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CIRCUIT PARTITIONS AND SIGNED INTERLACEMENT
IN 4-REGULAR GRAPHS

LORENZO TRALDI

ABSTRACT. Let F be a 4-regular graph. Each circuit partition P of F'
has a corresponding touch-graph T'ch(P); the circuits in P correspond
to vertices of T'ch(P), and the vertices of F' correspond to edges of
Tch(P). We discuss the connection between modified versions of the
interlacement matrix of an Euler system of F' and the cycle space of
Tch(P), over GF(2) and R.

1. INTRODUCTION

This paper is concerned with the connection between two aspects of the
structure of a 4-regular graph F': partitions of the edge set E(F') into circuits,
and interlacement of vertices with respect to Euler systems of F'. We begin
our discussion by reviewing some relevant background and terminology.

The graphs we consider are unoriented multigraphs; loops and parallel
edges are allowed. We think of every edge as consisting of two distinct half-
edges, each half-edge incident on one vertex. The degree of a vertex is the
number of incident half-edges, and a d-regular graph is one whose vertices
all have degree d.

We use the term circuit for an undirected closed trail. A circuit cannot
traverse an edge more than once, but it may traverse a vertex more than
once. An Euler circuit is a circuit that includes every edge of a graph; a
familiar argument shows that a 4-regular graph F' has an Euler circuit if
and only if F' is connected. Every 4-regular graph F' has an Euler system,
i.e., a set that contains one Euler circuit for each connected component of
F.

We use the term circuit partition for a partition of the edge set of a
4-regular graph into circuits (i.e., undirected closed trails). The idea of
studying circuit partitions of 4-regular graphs was introduced by Kotzig [19],
and developed further by Las Vergnas and Martin [20, 21, 22, 25]. Circuit
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FIGURE 1. An Euler circuit C, a 3-element circuit partition
P, and a 2-element circuit partition P». To follow a circuit,
maintain the same plain/dashed line status when traversing
a vertex.

partitions in 4-regular graphs have found applications and generalizations
in Kauffman’s bracket description of the Jones polynomial [17], and in the
interlace polynomials of Arratia, Bollobas and Sorkin [1, 2].

Some circuits in a 4-regular graph F' are illustrated in Figure 1. On the
left we see an Euler circuit, C. To trace C, start at any vertex and follow
edges around F', making sure to maintain the plain/dashed line status when
passing through a vertex. (The plain/dashed status may change in the
middle of an edge.) For instance, if we follow C by starting at a and walking
to b along the plain edge, we will encounter vertices in the order abdabccda.
The same plain/dashed convention is used to indicate the circuits included in
P, and P». The circuits in P; may be oriented to visit vertices in the orders
abdcba, ada and cc; the circuits in P, may be oriented to visit vertices in
the orders abda and abcceda.

Note: Recall that our circuits have neither preferred starting points nor
preferred directions; for instance, the longer circuit of P; might just as well
be oriented to visit vertices in the order cdbabc.

Now, let F' be an arbitrary 4-regular graph. A transition of F at a vertex v
is a partition of the four half-edges incident at v into two pairs; for instance
each part of Figure 1 indicates one transition at each vertex, with a pair
of dashed half-edges and a pair of plain half-edges. F' has three different
transitions at each vertex. An Euler system C' of F' may be used to label
the transitions of F in the following way. Temporarily choose an arbitrary
orientation for each circuit included in C. Then for each vertex v € V(F),
a person following the incident circuit of C' makes two “entrances” to v and
two “exits” from wv; say entrance 1 is followed by exit 1, and entrance 2
is followed by exit 2. The “entrances” and “exits” are the four half-edges
of F incident at v. The transition that pairs entrance ¢ with exit ¢ for
i € {1,2} is labeled ¢c(v); the transition that pairs entrance i with exit j
for i # j € {1,2} is labeled xc(v); and the transition that pairs entrance
1 with entrance 2, and also pairs exit 1 with exit 2, is labeled ¥c(v). It is
easy to see that each transition’s label with respect to C' remains the same
if the orientation of a circuit of C' is reversed.
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If C and C’ are different Euler systems of F' then some transitions will
have different ¢, x, 1 labels with respect to C' and C’. For example, we leave
it as an exercise for the reader to verify that in Figure 1 there is an Fuler
circuit ¢ of F' with ¢cr(a) = te(a), ¢cr(b) = xc(b), dcr(c) = Ye(c) and
oo (d) = xc(d). Moreover, only two of the twelve transitions in F' have the
same ¢, x, 1 labels with respect to C and C’.

It is easy to see that a circuit partition of F' is completely determined
by choosing one transition at each vertex. For example, in Figure 1 P; is
determined by the transitions ¢ (a), oc(b), xo(c) and Yo (d), while Py is
determined by ¢c(a), xo(b), pc(c) and ¢pc(d).

The notion of interlacement with respect to Euler systems in 4-regular
graphs has been studied by many authors; see for instance [6, 13, 29].

Definition 1.1. If C is an Euler system of F then two vertices v # w €
V(F) are interlaced with respect to C if and only if there is a circuit of C
on which v and w appear in the order vwvw or wvwv. The interlacement
matrix Z(C) is the V(F) x V(F) matriz with entries in the 2-element field
GF(2) given by: the vw entry is 1 if v and w are interlaced, and 0 otherwise.

The fact that there is a connection between circuit partitions and inter-
lacement has been discovered and rediscovered many times. Here is a state-
ment that incorporates the versions of this connection that appear most
often in the literature.

Theorem 1.2. Suppose C is an FEuler system of a 4-reqular graph F, and
P is a circuit partition of F. Let Z(C,P) be the symmetric GF(2)-matriz
obtained from Z(C') by making these two kinds of changes.

(1) If P involves the ¢pc(v) transition, remove the row and column cor-
responding to v.
(2) If P involves the Y (v) transition, change the vv entry to 1.

Then the GF(2)-nullity of Z(C, P) is |P| — c¢(F'), where |P| is the number
of circuits in P and c(F') is the number of connected components in F'.

We refer to the formula |P| — ¢(F) = nullity(Z(C, P)) as the circuit-
nullity formula. It seems that the earliest discussion of some version of
the formula appears in Brahana’s 1921 study of curves on surfaces [10].
However the formula was not widely known until fifty years later, when
a special case was discovered by Cohn and Lempel [13]. Both of these
references state versions of the circuit-nullity formula which do not mention
4-regular graphs; Brahana refers to the connectivity of a surface and Cohn
and Lempel refer to the number of orbits in a certain kind of permutation.
Also, the version of Cohn and Lempel is restricted to oriented Euler circuits
and circuit partitions; the v transitions are not relevant to the permutations
they considered. Many other authors have rediscovered, refined or restated
the circuit-nullity formula in various ways [3, 4, 9, 10, 13, 15, 16, 18, 23, 24,
26, 27, 30, 31, 32, 33, 34, 35, 37].
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€c €y
F1cURE 2. Touch-graphs from Figure 1.

