Contributions to Discrete Mathematics

FEEDBACK VERTEX NUMBER OF SIERPIŃSKI-TYPE GRAPHS

LILI YUAN, BAOYINDURENG WU, AND BIAO ZHAO

Abstract

The feedback vertex number $\tau(G)$ of a graph G is the minimum number of vertices that can be deleted from G such that the resultant graph does not contain a cycle. We show that $\tau\left(S_{p}^{n}\right)=p^{n-1}(p-2)$ for the Sierpiński graph S_{p}^{n} with $p \geq 2$ and $n \geq 1$. The generalized Sierpiński triangle graph $\hat{S_{p}^{n}}$ is obtained by contracting all nonclique edges from the Sierpiński graph S_{p}^{n+1}. We prove that $\tau\left(\hat{S}_{3}^{n}\right)=$ $\left(3^{n}+1\right) / 2=\left|V\left(\hat{S}_{3}^{n}\right)\right| / 3$, and give an upper bound for $\tau\left(\hat{S}_{p}^{n}\right)$ for the case when $p \geq 4$.

1. Introduction

In this paper, we consider only simple, finite, undirected graphs and refer to [2] for undefined terminology and notation. For a graph $G=$ $(V(G), E(G))$, the order and size are $|V(G)|$ and $|E(G)|$, respectively. We denote the order and the size of G by $|G|$ and $||G| \|$, respectively. For a vertex v, the degree of a vertex v, denoted by $d_{G}(v)$, is the number of edges which are incident with v in G, and the neighborhood of v, denoted by $N_{G}(v)$, is the set of the vertices adjacent to v in G.

For a set $X \subseteq V$, let $G-X$ be the graph obtained from G by removing vertices of X and all the edges that are incident to a vertex of X. The subgraph $G-(V(G) \backslash X)$ is said to be the induced subgraph of G induced by X, and is denoted by $G[X]$. We call X a feedback vertex set of G if $G-X$ is a forest. The feedback vertex number of G, denoted by $\tau(G)$, is the cardinality of a minimum feedback vertex set of G. The order of a maximum induced forest of G is denoted by $f(G)$. It is clear that $\tau(G)+f(G)=|G|$.

So, determining the feedback number of a graph G is equivalent to finding the maximum induced forest of G, first proposed by Erdős, Saks and Sós [5]. Some results on the maximum induced forest are obtained for several

[^0]families of graphs, such as planar graphs with high girth [4, 17], outerplanar graphs [13, 28], triangle-free planar graphs [30]. The problem of determining the feedback vertex number has been proved to be NP-complete for general graphs [16]. However, the problem has been studied for some special graphs, such as hypercubes [6, 29], toroids [26], de Bruijn graphs [34], de Bruijn digraphs [33], 2-degenerate graphs [3]. A review of results and open problems on the feedback vertex number was given by Bau and Beineke [1].

The definition of Sierpiński graph was first introduced by Klavžar and Milutinović [19] in 1997. Graphs whose drawings can be viewed as approximations to the famous Sierpiński triangle have been studied extensively in the past 25 years, see a recent survey [8] for a collection of the results and the related works. We follow the notation there. For an integer k, let \mathbb{N}_{k} be the set of all integers greater than or equal to k. In particular, \mathbb{N}_{1} is denoted simply by \mathbb{N}. For an integer $p \in \mathbb{N}$, let $P=\{0,1, \ldots, p-1\}$. For convenience, let $[n]=\{1, \ldots, n\}$ for an integer $n \in \mathbb{N}$. Let P^{n} be the set of all n-tuples on P.

Definition 1.1 ([8]). For two integers $p \geq 1$ and $n \geq 0$, the Sierpiński graph S_{p}^{n} is given by
$V\left(S_{p}^{n}\right)=P^{n}, E\left(S_{p}^{n}\right)=\left\{\left\{\underline{s} i j^{d-1}, \underline{s} j i^{d-1}\right\} \mid i, j \in P, i \neq j ; d \in[n] ; \underline{s} \in P^{n-d}\right\}$.
A vertex $s_{1} s_{2} \ldots s_{n}$ of S_{p}^{n} is called an extreme vertex if $s_{1}=\cdots=s_{n}$. There are precisely p extreme vertices in S_{p}^{n}. It is easy to see that $d_{S_{p}^{n}}(u)=$ $p-1$ for an extreme vertex u and $d_{S_{p}^{n}}(v)=p$ for all other vertices v. In the trivial cases $n=0$ or $p=1$, there is only one vertex and no edge, i.e. $S_{p}^{0} \cong K_{1} \cong S_{1}^{n}$; moreover, $S_{p}^{1} \cong K_{p}$, where K_{p} denotes the complete graph of order p. The first interesting case is $p=2$, where $S_{2}^{n} \cong P_{2^{n}}$. The drawings of the Sierpiński graphs S_{3}^{3} and S_{5}^{2} are shown in Fig. 1.

Figure 1. S_{3}^{3} and S_{5}^{2}

Definition 1.2 ([8]). For two integers $p \geq 1$ and $n \geq 0$, the generalized Sierpiński triangle graph \hat{S}_{p}^{n} is obtained by contracting all nonclique edges (with the form $\left\{\underline{s}^{i} j^{l}, \underline{s} j i^{l}\right\}$ for distinct $i, j \in P$ and $l \in[n], \underline{s} \in P^{n-l}$) from the Sierpinski graph S_{p}^{n+1}.

Sierpiński-type graphs have many interesting properties, see [9] for its planarity, [20] for its crossing number, $[10,15,25,18,35,36]$ for its various colorings, [23] for the global strong defensive alliances, [24] for the hub number, [21] for the Hamming dimension, [31, 32] for enumeration of matchings and spanning trees, $[11,12,27,22,37]$ for distance and metric properties.

The main topic of the paper focuses on the feedback vertex number of Sierpiński-type graphs. In Section 2, we show that $\tau\left(S_{p}^{n}\right)=p^{n-1}(p-2)$. In Section 3, we show that $\tau\left(\hat{S}_{3}^{n}\right)=\left(3^{n}+1\right) / 2=\left|\hat{S}_{3}^{n}\right| / 3$. In Section 4, we present an upper bound for the feedback vertex number of \hat{S}_{p}^{n} for any $p \geq 4$. Some other relevant results are presented as well.

2. Sierpiński graphs

In this section, we determine the exact value of the feedback number of Sierpiński graph S_{p}^{n}. For two vertex subsets X, Y of a graph G, we denote by $E_{G}[X, Y]$ the set of edges of G with one end in X and the other end in Y. First we show the following.
Lemma 2.1. For two integers $n \geq 1$ and $p \geq 2, \tau\left(S_{p}^{n}\right) \geq p^{n-1}(p-2)$.
Proof. By induction on n. If $n=1, S_{p}^{n} \cong K_{p}$. Since

$$
\tau\left(S_{p}^{n}\right)=\tau\left(K_{p}\right)=p-2=p^{0}(p-2)=p^{n-1}(p-2),
$$

the result then follows. Next assume that $n \geq 2$ and X is a minimum feedback vertex set of S_{p}^{n}. Let $V_{i}=\left\{\underline{\underline{k}} \mid \underline{k} \in V\left(S_{p}^{n-1}\right)\right\}$ for each $i \in P$. From the definition of S_{p}^{n}, we know that $S_{p}^{n}\left[V_{i}\right] \cong S_{p}^{n-1}$. Let $X_{i}=X \cap V_{i}$ for each $i \in P$. Since X is a minimum feedback vertex set of S_{p}^{n}, X_{i} is a feedback vertex set of $S_{p}^{n}\left[V_{i}\right]$. By the induction hypothesis, $\left|X_{i}\right| \geq p^{n-2}(p-2)$. Thus, $|X| \geq p p^{n-2}(p-2)=p^{n-1}(p-2)$.

A 2-element set $Y \subseteq P^{m-1}$ for an integer $m \in\{2, \ldots, n\}$ is said to be pairable if $Y=\{\underline{s} a, \underline{s} b\}$, where $\underline{s} \in P^{m-2}$ and $\{a, b\} \in\binom{P}{2}$. In this case, let $\operatorname{head}(\mathrm{Y})=\underline{\mathrm{s}}$. Further, we define

$$
C(Y):=C_{1}(Y) \cup C_{2}(Y)
$$

where $C_{1}(Y)=\{\underline{s} a a, \underline{s} a b, \underline{s} b a, \underline{s} b b\}$ and $C_{2}(Y)=\{\underline{s} k(k-1), \underline{s} k(k+1) \mid k \in$ $P \backslash\{a, b\}\}$, and $k-1, k+1$ are taken modulo p. In general, a set $Y \subseteq P^{m-1}$ is said to be pairable if Y can be partitioned into some 2-element sets Y_{1}, \ldots, Y_{q} such that Y_{i} is pairable for each i, and head $\left(Y_{i}\right) \neq \operatorname{head}\left(Y_{j}\right)$ for any i, j with $i \neq j$. Moreover, let us define

$$
\operatorname{head}(Y):=\bigcup_{i \in[q]} \operatorname{head}\left(Y_{i}\right) \text { and } C(Y):=\bigcup_{i \in[q]} C\left(Y_{i}\right) .
$$

Observe that if Y is pairable (since head $\left(Y_{i}\right) \neq \operatorname{head}\left(Y_{j}\right)$ for any i, j with $i \neq j$), then it must be partitioned into some 2-element pairable sets in a unique way. So, we call $\left\{Y_{1}, \ldots, Y_{q}\right\}$ the pairable partition of Y, and call each Y_{i} a block of Y. Take $Y=\{0,2\} \subseteq V\left(S_{5}^{1}\right)$ for an example. Then $C(Y)=$
$\{00,02,20,22,10,12,32,34,43,40\} \subseteq V\left(S_{5}^{2}\right)$, see the subgraphs $S_{5}^{1}[Y]$ and $S_{5}^{2}[C(Y)]$ as depicted in red in Fig 2.

Figure 2. $S_{5}^{1}[Y]$ and $S_{5}^{2}[C(Y)]$, where $Y=\{0,2\}$

Lemma 2.2. If $Y \subseteq P^{m-1}$ is pairable for an integer $m \geq 2$, then $C(Y)$ is pairable, and head $(C(Y))=\{\underline{s} a \mid \underline{s} \in \operatorname{head}(Y), a \in P\}$.

