56 42 30 22 15 11

(i) The Divisor Sums a′n,k

n\k 1 2 3 4 5 6 7 8 9 10 11 12

1 1 0 0 0 0 0 0 0 0 0 0 0
2 0 1 0 0 0 0 0 0 0 0 0 0
3 1 1 1 0 0 0 0 0 0 0 0 0
4 2 1 1 1 0 0 0 0 0 0 0 0
5 4 3 2 1 1 0 0 0 0 0 0 0
6 5 3 2 2 1 1 0 0 0 0 0 0
7 10 7 5 3 2 1 1 0 0 0 0 0
8 12 9 6 4 3 2 1 1 0 0 0 0
9 20 14 10 7 5 3 2 1 1 0 0 0
10 25 18 13 10 6 5 3 2 1 1 0 0
11 41 30 22 15 11 7 5 3 2 1 1 0
12 47 36 26 19 14 10 7 5 3 2 1 1
13 76 56 42 30 22 15 11 7 5 3 2 1
14 90 69 51 39 28 21 14 11 7 5 3 2
15 129 97 74 55 41 30 22 15 11 7 5 3
16 161 124 94 72 53 40 29 21 15 11 7 5
17 230 176 135 101 77 56 42 30 22 15 11 7
18 270 212 163 126 95 73 54 41 29 22 15 11

(ii) The Divisor Sums a′′n,k

Figure 2. A comparison of the two experimental divisor
sum variants, a′n,k and a′′n,k, defined on page 38. Theorem
3.1 summarizes the results shown in these two sequence plots.

We are then able to explore further with the results from this first con-
jecture to build tables of the following two formulas involving our sequence,

s
(−1)
n,k , and the shifted forms of the partition function, p(n − k), where we

take p(n) ≡ 0 when n < 0:

a′n,k :=
∑
d|n

s
(−1)
d,k(i)

a′′n,k :=
∑
d|n

p(d− k)µ(n/d).(ii)
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The results of plotting these sequences for the first few rows and columns
of 1 ≤ n ≤ 18 and 1 ≤ k ≤ 12, respectively, are found in the somewhat
surprising and lucky results given in Figure 2. From this experimental data,
we arrive at the following second conjecture providing exact divisor sum
formulas for the inverse matrix entries. The corollary immediately following
this conjecture is implied by a proof of these results and from the formulas
established in [6, §3].

Theorem 3.1 (Exact Formulas for the Inverse Matrices). For all n, k ≥
1 with 1 ≤ k ≤ n, we have the following formula connecting the inverse
matrices and the Euler partition function:

s
(−1)
n,k :=

∑
d|n

p(d− k)µ(n/d).(3.1)

Proof. We see that the equation (3.1) which we seek to prove is equivalent
to

p(n− k) :=
∑
d|n

s
(−1)
d,k .

We next consider the variant of the Lambert series factorization theorem
in (1.3) applied to the Lambert series in (1.1) with an := s

(−1)
n,k for a fixed

integer k ≥ 1. In particular, the identity in (1.3) implies that∑
d|n

s
(−1)
d,k =

n∑
m=0

n−m∑
j=1

(so(n−m, j)− se(n−m, j)) s(−1)
j,k · p(m)

=

n∑
m=0

δn−k,m · p(m)

= p(n− k),

where we have by our matrix formulation in (1.4) that
m∑
j=1

(so(m, j)− se(m, j)) s(−1)
j,k = δm,j .

