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FEEDBACK VERTEX NUMBER OF SIERPIŃSKI-TYPE

GRAPHS

LILI YUAN, BAOYINDURENG WU, AND BIAO ZHAO

Abstract. The feedback vertex number τ(G) of a graph G is the mini-
mum number of vertices that can be deleted from G such that the resul-
tant graph does not contain a cycle. We show that τ(Sn

p ) = pn−1(p− 2)
for the Sierpiński graph Sn

p with p ≥ 2 and n ≥ 1. The general-

ized Sierpiński triangle graph Ŝn
p is obtained by contracting all non-

clique edges from the Sierpiński graph Sn+1
p . We prove that τ(Ŝn

3 ) =

(3n + 1)/2 = |V (Ŝn
3 )|/3, and give an upper bound for τ(Ŝn

p ) for the case
when p ≥ 4.

1. Introduction

In this paper, we consider only simple, finite, undirected graphs and
refer to [2] for undefined terminology and notation. For a graph G =
(V (G), E(G)), the order and size are |V (G)| and |E(G)|, respectively. We
denote the order and the size of G by |G| and ||G||, respectively. For a vertex
v, the degree of a vertex v, denoted by dG(v), is the number of edges which
are incident with v in G, and the neighborhood of v, denoted by NG(v), is
the set of the vertices adjacent to v in G.

For a set X ⊆ V, let G −X be the graph obtained from G by removing
vertices of X and all the edges that are incident to a vertex of X. The
subgraph G− (V (G)\X) is said to be the induced subgraph of G induced by
X, and is denoted by G[X]. We call X a feedback vertex set of G if G−X is a
forest. The feedback vertex number of G, denoted by τ(G), is the cardinality
of a minimum feedback vertex set of G. The order of a maximum induced
forest of G is denoted by f(G). It is clear that τ(G) + f(G) = |G|.

So, determining the feedback number of a graph G is equivalent to finding
the maximum induced forest of G, first proposed by Erdős, Saks and Sós
[5]. Some results on the maximum induced forest are obtained for several
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families of graphs, such as planar graphs with high girth [4, 17], outerplanar
graphs [13, 28], triangle-free planar graphs [30]. The problem of determining
the feedback vertex number has been proved to be NP-complete for general
graphs [16]. However, the problem has been studied for some special graphs,
such as hypercubes [6, 29], toroids [26], de Bruijn graphs [34], de Bruijn
digraphs [33], 2-degenerate graphs [3]. A review of results and open problems
on the feedback vertex number was given by Bau and Beineke [1].

The definition of Sierpiński graph was first introduced by Klavžar and
Milutinović [19] in 1997. Graphs whose drawings can be viewed as approx-
imations to the famous Sierpiński triangle have been studied extensively in
the past 25 years, see a recent survey [8] for a collection of the results and
the related works. We follow the notation there. For an integer k, let Nk

be the set of all integers greater than or equal to k. In particular, N1 is
denoted simply by N. For an integer p ∈ N, let P = {0, 1, . . . , p − 1}. For
convenience, let [n] = {1, . . . , n} for an integer n ∈ N. Let Pn be the set of
all n-tuples on P .

Definition 1.1 ([8]). For two integers p ≥ 1 and n ≥ 0, the Sierpiński
graph Sn

p is given by

V (Sn
p ) = Pn, E(Sn

p ) = {{sijd−1, sjid−1}| i, j ∈ P, i 6= j; d ∈ [n]; s ∈ Pn−d}.
A vertex s1s2 . . . sn of Sn

p is called an extreme vertex if s1 = · · · = sn.
There are precisely p extreme vertices in Sn

p . It is easy to see that dSn
p
(u) =

p − 1 for an extreme vertex u and dSn
p
(v) = p for all other vertices v. In

the trivial cases n = 0 or p = 1, there is only one vertex and no edge, i.e.
S0
p
∼= K1

∼= Sn
1 ; moreover, S1

p
∼= Kp, where Kp denotes the complete graph of

order p. The first interesting case is p = 2, where Sn
2
∼= P2n . The drawings

of the Sierpiński graphs S3
3 and S2

5 are shown in Fig. 1.
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Figure 1. S3
3 and S2

5

Definition 1.2 ([8]). For two integers p ≥ 1 and n ≥ 0, the generalized

Sierpiński triangle graph Ŝn
p is obtained by contracting all nonclique edges

(with the form {sijl, sjil} for distinct i, j ∈ P and l ∈ [n], s ∈ Pn−l) from
the Sierpiński graph Sn+1

p .
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Sierpiński-type graphs have many interesting properties, see [9] for its
planarity, [20] for its crossing number, [10, 15, 25, 18, 35, 36] for its various
colorings, [23] for the global strong defensive alliances, [24] for the hub num-
ber, [21] for the Hamming dimension, [31, 32] for enumeration of matchings
and spanning trees, [11, 12, 27, 22, 37] for distance and metric properties.

The main topic of the paper focuses on the feedback vertex number of
Sierpiński-type graphs. In Section 2, we show that τ(Sn

p ) = pn−1(p − 2).

In Section 3, we show that τ(Ŝn
3 ) = (3n + 1)/2 = |Ŝn

3 |/3. In Section 4, we

present an upper bound for the feedback vertex number of Ŝn
p for any p ≥ 4.

Some other relevant results are presented as well.

2. Sierpiński graphs

In this section, we determine the exact value of the feedback number of
Sierpiński graph Sn

p . For two vertex subsets X,Y of a graph G, we denote
by EG[X,Y ] the set of edges of G with one end in X and the other end in
Y . First we show the following.

Lemma 2.1. For two integers n ≥ 1 and p ≥ 2, τ(Sn
p ) ≥ pn−1(p− 2).

Proof. By induction on n. If n = 1, Sn
p
∼= Kp. Since

τ(Sn
p ) = τ(Kp) = p− 2 = p0(p− 2) = pn−1(p− 2),

the result then follows. Next assume that n ≥ 2 and X is a minimum
feedback vertex set of Sn

p . Let Vi = {ik| k ∈ V (Sn−1
p )} for each i ∈ P . From

the definition of Sn
p , we know that Sn

p [Vi] ∼= Sn−1
p . Let Xi = X ∩ Vi for each

i ∈ P . Since X is a minimum feedback vertex set of Sn
p , Xi is a feedback

vertex set of Sn
p [Vi]. By the induction hypothesis, |Xi| ≥ pn−2(p− 2). Thus,

|X| ≥ ppn−2(p− 2) = pn−1(p− 2). �

A 2-element set Y ⊆ Pm−1 for an integer m ∈ {2, . . . , n} is said to be

pairable if Y = {sa, sb}, where s ∈ Pm−2 and {a, b} ∈
(
P
2

)
. In this case, let

head(Y) = s. Further, we define

C(Y ) := C1(Y ) ∪ C2(Y ),

where C1(Y ) = {saa, sab, sba, sbb} and C2(Y ) = {sk(k − 1), sk(k + 1)| k ∈
P \{a, b}}, and k−1, k+1 are taken modulo p. In general, a set Y ⊆ Pm−1 is
said to be pairable if Y can be partitioned into some 2-element sets Y1, . . . , Yq
such that Yi is pairable for each i, and head(Yi) 6= head(Yj) for any i, j with
i 6= j. Moreover, let us define

head(Y ) :=
⋃
i∈[q]

head(Yi) and C(Y ) :=
⋃
i∈[q]

C(Yi).