Proof. Let $\left\{Y_{1}, \ldots, Y_{q}\right\}$ be the pairable partition of Y, where for each i, $Y_{i}=\left\{\underline{s_{i}} a_{i}, \underline{s_{i}} b_{i}\right\}$ for some $\underline{s_{i}} \in P^{m-2}$ and $\left\{a_{i}, b_{i}\right\} \in\binom{P}{2}$. By our definition,

$$
C(Y):=\bigcup_{i \in[q]} C\left(Y_{i}\right),
$$

where $C\left(Y_{i}\right):=C_{1}\left(Y_{i}\right) \cup C_{2}\left(Y_{i}\right)$, and $C_{1}\left(Y_{i}\right)=\left\{\underline{s_{i}} a_{i} a_{i}, \underline{s_{i}} a_{i} b_{i}, \underline{s_{i}} b_{i} a_{i}, \underline{s_{i}} b_{i} b_{i}\right\}$ and $C_{2}\left(Y_{i}\right)=\left\{\underline{s_{i}} k(k-1), \underline{s_{i}} k(k+1) \mid k \in P \backslash\left\{\overline{a_{i}}, b_{i}\right\}\right.$, $\overline{\text { where }} \bar{k}-1, \bar{k}+1$ are taken modulo $p\}$.

Note that for an integer $i \in[q], C_{1}\left(Y_{i}\right)$ can be partitioned into two 2element pairable sets $\left\{\underline{s_{i}} a_{i} a_{i}, \underline{s_{i}} a_{i} b_{i}\right\}$ and $\left\{\underline{s_{i}} b_{i} a_{i}, \underline{s_{i}} b_{i} b_{i}\right\}$, and $C_{2}\left(Y_{i}\right)$ can be partitioned into $p-2$ two-element pairable sets $\left\{\underline{s_{i}} k(k-1), s_{i} k(k+1)\right\}$, where $k \in P \backslash\left\{a_{i}, b_{i}\right\}$. It is clear that the set of the heads of these p sets is $\left\{\underline{s_{i}} a \mid a \in P\right\}$. Moreover, by our assumption, since $\underline{s_{i}} \neq s_{j}$ for distinct integers $i, j, \underline{s}_{i} a \neq s_{j} b$ for any $a, b \in P$ (even when $\left.a=\bar{b}\right)$. This proves the lemma.

In what follows, for an integer $m \geq 2$ and a pairable set $Y \subseteq P$, let $C^{m}(Y)=C\left(C^{m-1}(Y)\right)$.
Lemma 2.3. Let $Y_{1}=\{1,2\} \subseteq V\left(S_{p}^{1}\right)$, and $Y_{m}=C^{m-1}\left(Y_{1}\right)$ for $m \in$ $[n] \backslash\{1\}$. Then Y_{m} is a pairable set with head $\left(Y_{m}\right)=P^{m-1},\left|Y_{m}\right|=2 p^{m-1}$ and $S_{p}^{m}\left[Y_{m}\right]$ is a forest for each $m \in[n]$.
Proof. First of all, since $Y_{1}=\{1,2\}$ is a pairable set, by Lemma 2.2, Y_{2} is pairable. By definition,

$$
Y_{2}=C\left(Y_{1}\right)=\{11,12,21,22\} \cup\{k(k-1), k(k+1) \mid k \in P \backslash\{1,2\}\} .
$$

Note that head $\left(Y_{2}\right)=\{0,1, \ldots, p-1\}=P$ and $\left|Y_{2}\right|=2 p$. One can see that $S_{p}^{2}\left[Y_{2}\right]$ is a linear forest consisting of two paths, $11,12,21,22$ and $32,34,43,45, \cdots,(p-1)(p-2),(p-1) 0,0(p-1), 01$.

Assume that $m \geq 3$ and the lemma is true for lesser values of m. By the induction hypothesis, Y_{m-1} is a pairable set with head $\left(Y_{m-1}\right)=P^{m-2}$ and $\left|Y_{m-1}\right|=2 p^{m-2}$. Since $Y_{m}=C\left(Y_{m-1}\right)$, by Lemma 2.2, Y^{m} is pairable, and

$$
\operatorname{head}\left(Y_{m}\right)=\left\{s a \mid a \in \operatorname{head}\left(Y_{m-1}\right), a \in P\right\}=P^{m-1} .
$$

Thus $\left|Y_{m}\right|=2 \operatorname{head}\left(Y_{m}\right)=2\left|P^{m-1}\right|=2 p^{m-1}$.
Next we show that $S_{p}^{m}\left[Y_{m}\right]$ is a forest of S_{p}^{m}. Let $Y_{m}=Y_{m 1} \cup Y_{m 2}$, where $Y_{m 1}=C_{1}\left(Y_{m-1}\right), Y_{m 2}=C_{2}\left(Y_{m-1}\right)$.
Claim 2.4. $E_{S_{p}^{m}}\left[Y_{m 1}, Y_{m 2}\right]=\emptyset$.
Proof. Suppose not, and let $y_{1} \in Y_{m 1}$ and $y_{2} \in Y_{m 2}$ with $y_{1} y_{2} \in E\left(S_{p}^{m}\right)$. By the definition of $Y_{m 1}$ and $Y_{m 2}$, there exist blocks $\left\{\underline{s_{1}} a, \underline{s_{1}} b\right\}$ and $\left\{\underline{s_{2}} c, \underline{s_{2}} d\right\}$ of Y_{m-1} such that $y_{1} \in C_{1}\left(\left\{\underline{s_{1}} a, \underline{s_{1}} b\right\}\right)$ and $y_{2} \in C_{2}\left(\left\{\underline{s_{2}} c, \underline{s_{2}} d\right\}\right)$, where $\underline{s_{1}}, \underline{s_{2}} \in$ P^{m-2} and $a, b, c, d \in P$. Recall that $C_{1}\left(\left\{\underline{s_{1}} a, \underline{s_{1}} b\right\}\right)=\left\{\underline{s_{1}} a a, s_{1} a b, \underline{s_{1}} b \bar{a}, \underline{s_{1} b} b\right\}$ and $C_{2}\left(\left\{\underline{s_{2}} c, \underline{s_{2}} d\right\}\right)=\left\{\underline{s_{2}} k(k-1), \underline{s_{2}} k(k+1) \mid k \in P \backslash\{c, d\}\right\}$.
Case 1: $\overline{y_{2}}=s_{2} k(k-1)$ for an element $k \in P \backslash\{c, d\}$.
Since $\overline{N_{S_{p}^{m}}}\left(y_{2}\right)=\left\{\underline{s_{2}}(k-1) k\right\} \cup\left\{\underline{s_{2}} k c \mid c \in P \backslash\{k-1\}\right\}, y_{1} \in$ $\left\{\underline{s_{1}} a a, \underline{s_{1}} a b\right.$,
$\left.\underline{s_{1} b} b, \underline{s_{1} b b}\right\}$, and $y_{1} y_{2} \in E\left(S_{p}^{m}\right)$, we have $\left(\left\{\underline{s_{2}}(k-1) k\right\} \cup\left\{\underline{s_{2}} k c \mid c \in\right.\right.$ $\bar{P} \backslash\{\bar{k}-1\}\}) \cap\left\{\underline{s_{1}} a a, \underline{s_{1}} a b, \underline{s_{1}} b a, \underline{s_{1}} b b\right\} \neq \emptyset$. It follows that $\underline{s_{1}}=\underline{s_{2}}$. Moreover, since Y_{m-1} is pairable, the heads of different blocks are distinct. So, $\left\{\underline{s_{1}} a, \underline{s_{1}} b\right\}=\left\{\underline{s_{2}} c, \underline{s_{2}} d\right\}$ and thus $\{a, b\}=\{c, d\}$.

Now rewrite $\bar{N}_{S_{p}^{m}}\left(y_{2}\right)=\left\{\underline{s_{1}}(k-1) k\right\} \cup\left\{\underline{s_{1}} k c \mid c \in P \backslash\{k-1\}\right\}$, where $k \in P \backslash\{a, b\}$. However, since $k \in P \backslash\left\{a, \overline{b\}}\right.$, it is clear that $N_{S_{p}^{m}}\left(y_{2}\right) \cap$ $\left\{\underline{s_{1}} a a, \underline{s_{1}} a b, \underline{s_{1}} b a, \underline{s_{1}} b b\right\}=\emptyset$, a contradiction, implying $y_{1} y_{2} \notin E\left(S_{p}^{m}\right)$.
Case 2: $y_{2}=\underline{s_{2}} k(k+1)$ for an element $k \in P \backslash\{c, d\}$.
Proof of this case is similar to that of Case 1.

Claim 2.5. $S_{p}^{m}\left[Y_{m 2}\right]$ is a forest.
Proof. Recall that $Y_{m 2}=C_{2}\left(Y_{m-1}\right)$ and $C_{2}\left(\left\{s_{i} a_{i}, s_{i} b_{i}\right\}\right)=\left\{\underline{s_{i}} k(k+1), s_{i} k(k\right.$ - 1) $\left.\mid k \in P \backslash\left\{a_{i}, b_{i}\right\}\right\}$ for a block $\left\{s_{i} a_{i}, \bar{s}_{i} b_{i}\right\}$. One can easily check that $S_{p}^{m}\left[C_{2}\left(\left\{\underline{s_{i}} a_{i}, \underline{s}_{i} b_{i}\right\}\right)\right]$ is a linear forest with at most two components. If $\left\{s_{j} a_{j}, s_{j} b_{j}\right\}$ is another block of Y_{m-1}, then by $\underline{s_{i}}, \underline{s_{j}} \in P^{m-2}$ with $\underline{s_{i}} \neq s_{j}$, $E_{S_{p}^{m}}\left[\left\{\underline{s_{i}} \bar{k}(k-1), \underline{s_{i}} k(k+1)\right\},\left\{s_{j} l(l-1), s_{j} l(l+1)\right\}\right]=\emptyset$ for any $k \in P \backslash\{a, \bar{b}\}$ and $l \in P \backslash\{c, d\}$. So, $E_{S_{p}^{m}}\left[C_{2}\left(s_{i} a_{i}, s_{i} b_{i}\right), C_{2}\left(\underline{s_{j}} a_{j}, s_{j} b_{j}\right)\right]=\emptyset$. Thus $S_{p}^{m}\left[Y_{m 2}\right]$ is a forest.