Thus by Möbius inversion, we have our key formula for the inverse matrix
entries given in (3.1). �

We notice that the last equation given in the conjecture implies that we
have a Lambert series generating function for the inverse matrix entries
given by ∑

n≥1

s
(−1)
n,k qn

1− qn
=

qk

(q; q)∞
,

for fixed integers k ≥ 1. We also note that where Merca’s article [3] provides
the partition function representation for the sequence sn,k in the matrix
interpretation established in [6], the result in the theorem above effectively
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provides us with an exact identity for the corresponding sequence of inverse

matrix entries, s
(−1)
n,k , employed as in Schmidt’s article to obtain the new

expressions for several key special multiplicative functions.
One important and interesting consequence of the result in Theorem 3.1 is

that we have now completely specified several new formulas which provide
exact representations for a number of classical and special multiplicative
functions cited as examples in (1.2) of the introduction. These formulas,
which are each expanded in the next corollary, connect the expansions of
several special multiplicative functions to sums over divisors of n involv-
ing Euler’s partition function p(n). In particular, we can now state several
specific identities for classical number theoretic functions which connect the
seemingly disparate branches of multiplicative number theory with the ad-
ditive nature of the theory of partitions and special partition functions. The
results in the next corollary are expanded in the following forms:

Corollary 3.2 (Exact Formulas for Special Arithmetic Functions). For nat-
ural numbers m ≥ 0, let the next component sequences defined in [6, §3] be
defined by the formulas

Bφ,m = m+ 1− 1

8

(
8− 5 · (−1)u1 − 4 (−2 + (−1)u1 + (−1)u2)m

+ 2(−1)u1u1(3u1 + 2) + (−1)u2(6u2
2 + 8u2 − 3)

)

Bµ,m = [m = 0]δ +
∑
b=±1

b
√
24m+25−b

6
c∑

k=1

(−1)k [m+ 1− k(3k + b)/2 = 1]δ

Bλ,m =
[√
m+ 1 ∈ Z

]
δ

−
∑
b=±1

b
√

24m+1−b
6

c∑
k=1

(−1)k+1
[√

m+ 1− k(3k + b)/2 ∈ Z
]
δ

BΛ,m = log(m+ 1)−
∑
b=±1

b
√
24m+1−b

6
c∑

k=1

(−1)k+1 log(m+ 1− k(3k + b)/2)

B|µ|,m = 2ω(m+1) −
∑
b=±1

b
√
24m+1−b

6
c∑

k=1

(−1)k+12ω(m+1−k(3k+b)/2)

BJt,m = (m+ 1)t −
∑
b=±1

b
√
24m+1−b

6
c∑

k=1

(−1)k+1(m+ 1− k(3k + b)/2)t,
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where u1 ≡ u1(m) := b(
√

24m+ 1+1)/6c and u2 ≡ u2(m) := b(
√

24m+ 1−
1)/6c. Then we have that

φ(n) =
n−1∑
m=0

∑
d|n

p(d−m− 1)µ(n/d)Bφ,m

µ(n) =
n−1∑
m=0

∑
d|n

p(d−m− 1)µ(n/d)Bµ,m

λ(n) =

n−1∑
m=0

∑
d|n

p(d−m− 1)µ(n/d)Bλ,m

Λ(n) =

n−1∑
m=0

∑
d|n

p(d−m− 1)µ(n/d)BΛ,m

|µ(n)| =
n−1∑
m=0

∑
d|n

p(d−m− 1)µ(n/d)B|µ|,m

Jt(n) =

n−1∑
m=0

∑
d|n

p(d−m− 1)µ(n/d)BJt,m.

The corresponding formulas for the average orders, Σa,x, of these special
arithmetic functions are obtained in an initial form by summing the right-
hand-sides of the previous equations over all n ≤ x.

We can also compare the results of the recurrence relations in the previous
corollary to two other identical statements of these results. In particular,
if we define the sequence {Gj}j≥0 = {0, 1, 2, 5, 7, 12, 15, 22, 26, 35, 40, 51, . . .}
as in [3, §1] by the formula

Gj =
1

2

⌈
j

2

⌉⌈
3j + 1

2

⌉
,

then by performing a divisor sum over n in the previous equations, we see
that the sequence pairs in the form of (1.1) satisfy

an =

n∑
k=1

k−1∑
j=0

p(n− k)(−1)dj/2ebk−Gj .