We leave it as an exercise for the reader to confirm that the circuit-nullity
formula holds in Figure 1, by calculating

101
Z(C,P)= [0 0 0] and Z(C,P) = (0).

Another important part of the theory of circuit partitions is the notion of
a touch-graph. This notion appeared implicitly in the work of Jaeger [15],
and explicitly in Bouchet’s work on isotropic systems [7, 8].

Definition 1.3. If P is a circuit partition in a 4-reqular graph F' then the
touch-graph T'ch(P) has a vertex vy for each circuit v € P, and an edge
ey for each vertex v € V(F); e, is incident on v if and only if v passes
through v.

The touch-graphs of the three circuit partitions of Figure 1 are pictured
in Figure 2.

2. STATEMENT OF THE MAIN THEOREM

Two questions about the circuit-nullity formula should come to mind.

Question 1. Is there a version of the circuit-nullity formula that involves
nullity over the reals instead of GF(2)?

Answer 1. Yes, but the real version that has appeared in the literature is
of limited generality. Brahana [10] discussed a skew-symmetric version of his
matrix for systems of curves drawn on two-sided surfaces, suggesting a con-
nection with topological orientability. Skew-symmetric versions of Z(C, P)
have also been discussed by Bouchet [9], Jonsson [16], Lauri [23] and Macris
and Pulé [24]. They all require that C' and P be orientation-consistent, i.e.,
P cannot involve any ¢ transition.

Question 2. Does the equality nullity(Z(C, P)) = |P| — ¢(F) indicate a
connection between P and the null space of Z(C, P)?

Answer 2. Yes, but for full generality the connection involves a non-
symmetric matrix in place of Z(C, P). Building on earlier partial results
[9, 15, 34], we introduced a modified form of Z(C, P) in [35], and showed
that it is closely related to the touch-graph of P. This modified form of
Z(C, P) is defined as follows.



460 LORENZO TRALDI

Definition 2.1. ([35]) Let C be an Euler system of a 4-regular graph F, and
P a circuit partition of F. Then the modified interlacement matrix M (C, P)
is the V(F') x V(F) matriz with entries in GF(2) obtained from Z(C) by
making these two kinds of changes:
(1) If P involves the ¢¢c(v) transition, change the vv entry to 1, and
change every other entry of the v column to 0.
(2) If P involves the ¥ (v) transition, change the vv entry to 1.

Observe that
I *

where I is an identity matrix whose rows and columns correspond to the
vertices of F' where P involves the ¢¢ transition. It follows that M (C, P)
has the same nullity as Z(C, P). The main theorem of [35] states that if we
consider the rows of M(C, P) as elements of the vector space GF (2)E(Tch(P))
instead of GF(Q)V(F), then the orthogonal complement of the row space of
M (C, P) is the subspace spanned by the vertex cocycles of T'ch(P). (Recall
that the cocycle of a vertex in a graph is the set of non-loop edges incident
on that vertex.) To put it more simply: the row space of M(C, P) is the
cycle space of T'ch(P) over GF(2).
As examples of this result from [35], consider that in Figure 1 we have

1 0 0 1 1 1 0 0
1 1 01 0 0 0O
MCP) =0 0 0 ol ad MCP)=|g o0 | o
1 0 0 1 01 01

The row space of M (C, P;) is generated by the first two rows, or equivalently,
by e, +eq (the first row) and e, (the difference between the first and second
rows). The row space of M (C, P») is generated by the three nonzero rows,
or equivalently, by e, + €3, €. and e, + e4. Consulting Figure 2, we see that
these row spaces really do coincide with the cycle spaces of Tch(P;) and
Tch(Ps) over GF(2).

Notice that the answers to Questions 1 and 2 are both of the form “Yes,
but...” The second “but” is resolved over GF'(2) by using the nonsymmetric
matrix M (C, P) in place of the traditional (skew-)symmetric Z(C, P). The
purpose of the present paper is to observe that the first “but” is also resolved
by using nonsymmetric matrices. In addition to determining the cycle space
of T'ch(P) rather than only the size of P, our result is more general than
previously known versions of the circuit-nullity formula over R; there is no
orientability requirement.

Theorem 2.2. Suppose C' is an Euler system of a 4-reqular graph F, and P
is a circuit partition of F'. Then there is a V(F) x V(F) matriz Mg(C, P)
with integer entries, with these two properties.

(1) Mr(C, P) reduces to M (C, P) (modulo 2).

(2) The row space of Mg(C, P) is the cycle space of Tch(P) over R.
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If My(C, P) satisfies Theorem 2.2, then Mg (C, P) also satisfies the circuit-
nullity formula over R; that is, the R-nullity of My (C, P) is |P|—¢(F'). The
reason is simple: Mg(C, P) is a V(F) x V(F') matrix whose rank is the
dimension of the cycle space of T'ch(P),

|E(Tch(P))| — |V(Tch(P))| + c(Tch(P)) = |V(F)| — |P| + c¢(T'ch(P)).

Consequently the R-nullity of Mg(C, P) is |P| — ¢(T'ch(P)). It is easy to
prove that ¢(T'ch(P)) = ¢(F'); see Proposition 3.4 below.

Unless T'ch(P) is a forest, there are infinitely many different matrices
Mg (C, P) which satisfy Theorem 2.2. For if Mr(C, P) satisfies Theorem
2.2 and p is a nonzero row of Mr(C, P), then we may add +2p to any row
of Mr(C, P) without disturbing either property specified in Theorem 2.2.
Because of this nonuniqueness we will often refer to “an Mg(C, P) matrix”
rather than simply using the notation Mg(C, P).

Theorem 2.2 is proved in Section 3. In Section 4, we provide a standard
form for Mg(C, P), denoted MR (C, P). The standard form is defined using
a signed version of C; that is, for each v € V(F'), one passage of a circuit of
C through v is arbitrarily designated v, and the other is v~. When C and
P respect the same edge directions in F, Mg(C, P) is closely related to the
skew-symmetric matrices used by Bouchet [9], Jonsson [16], Lauri [23] and
Macris and Pulé [24]. Moreover, in this special case MR (C, P) has several
attractive “naturality” properties; for instance if C' and C’ are two Euler
systems which respect the same edge directions then for each signed version
of C there is a signed version of C’ such that Mg (C’,C) = MR(C,C’")~L. The
standard form does not have such nice properties in general. For instance,
if C and C’ are two Euler systems which do not respect the same edge
directions, then Mﬂ%(C, C")~! may have fractional entries. An example of
this type is presented in Section 5, along with a couple of other examples;
one of them shows that in general we cannot require that MpQ(C,P) be
skew-symmetric. In Section 6 we discuss the relationship between Mg(C, P)
and Mg(C’, P) matrices, where C' and C’ are Euler systems of F'; we also
summarize the special features of the theory over GF'(2). In Sections 7 and
8 we discuss the special features of the orientation-consistent theory over R,
including the naturality properties mentioned earlier in this paragraph. The
paper ends with a brief account of the important result of Lauri [23] and
Macris and Pulé [24], which gives a determinant formula for the number of
Euler systems of F' that respect the same edge directions as C.