Claim 2.6. $S_{p}^{m}\left[Y_{m 1}\right]$ is a forest.
Proof. Suppose that C is an induced cycle of $S_{p}^{m}\left[Y_{m 1}\right]$, and let $S=\{\underline{s} \mid \underline{s} \in$ P^{m-2} and there is a vertex $v \in V(C)$ such that $\left.v \in C_{1}(\{\underline{s} a, \underline{s} b\})\right\}$. Since
$C_{1}(\{\underline{s} a, \underline{s} b\})=\{\underline{s} a a, \underline{s} a b, \underline{s} b a, \underline{s} b b\}$ for a block $\{\underline{s} a, \underline{s} b\}$ of Y_{m-1}, it is clear that $S_{p}^{m}\left[C_{1}(\{\underline{s} a, \underline{s} b\})\right] \cong P_{4}$. It is not hard to see that $V(C)=\bigcup_{\underline{s} \in S} C_{1}(\{\underline{s} a, \underline{s} b\})$. Let $C^{\prime}=S_{p}^{m-1}\left[\cup_{\underline{s} \in S}\{\underline{s} a, \underline{s} b\}\right]$. One can see that C^{\prime} is a cycle of $S_{p}^{m-1}\left[Y_{m-1}\right]$, a contradiction. This proves that $S_{p}^{m}\left[Y_{m 1}\right]$ contains no cycle.

Summing up Claims 2.4-2.6, we conclude that $S_{p}^{m}\left[Y_{m}\right]$ is a forest.
Theorem 2.7. For integer $p \geq 2, n \geq 1, \tau\left(S_{p}^{n}\right)=p^{n-1}(p-2)$.
Proof. By Lemma 2.3, $f\left(S_{p}^{n}\right) \geq 2 p^{n-1}$, and thus $\tau\left(S_{p}^{n}\right) \leq p^{n}-f\left(S_{p}^{n}\right) \leq$ $p^{n-1}(p-2)$. On the other hand, by Lemma 2.1, $\tau\left(S_{p}^{n}\right) \geq p^{n-1}(p-2)$. The result then follows.

In [8], two kinds of regularization of Sierpiński graphs were introduced.
Definition 2.8 ([8]). For $p \in N$ and $n \in N$, the graph ${ }^{+} S_{p}^{n}$ is defined by

$$
V\left({ }^{+} S_{p}^{n}\right)=P^{n} \cup\{w\}, E\left({ }^{+} S_{p}^{n}\right)=E\left(S_{p}^{n}\right) \cup\left\{\left\{w, i^{n}\right\} \mid i \in P\right\}
$$

Lemma 2.9 ([8]). If $p \in N$ and $n \in N$, then $\left.\right|^{+} S_{p}^{n} \mid=p^{n}+1$ and $\left\|^{+} S_{p}^{n}\right\|=$ $p\left(p^{n}+1\right) / 2$.
Definition 2.10 ([8]). For $p \in N$ and $n \in N$, the graph ${ }^{++} S_{p}^{n}$ is defined by

$$
\begin{aligned}
& V\left(^{++} S_{p}^{n}\right)=P^{n} \cup\left\{p \bar{s} \mid \bar{s} \in P^{n-1}\right\}, \\
& E\left({ }^{++} S_{p}^{n}\right)=E\left(S_{p}^{n}\right) \cup\left\{\{p \bar{s}, p \bar{t}\} \mid\{\bar{s}, \bar{t}\} \in E\left(S_{p}^{n-1}\right)\right\} \cup\left\{\left\{p i^{n-1}, i^{n}\right\} \mid i \in P\right\} .
\end{aligned}
$$

Lemma 2.11 ([8]). If $p \in N$ and $n \in N$, then $\left.\right|^{++} S_{p}^{n} \mid=(p+1) p^{n-1}$ and $\left\|^{++} S_{p}^{n}\right\|=\frac{p+1}{2} p^{n}$.

Drawings of ${ }^{+} S_{4}^{2}$ and ${ }^{++} S_{4}^{2}$ are shown in Fig. 3, where the left one is ${ }^{+} S_{4}^{2}$ and the other one is ${ }^{++} S_{4}^{2}$.

Figure $3 .{ }^{+} S_{4}^{2}$ and ${ }^{++} S_{4}^{2}$
Corollary 2.12. For integers $p \geq 2$ and $n \geq 1$,

$$
\tau\left({ }^{+} S_{p}^{n}\right)= \begin{cases}p^{n-1}(p-2), & \text { if } p \geq 3 \\ 1, & \text { if } p=2\end{cases}
$$

Proof. If $p=2,{ }^{+} S_{p}^{n}$ is a cycle, and thus $\tau\left({ }^{+} S_{p}^{n}\right)=1$. Now let us consider the case when $p \geq 3$. Since S_{p}^{n} is a subgraph of ${ }^{+} S_{p}^{n}, \tau\left({ }^{+} S_{p}^{n}\right) \geq \tau\left(S_{p}^{n}\right)=p^{n-1}(p-$ 2). On the other hand, let Y_{n} be the set as in the proof of Lemma 2.3. Let $Y_{n}^{\prime}=\left(Y_{n} \backslash\left\{1^{n}\right\}\right) \cup\left\{1^{n-1} 0, w\right\}$. It can be checked that ${ }^{+} S_{p}^{n}\left[Y_{n}^{\prime}\right]$ is a forest of ${ }^{+} S_{p}^{n}$ with $\left|Y_{n}^{\prime}\right|=2 p^{n-1}+1$. Thus $\tau\left({ }^{+} S_{p}^{n}\right) \leq p^{n-1}(p-2)$. The result follows.

Corollary 2.13. For integers $p \geq 2$ and $n \geq 1, \tau\left({ }^{++} S_{p}^{n}\right)=\tau\left(S_{p}^{n}\right)+\tau\left(S_{p}^{n-1}\right)$.
Proof. By the definition of ${ }^{++} S_{p}^{n}$, clearly, $\tau\left({ }^{++} S_{p}^{n}\right) \geq \tau\left(S_{p}^{n}\right)+\tau\left(S_{p}^{n-1}\right)$. Next, we prove $\tau\left({ }^{++} S_{p}^{n}\right) \leq \tau\left(S_{p}^{n}\right)+\tau\left(S_{p}^{n-1}\right)$. Let $Y_{n}=C^{n-1}\left(Y_{1}\right)$ be the set defined as in the proof of Lemma 2.3, where $Y_{1}=\{1,2\}$. On the other hand, we choose $Y_{1}^{*}=\{3,4\}$, and $Y_{n-1}^{*}=C^{n-2}\left(Y_{1}^{*}\right)$ as defined in the proof of Lemma 2.3. By the proof of Lemma 2.3, ${ }^{++} S_{p}^{n}\left[Y_{n}\right] \cong S_{p}^{n}\left[Y_{n}\right]$ is a forest, and ${ }^{++} S_{p}^{n}\left[p Y_{n-1}^{*}\right] \cong S_{p}^{n}\left[Y_{n-1}^{*}\right] \cong S_{p}^{n}\left[Y_{n-1}\right]$ is a forest. Moreover, $E_{++S_{p}^{n}}\left[Y_{n}, p Y_{n-1}^{*}\right]=\emptyset$. Thus ${ }^{++} S_{p}^{n}\left[Y_{n} \cup p Y_{n-1}^{*}\right]$ has no cycles, and $\tau\left({ }^{++} S_{p}^{n}\right) \leq$ $\tau\left(S_{p}^{n}\right)+\tau\left(S_{p}^{n-1}\right)$.

3. Sierpiński triangle graphs

A class of graphs that often has been mistaken for and also been called Sierpiński graphs can be obtained from the latter by simply contracting all nonclique edges. We will call them Sierpiński triangle graphs. Let $T:=$ $\{0,1,2\}$ and $\hat{T}:=\{\hat{0}, \hat{1}, \hat{2}\}$. Denote the vertex obtained by contracting the edge $\left\{\underline{s} i j^{n-v+1}, \underline{s} j i^{n-v+1}\right\}$ by $\underline{s}\{i, j\}$. Then the vertex set of \hat{S}_{3}^{n} can be written as

$$
V\left(\hat{S}_{3}^{n}\right)=\hat{T} \cup\left\{\underline{s}\{i, j\} \mid \underline{s} \in T^{v-1}, v \in[n],\{i, j\} \in\binom{T}{2}\right\} .
$$

Further, we replace each vertex $\underline{s}\{i, j\}$ by $\underline{s} k$, where $k=3-i-j$. So, $E\left(\hat{S}_{3}^{n+1}\right)=\left\{\left\{\hat{k}, k^{n} j\right\} \mid k \in T, j \in T \backslash\{k\}\right\} \cup\left\{\{\underline{s} k, \underline{s} j\} \mid \underline{s} \in T^{n},\{j, k\} \in\binom{T}{2}\right\}$ $\cup\left\{\left\{\underline{s}(3-i-j) i^{n-v} k, \underline{s} j\right\} \mid \underline{s} \in T^{v-1}, v \in[n], i \in T, j, k \in T \backslash\{i\}\right\}$.

The Sierpiński triangle graph \hat{S}_{3}^{3} is shown in Fig. 4.
Lemma 3.1 ([14]). If $p \in N$ and $n \in N_{0}$, then $\left|\hat{S}_{p}^{n}\right|=p\left(p^{n}+1\right) / 2$ and $\left\|\hat{S}_{p}^{n}\right\|=\frac{p-1}{2} p^{n+1}$.
Theorem 3.2. (i) For any $n \geq 0$, each minimum feedback vertex set of \hat{S}_{3}^{n} contains at most one vertex in $\{\hat{0}, \hat{1}, \hat{2}\}$,
(ii) for $n \geq 0, \hat{S}_{3}^{n}$ has a minimum feedback vertex set A_{n} such that $\mid A_{n} \cap$ $\{\hat{0}, \hat{1}, \hat{2}\} \mid=1$,
(iii) for $n \geq 1, \tau\left(\hat{S}_{3}^{n}\right)=3 \tau\left(\hat{S}_{3}^{n-1}\right)-1$,
(iv) $\tau\left(\hat{S}_{3}^{n}\right)=\left(3^{n}+1\right) / 2=\left|\hat{S}_{3}^{n}\right| / 3$.

Proof. The proof proceeds by induction on n. For convenience, let $a_{n}=$ $\tau\left(\hat{S}_{3}^{n}\right)$ and $V_{n}=V\left(\hat{S}_{3}^{n}\right)$ for any integer $n \geq 0$. If $n=0, \hat{S}_{3}^{n} \cong K_{3}$. Trivially,

Figure 4. \hat{S}_{3}^{3}

Figure 5. Relation between \hat{S}_{3}^{n} and $i S_{3}^{n-1}$ for each $i \in T$
$a_{0}=1$ and each minimum feedback vertex \hat{S}_{3}^{0} consists of exactly one element of $\{\hat{0}, \hat{1}, \hat{2}\}$. Let $A_{0}=\{\hat{0}\}$. Now assume that $n \geq 1$ and the results hold for $n-1$.