Observe that if Y is pairable (since head(Yi) 6= head(Yj) for any i, j with
i 6= j), then it must be partitioned into some 2-element pairable sets in a
unique way. So, we call {Y1, . . . , Yq} the pairable partition of Y , and call each
Yi a block of Y . Take Y = {0, 2} ⊆ V (S1

5) for an example. Then C(Y ) =
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{00, 02, 20, 22, 10, 12, 32, 34, 43, 40} ⊆ V (S2
5), see the subgraphs S1

5 [Y ] and
S2

5 [C(Y )] as depicted in red in Fig 2.
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Figure 2. S1
5 [Y ] and S2

5 [C(Y )], where Y = {0, 2}

Lemma 2.2. If Y ⊆ Pm−1 is pairable for an integer m ≥ 2, then C(Y ) is
pairable, and head(C(Y )) = {sa| s ∈ head(Y ), a ∈ P}.
Proof. Let {Y1, . . . , Yq} be the pairable partition of Y , where for each i,

Yi = {siai, sibi} for some si ∈ Pm−2 and {ai, bi} ∈
(
P
2

)
. By our definition,

C(Y ) :=
⋃
i∈[q]

C(Yi),

where C(Yi) := C1(Yi) ∪ C2(Yi), and C1(Yi) = {siaiai, siaibi, sibiai, sibibi}
and C2(Yi) = {sik(k − 1), sik(k + 1)| k ∈ P \ {ai, bi}, where k − 1, k + 1
are taken modulo p}.

Note that for an integer i ∈ [q], C1(Yi) can be partitioned into two 2-
element pairable sets {siaiai, siaibi} and {sibiai, sibibi}, and C2(Yi) can be
partitioned into p − 2 two-element pairable sets {sik(k − 1), sik(k + 1)},
where k ∈ P \ {ai, bi}. It is clear that the set of the heads of these p sets
is {sia| a ∈ P}. Moreover, by our assumption, since si 6= sj for distinct

integers i, j, sia 6= sjb for any a, b ∈ P (even when a = b). This proves the

lemma. �

In what follows, for an integer m ≥ 2 and a pairable set Y ⊆ P , let
Cm(Y ) = C(Cm−1(Y )).

Lemma 2.3. Let Y1 = {1, 2} ⊆ V (S1
p), and Ym = Cm−1(Y1) for m ∈

[n] \ {1}. Then Ym is a pairable set with head(Ym) = Pm−1, |Ym| = 2pm−1

and Sm
p [Ym] is a forest for each m ∈ [n].

Proof. First of all, since Y1 = {1, 2} is a pairable set, by Lemma 2.2, Y2 is
pairable. By definition,

Y2 = C(Y1) = {11, 12, 21, 22} ∪ {k(k − 1), k(k + 1) | k ∈ P \ {1, 2}}.
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Note that head(Y2) = {0, 1, . . . , p − 1} = P and |Y2| = 2p. One can
see that S2

p [Y2] is a linear forest consisting of two paths, 11, 12, 21, 22 and
32, 34, 43, 45, · · · , (p− 1)(p− 2), (p− 1)0, 0(p− 1), 01.

Assume that m ≥ 3 and the lemma is true for lesser values of m. By the
induction hypothesis, Ym−1 is a pairable set with head(Ym−1) = Pm−2 and
|Ym−1| = 2pm−2. Since Ym = C(Ym−1), by Lemma 2.2, Y m is pairable, and

head(Ym) = {sa| a ∈ head(Ym−1), a ∈ P} = Pm−1.

Thus |Ym| = 2 head(Ym) = 2|Pm−1| = 2pm−1.
Next we show that Sm

p [Ym] is a forest of Sm
p . Let Ym = Ym1 ∪Ym2, where

Ym1 = C1(Ym−1), Ym2 = C2(Ym−1).

Claim 2.4. ESm
p

[Ym1, Ym2] = ∅.
Proof. Suppose not, and let y1 ∈ Ym1 and y2 ∈ Ym2 with y1y2 ∈ E(Sm

p ). By
the definition of Ym1 and Ym2, there exist blocks {s1a, s1b} and {s2c, s2d} of
Ym−1 such that y1 ∈ C1({s1a, s1b}) and y2 ∈ C2({s2c, s2d}), where s1, s2 ∈
Pm−2 and a, b, c, d ∈ P . Recall that C1({s1a, s1b}) = {s1aa, s1ab, s1ba, s1bb}
and C2({s2c, s2d}) = {s2k(k − 1), s2k(k + 1)| k ∈ P \ {c, d}}.
Case 1 : y2 = s2k(k − 1) for an element k ∈ P \ {c, d}.

Since NSm
p

(y2) = {s2(k − 1)k} ∪ {s2kc| c ∈ P \ {k − 1}}, y1 ∈
{s1aa, s1ab,
s1ba, s1bb}, and y1y2 ∈ E(Sm

p ), we have ({s2(k − 1)k} ∪ {s2kc| c ∈
P \ {k − 1}}) ∩ {s1aa, s1ab, s1ba, s1bb} 6= ∅. It follows that s1 = s2.
Moreover, since Ym−1 is pairable, the heads of different blocks are dis-
tinct. So, {s1a, s1b} = {s2c, s2d} and thus {a, b} = {c, d}.

Now rewrite NSm
p

(y2) = {s1(k− 1)k} ∪ {s1kc| c ∈ P \ {k− 1}}, where

k ∈ P \ {a, b}. However, since k ∈ P \ {a, b}, it is clear that NSm
p

(y2) ∩
{s1aa, s1ab, s1ba, s1bb} = ∅, a contradiction, implying y1y2 /∈ E(Sm

p ).
Case 2 : y2 = s2k(k + 1) for an element k ∈ P \ {c, d}.

Proof of this case is similar to that of Case 1.
�

Claim 2.5. Sm
p [Ym2] is a forest.

Proof. Recall that Ym2 = C2(Ym−1) and C2({siai, sibi}) = {sik(k+1), sik(k
− 1) | k ∈ P \ {ai, bi}} for a block {siai, sibi}. One can easily check
that Sm

p [C2({siai, sibi})] is a linear forest with at most two components.