Before proceeding to give details, we should mention that the present
paper provides the foundation for algebraic characterizations of circle graphs
using multimatroid properties analogous to matroid regularity [11, 12].
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3. PROOF OF THE MAIN THEOREM

We begin with an elementary algebraic result. Let f : Z — GF(2) be
the ring homomorphism with f(1) = 1. If G is a graph we obtain a homo-
morphism f : ZF(©) — GF(2)F(@) of abelian groups by applying f in each
coordinate.

Lemma 3.1. If S C ZF(S) then the rank of S in RF(S) is not less than the
rank of f(S) in GF(2)F(©).

Proof. As the rank is the cardinality of a maximal linearly independent sub-
set, it is enough to show that if 7' C S and f(7T') is linearly independent, then
T is linearly independent too. Suppose instead that T is linearly dependent.
Then there is a sum

Z qit = 0,

teT
in which the coefficients ¢; are real numbers, not all of which are 0. Elimi-
nating irrational factors, we may presume the ¢; are all rational; then multi-
plying by their denominators and dividing by the greatest common divisor,
we may presume that the ¢; are integers whose g.c.d. is 1. But then

Z fla) f(t) =0,

teT
and the f(g:) are not all 0. This contradicts the independence of f(7'). O

We take a moment to discuss our technical vocabulary. As mentioned in
Section 1, we think of an edge in a graph as consisting of two distinct half-
edges, each half-edge incident on one vertex. When we want to direct an
edge, we designate one of its half-edges as initial, and the other as terminal.
Notice that this convention provides every edge with two distinct directions,
even if the edge is a loop.

A directed walk in a graph is a sequence W = vy, hy, b}, v, ..., vy, hg,
R}, vgs1 such that for each ¢, hj11 and h) are half-edges incident on v;y1,
and h; and h] are the half-edges of an edge e;. We consider the reversed
sequence W' = wpy1, Ry, hi, vg, ..., v2, Ry, h1, vi to define a different
directed walk, even if & = 1 and e is a loop. However, W and W' define
the same undirected walk. When we say “W is a walk” without specifying
that W is directed, we usually mean that W is undirected.

We take a moment to explain a special case. Suppose W = vy, hq, hY, va,
coes Uk, D, By, U1 1s a directed walk with & > 1, and there is an index 4 such
that e; is a loop. Then a new directed walk may be obtained from W by
interchanging h; and hf. This new directed walk is distinct from W because
directed walks are sequences of half-edges. These two directed walks do not
differ by simple reversal, so they define distinct undirected walks.

A trail is a walk without repeated edges, i.e., e; # e; when ¢ # j €
{1,...,k}. A path is a trail without repeated vertices except possibly at the
beginning and end, i.e., v; # v; when i # j and {i,j} # {1,k + 1}.
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A walk is closed if v1 = vg1. We consider two closed directed walks to
be the same if they differ only by a cyclic permutation. That is, if v = vg11
then vy, hq, hll, V2, vy Uk, D, h;w V41 and vy, hy, h;, Vigly oony h%, V+1 = U1,
hi, ..., h}_y, v; determine the same closed directed walk. A closed trail is
a circuit. (Some references agree with this usage, but others use “circuit”
only for a closed path.)

For notation and terminology regarding cycles and cocycles in graphs, we
follow Bollobds [5, Section II. 3] for the most part. We refer the reader there
for proofs. Here is a summary.

Suppose D is a directed version of a graph G and W is a directed walk
in G. Let K be a field, and KZ(%) the vector space over K with basis E(G).
There is a vector zp(W) € KF (©) determined by following W from beginning
to end, and for each edge e € E(G), tallying +1 in the e coordinate each
time we pass through e in the D direction, and —1 in the e coordinate each
time we pass through e in the opposite direction. The cycle space Zp(G)
over K is the subspace of KF(&) spanned by {zp(W) | W is a closed directed
walk in G}. Also, if X C V(G) then there is an element up(X) € KF(&)
whose e coordinate, for each e € E(G), is +1 if e is directed in D from a
vertex in X to a vertex not in X, —1 if e is directed in D from a vertex not
in X to a vertex in X, and 0 otherwise. The subspace of KZ(%) spanned by
{up(X) | X CV(G)} is the cocycle space of G over K, denoted Up(G).

We recall seven properties of these spaces. (i) No special property is
required of K; any field will do. (However we are primarily interested in
K = GF(2) or R.) (ii) No special property is required of D; any directed
version of GG yields spaces that correspond to all closed walks and all cocycles.
(iii) Zp(G) is spanned by the vectors zp(W) such that W is a minimal
directed circuit. (iv) Up(G) is spanned by the vectors up({v}) such that
v € V(G). (v) If G has ¢(G) connected components then the dimension of
Up(G)is|V(G)|—c(G). (vi) Up(G) and Zp(G) are orthogonal complements.
(We refer to this property as cycle-cocycle duality.) (vii) The orthogonality
between Up(G) and Zp(G) rests on the simple observation that as we follow
a closed directed walk, we must enter each subset X C V(@) the same
number of times that we leave X. This simple observation goes back to the
very beginning of graph theory, in Euler’s discussion of the seven bridges of
Konigsberg.

The machinery of cycle-cocycle duality may be summarized in matrix
form, like this:

Theorem 3.2. Given a spanning set S for Zp(G), let Zg be the S x E(G)
matriz whose rows are the elements of S. Let Uy (q) be the E(G) x V(G)
matriz whose columns are the vectors up({v}), v € V(G). Then the rank
of Zs is |E(G)| — [V(G)| + ¢(G), the rank of Uy q) is |V(G)| — ¢(G), and
Zs - Uy(a) = 0.

We may now restate Theorem 2.2 in the following equivalent form.
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FIGURE 3. F is on the left, and T'ch(P) is on the right.

Theorem 3.3. Suppose C' is an Fuler system of a 4-regqular graph F', and P
is a circuit partition of F. Let D be a directed version of G = T'ch(P). Then
there is a matriz Mg(C, P) of integers, which has the following properties.
(1) Mr(C, P) reduces (modulo 2) to M(C, P).
(2) In the notation of Theorem 3.2 with K =R, Zp(G) has a spanning
set S such that Zg = Mg (C, P).

Suppose now that F' is a 4-regular graph. As mentioned in Section 1, if
v € V(F) then a transition at v is a partition of the four half-edges of F’
incident on v into two pairs. Each of the pairs is called a single transition.
If P is a circuit partition of a 4-regular graph F', then P is determined by
the choice of a transition P(v) at each vertex of F.