First we prove (iii). By the induction hypothesis and the symmetry of \hat{S}_{3}^{n-1}, there exists a minimum feedback vertex set A_{n-1} of \hat{S}_{3}^{n-1} containing the vertex $\hat{0}$. To prove $a_{n} \leq 3 a_{n-1}-1$, let $V_{n}^{i}=\left\{i a \mid a \in V_{n-1}\right\}$ for each $i \in T$, where $0 \hat{0}=\hat{0}, 1 \hat{1}=\hat{1}$, and $2 \hat{2}=\hat{2} ; 0 \hat{1}=2=1 \hat{0}, 0 \hat{2}=1=2 \hat{0}$, and $2 \hat{1}=0=1 \hat{2}$ (see Fig. 5 for an illustration).

One can see that $V_{n}=V_{n}^{0} \cup V_{n}^{1} \cup V_{n}^{2}$ and $\hat{S}_{3}^{n}\left[V_{n}^{j}\right] \cong \hat{S}_{3}^{n-1}$ for each $j \in T$. For each $j \in T$, we define an isomorphism f_{j} between \hat{S}_{3}^{n-1} and $j \hat{S}_{3}^{n-1}$ as follows:
(1) $f_{0}(\hat{0})=\hat{0}, f_{0}(\hat{1})=2, f_{0}(\hat{2})=1$;
(2) $f_{1}(\hat{0})=0, f_{1}(\hat{1})=2, f_{1}(\hat{2})=\hat{1}$;
(3) $f_{2}(\hat{0})=0, f_{2}(\hat{1})=\hat{2}, f_{2}(\hat{2})=1$.

Let

$$
\begin{equation*}
A_{n}=\bigcup_{j \in T} f_{j}\left(A_{n-1}\right) \tag{3.1}
\end{equation*}
$$

It can be checked that A_{n} is a feedback vertex set of \hat{S}_{3}^{n} with

Figure 6. Minimum feedback vertex set A_{n} (red vertices)
of \hat{S}_{3}^{n} for $n \in\{0,1,2\}$ with property (ii)

$$
\begin{equation*}
\left|A_{n}\right|=3 a_{n-1}-1 \tag{3.2}
\end{equation*}
$$

So, $a_{n} \leq 3 a_{n-1}-1$.
Next we prove $a_{n} \geq 3 a_{n-1}-1$. Let A_{n} be a minimum feedback vertex set of \hat{S}_{3}^{n}, and let $A_{n}^{i}=A_{n} \cap i \hat{S}_{3}^{n-1}$ for each $i \in T$. Since $i \hat{S}_{3}^{n-1} \cong \hat{S}_{3}^{n-1}$, A_{n}^{i} is a feedback vertex set of $i \hat{S}_{3}^{n-1}$. Hence, $\left|A_{n}^{i}\right| \geq a_{n-1}$. Note that $\left|A_{n}\right|=\sum_{i=0}^{2}\left|A_{n}^{i}\right|-\left|A_{n} \cap\{0,1,2\}\right|$. If $\left|A_{n} \cap\{0,1,2\}\right| \leq 1$, then $a_{n}=\left|A_{n}\right| \geq$ $3 a_{n-1}-1$. Assume that $\left|\{0,1,2\} \cap A_{n}\right|=2$, and without loss of generality, let $\{1,2\} \subseteq A_{n}$. By the induction hypothesis (i), $\left|A_{n}^{0}\right| \geq a_{n-1}+1$. Hence $a_{n} \geq a_{n-1}+1+a_{n-1}-1+a_{n-1}-1=3 a_{n-1}-1$. If $\left|\{0,1,2\} \cap A_{n}\right|=3$, by induction hypothesis (i), $\left|A_{n}^{j}\right| \geq a_{n-1}+1$ for each $j \in\{0,1,2\}$. Hence $a_{n} \geq a_{n-1}+1+a_{n-1}+1+a_{n-1}+1-3=3 a_{n-1}$. This proves (iii).

Let A_{n} be the set constructed as (3.1) in the proof of (iii). By (3.2) and (iii), A_{n} is a minimum feedback vertex set with $\hat{0} \in A_{n}$ and $\hat{1} \notin A_{n}, \hat{2} \notin A_{n}$ (for an illustration, see Fig. 6). This proves (ii).

To prove (i), suppose that X_{n} is a minimum vertex set of \hat{S}_{3}^{n} with $\mid X_{n} \cap$ $\{\hat{0}, \hat{1}, \hat{2}\} \mid \geq 2$. Let $X_{n}^{i}=X_{n} \cap i \hat{S}_{3}^{n-1}$ for each $i \in T$. Since $i \hat{S}_{3}^{n-1} \cong \hat{S}_{3}^{n-1}$, X_{n}^{i} is a feedback vertex set of $i \hat{S}_{3}^{n-1}$. Hence, $\left|X_{n}^{i}\right| \geq a_{n-1}$. Note that $\left|X_{n}\right|=\sum_{i=0}^{2}\left|X_{n}^{i}\right|-\left|X_{n} \cap\{0,1,2\}\right|$.

If $\left|\{0,1,2\} \cap X_{n}\right|=0,\left|X_{n}^{j}\right| \geq a_{n-1}$ for each $j \in\{0,1,2\}$. Hence $a_{n} \geq$ $a_{n-1}+a_{n-1}+a_{n-1}=3 a_{n-1}$, contradicting (iii). If $\left|\{0,1,2\} \cap X_{n}\right|=1$, by
induction hypothesis (i), $\left|X_{n}^{j}\right| \geq a_{n-1}+1$ for some $j \in\{0,1,2\}$. Thus

$$
a_{n}=\left|X_{n}\right|=\sum_{j=0}^{2}\left|X_{n}^{j}\right|-1 \geq\left(a_{n-1}+a_{n-1}+a_{n-1}+1\right)-1=3 a_{n-1}
$$

contradicting (iii). If $\left|\{0,1,2\} \cap X_{n}\right|=2$, then at least two of $\left|X_{n}^{1}\right|,\left|X_{n}^{2}\right|,\left|X_{n}^{3}\right|$ are greater than or equal to $a_{n-1}+1$. Thus $a_{n}=\left|X_{n}\right|=\sum_{j=0}^{2}\left|X_{n}^{j}\right|-2 \geq$ $\left(a_{n-1}+a_{n-1}+1+a_{n-1}+1\right)-2=3 a_{n-1}$, contradicting (iii). If $\left|\{0,1,2\} \cap X_{n}\right|=$ 3, by the induction hypothesis (i), $\left|X_{n}^{j}\right| \geq a_{n-1}+1$ for each $j \in\{0,1,2\}$. Hence $a_{n} \geq a_{n-1}+1+a_{n-1}+1+a_{n-1}+1-3=3 a_{n-1}$, contradicting (iii). This proves (i).

Finally we prove (iv). Since $a_{0}=1$ and by (iii), we have $\tau\left(\hat{S}_{3}^{n}\right)=\left(3^{n}+\right.$ 1) $/ 2$. Moreover, by Lemma 3.1, $\tau\left(\hat{S}_{3}^{n}\right)=\left|\hat{S}_{3}^{n}\right| / 3$.

4. Generalized Sierpiński triangle graphs \hat{S}_{p}^{n} For $p \geq 4$

By Definition 1.2, for $p \in N$ and $n \in N_{0}$, the generalized Sierpiński triangle graph \hat{S}_{p}^{n} is obtained by contracting all nonclique edges from the Sierpiński graph S_{p}^{n+1}. We denote the vertex obtained from contracting the edge $\left\{\underline{s} i j^{n-v+1}, \underline{s} j i^{n-v+1}\right\} \in E\left(S_{p}^{n+1}\right)$ by $\underline{s}\{i, j\}$. Then

$$
V\left(\hat{S}_{p}^{n}\right)=\hat{P} \cup\left\{\underline{s}\{i, j\} \mid \underline{s} \in P^{v-1}, v \in[n],\{i, j\} \in\binom{P}{2}\right\},
$$

where $\hat{P}=\{\hat{k} \mid k \in P\}$, and

$$
\begin{aligned}
E\left(\hat{S}_{p}^{n+1}\right)= & \left\{\left\{\hat{k}, k^{n}\{j, k\}\right\} \mid k \in P, j \in P \backslash\{k\}\right\} \\
& \cup\left\{\{\underline{s}\{i, j\}, \underline{s}\{i, k\}\} \mid \underline{s} \in P^{n}, i \in P,\{j, k\} \in\binom{P \backslash\{i\}}{2}\right\} \\
& \cup\left\{\left\{\underline{s} k i^{n-v}\{i, j\}, \underline{s}\{i, k\}\right\} \mid \underline{s} \in P^{v-1}, v \in[n], i \in P, j, k \in P \backslash\{i\}\right\} .
\end{aligned}
$$

The Sierpiński triangle graphs \hat{S}_{6}^{2} and \hat{S}_{5}^{2} are shown in Fig. 7 and in Fig. 8, respectively. Trivially, $\hat{S}_{p}^{0} \cong K_{p}$. Recall that $\tau(G)+f(G)=|G|$ for any graph G. For convenience, we consider $f\left(\hat{S}_{p}^{n}\right)$ instead of $\tau\left(\hat{S}_{p}^{n}\right)$. It is not hard to see that for $n \leq 2$, if p is even,

$$
f\left(\hat{S}_{p}^{n}\right)= \begin{cases}2, & \text { if } n=0 \\ \frac{3 p}{2}, & \text { if } n=1 \\ p^{2}+\frac{p}{2}, & \text { if } n=2\end{cases}
$$

If p is odd,

$$
f\left(\hat{S}_{p}^{n}\right)= \begin{cases}2, & \text { if } n=0 \\ \frac{3 p-1}{2}, & \text { if } n=1 \\ p^{2}+\frac{p}{2}-\frac{1}{2}, & \text { if } n=2\end{cases}
$$

In view of Section 3, it remains to consider the case when $p \geq 4$.

