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CIRCUIT PARTITIONS AND SIGNED INTERLACEMENT

IN 4-REGULAR GRAPHS

LORENZO TRALDI

Abstract. Let F be a 4-regular graph. Each circuit partition P of F
has a corresponding touch-graph Tch(P ); the circuits in P correspond
to vertices of Tch(P ), and the vertices of F correspond to edges of
Tch(P ). We discuss the connection between modified versions of the
interlacement matrix of an Euler system of F and the cycle space of
Tch(P ), over GF (2) and R.

1. Introduction

This paper is concerned with the connection between two aspects of the
structure of a 4-regular graph F : partitions of the edge set E(F ) into circuits,
and interlacement of vertices with respect to Euler systems of F . We begin
our discussion by reviewing some relevant background and terminology.

The graphs we consider are unoriented multigraphs; loops and parallel
edges are allowed. We think of every edge as consisting of two distinct half-
edges, each half-edge incident on one vertex. The degree of a vertex is the
number of incident half-edges, and a d-regular graph is one whose vertices
all have degree d.

We use the term circuit for an undirected closed trail. A circuit cannot
traverse an edge more than once, but it may traverse a vertex more than
once. An Euler circuit is a circuit that includes every edge of a graph; a
familiar argument shows that a 4-regular graph F has an Euler circuit if
and only if F is connected. Every 4-regular graph F has an Euler system,
i.e., a set that contains one Euler circuit for each connected component of
F .

We use the term circuit partition for a partition of the edge set of a
4-regular graph into circuits (i.e., undirected closed trails). The idea of
studying circuit partitions of 4-regular graphs was introduced by Kotzig [19],
and developed further by Las Vergnas and Martin [20, 21, 22, 25]. Circuit
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Figure 1. An Euler circuit C, a 3-element circuit partition
P1 and a 2-element circuit partition P2. To follow a circuit,
maintain the same plain/dashed line status when traversing
a vertex.

partitions in 4-regular graphs have found applications and generalizations
in Kauffman’s bracket description of the Jones polynomial [17], and in the
interlace polynomials of Arratia, Bollobás and Sorkin [1, 2].

Some circuits in a 4-regular graph F are illustrated in Figure 1. On the
left we see an Euler circuit, C. To trace C, start at any vertex and follow
edges around F , making sure to maintain the plain/dashed line status when
passing through a vertex. (The plain/dashed status may change in the
middle of an edge.) For instance, if we follow C by starting at a and walking
to b along the plain edge, we will encounter vertices in the order abdabccda.
The same plain/dashed convention is used to indicate the circuits included in
P1 and P2. The circuits in P1 may be oriented to visit vertices in the orders
abdcba, ada and cc; the circuits in P2 may be oriented to visit vertices in
the orders abda and abccda.

Note: Recall that our circuits have neither preferred starting points nor
preferred directions; for instance, the longer circuit of P1 might just as well
be oriented to visit vertices in the order cdbabc.

Now, let F be an arbitrary 4-regular graph. A transition of F at a vertex v
is a partition of the four half-edges incident at v into two pairs; for instance
each part of Figure 1 indicates one transition at each vertex, with a pair
of dashed half-edges and a pair of plain half-edges. F has three different
transitions at each vertex. An Euler system C of F may be used to label
the transitions of F in the following way. Temporarily choose an arbitrary
orientation for each circuit included in C. Then for each vertex v ∈ V (F ),
a person following the incident circuit of C makes two “entrances” to v and
two “exits” from v; say entrance 1 is followed by exit 1, and entrance 2
is followed by exit 2. The “entrances” and “exits” are the four half-edges
of F incident at v. The transition that pairs entrance i with exit i for
i ∈ {1, 2} is labeled ϕC(v); the transition that pairs entrance i with exit j
for i ̸= j ∈ {1, 2} is labeled χC(v); and the transition that pairs entrance
1 with entrance 2, and also pairs exit 1 with exit 2, is labeled ψC(v). It is
easy to see that each transition’s label with respect to C remains the same
if the orientation of a circuit of C is reversed.
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If C and C ′ are different Euler systems of F then some transitions will
have different ϕ, χ, ψ labels with respect to C and C ′. For example, we leave
it as an exercise for the reader to verify that in Figure 1 there is an Euler
circuit C ′ of F with ϕC′(a) = ψC(a), ϕC′(b) = χC(b), ϕC′(c) = ψC(c) and
ϕC′(d) = χC(d). Moreover, only two of the twelve transitions in F have the
same ϕ, χ, ψ labels with respect to C and C ′.

It is easy to see that a circuit partition of F is completely determined
by choosing one transition at each vertex. For example, in Figure 1 P1 is
determined by the transitions ψC(a), ϕC(b), χC(c) and ψC(d), while P2 is
determined by ϕC(a), χC(b), ϕC(c) and ϕC(d).

The notion of interlacement with respect to Euler systems in 4-regular
graphs has been studied by many authors; see for instance [6, 13, 29].

Definition 1.1. If C is an Euler system of F then two vertices v ̸= w ∈
V (F ) are interlaced with respect to C if and only if there is a circuit of C
on which v and w appear in the order vwvw or wvwv. The interlacement
matrix I(C) is the V (F )× V (F ) matrix with entries in the 2-element field
GF (2) given by: the vw entry is 1 if v and w are interlaced, and 0 otherwise.

The fact that there is a connection between circuit partitions and inter-
lacement has been discovered and rediscovered many times. Here is a state-
ment that incorporates the versions of this connection that appear most
often in the literature.

Theorem 1.2. Suppose C is an Euler system of a 4-regular graph F , and
P is a circuit partition of F . Let I(C,P ) be the symmetric GF (2)-matrix
obtained from I(C) by making these two kinds of changes.

(1) If P involves the ϕC(v) transition, remove the row and column cor-
responding to v.

(2) If P involves the ψC(v) transition, change the vv entry to 1.

Then the GF (2)-nullity of I(C,P ) is |P |− c(F ), where |P | is the number
of circuits in P and c(F ) is the number of connected components in F .

We refer to the formula |P | − c(F ) = nullity(I(C,P )) as the circuit-
nullity formula. It seems that the earliest discussion of some version of
the formula appears in Brahana’s 1921 study of curves on surfaces [10].
However the formula was not widely known until fifty years later, when
a special case was discovered by Cohn and Lempel [13]. Both of these
references state versions of the circuit-nullity formula which do not mention
4-regular graphs; Brahana refers to the connectivity of a surface and Cohn
and Lempel refer to the number of orbits in a certain kind of permutation.
Also, the version of Cohn and Lempel is restricted to oriented Euler circuits
and circuit partitions; the ψ transitions are not relevant to the permutations
they considered. Many other authors have rediscovered, refined or restated
the circuit-nullity formula in various ways [3, 4, 9, 10, 13, 15, 16, 18, 23, 24,
26, 27, 30, 31, 32, 33, 34, 35, 37].
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Figure 2. Touch-graphs from Figure 1.

We leave it as an exercise for the reader to confirm that the circuit-nullity
formula holds in Figure 1, by calculating

I(C,P1) =

1 0 1
0 0 0
1 0 1

 and I(C,P2) = (0).

Another important part of the theory of circuit partitions is the notion of
a touch-graph. This notion appeared implicitly in the work of Jaeger [15],
and explicitly in Bouchet’s work on isotropic systems [7, 8].

Definition 1.3. If P is a circuit partition in a 4-regular graph F then the
touch-graph Tch(P ) has a vertex vγ for each circuit γ ∈ P , and an edge
ev for each vertex v ∈ V (F ); ev is incident on vγ if and only if γ passes
through v.

The touch-graphs of the three circuit partitions of Figure 1 are pictured
in Figure 2.