Recall that edges of Tch(P) correspond to vertices of F' and vertices of
Tch(P) correspond to circuits of F', as indicated in Figure 3. There is also
a relationship between closed walks in F' and closed walks in T'ch(P), which
we proceed to describe.

As suggested in Figure 3, there is a natural 2-to-1 surjection

7p : {half-edges of F'} — {half-edges of T'ch(P)},

which we denote 7p(h) = h. Suppose the four half-edges of F' incident on
v are hl h2, h3 and h}, and the two single transitions included in P(v) are
{hl,h2} and {h3,hl}. Let v € P be the circuit that includes hl and h2, and
let v € P be the circuit that includes k3 and hi. Then the two half-edges
of e, in Tch(P) are hl = h2 and h3 = h}. The half-edge hl = hZ is incident
on the vertex v, € V(T'ch(P)), and the half-edge h} = h# is incident on the
vertex vy € V(Tch(P)).

This surjection wp on half-edges induces a related surjection,
7p : {closed directed walks in F'} — {closed directed walks in T'ch(P)}.

Suppose W is the closed directed walk vi, hi, b}, va, ..., Uk, hi, B, vpp1 = 1
in F. Then there are circuits ~1,...,7; € P such that ~; includes the edge
ei € E(F) whose half-edges are h; and h}. Consider the list v,,, b}, ha,
Uy wevy Uy hTﬁ, h1, vs, of vertices and half-edges in T'ch(P). Each index
i € {1,...,k} is of one of the following three types. A type (a) index has
i # Yit1. In this case hf # h;y1 and Copr = {R7, hir1} is a non-loop edge of
Tch(P). A type (b) index has v; = 7;41, and the single transition {h}, hj;1}
is excluded from P. In this case hig # hiy1and e, = {hj, hi+1} is a loop of
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Tch(P). A type (c) index has v; = 741, and the single transition {h}, hj+1}
is included in P. Tn this case i/ = ;11 and the pair {A}, h;1} is not an edge
of T'ch(P). We define 7p(W) = W to be the closed directed walk in T'ch(P)
obtained from the list v, , }717 ha, Vs wey Uy s 1723, hi, U4, by removing every

subsequence v;, h;, hj | with i of type (c).

Proposition 3.4. There is a one-to-one correspondence between connected
components of F' and Tch(P): {vi,...,v;} is the vertex set of a connected
component of F if and only if {ey,,...,ev, } s the edge set of a connected
component of Tch(P).

Proof. As F' is 4-regular, every connected component of F' has an Euler
circuit. Two vertices of F' belong to the same connected component if and
only if they appear on the same one of these Euler circuits. The images of
these Euler circuits under wp are closed walks in T'ch(P), and two vertices of
T'ch(P) belong to the same connected component if and only if they appear
on the same one of these closed walks. ]

Definition 3.5. Suppose C is an Euler system for a 4-regular graph F', and
v € V(F). Then the induced circuits of C' at v are the two closed trails
obtained by following a circuit of C' from v to v. We denote them C1(C,v)
and Co(C,v), with the indices arbitrary.

That is, {C1(C,v), Ca(c,v)} is the circuit partition defined by xc(v) and

the transitions ¢¢o(w), w # v. The crucial property of the induced circuits
is this:
Theorem 3.6. Let C' be an Euler system for a 4-regular graph F, and let
I be a set of induced circuits, which includes one of C1(C,v),Co(C,v) for
each v € V(F). Choose either of the two directions for each v € T'. Then for
every circuit partition P of F and every choice of a digraph D on Tch(P),
the set S = {zp(7) | v € T} spans the subspace Zp(Tch(P)) of RETch(P)),

Proof. Every v € T is a directed closed walk in F', so 7 is a directed closed
walk in T'ch(P). Consequently S C Zp(Tch(P)). To prove that S spans
Zp(Tch(P)), it is enough to prove that the rank of S is at least

dim Zp(Tch(P)) = |E(Tch(P))| — |V(Tch(P))| + c(Tch(P)).

Let f :Z — GF(2) be the map of Lemma 3.1. Notice that M (C, P) is a
GF(2)-matrix whose rows are the elements f(s) with s € S, so the circuit-
nullity formula over GF'(2) tells us that the nullity of f(S) is |P| — ¢(F) =
|[V(Tch(P))| —c(Tch(P)). As |S| = |V(F)| = |E(Tch(P)|, the rank of f(S)
is | f(S)| — nullity(f(S)) = |E(Tch(P))| — |V(Tch(P))| + ¢(Tch(P)). The
proof is completed by Lemma 3.1, which tells us that the rank of S is not
less than the rank of f(S). O

Theorem 3.6 tells us that if I' contains one directed induced circuit for
each vertex of F', then Theorems 2.2 and 3.3 are satisfied by the V (F') x V (F)
matrix whose rows are the vectors zp(%), v € T
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4. A STANDARD FORM FOR Mpg(C, P)

In this section we describe an Mg (C, P) matrix obtained by using partic-
ular choices in the construction of Section 3. With these choices, all entries
of the matrix lie in {—1,0,1,2}. Moreover in the special case involving
orientation-consistent circuits, the matrix contains the Z(C, P) matrix used
by Bouchet [9], Jonsson [16], Lauri [23] and Macris and Pulé [24]. More
details about this special case are given in Section 8.

Let C be an Euler system of F'. Arbitrarily choose preferred orientations
for the circuits of C. For each v € V(F), let the half-edges of F incident on
v be denoted hl, h2, h3 and hi in such a way that the circuit of C' incident
onvis ..hl,v,h2, ..., h3 v, k2 ... As the incident circuit of C' does not have
a preferred starting point, the distinction between the two passages of C'
through v is arbitrary; we use + and — to distinguish them notationally:
one passage is hl,vT, h2 and the other is A3, v~  h2. Let D be the directed
version of T'ch(P) in which the initial half-edge of the edge e, is hl. Index
the induced circuits C1(C,v),C2(C,v) so that Ci(C,v) includes h{, and
choose the preferred orientation of C1(C,v) consistent with the preferred
orientation of the incident circuit of C. Let MY (C, P) be the V(F) x V(F)

matrix whose v row is zp(C1(C,v)), for each vertex v.

A compact way to encode this information is to write C' as a set of double
occurrence words, one for each connected component of F', and for each
vertex v, to designate which appearance is v+ and which is v~. Then for each
v € V(F), the v row of MJ(C, P) is obtained by tallying the contributions of
passages through the vertices encountered as we follow the double occurrence
word representing the incident circuit of C, from v~ to v*. We proceed to
calculate the resulting entries MR (C, P)yy.