Figure 7. \hat{S}_{6}^{2} : a contraction of a dotted edge of S_{6}^{3} represents a vertex of $\hat{S}_{6}^{2}, \hat{S}_{6}^{2}\left[B_{2}^{*}\right]$ is the subgraph colored red

Theorem 4.1. For integers $n \geq 3$ and $p \geq 4$,

$$
f\left(\hat{S_{p}^{n}}\right) \geq \begin{cases}p^{n}-\frac{p^{n-1}}{8}+\frac{p^{n-2}+\cdots+p}{8}+\frac{5 p}{8}, & \text { if } p \text { is even } \\ p^{n}-\frac{p^{n-1}+p^{n-2}-5 p+3}{8}, & \text { if } p \text { is odd } .\end{cases}
$$

Proof. Let $V_{n}=V\left(\hat{S}_{p}^{n}\right)$ and $i B_{n}^{*}=\left\{i b \mid b \in B_{n}^{*}\right\}$ for each $i \in P$, where $i \hat{i}=\hat{i}$ and $i \hat{j}=j \hat{i}=\{i, j\}, B_{n}^{*} \subseteq V_{n}$ will be defined recursively in terms of the parity of p as follows.
Case 1: p is even. Let $S=\{0,2, \ldots, p-2\}$ and $A=\left\{\left\{s_{1}, s_{2}\right\} \mid s_{1}, s_{2} \in\right.$ $\left.S, s_{1} \neq s_{2}\right\}$. Note that $A \subseteq V_{n}$.

For any $s \in S$, let $A_{s}^{2}=\{\hat{s}, s \hat{+} 1,\{s, s+1\}, s\{i, i+1\},(s+1)\{i, i+$ $1\} \mid i \in P \backslash\{s\}\} \subseteq V_{2}$. It is easy to see that $\hat{S}_{p}^{2}\left[A_{s}^{2}\right]$ is a path of length $2 p$ connecting \hat{s} and $s \hat{+}$. For any $k \geq 3$, some subsets of V_{k} are defined by $A_{s}^{k}=s A_{s}^{k-1} \cup(s+1) A_{s}^{k-1}$, and further

$$
\begin{aligned}
B_{k}^{\prime}= & \bigcup_{s_{1}, s_{2} \in S, s_{1} \neq s_{2}}\left(s_{1} A_{s_{2}}^{k-1} \cup\left(s_{1}+1\right) A_{s_{2}}^{k-1} \cup s_{2} A_{s_{1}}^{k-1} \cup\left(s_{2}+1\right) A_{s_{1}}^{k-1}\right), \\
B_{k}= & \bigcup_{s_{1}, s_{2} \in S, s_{1} \neq s_{2}}\left(s_{1} A_{s_{2}}^{k-1} \cup\left(s_{1}+1\right) A_{s_{2}}^{k-1} \cup s_{2} A_{s_{1}}^{k-1}\right. \\
& \left.\left.\cup\left(s_{2}+1\right) A_{s_{1}}^{k-1}\right) \backslash\left\{s_{1}, s_{2}\right\}\right), \\
B_{k}^{0}= & B_{k}, B_{k}^{n-k}=\left\{\underline{j} b \underline{j} \in P^{n-k}, b \in B_{k}\right\} .
\end{aligned}
$$

By the definition above, one can see that $B_{k}^{\prime}=B_{k} \backslash A, \bigcup_{j \in P} j B_{k}^{n-1-k}=$ B_{k}^{n-k}, and $A \cap\left(\bigcup_{s \in S} A_{s}^{n}\right)=\emptyset, A \cap B_{k}^{n-k}=\emptyset$. Let $B_{2}^{*}=\bigcup_{s \in S} A_{s}^{2}$. It can be seen that $\hat{S}_{p}^{2}\left[B_{2}^{*}\right]$ is a forest (see $\hat{S}_{6}^{2}\left[B_{2}^{*}\right]$ depicted in the color red in Fig. 7).
Claim 4.2. For any $k \geq 3$, let $B_{k}^{*}=\left(\bigcup_{j \in P} j B_{k-1}^{*}\right) \backslash A$. Then
(i) $B_{n}^{*}=\left(\bigcup_{s \in S} A_{s}^{n}\right) \cup\left(\bigcup_{3 \leq k \leq n} B_{k}^{n-k}\right)$,
(ii) for each $s \in S, \hat{S}_{p}^{n}\left[A_{s}^{n}\right]$ is a path of order $2^{n-1} p+1$ joining \hat{s} and $s \hat{+} 1$,
(iii) for any $3 \leq k \leq n, \hat{S}_{p}^{n}\left[B_{k}^{n-k}\right]$ is a forest consisting of $p^{n-k}\binom{p / 2}{2}$ paths of order $2^{k} p-1$,
(iv) $\hat{S}_{p}^{n}\left[B_{n}^{*}\right]$ is a forest.

Proof. The proof proceeds by induction on n. First we prove the statements for $n=3$. Since $B_{2}^{*}=\bigcup_{s \in S} A_{s}^{2}$,

$$
\begin{aligned}
B_{3}^{*} & =\left(\bigcup_{j \in P} j B_{2}^{*}\right) \backslash A=\left(\bigcup_{j \in P} j \bigcup_{s \in S} A_{s}^{2}\right) \backslash A \\
& =\left(\bigcup_{s \in S}\left(s A_{s}^{2} \cup(s+1) A_{s}^{2} \cup\left(\bigcup_{j \in P \backslash\{s, s+1\}} j A_{s}^{2}\right)\right)\right) \backslash A \\
& =\left(\bigcup_{s \in S}\left(s A_{s}^{2} \cup(s+1) A_{s}^{2}\right) \cup\left(\bigcup_{s \in S} \bigcup_{j \in P \backslash\{s, s+1\}} j A_{s}^{2}\right)\right) \backslash A \\
& =\left(\bigcup_{s \in S} A_{s}^{3}\right) \cup B_{3}^{\prime} \backslash A \\
& =\bigcup_{s \in S} A_{s}^{3} \cup B_{3},
\end{aligned}
$$

proving (i).
Now we prove (ii). Since $\hat{S}_{p}^{3}\left[A_{s}^{3}\right]=\hat{S}_{p}^{3}\left[s A_{s}^{2} \cup(s+1) A_{s}^{2}\right], \hat{S}_{p}^{3}\left[s A_{s}^{2}\right] \cong \hat{S}_{p}^{3}[(s+$ 1) $\left.A_{s}^{2}\right] \cong \hat{S}_{p}^{2}\left[A_{s}^{2}\right]$. Recall that for a fixed $s \in S, \hat{S}_{p}^{2}\left[A_{s}^{2}\right]$ is path of order $2 p+1$ connecting \hat{s} and $\widehat{s+1}$. It follows that $\hat{S}_{p}^{3}\left[s A_{s}^{2}\right]$ and $\hat{S}_{p}^{3}\left[(s+1) A_{s}^{2}\right]$ are paths of order $2 p+1$ joining $s \hat{s}$ and $s(\widehat{s+1)},(s+1) \hat{s}$ and $(s+1) \widehat{(s+1)}$, respectively. Moreover, since $s \hat{s}=\hat{s},(s+1) \widehat{(s+1)}=\widehat{(s+1)}$ and $s(s+1)=$ $(s+1) \hat{s}=\{s, s+1\}, \hat{S}_{p}^{3}\left[A_{s}^{3}\right]$ is a path connecting \hat{s} and $\widehat{s+1}$ of order $2(2 p+1)-1=4 p+1$.

To prove (iii), let us consider a pair of elements $s_{1}, s_{2} \in S$ with $s_{1} \neq s_{2}$. Since

$$
\hat{S}_{p}^{3}\left[s_{1} A_{s_{2}}^{2}\right] \cong \hat{S}_{p}^{3}\left[\left(s_{1}+1\right) A_{s_{2}}^{2}\right] \cong \hat{S}_{p}^{3}\left[s_{2} A_{s_{1}}^{2}\right] \cong \hat{S}_{p}^{3}\left[\left(s_{2}+1\right) A_{s_{1}}^{2}\right] \cong \hat{S}_{p}^{2}\left[A_{s}^{2}\right]
$$

$\hat{S}_{p}^{3}\left[s_{1} A_{s_{2}}^{2}\right], \hat{S}_{p}^{3}\left[\left(s_{1}+1\right) A_{s_{2}}^{2}\right], \hat{S}_{p}^{3}\left[s_{2} A_{s_{1}}^{2}\right], \hat{S}_{p}^{3}\left[\left(s_{2}+1\right) A_{s_{1}}^{2}\right]$ are paths of order $2 p+1$ joining $s_{1} \hat{s_{2}}$ and $s_{1}\left(\widehat{s_{2}+1}\right),\left(s_{1}+1\right) \hat{s_{2}}$ and $\left(s_{1}+1\right)\left(\widehat{s_{2}+1}\right), s_{2} \hat{s_{1}}$ and $s_{2}\left(\widehat{s_{1}+1}\right),\left(s_{2}+1\right) \hat{s_{1}}$ and $\left(s_{2}+1\right)\left(\widehat{s_{1}+1}\right)$, respectively. Moreover, $s_{1} \hat{s_{2}}=$ $s_{2} \hat{s_{1}}=\left\{s_{1}, s_{2}\right\}, s_{1}\left(\widehat{s_{2}+1}\right)=\left(s_{2}+1\right) \hat{s_{1}}=\left\{s_{1}, s_{2}+1\right\}, s_{2}\left(\widehat{s_{1}+1}\right)=\left(s_{1}+\right.$

1) $\hat{s_{2}}=\left\{s_{1}+1, s_{2}\right\},\left(s_{2}+1\right)\left(\widehat{s_{1}+1}\right)=\left(s_{1}+1\right)\left(\widehat{s_{2}+1}\right)=\left\{s_{1}+1, s_{2}+1\right\}$. Hence $\hat{S}_{p}^{3}\left[s_{1} A_{s_{2}}^{3} \cup\left(s_{1}+1\right) A_{s_{2}}^{3} \cup s_{2} A_{s_{1}}^{3} \cup\left(s_{2}+1\right) A_{s_{1}}^{3}\right]$ is a cycle of order $4(2 p+1)-4=8 p$, and thus $\hat{S}_{p}^{3}\left[s_{1} A_{s_{2}}^{3} \cup\left(s_{1}+1\right) A_{s_{2}}^{3} \cup s_{2} A_{s_{1}}^{3} \cup\left(s_{2}+1\right) A_{s_{1}}^{3}\right]-\left\{s_{1}, s_{2}\right\}$ is a path of order $8 p-1$.

By the different choices for $s_{1}, s_{2} \in S$, we obtain the total number of $\binom{p / 2}{2}$ such paths in $\hat{S}_{p}^{3}\left[B_{3}\right]$. This proves (iii).