2. Statement of the main theorem

Two questions about the circuit-nullity formula should come to mind.
Question 1. Is there a version of the circuit-nullity formula that involves

nullity over the reals instead of GF (2)?
Answer 1. Yes, but the real version that has appeared in the literature is

of limited generality. Brahana [10] discussed a skew-symmetric version of his
matrix for systems of curves drawn on two-sided surfaces, suggesting a con-
nection with topological orientability. Skew-symmetric versions of I(C,P )
have also been discussed by Bouchet [9], Jonsson [16], Lauri [23] and Macris
and Pulé [24]. They all require that C and P be orientation-consistent, i.e.,
P cannot involve any ψC transition.

Question 2. Does the equality nullity(I(C,P )) = |P | − c(F ) indicate a
connection between P and the null space of I(C,P )?

Answer 2. Yes, but for full generality the connection involves a non-
symmetric matrix in place of I(C,P ). Building on earlier partial results
[9, 15, 34], we introduced a modified form of I(C,P ) in [35], and showed
that it is closely related to the touch-graph of P . This modified form of
I(C,P ) is defined as follows.
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Definition 2.1. ([35]) Let C be an Euler system of a 4-regular graph F , and
P a circuit partition of F . Then the modified interlacement matrixM(C,P )
is the V (F ) × V (F ) matrix with entries in GF (2) obtained from I(C) by
making these two kinds of changes:

(1) If P involves the ϕC(v) transition, change the vv entry to 1, and
change every other entry of the v column to 0.

(2) If P involves the ψC(v) transition, change the vv entry to 1.

Observe that

M(C,P ) =

(
I ∗
0 I(C,P )

)
,

where I is an identity matrix whose rows and columns correspond to the
vertices of F where P involves the ϕC transition. It follows that M(C,P )
has the same nullity as I(C,P ). The main theorem of [35] states that if we

consider the rows ofM(C,P ) as elements of the vector space GF (2)E(Tch(P ))

instead of GF (2)V (F ), then the orthogonal complement of the row space of
M(C,P ) is the subspace spanned by the vertex cocycles of Tch(P ). (Recall
that the cocycle of a vertex in a graph is the set of non-loop edges incident
on that vertex.) To put it more simply: the row space of M(C,P ) is the
cycle space of Tch(P ) over GF (2).

As examples of this result from [35], consider that in Figure 1 we have

M(C,P1) =


1 0 0 1
1 1 0 1
0 0 0 0
1 0 0 1

 and M(C,P2) =


1 1 0 0
0 0 0 0
0 0 1 0
0 1 0 1

 .

The row space ofM(C,P1) is generated by the first two rows, or equivalently,
by ea+ ed (the first row) and eb (the difference between the first and second
rows). The row space of M(C,P2) is generated by the three nonzero rows,
or equivalently, by ea + eb, ec and eb + ed. Consulting Figure 2, we see that
these row spaces really do coincide with the cycle spaces of Tch(P1) and
Tch(P2) over GF (2).

Notice that the answers to Questions 1 and 2 are both of the form “Yes,
but...” The second “but” is resolved over GF (2) by using the nonsymmetric
matrix M(C,P ) in place of the traditional (skew-)symmetric I(C,P ). The
purpose of the present paper is to observe that the first “but” is also resolved
by using nonsymmetric matrices. In addition to determining the cycle space
of Tch(P ) rather than only the size of P , our result is more general than
previously known versions of the circuit-nullity formula over R; there is no
orientability requirement.

Theorem 2.2. Suppose C is an Euler system of a 4-regular graph F , and P
is a circuit partition of F . Then there is a V (F )× V (F ) matrix MR(C,P )
with integer entries, with these two properties.

(1) MR(C,P ) reduces to M(C,P ) (modulo 2).
(2) The row space of MR(C,P ) is the cycle space of Tch(P ) over R.
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IfMR(C,P ) satisfies Theorem 2.2, thenMR(C,P ) also satisfies the circuit-
nullity formula over R; that is, the R-nullity of MR(C,P ) is |P |− c(F ). The
reason is simple: MR(C,P ) is a V (F ) × V (F ) matrix whose rank is the
dimension of the cycle space of Tch(P ),

|E(Tch(P ))| − |V (Tch(P ))|+ c(Tch(P )) = |V (F )| − |P |+ c(Tch(P )).

Consequently the R-nullity of MR(C,P ) is |P | − c(Tch(P )). It is easy to
prove that c(Tch(P )) = c(F ); see Proposition 3.4 below.

Unless Tch(P ) is a forest, there are infinitely many different matrices
MR(C,P ) which satisfy Theorem 2.2. For if MR(C,P ) satisfies Theorem
2.2 and ρ is a nonzero row of MR(C,P ), then we may add ±2ρ to any row
of MR(C,P ) without disturbing either property specified in Theorem 2.2.
Because of this nonuniqueness we will often refer to “an MR(C,P ) matrix”
rather than simply using the notation MR(C,P ).

Theorem 2.2 is proved in Section 3. In Section 4, we provide a standard
form for MR(C,P ), denoted M

0
R(C,P ). The standard form is defined using

a signed version of C; that is, for each v ∈ V (F ), one passage of a circuit of
C through v is arbitrarily designated v+, and the other is v−. When C and
P respect the same edge directions in F , M0

R(C,P ) is closely related to the
skew-symmetric matrices used by Bouchet [9], Jonsson [16], Lauri [23] and
Macris and Pulé [24]. Moreover, in this special case M0

R(C,P ) has several
attractive “naturality” properties; for instance if C and C ′ are two Euler
systems which respect the same edge directions then for each signed version
of C there is a signed version of C ′ such thatM0

R(C
′, C) =M0

R(C,C
′)−1. The

standard form does not have such nice properties in general. For instance,
if C and C ′ are two Euler systems which do not respect the same edge
directions, then M0

R(C,C
′)−1 may have fractional entries. An example of

this type is presented in Section 5, along with a couple of other examples;
one of them shows that in general we cannot require that M0

R(C,P ) be
skew-symmetric. In Section 6 we discuss the relationship betweenMR(C,P )
and MR(C

′, P ) matrices, where C and C ′ are Euler systems of F ; we also
summarize the special features of the theory over GF (2). In Sections 7 and
8 we discuss the special features of the orientation-consistent theory over R,
including the naturality properties mentioned earlier in this paragraph. The
paper ends with a brief account of the important result of Lauri [23] and
Macris and Pulé [24], which gives a determinant formula for the number of
Euler systems of F that respect the same edge directions as C.

Before proceeding to give details, we should mention that the present
paper provides the foundation for algebraic characterizations of circle graphs
using multimatroid properties analogous to matroid regularity [11, 12].
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3. Proof of the main theorem

We begin with an elementary algebraic result. Let f : Z → GF (2) be
the ring homomorphism with f(1) = 1. If G is a graph we obtain a homo-

morphism f : ZE(G) → GF (2)E(G) of abelian groups by applying f in each
coordinate.

Lemma 3.1. If S ⊆ ZE(G) then the rank of S in RE(G) is not less than the
rank of f(S) in GF (2)E(G).

Proof. As the rank is the cardinality of a maximal linearly independent sub-
set, it is enough to show that if T ⊆ S and f(T ) is linearly independent, then
T is linearly independent too. Suppose instead that T is linearly dependent.
Then there is a sum ∑

t∈T
qtt = 0,

in which the coefficients qt are real numbers, not all of which are 0. Elimi-
nating irrational factors, we may presume the qt are all rational; then multi-
plying by their denominators and dividing by the greatest common divisor,
we may presume that the qt are integers whose g.c.d. is 1. But then∑

t∈T
f(qt)f(t) = 0,

and the f(qt) are not all 0. This contradicts the independence of f(T ). □

We take a moment to discuss our technical vocabulary. As mentioned in
Section 1, we think of an edge in a graph as consisting of two distinct half-
edges, each half-edge incident on one vertex. When we want to direct an
edge, we designate one of its half-edges as initial, and the other as terminal.
Notice that this convention provides every edge with two distinct directions,
even if the edge is a loop.