Suppose v € V(F). The circuit C1(C,v) includes the passage hl, v, hi
and no other passage through v. If ¢¢(v) = P(v) then the initial half-edge
of e, is h) = h2, and the terminal half-edge is h3 = hl, so C1(C,v) traverses
ey in the positive direction. If xo(v) = P(v) then the initial half-edge of
ey is hl = h, and the terminal half-edge is h? = h2, so C1(C,v) does not
traverse e,. If 1)c(v) = P(v) then the initial half-edge of e, is h) = h2, and
the terminal half-edge is h2 = h%, so C1(C,v) traverses e, in the positive
direction. We have the following.

S R
(

)
Now, suppose v # w € V(F). If ¢c(w) = P(w) then any passage of
C1(C,v) through w contributes 0 to MR(C, P)yy. If xc(w) = P(w) then

the initial half-edge of ey is hy, = hi and the terminal half-edge is h2 =
h,. Consequently if C1(C,v) includes the passage hi,, hi, then this passage

wr W

contributes 1 to MR(C, P)yw; and if C1(C,v) includes the passage h3,, hi

wr W

then this passage contributes —1 to MR(C, P)yy. If ¥o(w) = P(w) then
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the initial half-edge of e,, is hl = h3 and the terminal half-edge is h2, =
hi. Consequently if C}(C,v) includes the passage hl h2 then this passage

wr W

contributes 1 to M(C, P)yy; and if C1(C,v) includes the passage h3, hi

wr W

then this passage also contributes 1 to MR(C, P)yy. In sum, for v # w €
V(F') we have the following.

MH%(C> P)vw =
0, if v and w lie in different connected components of F
0, if ¢c(w) = P(w)
0, if x¢(w) = P(w) and v and w are not interlaced with respect to C
1, if yo(w) = P(w) and a circuit of C'is v~ ..wt..ot. w™ ...
-1, if xo(w) = P(w) and a circuit of C'is v~ ..w™ ..ot w'...
1, if Yo(w) = P(w) and v and w are interlaced with respect to C
0, if¢¥o(w)= P(w) and a circuit of C'is v~ ..v"..w...w...
2, if Yo(w) = P(w) and a circuit of C'is v~ .. w..w...v " ...

The reader will have no trouble verifying the following properties of
M2(C, P). Suppose we let V(F) =V, UV, UVy, in such a way that v € V,
if and only if ac(v) = P(v). Then M2(C, P) is

Vo Vi Vi
Vo [ I M, M,
Vil 0 My My
Ve \ 0 Ms Mg

where the indicated submatrices have the following properties. [ is an iden-
tity matrix, the entries of M; all lie in {—1,0,1}, and the entries of M all
lie in {0,1,2}. M;s is a skew-symmetric matrix with entries in {—1,0,1}.
(In the special case Vi, = @&, M3 is the matrix Z(C, P) used by Bouchet
[9] (when V, is empty), Jonsson [16], Lauri [23] and Macris and Pulé [24].)
My has entries from {0, 1,2} and M5 has entries from {—1,0,1}. There is
a limited symmetry connecting M, and Mj5: if the vw entry of My is 0 or 2
then the wv entry of Msy is 0; and if the vw entry of My is 1 then the wv
entry of My is 1 or —1. Mg has diagonal entries equal to 1 and all other en-
tries from {0, 1, 2}; it reduces (mod 2) to a symmetric matrix. Interchanging
the appearances of v~ and v on C produces three changes in M2 (C, P):
if P(v) = xc(v) then the v column of MJ(C, P) is multiplied by —1; if
P(w) = xc(w) then MY(C, P)yy is multiplied by —1; and if P(w) = ¢¢(w)
then MR(C, P)yy is changed by the replacement 0 <» 2. Notice that all
three changes have no effect modulo 2, reflecting the fact that M (C, P) is a
uniquely defined matrix over GF'(2). Notice also that if P does not involve
any ¢ transition then the third kind of change does not occur, so the effect
of interchanging v~ and v™ on C can be described using elementary row
and column operations; this special case is detailed in Section 8.
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5. FOUR EXAMPLES

Our first example illustrates the fact that if C' and P do not respect the
same edge directions, it may be that there is no skew-symmetric matrix that
reduces to Z(C, P) (mod 2) and has nullity |P| — ¢(F).

Let F' be the 4-regular graph with V(F') = {a, b, ¢} that is obtained from
K3 by doubling edges. Then F' has an Euler circuit described by the double
occurrence word abcabe. We will use the standard form MR (C, P) corre-
sponding to a*b~cta~bTc™, and the natural notation for edges of F, e.g.,
the two edges connecting a to b are atb~ = b a™ and a~b" =bta". Let P
be the circuit partition that includes v; = {a*tb™,a " b"}, v2 = {aTc™,a ¢}
and 3 = {bTc™,b~c"}. Then Tch(P) = K3. Let D be the oriented version
of T'ch(P) used in Section 4: e, is directed from v,, to v,,, €, is directed
from v, to v,, and e. is directed from vy, to v,,. Then Zp(T'ch(P)) is
spanned by the vector (1,1,1).

P involves the 1¢ transition at every vertex, so

1
I(C,P) = M(C,P) = | 1
1

—_ = =
—_ = =

The GF(2)-nullity of M(C, P) is 2, as predicted by the circuit-nullity for-
mula, and the rows of M(C,P) span the cycle space Zp(Tch(P)) over
GF(2).

It is a simple matter to check that every skew-symmetric version of
M(C, P) is of nullity 0 or 1 over R, so the circuit-nullity formula over R
is not satisfied by any skew-symmetric version of M (C,P). However the
definition of Section 4 yields

1
MR(C,P)= |1
1

—_ = =
—_ = =

The nullity of M2(C, P) is 2, and the row space of MQ(C, P) is Zp(T'ch(P)).

Our second example illustrates Theorem 2.2 for the standard form of Sec-
tion 4. Let F' be the simple 4-regular graph with V(F') = {a,b,c,d,e, f,g,h}
and Euler circuit C' given by the signed double occurrence word

e a b fTeth g ffatd htc btgTetdt.