By (i), (ii), and (iii), $\hat{S}_{p}^{3}\left[B_{3}^{*}\right]$ is a forest, proving (iv).
Now assume that $n \geq 4$ and the statements (i)-(iv) are true for smaller values of n. Since

$$
B_{n-1}^{*}=\left(\cup_{s \in S} A_{s}^{n-1}\right) \cup\left(\cup_{3 \leq k \leq n-1} B_{k}^{n-1-k}\right)
$$

and $B_{n}^{*}=\left(\cup_{j \in P} j B_{n-1}^{*}\right) \backslash A$, we have

$$
\begin{aligned}
B_{n}^{*}= & \left(\bigcup_{j \in P} \bigcup_{s \in S} j A_{s}^{n-1}\right) \cup\left(\bigcup_{j \in P} \bigcup_{3 \leq k \leq n-1} j B_{k}^{n-1-k}\right) \backslash A \\
= & \left.\bigcup_{s \in S}\left(s A_{s}^{n-1} \cup(s+1) A_{s}^{n-1}\right) \cup\left(\bigcup_{j \in P \backslash\{s, s+1\}} j A_{s}^{n-1}\right)\right) \\
& \cup\left(\bigcup_{3 \leq k \leq n-1} B_{k}^{n-k}\right) \backslash A \\
= & \bigcup_{s \in S}\left(s A_{s}^{n-1} \cup(s+1) A_{s}^{n-1}\right) \cup\left(\bigcup_{s \in S} \bigcup_{j \in P \backslash\{s, s+1\}} j A_{s}^{n-1}\right) \\
& \cup\left(\bigcup_{3 \leq k \leq n-1} B_{k}^{n-k}\right) \backslash A \\
= & \bigcup_{s \in S} A_{s}^{n} \cup\left(\bigcup_{3 \leq k \leq n-1} B_{k}^{n-k}\right) \cup B_{n}^{\prime} \backslash A \\
= & \bigcup_{s \in S} A_{s}^{n} \cup\left(\bigcup_{3 \leq k \leq n-1} B_{k}^{n-k}\right) \cup B_{n} \\
= & \bigcup_{s \in S} A_{s}^{n} \cup\left(\bigcup_{3 \leq k \leq n} B_{k}^{n-k}\right) .
\end{aligned}
$$

This proves (i).
Now we prove (ii). By the induction hypothesis (ii), $\hat{S}_{p}^{n-1}\left[A_{s}^{n-1}\right]$ is path connecting \hat{s} and $\widehat{s+1}$ of order $2^{n-2} p+1$. Since $\hat{S}_{p}^{n}\left[s A_{s}^{n-1}\right] \cong \hat{S_{p}^{n}}[(s+$ 1) $\left.A_{s}^{n-1}\right] \cong \hat{S}_{p}^{n-1}\left[A_{s}^{n-1}\right], \hat{S}_{p}^{n}\left[A_{s}^{n}\right]$ is path connecting \hat{s} and $\widehat{s+1}$ of order $2\left(2^{n-2} p+1\right)-1=2^{n-1} p+1$ (by a similar reason to the case when $n=3$). This proves (ii).

To prove (iii), let $3 \leq k \leq n-1$. Since

$$
B_{k}^{n-k}=\left\{j b \mid j \in P^{n-k}, b \in B_{k}\right\}=\bigcup_{j \in p} j B_{k}^{n-1-k},
$$

we have

$$
\hat{S}_{p}^{n}\left[B_{k}^{n-k}\right]=\hat{S}_{p}^{n}\left[\bigcup_{j \in p} j B_{k}^{n-1-k}\right] .
$$

For any $j \in P, \hat{S}_{p}^{n}\left[j B_{k_{p}}^{n-1-k}\right] \cong \hat{S}_{p}^{n-1}\left[B_{k}^{n-1-k}\right]$. By the induction hypothesis (iii), there are $p^{n-1-k}\binom{\frac{p}{2}}{2}$ paths of order $2^{k} p-1$ in $\hat{S}_{p}^{n}\left[j B_{k}^{n-1-k}\right]$. Moreover, since $E_{\hat{S}_{p}^{n}}\left[i B_{k}^{n-1-k}, j B_{k}^{n-1-k}\right]=\emptyset$ for any $i, j \in P$ with $i \neq j$, there exists $p p^{n-1-k}\binom{\frac{p}{2}}{2}$ paths of order $2^{k} p-1$ in $\hat{S}_{p}^{n}\left[B_{k}^{n-k}\right]$.

If $k=n, B_{n}^{n-n}=B_{n}=B_{n}^{\prime} \backslash A$. Since $\hat{S}_{p}^{n}\left[s_{1} A_{s_{2}}^{n-1} \cup\left(s_{1}+1\right) A_{s_{2}}^{n-1} \cup s_{2} A_{s_{1}}^{n-1} \cup\right.$ $\left.\left(s_{2}+1\right) A_{s_{1}}^{n-1}\right]$ is a cycle of order $4\left(2^{n-2} p+1\right)-4$ and $\hat{S}_{p}^{n}\left[s_{1} A_{s_{2}}^{n-1} \cup\left(s_{1}+\right.\right.$ 1) $\left.A_{s_{2}}^{n-1} \cup s_{2} A_{s_{1}}^{n-1} \cup\left(s_{2}+1\right) A_{s_{1}}^{n-1} \backslash\left\{s_{1}, s_{2}\right\}\right]$ is a path of order $2^{n} p-1$ in $\hat{S}_{p}^{n}\left[B_{n}\right]$. By the different choice for $s_{1}, s_{2} \in S$, we obtain total number of $\binom{p / 2}{2}$ such paths in $\hat{S}_{p}^{n}\left[B_{n}\right]$. This proves (iii).

By (i), (ii), and (iii), we conclude that $\hat{S}_{p}^{n}\left[B_{n}^{*}\right]$ is a linear forest, proving (iv).

Claim 4.3. For any $n \geq 3$,

$$
\begin{equation*}
\left|B_{n}^{*}\right|=p \times\left|B_{n-1}^{*}\right|-\frac{p(p-1)}{2}-\binom{p / 2}{2} . \tag{4.1}
\end{equation*}
$$

Proof. Since $B_{n}^{*}=\bigcup_{j \in P} j B_{n-1}^{*} \backslash A$ and $s_{1} \hat{s_{2}}=s_{2} \hat{s_{1}}=\left\{s_{1}, s_{2}\right\}$, we have

$$
\left|\bigcup_{j \in P} j B_{n-1}^{*}\right|=p \times\left|B_{n-1}^{*}\right|-\frac{p(p-1)}{2}
$$

Moreover, since $|A|=\binom{\frac{p}{2}}{2},\left|B_{n}^{*}\right|=p \times\left|B_{n-1}^{*}\right|-\frac{p(p-1)}{2}-\binom{p / 2}{2}$.
By Claim 4.2 and Claim 4.3, if $n \geq 3, \hat{S}_{p}^{n}$ has an induced forest of order

$$
p^{n}-\frac{p^{n-1}}{8}+\frac{p^{n-2}+\cdots+p}{8}+\frac{5 p}{8} .
$$

Case 2: p is odd. Let $S=\{0,2, \cdots, p-3\}$ and $A=\left\{\left\{s_{1}, s_{2}\right\} \mid s_{1}, s_{2} \in\right.$ $\left.S, s_{1} \neq s_{2}\right\}$. For any $s \in S$, let

$$
A_{s}^{2}=\{\hat{s}, \widehat{s+1},\{s, s+1\}, s\{i, i+1\},(s+1)\{i, i+1\} \mid i \in P \backslash\{s\}\} \subseteq V_{2}
$$

It is easy to see that $\hat{S}_{p}^{2}\left[A_{s}^{2}\right]$ is a path of length $2 p$ connecting \hat{s} and $s \hat{+} 1$. For any $k \geq 3$, we define some subsets of V_{k} as: $A_{s}^{k}=s A_{s}^{k-1} \cup(s+1) A_{s}^{k-1}$, and further

$$
\begin{aligned}
& B_{k}^{\prime}= \bigcup_{s_{1}, s_{2} \in S, s_{1} \neq s_{2}}\left(s_{1} A_{s_{2}}^{k-1} \cup\left(s_{1}+1\right) A_{s_{2}}^{k-1} \cup s_{2} A_{s_{1}}^{k-1} \cup\left(s_{2}+1\right) A_{s_{1}}^{k-1}\right), \\
& B_{k}= \bigcup^{s_{1}, s_{2} \in S, s_{1} \neq s_{2}}\left(s_{1} A_{s_{2}}^{k-1} \cup\left(s_{1}+1\right) A_{s_{2}}^{k-1} \cup s_{2} A_{s_{1}}^{k-1}\right. \\
&\left.\left.\quad \cup\left(s_{2}+1\right) A_{s_{1}}^{k-1}\right) \backslash\left\{s_{1}, s_{2}\right\}\right), \\
& B_{k}^{0}= B_{k}, B_{k}^{n-k}=\left\{\underline{j} b \mid \underline{j} \in P^{n-k}, b \in B_{k}\right\} .
\end{aligned}
$$

With the slight difference to the case when p is even, we define some more subsets of V_{k} as follows.

$$
\begin{aligned}
& T^{\prime}=\{\widehat{p-1},(p-1)\{i, i+1\} \mid i \in P-1\} \\
& T_{k}=\bigcup_{s \in S}\left((p-1) A_{s}^{k-1} \cup s(p-1)^{k-3} T^{\prime} \cup(s+1)(p-1)^{k-3} T^{\prime}\right), \\
& T_{k}^{0}=T_{k}, T_{k}^{n-k}=\left\{\underline{j} t \mid \underline{j} \in P^{n-k}, t \in T_{k}\right\} .
\end{aligned}
$$

By the definition above, one can see that $B_{k}^{\prime}=B_{k} \backslash A, \bigcup_{j \in P} j B_{k}^{n-1-k}=$ $B_{k}^{n-k}, \bigcup_{j \in P} j T_{k}^{n-1-k}=T_{k}^{n-k}, A \cap\left(\bigcup_{s \in S} A_{s}^{n}\right)=\emptyset, A \cap B_{k}^{n-k}=\emptyset, A \cap T_{k}^{n-k}=$ \emptyset, and $A \cap(p-1)^{n-2} T^{\prime}=\emptyset$.

