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A LOWER BOUND ON THE HYPERGRAPH RAMSEY

NUMBER R(4, 5; 3)

JANUSZ DYBIZBAŃSKI

Abstract. The finite version of Ramsey’s theorem says that for posi-
tive integers r, k, a1, . . . , ar, there exists a least number n = R(a1, . . . ,
ar; k) so that if X is an n-element set and all k-subsets of X are r-
coloured, then there exists an i and an ai-set A so that all k-subsets of
A are coloured with the ith colour.

In this paper, the bound R(4, 5; 3) ≥ 35 is shown by using a SAT
solver to construct a red–blue colouring of the triples chosen from a
34-element set.

1. Introduction

In 1930, Ramsey proved the following theorem:

Theorem 1.1 ([11]). Let r, k, a1, . . . , ar be given positive integers. Then
there is an integer n with the following property. If all k-subsets of an n-set
are coloured with r colours, then for some i, 1 ≤ i ≤ r, there exists an ai-set
entirely coloured in colour i (all of its k-subsets have colour i).

The smallest n for which Ramsey’s theorem holds, we call a Ramsey
number and is denoted by R(a1, . . . , ar; k). This notation is used by the
survey by Radziszowski [10]. Note that there are at least two other notations
for these numbers in the literature, namely: Rk(a1, . . . , ar), used for example

in [5], or R(k)(a1, . . . , ar), used in [2]. Since colouring of all k-subsets can
be viewed as colouring of the edges of complete k-uniform hypergraphs,
numbers R(a1, . . . , ar; k), for k ≥ 3, are also called hypergraph Ramsey
numbers.

For k = 2, only ten exact values for nontrivial Ramsey numbers are known
(see [10] for details). For k = 3, only one exact nontrivial value is known,
namely R(4, 4; 3) = 13, where R(4, 4; 3) ≥ 13 was proved in 1969 by Isbell [7]
and equality was shown by McKay and Radziszowski [9] in 1991.

In this paper we deal with the number R(4, 5; 3). In 1983 Isbell [8]
proved that R(4, 5; 3) ≥ 24, and in 1998 Exoo [4] presented a colouring
which gives the bound R(4, 5; 3) ≥ 33. Up to the author’s knowledge
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the best upper bound for R(4, 5; 3) can be obtained by using one step of
the Erdős–Szekeres recursion [3] and known bounds for Ramsey numbers
with smaller parameters, see [10]. These give the estimation R(4, 5; 3) ≤
R(R(3, 5; 3), R(4, 4; 3); 2) + 1 = R(5, 13; 2) + 1 ≤ 1139. In this paper we
show that R(4, 5; 3) ≥ 35. This bound is shown by producing a 2-colouring
of the triples of set with 34-elements. The colouring is formed by dividing all
triples into classes and then by looking through 2-colouring of the classes.
Similar approaches were used to establish lower bound for graph Ramsey
numbers (k = 2). For example, Harborth and Krause [6] searched through
colourings such that the colouring matrix is partitioned into cyclic orbits.

2. Colouring

Theorem 2.1. Let V = {0, . . . , 33}. There exists a colouring c :
(
V
3

)
→

{red, blue}, such that no 4-subset of V is entirely coloured in red, and no
5-subset of V is entirely coloured in blue.

Proof. This colouring is achieved by first dividing all such triples into 176
classes and then by giving a 2-colouring of the classes. For each two integers
a, b satisfying 1 ≤ a ≤ 11 and a + 1 ≤ b ≤ 22, define the class:

Cab =
{
{0 + d, a + d, b + d} : 0 ≤ d ≤ 33

}
,

where addition is modulo 34. It is easy to see that there are 176 classes,
each contains 34 3-sets and the classes are pairwise disjoint. Hence, we have
a partition of

(
V
3

)
into 176 disjoint classes. To find a proper colouring of the

classes we use a SAT solver. We construct a formula with 176 variables—one
for every class Cab. For every E ∈

(
V
3

)
, let f(E) be the variable for the class

that contains E. We assume that E is blue if the variable f(E) is true, and
E is red if f(E) is false. We use the following formula:[ ∧

S∈(V4)

∨
E∈(S3)

f(E)
]
∧
[ ∧
S∈(V5)

∨
E∈(S3)

¬f(E)
]
.

The first part of the formula says that in every 4-set at least one of 3-subsets
is coloured in blue (variable is true). Similarly, the second part says that in
every 5-sets at least one of 3-subsets is coloured in red. It may happen that
for some S ∈

(
V
4

)
we have two triples E and E′ such that f(E) = f(E′)

and we have two repeated literals in the clause
∨

E∈(S3)
f(E). We simplify

the clauses by removing such repetitions. Similarly it may happen that
for two sets S and S′ ∈

(
V
4

)
the clauses

∨
E∈(S3)

f(E) and
∨

E∈(S
′
3 )

f(E) are

equivalent. We simplify the formula by removing such repetitions. Similarly
we simplify the second part of the formula.

Finally, a formula with 176 variables and 9552 clauses is found. We use
the SparrowToRiss [1] SAT solver and find out that the formula is satisfied.
The SAT solver finishes in less than five minutes on a personal computer1

1Computer with processor IntelR© CoreTM i7-4790, 3.60GHz.
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a\b 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

1 0 0 1 0 1 0 1 1 0 1 1 1 1 0 0 0 0 0 1 0 0

2 0 0 0 0 0 1 1 0 1 0 1 1 1 1 0 1 1 0 0 1

3 1 0 1 0 1 1 0 0 0 1 0 1 0 0 0 0 1 1 1

4 1 0 0 1 0 0 1 0 1 0 0 1 0 0 0 0 1 1

5 1 1 0 1 1 1 0 0 0 1 0 0 0 1 1 1 0

6 0 0 0 0 0 0 1 0 1 0 1 1 0 0 1 0

7 1 1 0 0 0 0 1 0 0 0 0 0 0 0 1

8 0 0 1 0 0 1 0 1 1 0 0 1 0 0

9 0 0 0 0 1 0 0 0 1 0 0 0 0

10 0 1 0 1 0 1 1 1 0 0 1 1

11 0 0 0 1 0 0 1 1 0 1 0

Figure 1. The colouring of the classes Cab without red 4-
subset and blue 5-subset.

and returns the assignment that gives the proper colouring of the classes
presented in Figure 1.

One can easily find, using a computer, that the colouring is proper, i.e.
each clique K4 contains at least one 3-set coloured in blue and each clique
K5 contains at least one 3-set coloured in red. On the website, https:

//www.inf.ug.edu.pl/ramsey, we posted a simplified formula, satisfying
assignment, the corresponding colouring of all triples, and a C++ program
that verifies that the colouring is proper. �
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E-mail address: jdybiz@inf.ug.edu.pl


	1. Introduction
	2. Colouring
	Acknowledgement
	References