A directed walk in a graph is a sequence W = v1, h1, h
′
1, v2, ..., vk, hk,

h′k, vk+1 such that for each i, hi+1 and h′i are half-edges incident on vi+1,
and hi and h′i are the half-edges of an edge ei. We consider the reversed
sequence W ′ = vk+1, h

′
k, hk, vk, ..., v2, h

′
1, h1, v1 to define a different

directed walk, even if k = 1 and e1 is a loop. However, W and W ′ define
the same undirected walk. When we say “W is a walk” without specifying
that W is directed, we usually mean that W is undirected.

We take a moment to explain a special case. Suppose W = v1, h1, h
′
1, v2,

..., vk, hk, h
′
k, vk+1 is a directed walk with k > 1, and there is an index i such

that ei is a loop. Then a new directed walk may be obtained from W by
interchanging hi and h

′
i. This new directed walk is distinct from W because

directed walks are sequences of half-edges. These two directed walks do not
differ by simple reversal, so they define distinct undirected walks.

A trail is a walk without repeated edges, i.e., ei ̸= ej when i ̸= j ∈
{1, ..., k}. A path is a trail without repeated vertices except possibly at the
beginning and end, i.e., vi ̸= vj when i ̸= j and {i, j} ̸= {1, k + 1}.
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A walk is closed if v1 = vk+1. We consider two closed directed walks to
be the same if they differ only by a cyclic permutation. That is, if v1 = vk+1

then v1, h1, h
′
1, v2, ..., vk, hk, h

′
k, vk+1 and vi, hi, h

′
i, vi+1, ..., h

′
k, vk+1 = v1,

h1, ..., h
′
i−1, vi determine the same closed directed walk. A closed trail is

a circuit. (Some references agree with this usage, but others use “circuit”
only for a closed path.)

For notation and terminology regarding cycles and cocycles in graphs, we
follow Bollobás [5, Section II. 3] for the most part. We refer the reader there
for proofs. Here is a summary.

Suppose D is a directed version of a graph G and W is a directed walk
in G. Let K be a field, and KE(G) the vector space over K with basis E(G).

There is a vector zD(W ) ∈ KE(G) determined by followingW from beginning
to end, and for each edge e ∈ E(G), tallying +1 in the e coordinate each
time we pass through e in the D direction, and −1 in the e coordinate each
time we pass through e in the opposite direction. The cycle space ZD(G)

over K is the subspace of KE(G) spanned by {zD(W ) |W is a closed directed

walk in G}. Also, if X ⊆ V (G) then there is an element uD(X) ∈ KE(G)

whose e coordinate, for each e ∈ E(G), is +1 if e is directed in D from a
vertex in X to a vertex not in X, −1 if e is directed in D from a vertex not
in X to a vertex in X, and 0 otherwise. The subspace of KE(G) spanned by
{uD(X) | X ⊆ V (G)} is the cocycle space of G over K, denoted UD(G).

We recall seven properties of these spaces. (i) No special property is
required of K; any field will do. (However we are primarily interested in
K = GF (2) or R.) (ii) No special property is required of D; any directed
version ofG yields spaces that correspond to all closed walks and all cocycles.
(iii) ZD(G) is spanned by the vectors zD(W ) such that W is a minimal
directed circuit. (iv) UD(G) is spanned by the vectors uD({v}) such that
v ∈ V (G). (v) If G has c(G) connected components then the dimension of
UD(G) is |V (G)|−c(G). (vi) UD(G) and ZD(G) are orthogonal complements.
(We refer to this property as cycle-cocycle duality.) (vii) The orthogonality
between UD(G) and ZD(G) rests on the simple observation that as we follow
a closed directed walk, we must enter each subset X ⊆ V (G) the same
number of times that we leave X. This simple observation goes back to the
very beginning of graph theory, in Euler’s discussion of the seven bridges of
Königsberg.

The machinery of cycle-cocycle duality may be summarized in matrix
form, like this:

Theorem 3.2. Given a spanning set S for ZD(G), let ZS be the S ×E(G)
matrix whose rows are the elements of S. Let UV (G) be the E(G) × V (G)
matrix whose columns are the vectors uD({v}), v ∈ V (G). Then the rank
of ZS is |E(G)| − |V (G)| + c(G), the rank of UV (G) is |V (G)| − c(G), and
ZS · UV (G) = 0.

We may now restate Theorem 2.2 in the following equivalent form.
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Figure 3. F is on the left, and Tch(P ) is on the right.

Theorem 3.3. Suppose C is an Euler system of a 4-regular graph F , and P
is a circuit partition of F . Let D be a directed version of G = Tch(P ). Then
there is a matrix MR(C,P ) of integers, which has the following properties.

(1) MR(C,P ) reduces (modulo 2) to M(C,P ).
(2) In the notation of Theorem 3.2 with K = R, ZD(G) has a spanning

set S such that ZS =MR(C,P ).

Suppose now that F is a 4-regular graph. As mentioned in Section 1, if
v ∈ V (F ) then a transition at v is a partition of the four half-edges of F
incident on v into two pairs. Each of the pairs is called a single transition.
If P is a circuit partition of a 4-regular graph F , then P is determined by
the choice of a transition P (v) at each vertex of F .

Recall that edges of Tch(P ) correspond to vertices of F and vertices of
Tch(P ) correspond to circuits of F , as indicated in Figure 3. There is also
a relationship between closed walks in F and closed walks in Tch(P ), which
we proceed to describe.

As suggested in Figure 3, there is a natural 2-to-1 surjection

πP : {half-edges of F} → {half-edges of Tch(P )},

which we denote πP (h) = h. Suppose the four half-edges of F incident on
v are h1v, h

2
v, h

3
v and h4v, and the two single transitions included in P (v) are

{h1v, h2v} and {h3v, h4v}. Let γ ∈ P be the circuit that includes h1v and h
2
v, and

let γ′ ∈ P be the circuit that includes h3v and h4v. Then the two half-edges

of ev in Tch(P ) are h1v = h2v and h3v = h4v. The half-edge h1v = h2v is incident

on the vertex vγ ∈ V (Tch(P )), and the half-edge h3v = h4v is incident on the
vertex vγ′ ∈ V (Tch(P )).

This surjection πP on half-edges induces a related surjection,

πP : {closed directed walks in F} → {closed directed walks in Tch(P )}.
SupposeW is the closed directed walk v1, h1, h

′
1, v2, ..., vk, hk, h

′
k, vk+1 = v1

in F . Then there are circuits γ1, ..., γk ∈ P such that γi includes the edge
ei ∈ E(F ) whose half-edges are hi and h′i. Consider the list vγ1 , h

′
1, h2,

vγ2 , ..., vγk , h
′
k, h1, vγ1 of vertices and half-edges in Tch(P ). Each index

i ∈ {1, ..., k} is of one of the following three types. A type (a) index has

γi ̸= γi+1. In this case h′i ̸= hi+1 and evi+1 = {h′i, hi+1} is a non-loop edge of
Tch(P ). A type (b) index has γi = γi+1, and the single transition {h′i, hi+1}
is excluded from P . In this case h′i ̸= hi+1 and evi+1 = {h′i, hi+1} is a loop of
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Tch(P ). A type (c) index has γi = γi+1, and the single transition {h′i, hi+1}
is included in P . In this case h′i = hi+1 and the pair {h′i, hi+1} is not an edge

of Tch(P ). We define πP (W ) =W to be the closed directed walk in Tch(P )

obtained from the list vγ1 , h
′
1, h2, vγ2 , ..., vγk , h

′
k, h1, vγ1 by removing every

subsequence γi, hi, h′i+1 with i of type (c).