It is easy to see that $\hat{S}_{p}^{2}\left[T^{\prime}\right]$ is path of order p connecting $(p-1)\{0,1\}$ and $\widehat{p-1}$. Let $B_{2}^{*}=\left(\cup_{s \in S} A_{s}^{2}\right) \cup T^{\prime}$. Trivially, $\hat{S}_{p}^{2}\left[B_{2}^{*}\right]$ is a linear forest (see Fig. 8 for $\hat{S}_{5}^{2}\left[B_{2}^{*}\right]$, depicted in the color red).

Figure 8. \hat{S}_{5}^{2} : contraction of a dotted edge of S_{5}^{3} represents a vertex of $\hat{S}_{5}^{2}, \hat{S}_{5}^{2}\left[B_{2}^{*}\right]$ is the subgraph colored red

Claim 4.4. For any $k \geq 3$, let $B_{k}^{*}=\bigcup_{j \in P} j B_{k-1}^{*} \backslash A$. Then
(i) $B_{n}^{*}=\left(\bigcup_{s \in S} A_{s}^{n}\right) \cup\left(\bigcup_{3 \leq k \leq n} B_{k}^{n-k}\right) \cup\left(\bigcup_{3 \leq k \leq n} T_{k}^{n-k}\right) \cup(p-1)^{n-2} T^{\prime}$,
(ii) for each $s \in S, \hat{S}_{p}^{n}\left[A_{s}^{n}\right]$ is a path of order $2^{n-1} p+1$ joining \hat{s} and $\widehat{s+1}$,
(iii) for any $3 \leq k \leq n, \hat{S}_{p}^{n}\left[B_{k}^{n-k}\right]$ is a forest consisting of $p^{n-k}(\underset{2}{(p-1) / 2})$ paths of order $2^{k} p-1$,
(iv) for any $3 \leq k \leq n, \hat{S}_{p}^{n}\left[T_{k}^{n-k}\right]$ is a forest consisting of $p^{n-k}(p-1) / 2$ paths of order $2^{k-2} p+2 p-1$,
(v) $\widehat{S}_{p}^{n}\left[(p-1)^{n-2} T^{\prime}\right]$ is a path of order p,
(vi) $\hat{S}_{p}^{n}\left[B_{n}^{*}\right]$ is a forest.

Proof. The proof proceeds by induction on n. First we prove statements (i)-(vi) for $n=3$. Since $B_{2}^{*}=\left(\bigcup_{s \in S} A_{s}^{2}\right) \cup T^{\prime}$, we have

$$
\begin{aligned}
B_{3}^{*} & =\left(\bigcup_{j \in P} j B_{2}^{*}\right) \backslash A \\
& =\left(\bigcup_{j \in P} j\left(\bigcup_{s \in S} A_{s}^{2} \cup T^{\prime}\right)\right) \backslash A \\
& =\left(\left(\bigcup_{j \in P \backslash\{p-1\}} j \bigcup_{s \in S} A_{s}^{2}\right) \backslash A\right) \cup\left(\bigcup_{j \in P} j T^{\prime}\right) \cup\left(\bigcup_{s \in S}(p-1) A_{s}^{2}\right) \\
& =\left(\bigcup_{s \in S} A_{s}^{3}\right) \cup B_{3} \cup T_{3} \cup(p-1) T^{\prime} .
\end{aligned}
$$

The proof of (ii) and (iii) is similar to that of (ii) and (iii) for the case when p is even. Next we prove (iv). By the definition,

$$
T_{3}=\bigcup_{s \in S}\left((p-1) A_{s}^{2} \cup s T^{\prime} \cup(s+1) T^{\prime}\right)
$$

It can be seen that for a fixed $s \in S$,

- $\hat{S}_{p}^{3}\left[(p-1) A_{s}^{2}\right]$ is a path of order $2 p+1$ joining $(p-1) \hat{s}$ and $(p-$ 1) $\widehat{s+1)}$
- $\hat{S}_{p}^{3}\left[s T^{\prime}\right]$ is a path of order p joining $s(p-1)\{0,1\}$ and $s(\widehat{p-1)}$,
- $\hat{S}_{p}^{3}\left[(s+1) T^{\prime}\right]$ is a path of order p joining $(s+1)(p-1)\{0,1\}$ and $(s+1) \widehat{(p-1)}$.
Moreover, since $(p-1) \hat{s}=\widehat{s(p-1)}=\{s, p-1\},(s+1) \widehat{(p-1)}=(p-$ 1) $\widehat{(s+1)}=\{s+1, p-1\}, \hat{S}_{p}^{3}\left[(p-1) A_{s}^{2} \cup s T^{\prime} \cup(s+1) T^{\prime}\right]$ is a path of order $2 p+1+2 p-2=4 p-1$. So, by the different choices for $s \in S$, we obtain total number of $(p-1) / 2$ such paths in $\hat{S}_{p}^{3}\left[T_{3}\right]$.

Now we show (v). Since $\hat{S}_{p}^{2}\left[T^{\prime}\right]$ is path of order p connecting $(p-1)\{0,1\}$ and $\widehat{p-1}$ and $(p-1) \widehat{p-1}=\widehat{p-1}, \hat{S}_{p}^{3}\left[(p-1)^{3-2} T^{\prime}\right]$ is path of order p connecting $(p-1)^{2}\{0,1\}$ and $\widehat{p-1}$.

By (i)-(vi), we conclude that $\hat{S}_{p}^{3}\left[B_{3}^{*}\right]$ is a linear forest.

Next assume that $n \geq 4$ and statements (i)-(v) are true for smaller values of n. It is clear that

$$
\begin{aligned}
& \bigcup_{j \in P} \bigcup_{3 \leq k \leq n-1} j B_{k}^{n-1-k}=\bigcup_{3 \leq k \leq n-1} B_{k}^{n-k}, \\
& \bigcup_{j \in P} \bigcup_{3 \leq k \leq n-1} j T_{k}^{n-1-k}=\bigcup_{3 \leq k \leq n-1} T_{k}^{n-k} .
\end{aligned}
$$

Since p is odd, $p-1$ is even, hence we have

$$
\left(\bigcup_{j \in P \backslash\{p-1\}} \bigcup_{s \in S} j A_{s}^{n-2}\right) \backslash A=\left(\bigcup_{s \in S} A_{s}^{n}\right) \cup B_{n} .
$$

Since

$$
B_{n-1}^{*}=\left(\bigcup_{s \in S} A_{s}^{n-1}\right) \cup\left(\bigcup_{3 \leq k \leq n-1} B_{k}^{n-1-k}\right) \cup\left(\bigcup_{3 \leq k \leq n-1} T_{k}^{n-1-k}\right) \cup(p-1)^{n-3} T^{\prime}
$$

and $B_{n}^{*}=\bigcup_{j \in P} j B_{n-1}^{*} \backslash A$, we have

$$
\begin{aligned}
B_{n}^{*}= & \bigcup_{j \in P} \bigcup_{s \in S} j A_{s}^{n-1} \cup \bigcup_{j \in P P} \bigcup_{3 \leq k \leq n-1} j B_{k}^{n-1-k} \cup \bigcup_{j \in P} \bigcup_{3 \leq k \leq n-1} j T_{k}^{n-1-k} \\
& \cup\left(\bigcup_{j \in P} j(p-1)^{n-3} T^{\prime}\right) \backslash A \\
= & \left(\bigcup_{j \in P \backslash\{p-1\}} \bigcup_{s \in S} j A_{s}^{n-1}\right) \backslash A \cup \bigcup_{3 \leq k \leq n-1} B_{k}^{n-k} \cup \bigcup_{3 \leq k \leq n-1} T_{k}^{n-k} \\
& \cup \bigcup_{s \in S}(p-1) A_{s}^{n-1} \cup \bigcup_{j \in P} j(p-1)^{n-3} T^{\prime} \\
= & \bigcup_{s \in S} A_{s}^{n} \cup B_{n} \cup \bigcup_{3 \leq k \leq n-1} B_{k}^{n-k} \cup \bigcup_{3 \leq k \leq n-1} T_{k}^{n-k} \cup \bigcup_{s \in S}(p-1) A_{s}^{n-1} \\
& \cup \bigcup_{j \in P \backslash\{p-1\}} j(p-1)^{n-3} T^{\prime} \cup(p-1)^{n-2} T^{\prime} \\
= & \bigcup_{s \in S} A_{s}^{n} \cup \bigcup_{3 \leq k \leq n} B_{k}^{n-k} \cup \bigcup_{3 \leq k \leq n-1} T_{k}^{n-k} \cup T_{k} \cup(p-1)^{n-2} T^{\prime} \\
= & \bigcup_{s \in S} A_{s}^{n} \cup \bigcup_{3 \leq k \leq n} B_{k}^{n-k} \cup \bigcup_{3 \leq k \leq n} T_{k}^{n-k} \cup(p-1)^{n-2} T^{\prime} .
\end{aligned}
$$

proving (i).
The proof of (ii) and (iii) is similar to that of (ii) and (iii) for the case when p is even.

To prove (iv), we first consider the case when $3 \leq k \leq n-1$. Since

$$
T_{k}^{n-k}=\left\{\underline{j} b \mid \underline{j} \in P^{n-k}, b \in T_{k}\right\}=\bigcup_{j \in p} j T_{k}^{n-1-k}
$$

we have

$$
\hat{S_{p}^{n}}\left[T_{k}^{n-k}\right]=\hat{S_{p}^{n}}\left[\bigcup_{j \in p} j T_{k}^{n-1-k}\right]
$$

For any $j \in P, \hat{S}_{p}^{n}\left[j T_{k}^{n-1-k}\right] \cong \hat{S}_{p}^{n}\left[T_{k}^{n-1-k}\right]$. By the induction hypothesis (iv), there are $p^{n-1-k}(p-1) / 2$ paths of order $2^{k-2} p+2 p-1$ in $\hat{S}_{p}^{n-1}\left[j T_{k}^{n-1-k}\right]$. Moreover, since $E_{\hat{S}_{p}^{n}}\left[i T_{k}^{n-1-k}, j T_{k}^{n-1-k}\right]=\emptyset$ for any $i, j \in P$ with $i \neq j$, there exists $p^{n-k}(p-1) / 2$ paths of order $2^{k-2} p+2 p-1$ in $\hat{S}_{p}^{n}\left[T_{k}^{n-k}\right]$.