We immediately notice the similarity of the recurrence relation for bn given
in the last equation to the known result from [6, Thm. 1.4] which states that

bn =
n∑
j=0

(−1)dj/2ebn−Gj ,

and which was proved by a separate nonexperimental approach in the ref-
erence.
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Remark (An Experimental Conjecture). Since we have a well-known
recurrence relation for the partition function given by

p(n) =

n∑
k=1

(−1)k+1 (p(n− k(3k − 1)/2) + p(n− k(3k + 1)/2)) ,

we attempt to formulate an analogous formula for the s
(−1)
i,j using (3.1),

which leads us to the sums

a′′′n :=
n∑
k=1

(−1)k+1
(
s

(−1)
n,k(3k−1)/2 + s

(−1)
n,k(3k+1)/2

)
7−→ {1, 1, 2, 3, 6, 7, 14, 17, 27, 34, 55, 63, . . .}.

A search in the integer sequences database suggests that this sequence de-
notes the number of partitions of n into relatively prime parts, or alternately,
aperiodic partitions of n [7, A000837, A000837]. We notice the additional,
and somewhat obvious and less interesting, identity which follows from the
recurrence relation for p(n) given above expanded in the form of

n∑
k=0

(−1)dk/2es
(−1)
n,Gk

= 0.

3.2. Other properties related to the partition function.

Proposition 3.3 (Partition Function Subsequences). Let n be a positive
integer. For dn/2e < k ≤ n,

s
(−1)
n,k = p(n− k).

The indices of the first few rows such that

s
(−1)
n,k = p(n− k)

is true for all 1 < k ≤ n are {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, . . .}.

Proof. This result is immediate from the divisor sum in (3.1) where the only
divisor of n in the range dn/2e < k ≤ n is n itself. �

Proposition 3.4 (Partition Function Subsequences for Prime n). For n
prime and 1 ≤ k ≤ n,

s
(−1)
n,k = p(n− k)− δ1,k,

where δi,j is the Kronecker delta function.

Proof. This result is also immediate from the divisor sum in (3.1) where the
only divisors of the prime n are 1 and n and p(1− k) = δk,1 by convention.
In particular, we have that

s
(−1)
n,k = µ(p)p(1− k) + µ(1)p(n− k),

for all 1 ≤ k ≤ n. �
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The next two results which we initially obtained experimentally from
tables of the matrix inverse entries follow along the same lines as the previous
two propositions. Given the ease with which we proved the last formulas
for prime n, we omit the one-line proofs of the next two results below. Note
that by the formula in (3.1), we may also strengthen these results to prime
powers of the form n = pk for k ≥ 1 and any prime p.

Proposition 3.5. For n prime,

s
(−1)
n2,k

=

{
p(n2 − k)− p(n− k), for 1 ≤ k ≤ n,

p(n2 − k), for n < k ≤ n2.

Proposition 3.6. For n prime,

s
(−1)
2n,k =


p(2n− k)− p(n− k)− p(2− k) + δ1,k, for 1 ≤ k ≤ 2,

p(2n− k)− p(n− k), for 2 < k ≤ n,

p(2n− k), for n < k ≤ 2n.

A similar argument to the above can be used to show that if q, r ∈ Z+

are relatively prime positive integers, then we have that

s
(−1)
qr,k = δ1,k − p(q − k)− p(r − k) + p(qr − k),

which as we observe is another example of an additive formula we have
obtained defining an inherently multplicative structure in terms of additive
functions. Notably, we can use this observation to show that if the arithmetic
function an in (1.1) is multiplicative, then we have that aq · ar = bqr − bp −
bq + b1 for all positive integers p, q such that (p, q) = 1. We can then form
subsequent generalizations for products of pairwise relatively prime integers,
q1, q2, . . . , qm, accordingly.