Proposition 3.4. There is a one-to-one correspondence between connected
components of F and Tch(P ): {v1, ..., vk} is the vertex set of a connected
component of F if and only if {ev1 , ..., evk} is the edge set of a connected
component of Tch(P ).

Proof. As F is 4-regular, every connected component of F has an Euler
circuit. Two vertices of F belong to the same connected component if and
only if they appear on the same one of these Euler circuits. The images of
these Euler circuits under πP are closed walks in Tch(P ), and two vertices of
Tch(P ) belong to the same connected component if and only if they appear
on the same one of these closed walks. □

Definition 3.5. Suppose C is an Euler system for a 4-regular graph F , and
v ∈ V (F ). Then the induced circuits of C at v are the two closed trails
obtained by following a circuit of C from v to v. We denote them C1(C, v)
and C2(C, v), with the indices arbitrary.

That is, {C1(C, v), C2(c, v)} is the circuit partition defined by χC(v) and
the transitions ϕC(w), w ̸= v. The crucial property of the induced circuits
is this:

Theorem 3.6. Let C be an Euler system for a 4-regular graph F , and let
Γ be a set of induced circuits, which includes one of C1(C, v), C2(C, v) for
each v ∈ V (F ). Choose either of the two directions for each γ ∈ Γ. Then for
every circuit partition P of F and every choice of a digraph D on Tch(P ),

the set S = {zD(γ) | γ ∈ Γ} spans the subspace ZD(Tch(P )) of RE(Tch(P )).

Proof. Every γ ∈ Γ is a directed closed walk in F , so γ is a directed closed
walk in Tch(P ). Consequently S ⊆ ZD(Tch(P )). To prove that S spans
ZD(Tch(P )), it is enough to prove that the rank of S is at least

dimZD(Tch(P )) = |E(Tch(P ))| − |V (Tch(P ))|+ c(Tch(P )).

Let f : Z→ GF (2) be the map of Lemma 3.1. Notice that M(C,P ) is a
GF (2)-matrix whose rows are the elements f(s) with s ∈ S, so the circuit-
nullity formula over GF (2) tells us that the nullity of f(S) is |P | − c(F ) =
|V (Tch(P ))| − c(Tch(P )). As |S| = |V (F )| = |E(Tch(P )|, the rank of f(S)
is |f(S)| − nullity(f(S)) = |E(Tch(P ))| − |V (Tch(P ))| + c(Tch(P )). The
proof is completed by Lemma 3.1, which tells us that the rank of S is not
less than the rank of f(S). □

Theorem 3.6 tells us that if Γ contains one directed induced circuit for
each vertex of F , then Theorems 2.2 and 3.3 are satisfied by the V (F )×V (F )
matrix whose rows are the vectors zD(γ), γ ∈ Γ.
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4. A standard form for MR(C,P )

In this section we describe an MR(C,P ) matrix obtained by using partic-
ular choices in the construction of Section 3. With these choices, all entries
of the matrix lie in {−1, 0, 1, 2}. Moreover in the special case involving
orientation-consistent circuits, the matrix contains the I(C,P ) matrix used
by Bouchet [9], Jonsson [16], Lauri [23] and Macris and Pulé [24]. More
details about this special case are given in Section 8.

Let C be an Euler system of F . Arbitrarily choose preferred orientations
for the circuits of C. For each v ∈ V (F ), let the half-edges of F incident on
v be denoted h1v, h

2
v, h

3
v and h4v in such a way that the circuit of C incident

on v is ...h1v, v, h
2
v, ..., h

3
v, v, h

4
v, .... As the incident circuit of C does not have

a preferred starting point, the distinction between the two passages of C
through v is arbitrary; we use + and − to distinguish them notationally:
one passage is h1v, v

+, h2v and the other is h3v, v
−, h4v. Let D be the directed

version of Tch(P ) in which the initial half-edge of the edge ev is h1v. Index
the induced circuits C1(C, v), C2(C, v) so that C1(C, v) includes hv1, and
choose the preferred orientation of C1(C, v) consistent with the preferred
orientation of the incident circuit of C. Let M0

R(C,P ) be the V (F )× V (F )

matrix whose v row is zD(C1(C, v)), for each vertex v.
A compact way to encode this information is to write C as a set of double

occurrence words, one for each connected component of F , and for each
vertex v, to designate which appearance is v+ and which is v−. Then for each
v ∈ V (F ), the v row ofM0

R(C,P ) is obtained by tallying the contributions of
passages through the vertices encountered as we follow the double occurrence
word representing the incident circuit of C, from v− to v+. We proceed to
calculate the resulting entries M0

R(C,P )vw.
Suppose v ∈ V (F ). The circuit C1(C, v) includes the passage h1v, v, h

4
v

and no other passage through v. If ϕC(v) = P (v) then the initial half-edge

of ev is h1v = h2v, and the terminal half-edge is h3v = h4v, so C1(C, v) traverses
ev in the positive direction. If χC(v) = P (v) then the initial half-edge of

ev is h1v = h4v, and the terminal half-edge is h2v = h3v, so C1(C, v) does not

traverse ev. If ψC(v) = P (v) then the initial half-edge of ev is h1v = h3v, and

the terminal half-edge is h2v = h4v, so C1(C, v) traverses ev in the positive
direction. We have the following.

M0
R(C,P )vv =

{
1, if P (v) ∈ {ϕC(v), ψC(v)}
0, if P (v) = χC(v)

Now, suppose v ̸= w ∈ V (F ). If ϕC(w) = P (w) then any passage of
C1(C, v) through w contributes 0 to M0

R(C,P )vw. If χC(w) = P (w) then

the initial half-edge of ew is h1w = h4w, and the terminal half-edge is h2w =

h3w. Consequently if C1(C, v) includes the passage h1w, h
2
w then this passage

contributes 1 to M0
R(C,P )vw; and if C1(C, v) includes the passage h3w, h

4
w

then this passage contributes −1 to M0
R(C,P )vw. If ψC(w) = P (w) then
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the initial half-edge of ew is h1w = h3w, and the terminal half-edge is h2w =

h4w. Consequently if C1(C, v) includes the passage h1w, h
2
w then this passage

contributes 1 to M0
R(C,P )vw; and if C1(C, v) includes the passage h3w, h

4
w

then this passage also contributes 1 to M0
R(C,P )vw. In sum, for v ̸= w ∈

V (F ) we have the following.

M0
R(C,P )vw =

0, if v and w lie in different connected components of F

0, if ϕC(w) = P (w)

0, if χC(w) = P (w) and v and w are not interlaced with respect to C

1, if χC(w) = P (w) and a circuit of C is v−...w+...v+...w−...

−1, if χC(w) = P (w) and a circuit of C is v−...w−...v+...w+...

1, if ψC(w) = P (w) and v and w are interlaced with respect to C

0, if ψC(w) = P (w) and a circuit of C is v−...v+...w...w...

2, if ψC(w) = P (w) and a circuit of C is v−...w...w...v+...