Consider the circuit partition P that involves the ¢c(a), xc(e) and xc(g)
transitions, along with the ¢ transition at every other vertex. Then P
includes four circuits: v; = {ab, be, cd, da, af, fe, ea}, v = {bf, fg, gb},
v3 = {ch, hg, gc} and 4 = {de, eh, hd}. The construction of Section 4
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FIGURE 4. The directed touch-graph from the second example.

yields the directed version of T'ch(P) illustrated in Figure 4, and the matrix

110012 —1 1
011112 -1 2
011000 1 0

0 012100 1 1

M@ P)=10 1 0001 0 0
0000O0T1T1 -1 1
011101 0 1
000101 -1 1

It is not hard to see that the rows of MH%(C, P) span the cycle space of
Tch(P) over R. Some rows represent individual circuits, like e, +ey (the fifth
rOwW) Or e.+e¢—eq+ep, (the sixth row); other rows represent combinations of
circuits, like e, + (ep+ef)+ (ee+ef—ey+ep) (the first row). Also, MR (C, P)
reduces to M(C, P) (mod 2), and the product M2(C, P) - Uy (en(py is

110012 —-11 0O 0 0 O
011112 -1 2 1 -1 0 O
011000 1 O -1 0 1 0
012100 1 1 1 0 0 -1 —0
010001 0 O 1 o o0 -1
000011 -11 -1 1 0 0
011101 0 1 0 1 -1 0
000101 —-11 0O 0 -1 1

Notice that if we add —2 times the third row of MQ(C, P) to the fourth
row, and add —2 times the sixth row to each of the first two rows, then the
resulting matrix has the same reduction (mod 2) and the same row space as
MQ(C, P), and its entries are all in {—1,0,1}. We do not know whether it
is always possible to eliminate entries outside {—1,0, 1} in this way.

Our third example involves two Euler circuits of K5: C is given by the
double occurrence word abdcaecbed and C’ is given by the double occurrence
word abedecadbe. On the left below is the MY (C,C’) matrix for the signed
version a~b~d c"aTe ctbTeTd" of C; its inverse appears on the right. (We
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abuse notation slightly by writing M2 (C,C”) rather than M3 (C,{C"}).)
-1

11 -1 -1 0 1 -1 2 -1 1
11 0 -1 1 1 -1 0 0 1
10 0 0 1 =10 0 1 -1 1
11 0 0 2 1 -2 1 0 1
01 1 0 1 -1 1 -1 1 -1

The inverse matrix is an Mg (C’, C') matrix, though it is not in standard form.
The MR(C,C") matrix for the signed version a~bTd*caTe cTb eTd™ of
C is on the left below; its inverse appears on the right.

-1

11 -1 1 0 1 -1 2 3 -1
11 0 -1 1 Nl o1 2 0 1
10 0 0 1 :<) 92 2 1 3 1
11 0 0 0 301 =2 1 0 1
01 1 0 1 1 1 1 -3 1

In this case MP(C,C’)~! is not a matrix of integers, so it is certainly not
an Mg(C’,C) matrix; but 3 - M(C,C")~! is an Mg(C’,C) matrix. Also,
det MR(C,C") = 3 tells us that the rows of MP(C,C’) generate a proper
subgroup of ZETMC)  Every edge of Tch(C") is a loop, though, so the
cycle space of T'ch(C") includes all of ZF(Teh(C)

Our fourth example includes C’ and another Euler circuit C” of Kj,

given by the double occurrence word abecdbcade. Using the signed form
a~bTcdTe cTaTd b eT of C’, we obtain

1 1 0o 1 -1
0 0 0 0 1
Mmce,cy=fo o o 1 -1
0O 0 -1 0 1
o -1 1 -1 0
Using the signed form a™b"e ¢ d bTcta~de™ of C”, we obtain
1 0 0 1 1
00 -1 -1 -1
MR(C",.Cy=10 1 0 -1 0 [=MiC, C""
01 1 0 0
01 0 0 O

6. THE EFFECT OF A kK-TRANSFORMATION

The fundamental operation of the theory of Euler systems of 4-regular
graphs was introduced by Kotzig [19].

Definition 6.1. If C is an Euler system of a 4-regular graph F and v €
V(F) then a k-transform C * v is an Euler system obtained from C by
reversing one of the induced circuits C;(C,v) within a circuit of C'.
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If C is given with preferred orientations for its circuits, then Definition
6.1 provides two choices for the preferred orientation of the circuit of C * v
incident at v. For instance, if C' is the directed Euler circuit of K5 given by
the double occurrence word abdcaecbed then C * a is given by acdbaecbed or
abdcadebce.

Kotzig [19] proved that if C' and C’ are any two Euler systems of F' then
there is a sequence vy, ..., v of vertices of F such that C' = C *x vy * - - - % vg.
We refer to this fundamental result as Kotzig’s theorem.

It is not hard to see that the effect of a k-transformation on transition
labels is given by the following.

Proposition 6.2. Transition labels with respect to C' and C x v differ only
in these two ways.
b ¢C(U> = wC’*v(U) and 1/}0(1)) = ¢C*v(v)-
o If w is interlaced with v then xc(w) = Yeow(w) and Ppo(w) =
XCxo (W)

Recall that if we are given C and P, M (C, P) is the matrix over GF(2)
specified in Definition 2.1. Proposition 6.2 implies the following three prop-
erties, which we describe collectively as “naturality” of M (C, P) with respect
to k-transformations. See [35] for a detailed discussion. (Special cases of the
third property appear also in earlier work of Bouchet [9] and Jaeger [15].)

Corollary 6.3. ([35]) If P is a circuit partition of F and C,C" are Euler
systems of F' then the following properties hold.
(1) If v € V(F) then M(C * v, P) is obtained from M(C, P) by adding
the v row to the w row whenever w # v and w is interlaced with v
on C.
(2) M(C",P)=M(C",C) - M(C,P).
(3) M(C,C")y = M(C',C)~ 1.

Proof. The first assertion follows from Proposition 6.2.

For the second property recall that by Kotzig’s theorem, there is a se-
quence v1,...,v;, of vertices of F' such that C’ = C % vy * --- x v;,. The
first property tells us that this sequence of k-transformations induces a cor-
responding sequence of elementary row operations, which transforms the
double matrix

(I =M(C,C) M(C, P))
into the double matrix
(M(C',C) M(C',P)).

It follows that if F is the product of elementary matrices corresponding
to the induced elementary row operations, then E - I = M(C’,C) and E -
M(C,P)=M(C', P).

For the third property, notice that the second property tells us that I =
M, C)y=M(C",C)-M(C,C"). O
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Over R, in contrast, we do not have a uniquely defined Mg (C, P) matrix.
Consequently the naturality properties of Mg(C, P) over R are less precise
than the properties of Corollary 6.3.

Corollary 6.4. If C and C' are Euler systems of F then the following
properties hold.

(1) Every Mg(C,C") matriz is nonsingular, and has the property that
(det Mg(C,C")) - Mg(C,C")7!

is an Mg(C’,C) matriz.
(2) Let P be a circuit partition of F. Given an Mg(C’,C) matriz and
an Mgr(C, P) matriz, the product

Mg(C’,C) - Mg(C, P)
is an Mg(C’, P) matriz.

Proof. As Mg(C,C") satisfies Theorem 2.2, it is a nonsingular matrix of
integers that reduces to M(C,C’) (mod 2); it follows that det Mg(C,C")
reduces to det M (C,C") (mod 2). The circuit-nullity formula tells us that
M (C,C") is a nonsingular GF'(2)-matrix, so det Mg(C, C") is an odd integer.
It follows that (det Mg(C,C")) - Mg(C,C")~1 is a nonsingular matrix of
integers that reduces (mod 2) to M(C,C’")~t. Corollary 6.3 tells us that
M(C,C")~t = M(C',C), so (det Mp(C,C")) - Mg(C,C")~! is an Mg(C’,C)
matrix.