If {sjaj , sjbj} is another block of Ym−1, then by si, sj ∈ Pm−2 with si 6= sj ,

ESm
p

[{sik(k−1), sik(k+1)}, {sjl(l−1), sjl(l+1)}] = ∅ for any k ∈ P \{a, b}
and l ∈ P \ {c, d}. So, ESm

p
[C2(siai, sibi), C2(sjaj , sjbj)] = ∅. Thus Sm

p [Ym2]

is a forest. �

Claim 2.6. Sm
p [Ym1] is a forest.

Proof. Suppose that C is an induced cycle of Sm
p [Ym1], and let S = {s| s ∈

Pm−2 and there is a vertex v ∈ V (C) such that v ∈ C1({sa, sb})}. Since
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C1({sa, sb}) = {saa, sab, sba, sbb} for a block {sa, sb} of Ym−1, it is clear that
Sm
p [C1({sa, sb})] ∼= P4. It is not hard to see that V (C) =

⋃
s∈S C1({sa, sb}).

Let C ′ = Sm−1
p [∪s∈S{sa, sb}]. One can see that C ′ is a cycle of Sm−1

p [Ym−1],
a contradiction. This proves that Sm

p [Ym1] contains no cycle. �

Summing up Claims 2.4–2.6, we conclude that Sm
p [Ym] is a forest. �

Theorem 2.7. For integer p ≥ 2, n ≥ 1, τ(Sn
p ) = pn−1(p− 2).

Proof. By Lemma 2.3, f(Sn
p ) ≥ 2pn−1, and thus τ(Sn

p ) ≤ pn − f(Sn
p ) ≤

pn−1(p − 2). On the other hand, by Lemma 2.1, τ(Sn
p ) ≥ pn−1(p − 2). The

result then follows. �

In [8], two kinds of regularization of Sierpiński graphs were introduced.

Definition 2.8 ([8]). For p ∈ N and n ∈ N , the graph +Sn
p is defined by

V (+Sn
p ) = Pn ∪ {w}, E(+Sn

p ) = E(Sn
p ) ∪ {{w, in}| i ∈ P}.

Lemma 2.9 ([8]). If p ∈ N and n ∈ N , then |+Sn
p | = pn + 1 and ‖+Sn

p ‖ =
p(pn + 1)/2.

Definition 2.10 ([8]). For p ∈ N and n ∈ N , the graph ++Sn
p is defined by

V (++Sn
p ) = Pn ∪ {ps̄| s̄ ∈ Pn−1},

E(++Sn
p ) = E(Sn

p ) ∪ {{ps̄, pt̄}| {s̄, t̄} ∈ E(Sn−1
p )} ∪ {{pin−1, in}| i ∈ P}.

Lemma 2.11 ([8]). If p ∈ N and n ∈ N, then |++Sn
p | = (p + 1)pn−1 and

‖++Sn
p ‖ = p+1

2 pn.

Drawings of +S2
4 and ++S2

4 are shown in Fig. 3, where the left one is +S2
4

and the other one is ++S2
4 .

w

Figure 3. +S2
4 and ++S2

4

Corollary 2.12. For integers p ≥ 2 and n ≥ 1,

τ(+Sn
p ) =

{
pn−1(p− 2), if p ≥ 3

1, if p = 2.
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Proof. If p = 2, +Sn
p is a cycle, and thus τ(+Sn

p ) = 1. Now let us consider the

case when p ≥ 3. Since Sn
p is a subgraph of +Sn

p , τ(+Sn
p ) ≥ τ(Sn

p ) = pn−1(p−
2). On the other hand, let Yn be the set as in the proof of Lemma 2.3. Let
Y ′n = (Yn \ {1n}) ∪ {1n−10, w}. It can be checked that +Sn

p [Y ′n] is a forest

of +Sn
p with |Y ′n| = 2pn−1 + 1. Thus τ(+Sn

p ) ≤ pn−1(p − 2). The result
follows. �

Corollary 2.13. For integers p ≥ 2 and n ≥ 1, τ(++Sn
p ) = τ(Sn

p )+τ(Sn−1
p ).

Proof. By the definition of ++Sn
p , clearly, τ(++Sn

p ) ≥ τ(Sn
p ) + τ(Sn−1

p ).

Next, we prove τ(++Sn
p ) ≤ τ(Sn

p ) + τ(Sn−1
p ). Let Yn = Cn−1(Y1) be the

set defined as in the proof of Lemma 2.3, where Y1 = {1, 2}. On the other
hand, we choose Y ∗1 = {3, 4}, and Y ∗n−1 = Cn−2(Y ∗1 ) as defined in the
proof of Lemma 2.3. By the proof of Lemma 2.3, ++Sn

p [Yn] ∼= Sn
p [Yn] is

a forest, and ++Sn
p [pY ∗n−1] ∼= Sn

p [Y ∗n−1] ∼= Sn
p [Yn−1] is a forest. Moreover,

E++Sn
p
[Yn, pY

∗
n−1] = ∅. Thus ++Sn

p [Yn∪pY ∗n−1] has no cycles, and τ(++Sn
p ) ≤

τ(Sn
p ) + τ(Sn−1

p ). �

3. Sierpiński triangle graphs

A class of graphs that often has been mistaken for and also been called
Sierpiński graphs can be obtained from the latter by simply contracting all
nonclique edges. We will call them Sierpiński triangle graphs. Let T :=
{0, 1, 2} and T̂ := {0̂, 1̂, 2̂}. Denote the vertex obtained by contracting the

edge {sijn−v+1, sjin−v+1} by s{i, j}. Then the vertex set of Ŝn
3 can be

written as

V (Ŝn
3 ) = T̂ ∪

{
s{i, j}| s ∈ T v−1, v ∈ [n], {i, j} ∈

(
T

2

)}
.

Further, we replace each vertex s{i, j} by sk, where k = 3 − i − j. So,

E(Ŝn+1
3 ) = {{k̂, knj}| k ∈ T, j ∈ T \ {k}} ∪ {{sk, sj}| s ∈ Tn, {j, k} ∈

(
T
2

)
}

∪ {{s(3− i− j)in−vk, sj}| s ∈ T v−1, v ∈ [n], i ∈ T, j, k ∈ T \ {i}}.
The Sierpiński triangle graph Ŝ3

3 is shown in Fig. 4.

Lemma 3.1 ([14]). If p ∈ N and n ∈ N0, then |Ŝn
p | = p(pn + 1)/2 and

||Ŝn
p || = p−1

2 pn+1.