The reader will have no trouble verifying the following properties of
M0

R(C,P ). Suppose we let V (F ) = Vϕ ∪ Vχ ∪ Vψ, in such a way that v ∈ Vα
if and only if αC(v) = P (v). Then M0

R(C,P ) is


Vϕ Vχ Vψ

Vϕ I M1 M2

Vχ 0 M3 M4

Vψ 0 M5 M6

,

where the indicated submatrices have the following properties. I is an iden-
tity matrix, the entries of M1 all lie in {−1, 0, 1}, and the entries of M2 all
lie in {0, 1, 2}. M3 is a skew-symmetric matrix with entries in {−1, 0, 1}.
(In the special case Vψ = ∅, M3 is the matrix I(C,P ) used by Bouchet
[9] (when Vϕ is empty), Jonsson [16], Lauri [23] and Macris and Pulé [24].)
M4 has entries from {0, 1, 2} and M5 has entries from {−1, 0, 1}. There is
a limited symmetry connecting M4 and M5: if the vw entry of M4 is 0 or 2
then the wv entry of M5 is 0; and if the vw entry of M4 is 1 then the wv
entry of M5 is 1 or −1. M6 has diagonal entries equal to 1 and all other en-
tries from {0, 1, 2}; it reduces (mod 2) to a symmetric matrix. Interchanging
the appearances of v− and v+ on C produces three changes in M0

R(C,P ):
if P (v) = χC(v) then the v column of M0

R(C,P ) is multiplied by −1; if
P (w) = χC(w) then M

0
R(C,P )vw is multiplied by −1; and if P (w) = ψC(w)

then M0
R(C,P )vw is changed by the replacement 0 ↔ 2. Notice that all

three changes have no effect modulo 2, reflecting the fact that M(C,P ) is a
uniquely defined matrix over GF (2). Notice also that if P does not involve
any ψC transition then the third kind of change does not occur, so the effect
of interchanging v− and v+ on C can be described using elementary row
and column operations; this special case is detailed in Section 8.
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5. Four examples

Our first example illustrates the fact that if C and P do not respect the
same edge directions, it may be that there is no skew-symmetric matrix that
reduces to I(C,P ) (mod 2) and has nullity |P | − c(F ).

Let F be the 4-regular graph with V (F ) = {a, b, c} that is obtained from
K3 by doubling edges. Then F has an Euler circuit described by the double
occurrence word abcabc. We will use the standard form M0

R(C,P ) corre-
sponding to a+b−c+a−b+c−, and the natural notation for edges of F , e.g.,
the two edges connecting a to b are a+b− = b−a+ and a−b+ = b+a−. Let P
be the circuit partition that includes γ1 = {a+b−, a−b+}, γ2 = {a+c−, a−c+}
and γ3 = {b+c−, b−c+}. Then Tch(P ) ∼= K3. Let D be the oriented version
of Tch(P ) used in Section 4: ea is directed from vγ2 to vγ1 , eb is directed
from vγ1 to vγ3 and ec is directed from vγ3 to vγ2 . Then ZD(Tch(P )) is
spanned by the vector (1, 1, 1).
P involves the ψC transition at every vertex, so

I(C,P ) =M(C,P ) =

1 1 1
1 1 1
1 1 1

 .

The GF (2)-nullity of M(C,P ) is 2, as predicted by the circuit-nullity for-
mula, and the rows of M(C,P ) span the cycle space ZD(Tch(P )) over
GF (2).

It is a simple matter to check that every skew-symmetric version of
M(C,P ) is of nullity 0 or 1 over R, so the circuit-nullity formula over R
is not satisfied by any skew-symmetric version of M(C,P ). However the
definition of Section 4 yields

M0
R(C,P ) =

1 1 1
1 1 1
1 1 1

 .

The nullity ofM0
R(C,P ) is 2, and the row space ofM0

R(C,P ) is ZD(Tch(P )).
Our second example illustrates Theorem 2.2 for the standard form of Sec-

tion 4. Let F be the simple 4-regular graph with V (F ) = {a, b, c, d, e, f, g, h}
and Euler circuit C given by the signed double occurrence word

e−a−b−f−e+h−g−f+a+d−h+c−b+g+c+d+.

Consider the circuit partition P that involves the ϕC(a), χC(e) and χC(g)
transitions, along with the ψC transition at every other vertex. Then P
includes four circuits: γ1 = {ab, bc, cd, da, af , fe, ea}, γ2 = {bf , fg, gb},
γ3 = {ch, hg, gc} and γ4 = {de, eh, hd}. The construction of Section 4
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Figure 4. The directed touch-graph from the second example.

yields the directed version of Tch(P ) illustrated in Figure 4, and the matrix

M0
R(C,P ) =



1 1 0 0 1 2 −1 1
0 1 1 1 1 2 −1 2
0 1 1 0 0 0 1 0
0 1 2 1 0 0 1 1
0 1 0 0 0 1 0 0
0 0 0 0 1 1 −1 1
0 1 1 1 0 1 0 1
0 0 0 1 0 1 −1 1


.

It is not hard to see that the rows of M0
R(C,P ) span the cycle space of

Tch(P ) over R. Some rows represent individual circuits, like eb+ef (the fifth
row) or ee+ef−eg+eh (the sixth row); other rows represent combinations of
circuits, like ea+(eb+ef )+ (ee+ef−eg+eh) (the first row). Also,M0

R(C,P )
reduces to M(C,P ) (mod 2), and the product M0

R(C,P ) · UV (Tch(P )) is

1 1 0 0 1 2 −1 1
0 1 1 1 1 2 −1 2
0 1 1 0 0 0 1 0
0 1 2 1 0 0 1 1
0 1 0 0 0 1 0 0
0 0 0 0 1 1 −1 1
0 1 1 1 0 1 0 1
0 0 0 1 0 1 −1 1


·



0 0 0 0
1 −1 0 0
−1 0 1 0
1 0 0 −1
1 0 0 −1
−1 1 0 0
0 1 −1 0
0 0 −1 1


= 0.

Notice that if we add −2 times the third row of M0
R(C,P ) to the fourth

row, and add −2 times the sixth row to each of the first two rows, then the
resulting matrix has the same reduction (mod 2) and the same row space as
M0

R(C,P ), and its entries are all in {−1, 0, 1}. We do not know whether it
is always possible to eliminate entries outside {−1, 0, 1} in this way.

Our third example involves two Euler circuits of K5: C is given by the
double occurrence word abdcaecbed and C ′ is given by the double occurrence
word abcdecadbe. On the left below is the M0

R(C,C
′) matrix for the signed

version a−b−d−c−a+e−c+b+e+d+ of C; its inverse appears on the right. (We
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abuse notation slightly by writing M0
R(C,C

′) rather than M0
R(C, {C ′}).)

1 1 −1 −1 0
1 1 0 −1 1
1 0 0 0 1
1 1 0 0 2
0 1 1 0 1


−1

=


1 −1 2 −1 1
1 −1 0 0 1
0 0 1 −1 1
1 −2 1 0 1
−1 1 −1 1 −1


The inverse matrix is anMR(C

′, C) matrix, though it is not in standard form.
The M0

R(C,C
′) matrix for the signed version a−b+d+c−a+e−c+b−e+d− of

C is on the left below; its inverse appears on the right.
1 1 −1 1 0
1 1 0 −1 1
1 0 0 0 1
1 1 0 0 0
0 1 1 0 1


−1

=

(
1

3

)
−1 −1 2 3 −1
1 1 −2 0 1
−2 −2 1 3 1
1 −2 1 0 1
1 1 1 −3 1


In this case M0

R(C,C
′)−1 is not a matrix of integers, so it is certainly not

an MR(C
′, C) matrix; but 3 ·M0

R(C,C
′)−1 is an MR(C

′, C) matrix. Also,
detM0

R(C,C
′) = 3 tells us that the rows of M0

R(C,C
′) generate a proper

subgroup of ZE(Tch(C′)). Every edge of Tch(C ′) is a loop, though, so the

cycle space of Tch(C ′) includes all of ZE(Tch(C′)).
Our fourth example includes C ′ and another Euler circuit C ′′ of K5,

given by the double occurrence word abecdbcade. Using the signed form
a−b+c−d+e−c+a+d−b−e+ of C ′, we obtain

M0
R(C

′, C ′′) =


1 1 0 1 −1
0 0 0 0 1
0 0 0 1 −1
0 0 −1 0 1
0 −1 1 −1 0

 .