For the second property, notice that the nonsingularity of Mg(C’,C) im-
plies that the row space of Mg (C’, C)-Mg(C, P) is the same as the row space
of Mg(C, P). Corollary 6.3 tells us that Mg(C’,C) - Mg(C, P) reduces to
M(C', P) (mod 2), so Mg(C’,C) - Mg(C, P) is an Mg(C’, P) matrix. O

Multiplying by det Mg(C, C") is necessary in part 1 because as we saw in
Section 5, if |det Mg(C,C")| > 1 then Mg(C,C’)~! may have entries that
are not integers.

7. THE EFFECT OF A TRANSPOSITION

In addition to k-transformations, Kotzig [19] also defined “p-transforma-
tions” on Euler systems. We follow Arratia, Bollobds and Sorkin [1, 2] and
use a different name for this operation.

Definition 7.1. If C' is an Euler system of a 4-reqular graph F' and v,w €
V(F) are interlaced with respect to C, then the transposition C x (vw) is
an Euler system obtained from C by interchanging the v-to-w trails within
a circuit of C.

Several properties of transpositions are readily apparent. One prop-
erty is that if the circuits of C are given with preferred orientations, then
the circuits of C' * (vw) inherit preferred orientations in a natural way.
Also, the transpositions C * (vw) and C * (wv) are the same. Moreover,
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a transposition can be effected by performing three x-transformations: if
C = vTIiwITyvT3wTy then

(Cxv)*xw)*xv= ((Uﬁwﬁngwﬂ) kW) * U
= (vﬁwﬁvﬂwﬂ;) x v = vI3wTyvTiwTy = C * (vw),

where ﬁ indicates reversal of the trail T;. Another property is that C and
C' * (vw) respect the same edge directions. In fact, Kotzig [19], Pevzner [28]
and Ukkonen [36] proved that if C' and C” are two Euler systems of F', then
C and C' respect the same edge directions if and only if it is possible to
obtain C’ from C' using transpositions.

It is not hard to see that the effect of a transposition on transition labels
is given by the following.

Proposition 7.2. Ifv and w are interlaced with respect to C then transition
labels with respect to C and C * (vw) differ only in these ways: Xcx(vw) (V) =

¢C(U)f d’C*(vw)(v) = XC(U)v XCx(vw) (w) = ¢C(w) and ¢C*(vw) (’UJ) = XC(w)'

Despite the fact that a transposition’s effect on transition labels is less
complicated than the effect of a k-transformation, Euler systems related
through transpositions may give rise to MH% matrices that are related in
complicated ways. For example, the following Euler circuits of K5 yield the
matrices below.

C:a e ctbtdtcatbetd”
Cx(cd): a e ctatbetd c bTd"

C' : abedecadbe

11
-1 2
MR(C,C") = -1 2
0 1
11

MR(C * (cd),C") =

— O = O N e
ey S s N N J S S Gy S G ey
OO OO OO O

O = O OO
_ O = =

Notice that det MR (C, C’) = —3 and det M(C * (cd),C’) = —1, so although
MR2(C,C") and MP(C * (cd), C") are row equivalent over R, they are not row
equivalent over Z.
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8. THE ORIENTED CASE

In this section we show that in case C' and P respect the same edge
directions, the standard form MQ(C, P) described in Section 4 has natural-
ity properties over Z that are very similar to the naturality properties of
M(C, P) over GF(2), stated in Corollary 6.3. Moreover, Mg (C, P) includes
the skew-symmetric signed interlacement matrices of Brahana [10], Bouchet
[9], Jonsson [16], Lauri [23] and Macris and Pulé [24].

Suppose C' is a directed Euler system of F', and the edges of F' are directed
consistently with the given directions for the circuits of C. These edge
directions will remain fixed. If P is a circuit partition of F', then the circuits
of P can be oriented consistently with the given edge directions if and only
if P(v) # v¥c(v) Yo € V(F). Recall the notational scheme of Section 4:
for each v € V, one passage of C through v is hl, v h2 and the other is
h3, v, ht. Let Ir(C) be the V(F) x V(F) matrix whose diagonal entries all
equal 0, and whose vw entry is given by: Zr(C)y = 1 if v and w occur on C
in the order vtw~ v~ w™", Zg(C)ypw = —1 if v and w occur on C' in the order
vTwtv~w™, and Zg(C)yw = 0 if v and w are not interlaced on C. Then

(I Jx(C,P)
Mn%((lp)—(o Iﬁ(CaP)>’

where [ is an identity matrix whose rows and columns correspond to vertices
v € V(F) with ¢c(v) = P(v), Zr(C, P) is the submatrix of Zg(C') whose
rows and columns correspond to vertices v € V(F') with x¢(v) = P(v), and
Jr(C, P) is the submatrix of Zg(C') whose rows (resp. columns) correspond
to vertices v € V(F') with ¢c(v) = P(v) (resp. xc(v) = P(v)).
Two properties of these matrices are apparent.
e Both Zr(C') and Zr(C, P) are skew-symmetric.

e If we interchange vt and v~ on C, the effect on both Zg(C) and
M(C, P) is to multiply the v row and the v column by —1.

Some new notation will be useful. Suppose T is a sub-trail of a circuit of
C. Let ¢o(T) € ZVF) be the vector whose z coordinate, for each z € V (F)
with P(x) = ¢¢(x), is obtained by tallying passages of T' through z, with
a2t contributing 1 and z~ contributing —1. If P(z) = xc(z) then the x
coordinate of ¢c(T) is 0. Let xo(T) € ZV(F) be the vector obtained in
the same way, but tallying contributions only with respect to those x with
P(z) = xc(x). Also, for each vertex z € V(F) let p,(Mg2(C, P)) denote the
z row of MR(C, P). The definition of M{(C, P) may now be rephrased as
follows: if a circuit of C' is = C1(C, z)z"Cy(C, x) then

pa(Mg(C, P)) = xc(C1(C,2)) + pc(a™).

Kotzig [19], Pevzner [28] and Ukkonen [36] proved that if C' and C” are two
Euler systems of F, then C and C’ respect the same edge directions if and
only if it is possible to obtain C’ from C' using transpositions. Consequently,
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in order to describe the relationship between Mg (C, P) and M2(C’, P) it suf-
fices to understand the relationship between MR (C, P) and M2 (C*(vw), P).