Theorem 3.2. (i) For any n ≥ 0, each minimum feedback vertex set of

Ŝn
3 contains at most one vertex in {0̂, 1̂, 2̂},

(ii) for n ≥ 0, Ŝn
3 has a minimum feedback vertex set An such that |An ∩

{0̂, 1̂, 2̂}| = 1,

(iii) for n ≥ 1, τ(Ŝn
3 ) = 3τ(Ŝn−1

3 )− 1,

(iv) τ(Ŝn
3 ) = (3n + 1)/2 = |Ŝn

3 |/3.
Proof. The proof proceeds by induction on n. For convenience, let an =
τ(Ŝn

3 ) and Vn = V (Ŝn
3 ) for any integer n ≥ 0. If n = 0, Ŝn

3
∼= K3. Trivially,
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Figure 5. Relation between Ŝn
3 and iSn−1

3 for each i ∈ T

a0 = 1 and each minimum feedback vertex Ŝ0
3 consists of exactly one element

of {0̂, 1̂, 2̂}. Let A0 = {0̂}. Now assume that n ≥ 1 and the results hold for
n− 1.

First we prove (iii). By the induction hypothesis and the symmetry of

Ŝn−1
3 , there exists a minimum feedback vertex set An−1 of Ŝn−1

3 containing

the vertex 0̂. To prove an ≤ 3an−1 − 1, let V i
n = {ia| a ∈ Vn−1} for each

i ∈ T , where 00̂ = 0̂, 11̂ = 1̂, and 22̂ = 2̂; 01̂ = 2 = 10̂, 02̂ = 1 = 20̂, and
21̂ = 0 = 12̂ (see Fig. 5 for an illustration).

One can see that Vn = V 0
n ∪ V 1

n ∪ V 2
n and Ŝn

3 [V j
n ] ∼= Ŝn−1

3 for each j ∈ T .

For each j ∈ T , we define an isomorphism fj between Ŝn−1
3 and jŜn−1

3 as
follows:

(1) f0(0̂) = 0̂, f0(1̂) = 2, f0(2̂) = 1;
(2) f1(0̂) = 0, f1(1̂) = 2, f1(2̂) = 1̂;
(3) f2(0̂) = 0, f2(1̂) = 2̂, f2(2̂) = 1.
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Let

(3.1) An =
⋃
j∈T

fj(An−1).

It can be checked that An is a feedback vertex set of Ŝn
3 with

1̂

0̂

2̂

0̂

0̂

1̂ 2̂

2 1

0 1̂ 2̂

2 1

0

02 01

00
12 11

10

22 21

20

Ŝ0
3 Ŝ1

3 Ŝ2
3

Figure 6. Minimum feedback vertex set An (red vertices)

of Ŝn
3 for n ∈ {0, 1, 2} with property (ii)

(3.2) |An| = 3an−1 − 1.

So, an ≤ 3an−1 − 1.
Next we prove an ≥ 3an−1 − 1. Let An be a minimum feedback vertex

set of Ŝn
3 , and let Ai

n = An ∩ iŜn−1
3 for each i ∈ T . Since iŜn−1

3
∼= Ŝn−1

3 ,

Ai
n is a feedback vertex set of iŜn−1

3 . Hence, |Ai
n| ≥ an−1. Note that

|An| =
∑2

i=0 |Ai
n| − |An ∩ {0, 1, 2}|. If |An ∩ {0, 1, 2}| ≤ 1, then an = |An| ≥

3an−1 − 1. Assume that |{0, 1, 2} ∩ An| = 2, and without loss of generality,
let {1, 2} ⊆ An. By the induction hypothesis (i), |A0

n| ≥ an−1 + 1. Hence
an ≥ an−1 + 1 + an−1 − 1 + an−1 − 1 = 3an−1 − 1. If |{0, 1, 2} ∩ An| = 3,

by induction hypothesis (i), |Aj
n| ≥ an−1 + 1 for each j ∈ {0, 1, 2}. Hence

an ≥ an−1 + 1 + an−1 + 1 + an−1 + 1− 3 = 3an−1. This proves (iii).
Let An be the set constructed as (3.1) in the proof of (iii). By (3.2) and

(iii), An is a minimum feedback vertex set with 0̂ ∈ An and 1̂ 6∈ An, 2̂ 6∈ An

(for an illustration, see Fig. 6). This proves (ii).

To prove (i), suppose that Xn is a minimum vertex set of Ŝn
3 with |Xn ∩

{0̂, 1̂, 2̂}| ≥ 2. Let Xi
n = Xn ∩ iŜn−1

3 for each i ∈ T . Since iŜn−1
3
∼= Ŝn−1

3 ,

Xi
n is a feedback vertex set of iŜn−1

3 . Hence, |Xi
n| ≥ an−1. Note that

|Xn| =
∑2

i=0 |Xi
n| − |Xn ∩ {0, 1, 2}|.

If |{0, 1, 2} ∩ Xn| = 0, |Xj
n| ≥ an−1 for each j ∈ {0, 1, 2}. Hence an ≥

an−1 + an−1 + an−1 = 3an−1, contradicting (iii). If |{0, 1, 2} ∩Xn| = 1, by
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induction hypothesis (i), |Xj
n| ≥ an−1 + 1 for some j ∈ {0, 1, 2}. Thus

an = |Xn| =
2∑

j=0

|Xj
n| − 1 ≥ (an−1 + an−1 + an−1 + 1)− 1 = 3an−1,

contradicting (iii). If |{0, 1, 2}∩Xn| = 2, then at least two of |X1
n|, |X2

n|, |X3
n|

are greater than or equal to an−1 + 1. Thus an = |Xn| =
∑2

j=0 |X
j
n| − 2 ≥

(an−1+an−1+1+an−1+1)−2 = 3an−1, contradicting (iii). If |{0, 1, 2}∩Xn| =
3, by the induction hypothesis (i), |Xj

n| ≥ an−1 + 1 for each j ∈ {0, 1, 2}.
Hence an ≥ an−1 + 1 + an−1 + 1 + an−1 + 1− 3 = 3an−1, contradicting (iii).
This proves (i).

Finally we prove (iv). Since a0 = 1 and by (iii), we have τ(Ŝn
3 ) = (3n +

1)/2. Moreover, by Lemma 3.1, τ(Ŝn
3 ) = |Ŝn

3 |/3. �

4. Generalized Sierpiński triangle graphs Ŝn
p for p ≥ 4

By Definition 1.2, for p ∈ N and n ∈ N0, the generalized Sierpiński
triangle graph Ŝn

p is obtained by contracting all nonclique edges from the

Sierpiński graph Sn+1
p . We denote the vertex obtained from contracting the

edge {sijn−v+1, sjin−v+1} ∈ E(Sn+1
p ) by s{i, j}. Then

V (Ŝn
p ) = P̂ ∪

{
s{i, j}| s ∈ P v−1, v ∈ [n], {i, j} ∈

(
P

2

)}
,

where P̂ = {k̂ | k ∈ P}, and

E(Ŝn+1
p ) = {{k̂, kn{j, k}}| k ∈ P, j ∈ P \ {k}}

∪
{
{s{i, j}, s{i, k}}| s ∈ Pn, i ∈ P, {j, k} ∈

(
P \ {i}

2

)}
∪ {{skin−v{i, j}, s{i, k}}| s ∈ P v−1, v ∈ [n], i ∈ P, j, k ∈ P \ {i}}.