Using the signed form a+b−e−c−d−b+c+a−d+e+ of C ′′, we obtain

M0
R(C

′′, C ′) =


1 0 0 1 1
0 0 −1 −1 −1
0 1 0 −1 0
0 1 1 0 0
0 1 0 0 0

 =M0
R(C

′, C ′′)−1.

6. The effect of a κ-transformation

The fundamental operation of the theory of Euler systems of 4-regular
graphs was introduced by Kotzig [19].

Definition 6.1. If C is an Euler system of a 4-regular graph F and v ∈
V (F ) then a κ-transform C ∗ v is an Euler system obtained from C by
reversing one of the induced circuits Ci(C, v) within a circuit of C.
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If C is given with preferred orientations for its circuits, then Definition
6.1 provides two choices for the preferred orientation of the circuit of C ∗ v
incident at v. For instance, if C is the directed Euler circuit of K5 given by
the double occurrence word abdcaecbed then C ∗ a is given by acdbaecbed or
abdcadebce.

Kotzig [19] proved that if C and C ′ are any two Euler systems of F then
there is a sequence v1, ..., vk of vertices of F such that C ′ = C ∗ v1 ∗ · · · ∗ vk.
We refer to this fundamental result as Kotzig’s theorem.

It is not hard to see that the effect of a κ-transformation on transition
labels is given by the following.

Proposition 6.2. Transition labels with respect to C and C ∗ v differ only
in these two ways.

• ϕC(v) = ψC∗v(v) and ψC(v) = ϕC∗v(v).
• If w is interlaced with v then χC(w) = ψC∗v(w) and ψC(w) =
χC∗v(w).

Recall that if we are given C and P , M(C,P ) is the matrix over GF (2)
specified in Definition 2.1. Proposition 6.2 implies the following three prop-
erties, which we describe collectively as “naturality” ofM(C,P ) with respect
to κ-transformations. See [35] for a detailed discussion. (Special cases of the
third property appear also in earlier work of Bouchet [9] and Jaeger [15].)

Corollary 6.3. ([35]) If P is a circuit partition of F and C,C ′ are Euler
systems of F then the following properties hold.

(1) If v ∈ V (F ) then M(C ∗ v, P ) is obtained from M(C,P ) by adding
the v row to the w row whenever w ̸= v and w is interlaced with v
on C.

(2) M(C ′, P ) =M(C ′, C) ·M(C,P ).
(3) M(C,C ′) =M(C ′, C)−1.

Proof. The first assertion follows from Proposition 6.2.
For the second property recall that by Kotzig’s theorem, there is a se-

quence v1, ..., vk of vertices of F such that C ′ = C ∗ v1 ∗ · · · ∗ vk. The
first property tells us that this sequence of κ-transformations induces a cor-
responding sequence of elementary row operations, which transforms the
double matrix (

I =M(C,C) M(C,P )
)

into the double matrix (
M(C ′, C) M(C ′, P )

)
.

It follows that if E is the product of elementary matrices corresponding
to the induced elementary row operations, then E · I = M(C ′, C) and E ·
M(C,P ) =M(C ′, P ).

For the third property, notice that the second property tells us that I =
M(C ′, C ′) =M(C ′, C) ·M(C,C ′). □
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Over R, in contrast, we do not have a uniquely defined MR(C,P ) matrix.
Consequently the naturality properties of MR(C,P ) over R are less precise
than the properties of Corollary 6.3.

Corollary 6.4. If C and C ′ are Euler systems of F then the following
properties hold.

(1) Every MR(C,C
′) matrix is nonsingular, and has the property that(
detMR(C,C

′)
)
·MR(C,C

′)−1

is an MR(C
′, C) matrix.

(2) Let P be a circuit partition of F . Given an MR(C
′, C) matrix and

an MR(C,P ) matrix, the product

MR(C
′, C) ·MR(C,P )

is an MR(C
′, P ) matrix.

Proof. As MR(C,C
′) satisfies Theorem 2.2, it is a nonsingular matrix of

integers that reduces to M(C,C ′) (mod 2); it follows that detMR(C,C
′)

reduces to detM(C,C ′) (mod 2). The circuit-nullity formula tells us that
M(C,C ′) is a nonsingular GF (2)-matrix, so detMR(C,C

′) is an odd integer.
It follows that (detMR(C,C

′)) · MR(C,C
′)−1 is a nonsingular matrix of

integers that reduces (mod 2) to M(C,C ′)−1. Corollary 6.3 tells us that
M(C,C ′)−1 =M(C ′, C), so (detMR(C,C

′)) ·MR(C,C
′)−1 is an MR(C

′, C)
matrix.

For the second property, notice that the nonsingularity of MR(C
′, C) im-

plies that the row space ofMR(C
′, C)·MR(C,P ) is the same as the row space

of MR(C,P ). Corollary 6.3 tells us that MR(C
′, C) ·MR(C,P ) reduces to

M(C ′, P ) (mod 2), so MR(C
′, C) ·MR(C,P ) is an MR(C

′, P ) matrix. □

Multiplying by detMR(C,C
′) is necessary in part 1 because as we saw in

Section 5, if |detMR(C,C
′)| > 1 then MR(C,C

′)−1 may have entries that
are not integers.

7. The effect of a transposition

In addition to κ-transformations, Kotzig [19] also defined “ϱ-transforma-
tions” on Euler systems. We follow Arratia, Bollobás and Sorkin [1, 2] and
use a different name for this operation.

Definition 7.1. If C is an Euler system of a 4-regular graph F and v, w ∈
V (F ) are interlaced with respect to C, then the transposition C ∗ (vw) is
an Euler system obtained from C by interchanging the v-to-w trails within
a circuit of C.

Several properties of transpositions are readily apparent. One prop-
erty is that if the circuits of C are given with preferred orientations, then
the circuits of C ∗ (vw) inherit preferred orientations in a natural way.
Also, the transpositions C ∗ (vw) and C ∗ (wv) are the same. Moreover,
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a transposition can be effected by performing three κ-transformations: if
C = vT1wT2vT3wT4 then

((C ∗ v) ∗ w) ∗ v = ((v
←−
T2w
←−
T1vT3wT4) ∗ w) ∗ v

= (v
←−
T2w
←−
T3vT1wT4) ∗ v = vT3wT2vT1wT4 = C ∗ (vw),

where
←−
Ti indicates reversal of the trail Ti. Another property is that C and

C ∗ (vw) respect the same edge directions. In fact, Kotzig [19], Pevzner [28]
and Ukkonen [36] proved that if C and C ′ are two Euler systems of F , then
C and C ′ respect the same edge directions if and only if it is possible to
obtain C ′ from C using transpositions.

It is not hard to see that the effect of a transposition on transition labels
is given by the following.

Proposition 7.2. If v and w are interlaced with respect to C then transition
labels with respect to C and C ∗ (vw) differ only in these ways: χC∗(vw)(v) =
ϕC(v), ϕC∗(vw)(v) = χC(v), χC∗(vw)(w) = ϕC(w) and ϕC∗(vw)(w) = χC(w).

Despite the fact that a transposition’s effect on transition labels is less
complicated than the effect of a κ-transformation, Euler systems related
through transpositions may give rise to M0

R matrices that are related in
complicated ways. For example, the following Euler circuits of K5 yield the
matrices below.