If $k=n, T_{n}^{n-n}=T_{n}=\bigcup_{s \in S}\left((p-1) A_{s}^{n-1} \cup s(p-1)^{n-3} T^{\prime} \cup(s+1)(p-\right.$ $\left.1)^{n-3} T^{\prime}\right)$. Note that for a fixed $s \in S$,

- $\hat{S}_{p}^{n}\left[(p-1) A_{s}^{n-1}\right]$ is a path of order $2^{n-2} p+1$ joining $(p-1) \hat{s}$ and $(p-1) \widehat{(s+1)}$,
- $\hat{S}_{p}^{n}\left[s(p-1)^{n-3} T^{\prime}\right]$ is a path of order p joining $s(p-1)^{n-2}\{0,1\}$ and $s(p-1)^{n-3}(\widehat{p-1})=s(\widehat{p-1})$,
- $\hat{S}_{p}^{n}\left[(s+1)(p-1)^{n-3} T^{\prime}\right]$ is a path of order p joining $(s+1)(p-$ $1)^{n-2}\{0,1\}$ and $(s+1)(p-1)^{n-3} \widehat{(p-1)}=(s+1) \widehat{(p-1)}$.
Furthermore, since $(p-1) \hat{s}=s(\widehat{p-1})=\{s, p-1\},(s+1) \widehat{p-1})=(p-$ 1) $\widehat{(s+1)}=\{s+1, p-1\}, \hat{S}_{p}^{n}\left[(p-1) A_{s}^{n-1} \cup s(p-1)^{n-3} T^{\prime} \cup(s+1)(p-1)^{n-3} T^{\prime}\right]$ is a path of order $2^{n-2} p+2 p-1$. By the different choices for $s \in S$, we obtain the total number of $(p-1) / 2$ such paths in $\hat{S}_{p}^{n}\left[T_{n}\right]$. This proves (iv).

Since $\hat{S}_{p}^{2}\left[T^{\prime}\right]$ is a path of order p connecting $(p-1)\{0,1\}$ and $p \hat{-} 1$. Moreover, since $(p-1)^{n-2} p \hat{-1}=p \hat{-1}, \hat{S}_{p}^{n}\left[(p-1)^{n-2} T^{\prime}\right]$ is path of order p connecting $(p-1)^{n-1}\{0,1\}$ and $p \hat{-1}$, proving (v).

By (i)-(v), $\hat{S}_{p}^{n}\left[B_{n}^{*}\right]$ is a forest. This proves (vi).
Claim 4.5. For any $n \geq 3$,

$$
\begin{equation*}
\left|B_{n}^{*}\right|=p \times\left|B_{n-1}^{*}\right|-\frac{p(p-1)}{2}-\binom{(p-1) / 2}{2} \tag{4.2}
\end{equation*}
$$

$$
\left|\bigcup_{j \in P} j B_{n-1}^{*}\right|=p \times\left|B_{n-1}^{*}\right|-\frac{p(p-1)}{2}
$$

Since $|A|=\binom{(p-1) / 2}{2},\left|B_{n}^{*}\right|=p \times\left|B_{n-1}^{*}\right|-p(p-1) / 2-\binom{(p-1) / 2}{2}$.
By Claim 4.4 and Claim 4.5, if $n \geq 3, \hat{S}_{p}^{n}$ has an induced forest of order

$$
p^{n}-\frac{p^{n-1}+p^{n-2}-5 p+3}{8}
$$

Since $\tau(G)+f(G)=|V(G)|$ for a graph G, Theorem 4.1 provides an upper bound for $\tau\left(\hat{S}_{p}^{n}\right)$. We suspect the upper bound is the exact value of
the feedback vertex number of the generalized Sierpiński triangle graph \hat{S}_{p}^{n} for the case when $p \geq 4$.
Conjecture. For integers $n \geq 3$ and $p \geq 4$,

$$
f\left(\hat{S}_{p}^{n}\right)= \begin{cases}p^{n}-\frac{p^{n-1}}{8}+\frac{p^{n-2}+\cdots+p}{8}+\frac{5 p}{8}, & \text { if } p \text { is even } \\ p^{n}-\frac{p^{n-1}+p^{n-2}-5 p+3}{8}, & \text { if } p \text { is odd }\end{cases}
$$

References

1. S. Bau and L. W. Beineke, The decycling number of graphs, Australas. J. Comb. 25 (2002), 285-298.
2. J. A. Bondy and U. S. R. Murty, Graph theory, GTM 244, Springer, 2008.
3. M. Borowiecki, E. Drgas-Burchardt, and E. Sidorowicz, A feedback vertex set of 2degenerate graphs, Theoret. Comput. Sci. 557 (2014), 50-58.
4. F. Dross, M. Montassier, and A. Pinlou, A lower bound on the order of the largest induced forest in planar with high girth, Discrete Appl. Math. 214 (2016), 99-107.
5. P. Erdős, M. Saks, and V.T. Sós, Maximum induced trees in graphs, J. Comb. Theory Ser. B 41 (1986), 61-79.
6. R. Focardi, F. L. Luccio, and D. Peleg, Feedback vertex set in hypercubes, Inf. Process. Lett. 76 (2000), 1-5.
7. S. Gravier, S. Klavžar, and M. Mollard, Codes and L(2;1)-labelings in Sierpiński-like graphs, Taiwan. J. Math. 9 (2005), 671-681.
8. A. M. Hinz, S. Klavžar, and S. S. Zemljič, A survey and classification of Sierpiński-type graphs, Discrete Appl. Math. 217 (2017), 565-600.
9. A. M. Hinz and D. Parisse, On the planarity of Hanoi graphs, Expo. Math. 20 (2002), 263-268.
10. \qquad , Coloring Hanoi and Sierpiński graphs, Discrete Math. 312 (2012), 1521-1535.
11. A. M. Hinz and A. Schief, The average distance on the Sierpiński gasket, Probab. Theory Related Fields 87 (1990), 129-138.
12. M. Hinz and C. Holz auf der Heide, An efficient algorithm to determine all shortest paths in Sierpiński graphs, Discrete Appl. Math.. 177 (2014), 111-120.
13. K. Hosono, Induced forests in trees and outerplanar graphs, Proc. Fac. Sci. Tokai Univ. 25 (1990), 27-29.
14. M. Jakovac, A 2-parameter generalization of Sierpiński gasket graphs, Ars Combin. 116 (2014), 395-405.
15. M. Jakovac and S. Klavžar, Vertex-, edge-, and total-coloring of Sierpiński-like graphs, Discrete Math. 309 (2009), 1548-1556.
16. R. M. Karp, R. E. Miller, and J. W. Thatcher, Reducibility among combinatorial problems, J. Symb. Log. 40 (1975), 618-619.
17. T. Kelly and C. Liu, Minimum size of feedback vertex sets of planar graphs of girth at least five, European J. Combin. 61 (2017), 138-150.
18. S. Klavžar, Coloring Sierpiński graphs and Sierpiński gasket graphs, Taiwanese J. Math. 12 (2008), 513-522.
19. S. Klavžar and U. Milutinović, Graphs S_{k}^{n} and a variant of the tower of Hanoi problem, Czechoslovak Math. J. 47 (1997), no. 122, 95-104.
20. S. Klavžar and B. Mohar, Crossing numbers of Sierpiński-like graphs, J. Graph Theory 50 (2005), 186-198.
21. S. Klavžar, I. Peterin, and S. S. Zemljič, Hamming dimension of a graph - the case of Sierpiński graphs, Eur. J. combin. 34 (2013), 460-473.
22. S. Klavžar and S. S. Zemljič, On distances in Sierpiński graphs: almost-extreme vertices and metric dimension, Appl. Anal. Discrete Math. 7 (2013), 72-82.
23. C. Lin, J. Liu, and Y. Wang, Global strong defensive alliances of Sierpiński-like graphs, Theory Comput. Syst. 53 (2013), 365-385.
24. C. Lin, J. Liu, Y. Wang, and W. Yen, The hub number of Sierpiński-like graphs, Theory Comput. Syst. 49 (2011), 588-600.
25. Y. Lin, J. Juan, and Y. Wang, Finding the edge ranking number through vertex partitions, Discrete Appl. Math. 161 (2013), 1067-1071.
26. F. R. Madelaine and I. A. Stewart, Improved upper and lower bounds on the feedback vertex numbers of grids and butterflies, Discrete Math. 308 (2008), 4144-4164.
27. D. Parisse, On some metric properties of the Sierpinski graphs S_{k}^{n}, Ars combin. 90 (2009), 145-160.
28. M. J. Pelsmajer, Maximum induced linear forests in outerplanar graphs, Graphs Combin. 20 (2004), no. 1, 121-129.
29. D. A. Pike, Decycling hypercubes, Graphs Combin. 19 (2003), 547-550.
30. M. R. Salavatipour, Large induced forests in triangle-free planar graphs, Graphs Combin. 22 (2006), 113-126.
31. E. Teufl and S. Wagner, Enumeration of matchings in families of self-similar graphs, Discrete Appl. Math. 158 (2010), 1524-1535.
32._, Resistance scaling and the number of spannning trees in self-similar lattices, J. Stat. Phys. 142 (2011), 879-897.
32. X. Xu, Y. Cao, J.-M. Xu, and Y. Wu, Feedback numbers of de Bruijn di-graphs, Comput. Math. Appl. 59 (2010), 716-723.
33. X. Xu, J.-M. Xu, and Y. Cao, Bounds on feedback numbers of de Bruijn graphs, Taiwan. J. Math. 15 (2011), no. 3, 1101-1113.
34. B. Xue, L. Zuo, and G. Li, The hamiltonicity and path t-coloring of Sierpiński-like graphs, Discrete Appl. Math. 160 (2012), 1822-1836.
35. B. Xue, L. Zuo, G. Wang, and G. Li, The linear t-coloring of Sierpiński-like graphs, Graphs Combin. 30 (2014), 755-767.
37._, Shortest paths in Sierpiński graphs, Discrete Appl. Math. 162 (2014), 314321.

College of Mathematics and System Sciences, Xinjiang University, Urumqi, 830046, Xinjiang, China
E-mail address: yuanli0920@163.com
College of Mathematics and System Sciences, Xinjiang University, Urumqi, 830046, Xinjiang, China
E-mail address: baoywu@163.com
College of Mathematics and System Sciences, Xinjiang University, Urumqi, 830046, Xinjiang, China
E-mail address: zhb_xj@163.com

[^0]: Received by the editors April 10, 2018, and in revised form July 16, 2018.
 2000 Mathematics Subject Classification. 05C99.
 Key words and phrases. Sierpiński triangle; Sierpiński graphs; Sierpiński-like graphs; Feedback vertex number.

 Corresponding author: Baoyindureng Wu.
 Research supported by Key Laboratory Project of Xinjiang (2018D04017) and NSFC (No. 11571294).