The Sierpiński triangle graphs Ŝ2
6 and Ŝ2

5 are shown in Fig. 7 and in

Fig. 8, respectively. Trivially, Ŝ0
p
∼= Kp. Recall that τ(G) + f(G) = |G| for

any graph G. For convenience, we consider f(Ŝn
p ) instead of τ(Ŝn

p ). It is not
hard to see that for n ≤ 2, if p is even,

f(Ŝn
p ) =


2, if n = 0
3p
2 , if n = 1

p2 + p
2 , if n = 2.

If p is odd,

f(Ŝn
p ) =


2, if n = 0
3p−1

2 , if n = 1

p2 + p
2 − 1

2 , if n = 2.

In view of Section 3, it remains to consider the case when p ≥ 4.
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0̂

1̂

2̂

3̂

4̂

5̂

Figure 7. Ŝ2
6 : a contraction of a dotted edge of S3

6 repre-

sents a vertex of Ŝ2
6 , Ŝ2

6 [B∗2 ] is the subgraph colored red

Theorem 4.1. For integers n ≥ 3 and p ≥ 4,

f(Ŝn
p ) ≥

{
pn − pn−1

8 + pn−2+···+p
8 + 5p

8 , if p is even

pn − pn−1+pn−2−5p+3
8 , if p is odd.

Proof. Let Vn = V (Ŝn
p ) and iB∗n = {ib| b ∈ B∗n} for each i ∈ P , where îi = î

and iĵ = jî = {i, j}, B∗n ⊆ Vn will be defined recursively in terms of the
parity of p as follows.
Case 1: p is even. Let S = {0, 2, . . . , p − 2} and A = {{s1, s2}| s1, s2 ∈
S, s1 6= s2}. Note that A ⊆ Vn.

For any s ∈ S, let A2
s = {ŝ, ˆs+ 1, {s, s + 1}, s{i, i + 1}, (s + 1){i, i +

1}| i ∈ P \ {s}} ⊆ V2. It is easy to see that Ŝ2
p [A2

s] is a path of length 2p

connecting ŝ and ˆs+ 1. For any k ≥ 3, some subsets of Vk are defined by
Ak

s = sAk−1
s ∪ (s+ 1)Ak−1

s , and further

B′k =
⋃

s1,s2∈S,s1 6=s2

(s1A
k−1
s2 ∪ (s1 + 1)Ak−1

s2 ∪ s2A
k−1
s1 ∪ (s2 + 1)Ak−1

s1 ),

Bk =
⋃

s1,s2∈S,s1 6=s2

(s1A
k−1
s2 ∪ (s1 + 1)Ak−1

s2 ∪ s2A
k−1
s1

∪ (s2 + 1)Ak−1
s1 ) \ {s1, s2}),

B0
k = Bk, B

n−k
k = {jb| j ∈ Pn−k, b ∈ Bk}.
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By the definition above, one can see that B′k = Bk \A,
⋃

j∈P jB
n−1−k
k =

Bn−k
k , and A∩ (

⋃
s∈S A

n
s ) = ∅, A∩Bn−k

k = ∅. Let B∗2 =
⋃

s∈S A
2
s. It can be

seen that Ŝ2
p [B∗2 ] is a forest (see Ŝ2

6 [B∗2 ] depicted in the color red in Fig. 7).

Claim 4.2. For any k ≥ 3, let B∗k = (
⋃

j∈P jB
∗
k−1) \A. Then

(i) B∗n = (
⋃

s∈S A
n
s ) ∪ (

⋃
3≤k≤nB

n−k
k ),

(ii) for each s ∈ S, Ŝn
p [An

s ] is a path of order 2n−1p+1 joining ŝ and ˆs+ 1,

(iii) for any 3 ≤ k ≤ n, Ŝn
p [Bn−k

k ] is a forest consisting of pn−k
(
p/2
2

)
paths

of order 2kp− 1,
(iv) Ŝn

p [B∗n] is a forest.

Proof. The proof proceeds by induction on n. First we prove the statements
for n = 3. Since B∗2 =

⋃
s∈S A

2
s,

B∗3 = (
⋃
j∈P

jB∗2) \A = (
⋃
j∈P

j
⋃
s∈S

A2
s) \A

= (
⋃
s∈S

(sA2
s ∪ (s+ 1)A2

s ∪ (
⋃

j∈P\{s,s+1}

jA2
s))) \A

= (
⋃
s∈S

(sA2
s ∪ (s+ 1)A2

s) ∪ (
⋃
s∈S

⋃
j∈P\{s,s+1}

jA2
s)) \A

= (
⋃
s∈S

A3
s) ∪B′3 \A

=
⋃
s∈S

A3
s ∪B3,

proving (i).

Now we prove (ii). Since Ŝ3
p [A3

s] = Ŝ3
p [sA2

s ∪ (s+ 1)A2
s], Ŝ

3
p [sA2

s]
∼= Ŝ3

p [(s+

1)A2
s]
∼= Ŝ2

p [A2
s]. Recall that for a fixed s ∈ S, Ŝ2

p [A2
s] is path of order

2p+ 1 connecting ŝ and ŝ+ 1. It follows that Ŝ3
p [sA2

s] and Ŝ3
p [(s+ 1)A2

s] are

paths of order 2p + 1 joining sŝ and s(̂s+ 1), (s + 1)ŝ and (s + 1)(̂s+ 1),

respectively. Moreover, since sŝ = ŝ, (s+ 1)(̂s+ 1) = (̂s+ 1) and s(̂s+ 1) =

(s + 1)ŝ = {s, s + 1}, Ŝ3
p [A3

s] is a path connecting ŝ and ŝ+ 1 of order
2(2p+ 1)− 1 = 4p+ 1.