C : a−e−c+b+d+c−a+b−e+d−

C ∗ (cd) : a−e−c+a+b−e+d−c−b+d+

C ′ : abcdecadbe

M0
R(C,C

′) =


1 1 0 1 1
1 1 1 −1 2
2 1 0 −1 2
1 1 1 0 1
1 2 0 1 1



M0
R(C ∗ (cd), C ′) =


1 0 0 0 1
0 1 0 0 1
1 1 1 0 1
0 1 0 1 0
1 1 0 0 1


Notice that detM0

R(C,C
′) = −3 and detM0

R(C ∗(cd), C ′) = −1, so although
M0

R(C,C
′) and M0

R(C ∗ (cd), C ′) are row equivalent over R, they are not row
equivalent over Z.
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8. The oriented case

In this section we show that in case C and P respect the same edge
directions, the standard form M0

R(C,P ) described in Section 4 has natural-
ity properties over Z that are very similar to the naturality properties of
M(C,P ) over GF (2), stated in Corollary 6.3. Moreover, M0

R(C,P ) includes
the skew-symmetric signed interlacement matrices of Brahana [10], Bouchet
[9], Jonsson [16], Lauri [23] and Macris and Pulé [24].

Suppose C is a directed Euler system of F , and the edges of F are directed
consistently with the given directions for the circuits of C. These edge
directions will remain fixed. If P is a circuit partition of F , then the circuits
of P can be oriented consistently with the given edge directions if and only
if P (v) ̸= ψC(v) ∀v ∈ V (F ). Recall the notational scheme of Section 4:
for each v ∈ V , one passage of C through v is h1v, v

+, h2v and the other is
h3v, v

−, h4v. Let IR(C) be the V (F )×V (F ) matrix whose diagonal entries all
equal 0, and whose vw entry is given by: IR(C)vw = 1 if v and w occur on C
in the order v+w−v−w+, IR(C)vw = −1 if v and w occur on C in the order
v+w+v−w−, and IR(C)vw = 0 if v and w are not interlaced on C. Then

M0
R(C,P ) =

(
I JR(C,P )
0 IR(C,P )

)
,

where I is an identity matrix whose rows and columns correspond to vertices
v ∈ V (F ) with ϕC(v) = P (v), IR(C,P ) is the submatrix of IR(C) whose
rows and columns correspond to vertices v ∈ V (F ) with χC(v) = P (v), and
JR(C,P ) is the submatrix of IR(C) whose rows (resp. columns) correspond
to vertices v ∈ V (F ) with ϕC(v) = P (v) (resp. χC(v) = P (v)).

Two properties of these matrices are apparent.

• Both IR(C) and IR(C,P ) are skew-symmetric.
• If we interchange v+ and v− on C, the effect on both IR(C) and
M0

R(C,P ) is to multiply the v row and the v column by −1.
Some new notation will be useful. Suppose T is a sub-trail of a circuit of

C. Let ϕC(T ) ∈ ZV (F ) be the vector whose x coordinate, for each x ∈ V (F )
with P (x) = ϕC(x), is obtained by tallying passages of T through x, with
x+ contributing 1 and x− contributing −1. If P (x) = χC(x) then the x

coordinate of ϕC(T ) is 0. Let χC(T ) ∈ ZV (F ) be the vector obtained in
the same way, but tallying contributions only with respect to those x with
P (x) = χC(x). Also, for each vertex x ∈ V (F ) let ρx(M

0
R(C,P )) denote the

x row of M0
R(C,P ). The definition of M0

R(C,P ) may now be rephrased as
follows: if a circuit of C is x−C1(C, x)x

+C2(C, x) then

ρx(M
0
R(C,P )) = χC(C1(C, x)) + ϕC(x

+).

Kotzig [19], Pevzner [28] and Ukkonen [36] proved that if C and C ′ are two
Euler systems of F , then C and C ′ respect the same edge directions if and
only if it is possible to obtain C ′ from C using transpositions. Consequently,
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in order to describe the relationship betweenM0
R(C,P ) andM

0
R(C

′, P ) it suf-
fices to understand the relationship betweenM0

R(C,P ) andM
0
R(C∗(vw), P ).

Proposition 8.1. Suppose the edges of F are directed consistently with the
circuits of C, and C includes a circuit v+T1w

+T2v
−T3w

−T4. Consider the
signed version of C ∗ (vw) obtained from C by using v+T3w

−T2v
−T1w

+T4.
Let P be a circuit partition such that ψC(x) ̸= P (x) ∀x ∈ V (F ). Then
M0

R(C,P ) and M0
R(C ∗ (vw), P ) are related through elementary row opera-

tions, as follows:

(1) ρv(M
0
R(C ∗ (vw), P )) = ρw(M

0
R(C,P )).

(2) ρw(M
0
R(C ∗ (vw), P )) = −ρv(M0

R(C,P )).
(3) If x ∈ V (F )− {v, w} then

ρx(M
0
R(C ∗ (vw), P ))

= ρx(M
0
R(C,P )) + IR(C)xwρv(M0

R(C,P ))− IR(C)xvρw(M0
R(C,P )).

Proof. Property 1 follows from Proposition 7.2 and the rephrased definition
of M0

R(C,P ) given above:

ρv(M
0
R(C ∗ (vw), P )) = χC∗(vw)(T1w

+T4) + ϕC∗(vw)(v
+)

= χC(T1) + χC(T4) + ϕC(w
+) + χC(v

+)

= χC(T4v
+T1) + ϕC(w

+) = ρw(M
0
R(C,P )).

The proof of Property 2 uses the fact that
∑4

i=1 χC(Ti) = 0:

ρw(M
0
R(C ∗ (vw), P )) = χC∗(vw)(T2v

−T1) + ϕC∗(vw)(w
+)

= χC(T2) + χC(T1) + ϕC(v
−) + χC(w

+)

= −χC(T3)− χC(T4)− ϕC(v+)− χC(w−)

= −χC(T3w−T4)− ϕC(v+) = −ρv(M0
R(C,P )).

Property 3 has many cases, with x− and x+ in various positions. We
detail three cases, and leave the rest to the reader.

If x is not interlaced with either v or w, then C1(C, x) and C1(C ∗(vw), x)
may not be the same trail, but they will involve the same passages through
vertices, so ρx(M

0
R(C,P )) = ρx(M

0
R(C ∗ (vw), P )).

Suppose x− appears in T1 and x+ appears in T2; say T1 = T11x
−T12 and

T2 = T21x
+T22. Then IR(C)xv = 0, IR(C)xw = 1 and

ρx(M
0
R(C ∗ (vw), P ))

= χC∗(vw)(T12w
+T4v

+T3w
−T21) + ϕC∗(vw)(x

+)

= χC(T12) + χC(T4) + ϕC(v
+) + χC(T3) + χC(T21) + ϕC(x

+)

= χC(T12) + χC(w
+T21)− χC(w+) + ϕC(x

+) + χC(T4) + ϕC(v
+) + χC(T3)

= χC(T12w
+T21) + ϕC(x

+) + χC(T3w
−T4) + ϕC(v

+)

= ρx(M
0
R(C,P )) + ρv(M

0
R(C,P )).
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Suppose x− appears in T4 and x+ appears in T2; say T2 = T21x
+T22 and

T4 = T41x
−T42. Then IR(C)xv = 1 = IR(C)xw and

ρx(M
0
R(C ∗ (vw), P ))

= χC∗(vw)(T42v
+T3w

−T21) + ϕC∗(vw)(x
+)

= χC(T42) + ϕC(v
+) + χC(T3) + ϕC(w

−) + χC(T21) + ϕC(x
+)

= χC(T42v
+T1w

+T21)− χC(v+T1w+) + ϕC(x
+)− ϕC(w+) + ϕC(v

+)

+ χC(T3)

= ϕC(x
+) + χC(T42v

+T1w
+T21) + χC(w

−)− χC(T4v+T1) + χC(T4)

− ϕC(w+) + ϕC(v
+) + χC(T3)

= ρx(M
0
R(C,P ))− χC(T4v+T1)− ϕC(w+) + χC(T3w

−T4) + ϕC(v
+)

= ρx(M
0
R(C,P ))− ρw(M0

R(C,P )) + ρv(M
0
R(C,P )).

