A LOWER BOUND ON THE HYPERGRAPH RAMSEY NUMBER $R(4, 5; 3)$

JANUSZ DYBIZBAŃSKI

Abstract. The finite version of Ramsey’s theorem says that for positive integers r, k, a_1, \ldots, a_r, there exists a least number $n = R(a_1, \ldots, a_r; k)$ so that if X is an n-element set and all k-subsets of X are r-coloured, then there exists an i and an a_i-set A so that all k-subsets of A are coloured with the ith colour.

In this paper, the bound $R(4, 5; 3) \geq 35$ is shown by using a SAT solver to construct a red–blue colouring of the triples chosen from a 34-element set.

1. Introduction

In 1930, Ramsey proved the following theorem:

Theorem 1.1 ([11]). Let r, k, a_1, \ldots, a_r be given positive integers. Then there is an integer n with the following property. If all k-subsets of an n-set are coloured with r colours, then for some i, $1 \leq i \leq r$, there exists an a_i-set entirely coloured in colour i (all of its k-subsets have colour i).

The smallest n for which Ramsey’s theorem holds, we call a Ramsey number and is denoted by $R(a_1, \ldots, a_r; k)$. This notation is used by the survey by Radziszowski [10]. Note that there are at least two other notations for these numbers in the literature, namely: $R_k(a_1, \ldots, a_r)$, used for example in [5], or $R^{(k)}(a_1, \ldots, a_r)$, used in [2]. Since colouring of all k-subsets can be viewed as colouring of the edges of complete k-uniform hypergraphs, numbers $R(a_1, \ldots, a_r; k)$, for $k \geq 3$, are also called hypergraph Ramsey numbers.

For $k = 2$, only ten exact values for nontrivial Ramsey numbers are known (see [10] for details). For $k = 3$, only one exact nontrivial value is known, namely $R(4, 4; 3) = 13$, where $R(4, 4; 3) \geq 13$ was proved in 1969 by Isbell [7] and equality was shown by McKay and Radziszowski [9] in 1991.

In this paper we deal with the number $R(4, 5; 3)$. In 1983 Isbell [8] proved that $R(4, 5; 3) \geq 24$, and in 1998 Exoo [4] presented a colouring which gives the bound $R(4, 5; 3) \geq 33$. Up to the author’s knowledge...
A LOWER BOUND ON THE HYPERGRAPH RAMSEY NUMBER $R(4, 5; 3)$

The best upper bound for $R(4, 5; 3)$ can be obtained by using one step of the Erdős–Szekeres recursion [3] and known bounds for Ramsey numbers with smaller parameters, see [10]. These give the estimation $R(4, 5; 3) \leq R(R(3, 5; 3), R(4, 4; 3); 2) + 1 = R(5, 13; 2) + 1 \leq 1139$. In this paper we show that $R(4, 5; 3) \geq 35$. This bound is shown by producing a 2-colouring of the triples of set with 34-elements. The colouring is formed by dividing all triples into classes and then by looking through 2-colouring of the classes. Similar approaches were used to establish lower bound for graph Ramsey numbers ($k = 2$). For example, Harborth and Krause [6] searched through colourings such that the colouring matrix is partitioned into cyclic orbits.

2. Colouring

Theorem 2.1. Let $V = \{0, \ldots, 33\}$. There exists a colouring $c : \binom{V}{3} \to \{\text{red, blue}\}$, such that no 4-subset of V is entirely coloured in red, and no 5-subset of V is entirely coloured in blue.

Proof. This colouring is achieved by first dividing all such triples into 176 classes and then by giving a 2-colouring of the classes. For each two integers a, b satisfying $1 \leq a \leq 11$ and $a + 1 \leq b \leq 22$, define the class:

$$C_{ab} = \left\{ \{0 + d, a + d, b + d\} : 0 \leq d \leq 33 \right\},$$

where addition is modulo 34. It is easy to see that there are 176 classes, each contains 34 3-sets and the classes are pairwise disjoint. Hence, we have a partition of $\binom{V}{3}$ into 176 disjoint classes. To find a proper colouring of the classes we use a SAT solver. We construct a formula with 176 variables—one for every class C_{ab}. For every $E \in \binom{V}{3}$, let $f(E)$ be the variable for the class that contains E. We assume that E is blue if the variable $f(E)$ is true, and E is red if $f(E)$ is false. We use the following formula:

$$\left[\bigwedge_{S \in \binom{V}{4}} \bigvee_{E \in \binom{S}{3}} f(E) \right] \land \left[\bigwedge_{S \in \binom{V}{5}} \bigvee_{E \in \binom{S}{3}} \neg f(E) \right].$$

The first part of the formula says that in every 4-set at least one of 3-subsets is coloured in blue (variable is true). Similarly, the second part says that in every 5-sets at least one of 3-subsets is coloured in red. It may happen that for some $S \in \binom{V}{4}$ we have two triples E and E' such that $f(E) = f(E')$ and we have two repeated literals in the clause $\bigvee_{E \in \binom{S}{3}} f(E)$. We simplify the clauses by removing such repetitions. Similarly it may happen that for two sets S and $S' \in \binom{V}{4}$ the clauses $\bigvee_{E \in \binom{S}{3}} f(E)$ and $\bigvee_{E \in \binom{S'}{3}} f(E)$ are equivalent. We simplify the formula by removing such repetitions. Similarly we simplify the second part of the formula.

Finally, a formula with 176 variables and 9552 clauses is found. We use the SparrowToRiss [1] SAT solver and find out that the formula is satisfied. The SAT solver finishes in less than five minutes on a personal computer\(^1\).

\(^1\)Computer with processor Intel® Core™ i7-4790, 3.60GHz.
and returns the assignment that gives the proper colouring of the classes presented in Figure 1.

One can easily find, using a computer, that the colouring is proper, i.e. each clique K_4 contains at least one 3-set coloured in blue and each clique K_5 contains at least one 3-set coloured in red. On the website, https://www.inf.ug.edu.pl/ramsey, we posted a simplified formula, satisfying assignment, the corresponding colouring of all triples, and a C++ program that verifies that the colouring is proper. □

Acknowledgement

The author would like to thank the anonymous reviewer for helpful comments that contributed to improving the final version of the paper.

References

Institute of Informatics, Faculty of Mathematics, Physics, and Informatics, University of Gdańsk, 80-308 Gdańsk, Poland

E-mail address: jdybiz@inf.ug.edu.pl