To prove (iii), let us consider a pair of elements s1, s2 ∈ S with s1 6= s2.
Since

Ŝ3
p [s1A

2
s2 ] ∼= Ŝ3

p [(s1 + 1)A2
s2 ] ∼= Ŝ3

p [s2A
2
s1 ] ∼= Ŝ3

p [(s2 + 1)A2
s1 ] ∼= Ŝ2

p [A2
s],

Ŝ3
p [s1A

2
s2 ], Ŝ3

p [(s1 + 1)A2
s2 ], Ŝ3

p [s2A
2
s1 ], Ŝ3

p [(s2 + 1)A2
s1 ] are paths of order

2p+ 1 joining s1ŝ2 and s1
̂(s2 + 1), (s1 + 1)ŝ2 and (s1 + 1) ̂(s2 + 1), s2ŝ1 and

s2
̂(s1 + 1), (s2 + 1)ŝ1 and (s2 + 1) ̂(s1 + 1), respectively. Moreover, s1ŝ2 =

s2ŝ1 = {s1, s2}, s1
̂(s2 + 1) = (s2 + 1)ŝ1 = {s1, s2 + 1}, s2

̂(s1 + 1) = (s1 +
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1)ŝ2 = {s1+1, s2}, (s2+1) ̂(s1 + 1) = (s1+1) ̂(s2 + 1) = {s1+1, s2+1}. Hence

Ŝ3
p [s1A

3
s2∪(s1+1)A3

s2∪s2A
3
s1∪(s2+1)A3

s1 ] is a cycle of order 4(2p+1)−4 = 8p,

and thus Ŝ3
p [s1A

3
s2 ∪ (s1 + 1)A3

s2 ∪ s2A
3
s1 ∪ (s2 + 1)A3

s1 ] − {s1, s2} is a path
of order 8p− 1.

By the different choices for s1, s2 ∈ S, we obtain the total number of
(
p/2
2

)
such paths in Ŝ3

p [B3]. This proves (iii).

By (i), (ii), and (iii), Ŝ3
p [B∗3 ] is a forest, proving (iv).

Now assume that n ≥ 4 and the statements (i)–(iv) are true for smaller
values of n. Since

B∗n−1 = (∪s∈SAn−1
s ) ∪ (∪3≤k≤n−1B

n−1−k
k )

and B∗n = (∪j∈P jB∗n−1) \A, we have

B∗n = (
⋃
j∈P

⋃
s∈S

jAn−1
s ) ∪ (

⋃
j∈P

⋃
3≤k≤n−1

jBn−1−k
k ) \A

=
⋃
s∈S

(sAn−1
s ∪ (s+ 1)An−1

s ) ∪ (
⋃

j∈P\{s,s+1}

jAn−1
s ))

∪ (
⋃

3≤k≤n−1

Bn−k
k ) \A

=
⋃
s∈S

(sAn−1
s ∪ (s+ 1)An−1

s ) ∪ (
⋃
s∈S

⋃
j∈P\{s,s+1}

jAn−1
s )

∪ (
⋃

3≤k≤n−1

Bn−k
k ) \A

=
⋃
s∈S

An
s ∪ (

⋃
3≤k≤n−1

Bn−k
k ) ∪B′n \A

=
⋃
s∈S

An
s ∪ (

⋃
3≤k≤n−1

Bn−k
k ) ∪Bn

=
⋃
s∈S

An
s ∪ (

⋃
3≤k≤n

Bn−k
k ).

This proves (i).

Now we prove (ii). By the induction hypothesis (ii), Ŝn−1
p [An−1

s ] is path

connecting ŝ and ŝ+ 1 of order 2n−2p + 1. Since Ŝn
p [sAn−1

s ] ∼= Ŝn
p [(s +

1)An−1
s ] ∼= Ŝn−1

p [An−1
s ], Ŝn

p [An
s ] is path connecting ŝ and ŝ+ 1 of order

2(2n−2p+ 1)− 1 = 2n−1p+ 1 ( by a similar reason to the case when n = 3).
This proves (ii).

To prove (iii), let 3 ≤ k ≤ n− 1. Since

Bn−k
k = {jb| j ∈ Pn−k, b ∈ Bk} =

⋃
j∈p

jBn−1−k
k ,
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we have

Ŝn
p [Bn−k

k ] = Ŝn
p [
⋃
j∈p

jBn−1−k
k ].

For any j ∈ P , Ŝn
p [jBn−1−k

k ] ∼= Ŝn−1
p [Bn−1−k

k ]. By the induction hypothesis

(iii), there are pn−1−k( p
2
2

)
paths of order 2kp− 1 in Ŝn

p [jBn−1−k
k ]. Moreover,

since EŜn
p
[iBn−1−k

k , jBn−1−k
k ] = ∅ for any i, j ∈ P with i 6= j, there exists

ppn−1−k( p
2
2

)
paths of order 2kp− 1 in Ŝn

p [Bn−k
k ].

If k = n, Bn−n
n = Bn = B′n\A. Since Ŝn

p [s1A
n−1
s2 ∪(s1 +1)An−1

s2 ∪s2A
n−1
s1 ∪

(s2 + 1)An−1
s1 ] is a cycle of order 4(2n−2p + 1) − 4 and Ŝn

p [s1A
n−1
s2 ∪ (s1 +

1)An−1
s2 ∪s2A

n−1
s1 ∪(s2+1)An−1

s1 \{s1, s2}] is a path of order 2np−1 in Ŝn
p [Bn].

By the different choice for s1, s2 ∈ S, we obtain total number of
(
p/2
2

)
such

paths in Ŝn
p [Bn]. This proves (iii).

By (i), (ii), and (iii), we conclude that Ŝn
p [B∗n] is a linear forest, proving

(iv). �

Claim 4.3. For any n ≥ 3,

(4.1) |B∗n| = p× |B∗n−1| −
p(p− 1)

2
−
(
p/2

2

)
.

Proof. Since B∗n =
⋃

j∈P jB
∗
n−1 \A and s1ŝ2 = s2ŝ1 = {s1, s2}, we have

|
⋃
j∈P

jB∗n−1| = p× |B∗n−1| −
p(p− 1)

2
.

Moreover, since |A| =
( p

2
2

)
, |B∗n| = p× |B∗n−1| − p(p−1)

2 −
(
p/2
2

)
. �

By Claim 4.2 and Claim 4.3, if n ≥ 3, Ŝn
p has an induced forest of order

pn − pn−1

8
+
pn−2 + · · ·+ p

8
+

5p

8
.

Case 2: p is odd. Let S = {0, 2, · · · , p − 3} and A = {{s1, s2}| s1, s2 ∈
S, s1 6= s2}. For any s ∈ S, let

A2
s = {ŝ, ŝ+ 1, {s, s+ 1}, s{i, i+ 1}, (s+ 1){i, i+ 1}| i ∈ P \ {s}} ⊆ V2.

It is easy to see that Ŝ2
p [A2

s] is a path of length 2p connecting ŝ and ˆs+ 1.

For any k ≥ 3, we define some subsets of Vk as: Ak
s = sAk−1

s ∪ (s+ 1)Ak−1
s ,

and further
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B′k =
⋃

s1,s2∈S,s1 6=s2

(s1A
k−1
s2 ∪ (s1 + 1)Ak−1

s2 ∪ s2A
k−1
s1 ∪ (s2 + 1)Ak−1

s1 ),

Bk =
⋃

s1,s2∈S,s1 6=s2

(s1A
k−1
s2 ∪ (s1 + 1)Ak−1

s2 ∪ s2A
k−1
s1

∪ (s2 + 1)Ak−1
s1 ) \ {s1, s2}),

B0
k = Bk, B

n−k
k = {jb| j ∈ Pn−k, b ∈ Bk}.