□

Proposition 8.1 uses the same set of elementary row operations to obtain
M0

R(C ∗ (vw), P ) from M0
R(C,P ), for every circuit partition P with ψC(x) ̸=

P (x) ∀x ∈ V (F ). This lack of dependence on P leads to strong naturality
properties, just as it does in the proof of Corollary 6.3. We believe these
properties have not appeared in the literature, except for the special case
of M0

R(C
′, C) = M0

R(C,C
′)−1 involving Euler circuits with ϕC(v) ̸= ϕC′(v)

∀v ∈ V (F ), which is due to Bouchet [9].

Corollary 8.2. Suppose C and C ′ are Euler systems of F , whose cir-
cuits are oriented consistently with the same edge directions. Then for each
signed version of C there is a corresponding signed version of C ′ such that
M0

R(C
′, C) = M0

R(C,C
′)−1. Moreover if P is a circuit partition that re-

spects the same edge directions, then these signed versions of C and C ′ have
M0

R(C
′, P ) =M0

R(C
′, C) ·M0

R(C,P ).

Proof. According to the theorem of Kotzig [19], Pevzner [28] and Ukkonen
[36] mentioned above, there is a sequence of transpositions that transforms
a signed version of C into a signed version of C ′ using the sign convention
of Proposition 8.1. Proposition 8.1 also gives us an induced sequence of
elementary row operations, which transforms the double matrix(

I =M0
R(C,C) M0

R(C,P )
)

into the double matrix (
M0

R(C
′, C) M0

R(C
′, P )

)
.

It follows that if E is the product of elementary matrices corresponding
to the induced elementary row operations, then E · I = M0

R(C
′, C) and

E ·M0
R(C,P ) =M0

R(C
′, P ). In particular, if P = C ′ we deduce that E · I =

M0
R(C

′, C) and E ·M0
R(C,C

′) =M0
R(C

′, C ′) = I. □
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Corollary 8.3. Let C and C ′ be Euler systems of F , whose circuits are ori-
ented consistently with the same edge directions. Consider arbitrary signed
versions of C and C ′. Then there is a matrix ∆ with the following properties.

(1) Every diagonal entry of ∆ is ±1, and every other entry of ∆ is 0.
(2) M0

R(C
′, C) = ∆ ·M0

R(C,C
′)−1 ·∆.

(3) If P is any circuit partition that respects the same edge directions,
then M0

R(C
′, P ) =M0

R(C
′, C) ·∆ ·M0

R(C,P ) ·∆.

Proof. Let C ′′ denote the signed version of C ′ that corresponds to the
given signed version of C, as in Corollary 8.2. For any circuit partition
P with P (x) ̸= ψC(x) ∀x ∈ V (F ), M0

R(C
′, P ) is the matrix obtained from

M0
R(C

′′, P ) by multiplying by −1 the row and column of M0
R(C

′′, P ) corre-
sponding to each x ∈ V (F ) such that the positions of x− and x+ in C ′ and
C ′′ are different. Consequently if ∆ is the diagonal matrix whose xx entry
is 1 (resp. −1) when the positions of x− and x+ in C ′ and C ′′ are the same
(resp. different), then M0

R(C
′, P ) = ∆ ·M0

R(C
′′, P ) ·∆. Assertions (2) and

(3) now follow from Corollary 8.2:

M0
R(C

′, C) = ∆ ·M0
R(C

′′, C) ·∆ = ∆ ·M0
R(C,C

′′)−1 ·∆ = ∆ ·M0
R(C,C

′)−1 ·∆

M0
R(C

′, P ) = ∆ ·M0
R(C

′′, P ) ·∆
= ∆ ·M0

R(C
′′, C) ·M0

R(C,P ) ·∆
=M0

R(C
′, C) ·∆ ·M0

R(C,P ) ·∆
□

Lauri [23] and Macris and Pulé [24] gave a formula for the number of
Euler systems of F that respect the same edge directions. We close with a
quick explanation of this important result.

Lemma 8.4. Suppose C and C ′ are Euler systems of F , whose circuits are
oriented consistently with the same edge directions. Then for any signed
versions of C and C ′,

detM0
R(C,C

′) = 1.

Proof. Suppose first that C ′ = C ∗ (vw) and the signed versions of C and
C ′ are related as in Proposition 8.1. Then Proposition 8.1 tells us how to
obtain M0

R(C
′, C ′) = I from M0

R(C,C
′). The determinant is not affected

by the row operations of part 3 of Proposition 8.1, and the row operations
of parts 1 and 2 – interchanging the v and w rows, and multiplying one of
these rows by −1 – both have the effect of multiplying the determinant by
−1. We conclude that in this case detM0

R(C,C
′) = det I = 1.

If some other signed versions of C and C ′ are used, then the effect is to
replace M0

R(C,C
′) with ∆ ·M0

R(C,C
′) ·∆, as in the proof of Corollary 8.3.

As det∆ = ±1, this replacement does not change the determinant.
The general case follows from part 3 of Corollary 8.3 by induction, because

C ′ can be obtained from C using a sequence of transpositions. □
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Corollary 8.5. Let C be an Euler system of F , and P a circuit partition
with ψC(v) ̸= P (v) ∀v ∈ V (F ). Then the following conditions are equivalent.

(1) P is an Euler system.
(2) detM0

R(C,P ) = 1.
(3) detM0

R(C,P ) ̸= 0.
(4) det IR(C,P ) = 1.
(5) det IR(C,P ) ̸= 0.

Proof. Lemma 8.4 gives us the implication 1⇒ 2. The equality

M0
R(C,P ) =

(
I JR(C,P )
0 IR(C,P )

)
tells us that detM0

R(C,P ) = det IR(C,P ), so we have 2 ⇔ 4 and 3 ⇔ 5.
The implication 2 ⇒ 3 is obvious. According to Theorem 2.2, condition 3
implies that every edge of Tch(P ) is a loop; this in turn implies that P is
an Euler system. □

Theorem 8.6. (Lauri [23] and Macris and Pulé [24]) Let C be any signed
version of any Euler system of F . Then the number of Euler systems of F
that respect the edge directions given by C is det(I + IR(C)).

Proof. Let v1, ..., vn be the vertices of F , and let x1, ..., xn be independent
indeterminates. For each subset S ⊆ {1, ..., n}, let PS be the circuit partition
of F that involves ϕC(vi) whenever i ∈ S, and χC(vi) whenever i /∈ S. Let

E = {S ⊆ {1, ..., n} | PS is an Euler system of F}.
Let X be the matrix with entries x1, ..., xn on the diagonal, and other entries
0. Then Corollary 8.5 tells us that

det(X + IR(C)) =
∑

S⊆{1,...,n}

(∏
i∈S

xi

)
detM0

R(C,PS) =
∑
S∈E

(∏
i∈S

xi

)
.

That is, det(X + IR(C)) is a version of the indicator function of the set E .
The theorem follows by setting x1, ..., xn equal to 1. □

Theorem 8.6 implies that in polynomial time, one can calculate the num-
ber of Euler systems of F that respect the edge directions defined by C. Ge
and Štefankovič [14] proved that in contrast, the problem of counting all the
Euler systems of F is #P -complete.
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