4. Conclusions

4.1. Summary. We have proved a unified form of the Lambert series fac-
torization theorems from the references [3, 6] which allows us to exactly
express matrix equations between the implicit arithmetic sequences, an and
bn, in (1.1) and in the classical special cases in (1.2). More precisely, we
have noticed that the invertible matrices, An, from Schmidt’s article are
expressed through the factorization theorem in (1.3) proved by Merca. We
then proved new divisor sum formulas involving the partition function p(n)
for the corresponding inverse matrices which define the sequences, an, in
terms of only these matrix entries and the secondary sequence of bn as in
the results from [6].

The primary application of our new matrix formula results is stated in
Corollary 3.2. The corollary provides new exact finite (divisor) sum formulas
for the special arithmetic functions, φ(n), µ(n), λ(n), Λ(n), |µ(n)|, and
Jt(n), and the corresponding partial sums defining the average orders of
these functions. One related result not explicitly stated in Schmidt’s article



44 MIRCEA MERCA AND MAXIE D. SCHMIDT

provides a discrete (i.e., nondivisor-sum) convolution for the average order
of the sum-of-divisors function, denoted by Σσ,x :=

∑
n≤x σ(n), in the form

of [6, §3.1]

Σσ,x+1 =
∑
s=±1

 ∑
0≤n≤x

⌊√
24n+25−s

6

⌋∑
k=1

(−1)k+1k(3k + s)

2
· p(x− n)

 .

Other related divisor sum results that can be stated in terms of our new
inverse matrix formulas implied by Theorem 3.1 are found, for example, in
Merca’s article [3, §5].

4.2. Generalizations. Merca showed another variant of the Lambert series
factorization theorem stated in the form of [3, Cor. 6.1]

∑
n≥1

anq
2n

1− qn
=

1

(q; q)∞

∑
n≥1

bn/2c∑
k=1

(so(n− k, k)− se(n− k, k)) ak · qn.

If we consider the generalized Lambert series formed by taking derivatives of
(1.1) from [5] in the context of finding new relations between the generalized
sum-of-divisors functions, σα(n), we can similarly formulate new, alternate
forms of the factorization theorems unified by this article. For example,
suppose that k,m ≥ 0 are integers and consider the factorization theorem
resulting from comparing the sums

∑
n≥1

anq
(m+1)n

(1− qn)k+1
=

1

(q; q)∞

∑
n≥1

bn/(m+1)c∑
i=1

sn−m,i
ai

(1− qi)k
· qn.

Then we have another variation of the factorization theorem providing that
the previous series in k and m are expanded by

∑
n≥1

anq
(m+1)n

(1− qn)k+1
=

1

(q; q)∞

∑
n≥1

b n
m+1c∑
i=1

bn−mi c∑
j=0

(
k − 1 + j

k − 1

)
sn−m−ji,i · ai · qn.

When m ≥ k the series coefficients of these modified Lambert series gener-
ating functions are given by

∑
d|n

d≤b n
m+1c

(
n
d
−1−m+k

k
)ad =

n∑
q=0

b n−qm+1c∑
i=1

bn−q−mi c∑
j=0

(
k − 1 + j

k − 1

)
sn−q−m−ji,i · ai · p(q).

Thus, again, as in Merca’s article, the applications and results in Corollary
3.2 can be repeated in the context of a slightly different motivation for
considering these factorization theorems.
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4.3. Topics for future research. Topics for future research based on the
unified factorization theorem results we have proved within the article in-
clude investigating the properties of the generalizations defined in the last
subsection, considering congruences for the partition function and the in-

verse matrix entries, s
(−1)
n,k , and finding useful new asymptotic formulas for

the average orders of the special functions in Corollary 3.2.
The last topic is of particular interest since we have given an explicit

formula for the Möbius function, µ(n), which holds for all n ≥ 0. The
problem of determining whether the average order, M(x) :=

∑
n≤x µ(n),

of this particular special function is bounded by M(x) = O(x1/2+ε) for all
sufficiently small ε > 0 is equivalent to the Riemann hypothesis. In light
of the significance of this problem, we must at least suggest our approach
towards formulating new exact, nonapproximate properties of this average
order sequence for all x ≥ 1.
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