With the slight difference to the case when p is even, we define some more
subsets of Vk as follows.

T ′ = {p̂− 1, (p− 1){i, i+ 1}| i ∈ P − 1},
Tk =

⋃
s∈S

((p− 1)Ak−1
s ∪ s(p− 1)k−3T ′ ∪ (s+ 1)(p− 1)k−3T ′),

T 0
k = Tk, T

n−k
k = {jt| j ∈ Pn−k, t ∈ Tk}.

By the definition above, one can see that B′k = Bk \ A,
⋃

j∈P jB
n−1−k
k =

Bn−k
k ,

⋃
j∈P jT

n−1−k
k = Tn−k

k , A∩(
⋃

s∈S A
n
s ) = ∅, A∩Bn−k

k = ∅, A∩Tn−k
k =

∅, and A ∩ (p− 1)n−2T ′ = ∅.
It is easy to see that Ŝ2

p [T ′] is path of order p connecting (p − 1){0, 1}
and p̂− 1. Let B∗2 = (∪s∈SA2

s) ∪ T ′. Trivially, Ŝ2
p [B∗2 ] is a linear forest (see

Fig. 8 for Ŝ2
5 [B∗2 ], depicted in the color red).

0̂

1̂

2̂ 3̂

4̂

{0, 1}

{1, 2}

{0, 2}

{1, 4}

{0, 3}

{1, 3} {2, 4}

{0, 4}

{3, 4}

{2, 3}

0{0, 1}

0{0, 2}

0{1, 2}

1{0, 4}1{0, 1}

1{0, 2}
1{1, 4}

1{1, 3}

1{0, 3}
1{2, 4}

1{1, 2}

1{2, 3}

1{3, 4}

2{0, 1}

2{1, 2}

2{1, 4}
2{0, 2}

2{1, 3}

2{0, 3}
2{2, 4}

2{2, 3}

2{3, 4}

2{0, 4}

3{1, 2}

3{2, 3}

3{0, 2}

3{0, 1}

3{1, 4}

3{1, 3}

3{0, 3}
3{2, 4}

3{3, 4}

3{0, 4}

4{2, 3}

4{3, 4}
4{2, 4}

4{1, 4}
4{0, 2}

4{1, 3}

4{0, 3}

4{0, 1}

4{1, 2}

4{0, 4}

0{0, 4}

0{3, 4}

0{1, 4}

0{1, 3}0{2, 4}
0{0, 3}

0{2, 3}

Figure 8. Ŝ2
5 : contraction of a dotted edge of S3

5 represents

a vertex of Ŝ2
5 , Ŝ2

5 [B∗2 ] is the subgraph colored red
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Claim 4.4. For any k ≥ 3, let B∗k =
⋃

j∈P jB
∗
k−1 \A. Then

(i) B∗n = (
⋃

s∈S A
n
s ) ∪ (

⋃
3≤k≤nB

n−k
k ) ∪ (

⋃
3≤k≤n T

n−k
k ) ∪ (p− 1)n−2T ′,

(ii) for each s ∈ S, Ŝn
p [An

s ] is a path of order 2n−1p+1 joining ŝ and ŝ+ 1,

(iii) for any 3 ≤ k ≤ n, Ŝn
p [Bn−k

k ] is a forest consisting of pn−k
(

(p−1)/2
2

)
paths of order 2kp− 1,

(iv) for any 3 ≤ k ≤ n, Ŝn
p [Tn−k

k ] is a forest consisting of pn−k(p − 1)/2

paths of order 2k−2p+ 2p− 1,
(v) Ŝn

p [(p− 1)n−2T ′] is a path of order p,

(vi) Ŝn
p [B∗n] is a forest.

Proof. The proof proceeds by induction on n. First we prove statements
(i)–(vi) for n = 3. Since B∗2 = (

⋃
s∈S A

2
s) ∪ T ′, we have

B∗3 = (
⋃
j∈P

jB∗2) \A

= (
⋃
j∈P

j(
⋃
s∈S

A2
s ∪ T ′)) \A

= ((
⋃

j∈P\{p−1}

j
⋃
s∈S

A2
s) \A) ∪ (

⋃
j∈P

jT ′) ∪ (
⋃
s∈S

(p− 1)A2
s)

= (
⋃
s∈S

A3
s) ∪B3 ∪ T3 ∪ (p− 1)T ′.

The proof of (ii) and (iii) is similar to that of (ii) and (iii) for the case when
p is even. Next we prove (iv). By the definition,

T3 =
⋃
s∈S

((p− 1)A2
s ∪ sT ′ ∪ (s+ 1)T ′).

It can be seen that for a fixed s ∈ S,

• Ŝ3
p [(p − 1)A2

s] is a path of order 2p + 1 joining (p − 1)ŝ and (p −
1)(̂s+ 1),

• Ŝ3
p [sT ′] is a path of order p joining s(p− 1){0, 1} and s ̂(p− 1),

• Ŝ3
p [(s + 1)T ′] is a path of order p joining (s + 1)(p − 1){0, 1} and

(s+ 1) ̂(p− 1).

Moreover, since (p − 1)ŝ = s ̂(p− 1) = {s, p − 1}, (s + 1) ̂(p− 1) = (p −
1)(̂s+ 1) = {s+ 1, p− 1}, Ŝ3

p [(p− 1)A2
s ∪ sT ′ ∪ (s+ 1)T ′] is a path of order

2p + 1 + 2p − 2 = 4p − 1. So, by the different choices for s ∈ S, we obtain
total number of (p− 1)/2 such paths in Ŝ3

p [T3].

Now we show (v). Since Ŝ2
p [T ′] is path of order p connecting (p− 1){0, 1}

and p̂− 1 and (p − 1)p̂− 1 = p̂− 1, Ŝ3
p [(p − 1)3−2T ′] is path of order p

connecting (p− 1)2{0, 1} and p̂− 1.

By (i)–(vi), we conclude that Ŝ3
p [B∗3 ] is a linear forest.
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Next assume that n ≥ 4 and statements (i)–(v) are true for smaller values
of n. It is clear that⋃

j∈P

⋃
3≤k≤n−1

jBn−1−k
k =

⋃
3≤k≤n−1

Bn−k
k ,

⋃
j∈P

⋃
3≤k≤n−1

jTn−1−k
k =

⋃
3≤k≤n−1

Tn−k
k .

Since p is odd, p− 1 is even, hence we have

(
⋃

j∈P\{p−1}

⋃
s∈S

jAn−2
s ) \A = (

⋃
s∈S

An
s ) ∪Bn.

Since

B∗n−1 = (
⋃
s∈S

An−1
s ) ∪ (

⋃
3≤k≤n−1

Bn−1−k
k ) ∪ (

⋃
3≤k≤n−1

Tn−1−k
k ) ∪ (p− 1)n−3T ′

and B∗n =
⋃

j∈P jB
∗
n−1 \A, we have

B∗n =
⋃
j∈P

⋃
s∈S

jAn−1
s ∪

⋃
j∈P

⋃
3≤k≤n−1

jBn−1−k
k ∪

⋃
j∈P

⋃
3≤k≤n−1

jTn−1−k
k

∪ (
⋃
j∈P

j(p− 1)n−3T ′) \A

= (
⋃

j∈P\{p−1}

⋃
s∈S

jAn−1
s ) \A ∪

⋃
3≤k≤n−1

Bn−k
k ∪

⋃
3≤k≤n−1

Tn−k
k

∪
⋃
s∈S

(p− 1)An−1
s ∪

⋃
j∈P

j(p− 1)n−3T ′

=
⋃
s∈S

An
s ∪Bn ∪

⋃
3≤k≤n−1

Bn−k
k ∪

⋃
3≤k≤n−1

Tn−k
k ∪

⋃
s∈S

(p− 1)An−1
s

∪
⋃

j∈P\{p−1}

j(p− 1)n−3T ′ ∪ (p− 1)n−2T ′

=
⋃
s∈S

An
s ∪

⋃
3≤k≤n

Bn−k
k ∪

⋃
3≤k≤n−1

Tn−k
k ∪ Tk ∪ (p− 1)n−2T ′

=
⋃
s∈S

An
s ∪

⋃
3≤k≤n

Bn−k
k ∪

⋃
3≤k≤n

Tn−k
k ∪ (p− 1)n−2T ′.

proving (i).
The proof of (ii) and (iii) is similar to that of (ii) and (iii) for the case

when p is even.
To prove (iv), we first consider the case when 3 ≤ k ≤ n− 1. Since

Tn−k
k = {jb| j ∈ Pn−k, b ∈ Tk} =

⋃
j∈p

jTn−1−k
k ,
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we have
Ŝn
p [Tn−k

k ] = Ŝn
p [
⋃
j∈p

jTn−1−k
k ].

For any j ∈ P , Ŝn
p [jTn−1−k

k ] ∼= Ŝn
p [Tn−1−k

k ]. By the induction hypothesis

(iv), there are pn−1−k(p−1)/2 paths of order 2k−2p+2p−1 in Ŝn−1
p [jTn−1−k

k ].

Moreover, since EŜn
p
[iTn−1−k

k , jTn−1−k
k ] = ∅ for any i, j ∈ P with i 6= j, there

exists pn−k(p− 1)/2 paths of order 2k−2p+ 2p− 1 in Ŝn
p [Tn−k

k ].

If k = n, Tn−n
n = Tn =

⋃
s∈S((p − 1)An−1

s ∪ s(p − 1)n−3T ′ ∪ (s + 1)(p −
1)n−3T ′). Note that for a fixed s ∈ S,

• Ŝn
p [(p − 1)An−1

s ] is a path of order 2n−2p + 1 joining (p − 1)ŝ and

(p− 1)(̂s+ 1),

• Ŝn
p [s(p− 1)n−3T ′] is a path of order p joining s(p− 1)n−2{0, 1} and

s(p− 1)n−3 ̂(p− 1) = s ̂(p− 1),

• Ŝn
p [(s + 1)(p − 1)n−3T ′] is a path of order p joining (s + 1)(p −

1)n−2{0, 1} and (s+ 1)(p− 1)n−3 ̂(p− 1) = (s+ 1) ̂(p− 1).

Furthermore, since (p − 1)ŝ = s ̂(p− 1) = {s, p − 1}, (s + 1) ̂(p− 1) = (p −
1)(̂s+ 1) = {s+1, p−1}, Ŝn

p [(p−1)An−1
s ∪s(p−1)n−3T ′∪(s+1)(p−1)n−3T ′]

is a path of order 2n−2p + 2p − 1. By the different choices for s ∈ S, we
obtain the total number of (p− 1)/2 such paths in Ŝn

p [Tn]. This proves (iv).

Since Ŝ2
p [T ′] is a path of order p connecting (p−1){0, 1} and ˆp− 1. More-

over, since (p − 1)n−2 ˆp− 1 = ˆp− 1, Ŝn
p [(p − 1)n−2T ′] is path of order p

connecting (p− 1)n−1{0, 1} and ˆp− 1, proving (v).

By (i)–(v), Ŝn
p [B∗n] is a forest. This proves (vi). �

Claim 4.5. For any n ≥ 3,

(4.2) |B∗n| = p× |B∗n−1| −
p(p− 1)

2
−
(

(p− 1)/2

2

)
,

Proof. Since B∗n =
⋃

j∈P jB
∗
n−1 \A and s1ŝ2 = s2ŝ1 = {s1, s2}, we have

|
⋃
j∈P

jB∗n−1| = p× |B∗n−1| −
p(p− 1)

2
.

Since |A| =
(

(p−1)/2
2

)
, |B∗n| = p× |B∗n−1| − p(p− 1)/2−

(
(p−1)/2

2

)
. �

By Claim 4.4 and Claim 4.5, if n ≥ 3, Ŝn
p has an induced forest of order

pn − pn−1 + pn−2 − 5p+ 3

8
.

�

Since τ(G) + f(G) = |V (G)| for a graph G, Theorem 4.1 provides an

upper bound for τ(Ŝn
p ). We suspect the upper bound is the exact value of
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the feedback vertex number of the generalized Sierpiński triangle graph Ŝn
p

for the case when p ≥ 4.

Conjecture. For integers n ≥ 3 and p ≥ 4,

f(Ŝn
p ) =

{
pn − pn−1

8 + pn−2+···+p
8 + 5p

8 , if p is even

pn − pn−1+pn−2−5p+3
8 , if p is odd.
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10. , Coloring Hanoi and Sierpiński graphs, Discrete Math. 312 (2012), 1521–1535.
11. A. M. Hinz and A. Schief, The average distance on the Sierpiński gasket, Probab.
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15. M. Jakovac and S. Klavžar, Vertex-, edge-, and total-coloring of Sierpiński-like graphs,

Discrete Math. 309 (2009), 1548–1556.
16. R. M. Karp, R. E. Miller, and J. W. Thatcher, Reducibility among combinatorial

problems, J. Symb. Log. 40 (1975), 618–619.
17. T. Kelly and C. Liu, Minimum size of feedback vertex sets of planar graphs of girth at

least five, European J. Combin. 61 (2017), 138–150.
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k and a variant of the tower of Hanoi problem,
Czechoslovak Math. J. 47 (1997), no. 122, 95–104.
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