Proposition 8.1. Suppose the edges of F' are directed consistently with the
circuits of C, and C includes a circuit v Tyw ™ Tov Tyw™Ty. Consider the
signed version of C * (vw) obtained from C by using vt Tsw™ Tov™ Tyw™Ty.
Let P be a circuit partition such that co(x) # P(x) Vo € V(F). Then
MR(C, P) and MR(C * (vw), P) are related through elementary row opera-
tions, as follows:

(1) po(MR(C * (vw), P)) = pu(MR(C, P)).
(2) pu(MR(C * (vw), P)) = —py(Mg(C, P)).
(3) If x € V(F) — {v,w} then

po(MY(C % (vw), P))
= p:c(MIg(Cv P)) + IR(C):vav(MIg(Cv P)) - IR(C):L’va(MH%(C7 P))

Proof. Property 1 follows from Proposition 7.2 and the rephrased definition
of MY(C, P) given above:

pu(MR(C * (vw), P)) = XCu(ow) (T1w T T4) + ¢c(ou) (vT)
= xc(Th) + xo(Ty) + ¢c(w™) + xc(vh)
= xc(Tyo™Ty) + do(w™) = pu(Mg(C, P)).
The proof of Property 2 uses the fact that Zle xc(T;) = 0:
po(M(C  (00), P)) = Xcr(uu (T T1) + bty ()

= xc(T2) + xc(Th) + dc(v™) + xo(w™)

= —xc(T3) = xc(Ts) = dpc(v™) = xo(w™)

= —xc(Tsw ™ Ty) — dc(vh) = —pu(MR(C, P)).

Property 3 has many cases, with = and z™ in various positions. We
detail three cases, and leave the rest to the reader.

If z is not interlaced with either v or w, then C1(C, z) and C1(C * (vw), x)
may not be the same trail, but they will involve the same passages through
vertices, s0 p,(MR(C, P)) = p(MR(C * (vw), P)).

Suppose z~ appears in T} and x+ appears in Tb; say 11 = Th12~ Ti2 and
T2 = T21$+T22. Then IR(C);UU = 0, I]R(C):cw =1 and

pz(MR(C * (vw), P))
= Xow(ww) (Tr2w Tyt Tsw ™ To1) + (o) ()
= xc(Th2) + xc(Th) + ¢o(v™) + xc(T3) + xc(Ta1) + de(a™)
= xo(Ti2) + xc(w™To1) — xe(w™) + ¢c (@) + xo(Tu) + dc(vh) + xo(T3)
= xc(TiowtTor) + ¢po(2™) + xo (Tsw™ Ty) + ¢po(v?)
= px(MR(C, P)) + pu(Mg(C, P)).
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Suppose x~ appears in Ty and z appears in Th; say T = To12 T Thy and
Ty = Tyx~ Tys. Then IR(C)m, =1= I]R(C)xw and

pz(MR(C  (vw), P))
= X (ow) (Ta20 T T3w ™ To1) + G (o) (27)
= xo(Tuz) + ¢c(v™) + xc(T3) + ¢o(w™) + xc(Ta1) + ¢c(x™)
= xc(Tv ' Tiw" o) — xc(v T Tiw™) + ¢o(z) — po(w™) + ¢c(vt)

+ xc(T3)
= ¢o(ah) + xc(Tv Tiw™ 1) + xo(w™) — xe Ty T1) + xo(Ty)

— po(w™) + ¢ (vh) + xo(Th)
= po(MR(C, P)) — xo(TyotTy) — ¢c(w') + xo(Tsw™ Ty) + do(vh)
= pe(MR(C, P)) — pu(MR(C, P)) + py(Mg(C, P)).

|

Proposition 8.1 uses the same set of elementary row operations to obtain
MR(C x (vw), P) from M2(C, P), for every circuit partition P with 1¢(z) #
P(z) Vo € V(F). This lack of dependence on P leads to strong naturality
properties, just as it does in the proof of Corollary 6.3. We believe these
properties have not appeared in the literature, except for the special case
of MY(C',C) = MJ(C,C")~! involving Euler circuits with ¢¢(v) # ¢ (v)
Vv € V(F'), which is due to Bouchet [9)].

Corollary 8.2. Suppose C and C' are Euler systems of F, whose cir-
cuits are oriented consistently with the same edge directions. Then for each
signed version of C there is a corresponding signed version of C' such that
MR(C',C) = MR(C,C")~t. Moreover if P is a circuit partition that re-
spects the same edge directions, then these signed versions of C' and C' have

MR(C', P) = MR(C',C) - MR(C, P).

Proof. According to the theorem of Kotzig [19], Pevzner [28] and Ukkonen
[36] mentioned above, there is a sequence of transpositions that transforms
a signed version of C' into a signed version of C’ using the sign convention
of Proposition 8.1. Proposition 8.1 also gives us an induced sequence of
elementary row operations, which transforms the double matrix

(I=MYC,C) MY(C,P))
into the double matrix

(MR(C',C) MY(C', P)).
It follows that if F is the product of elementary matrices corresponding
to the induced elementary row operations, then E - I = MQ(C’,C) and

E-MJ(C,P)= MY(C', P). In particular, if P = C’ we deduce that E - I =
MQ(C',C) and E - M3(C,C") = MJ(C',C") = I. O
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Corollary 8.3. Let C and C' be Euler systems of I, whose circuits are ori-
ented consistently with the same edge directions. Consider arbitrary signed
versions of C' and C'. Then there is a matriz A with the following properties.

(1) Every diagonal entry of A is £1, and every other entry of A is 0.

(2) MR(C",C)=A-MR(C,C")~L- AL

(3) If P is any circuit partition that respects the same edge directions,
then MQ(C', P) = MR(C',C) - A- MY(C, P) - A.

Proof. Let C" denote the signed version of C’ that corresponds to the
given signed version of C, as in Corollary 8.2. For any circuit partition
P with P(x) # ¢o(x) Vo € V(F), MR(C’, P) is the matrix obtained from
MQ(C”, P) by multiplying by —1 the row and column of M{(C”, P) corre-
sponding to each x € V(F) such that the positions of = and z™ in ¢’ and
C" are different. Consequently if A is the diagonal matrix whose zx entry
is 1 (resp. —1) when the positions of z~ and 1 in C” and C” are the same
(resp. different), then MR(C’,P) = A - MR(C”, P) - A. Assertions (2) and
(3) now follow from Corollary 8.2:

MR(C',C) = A-MR(C",C)-A=A-MJ(C,C") V- A=A-M(C,C") LA

M[g(cla P) =A- M]I%(Clla P) A
= A-MR(C",C)- MR(C,P)-A
O

Lauri [23] and Macris and Pulé [24] gave a formula for the number of
Euler systems of F' that respect the same edge directions. We close with a
quick explanation of this important result.

Lemma 8.4. Suppose C' and C' are Euler systems of F', whose circuits are
oriented consistently with the same edge directions. Then for any signed
versions of C' and C’,

det MR(C,C") = 1.

Proof. Suppose first that ¢ = C * (vw) and the signed versions of C' and
C' are related as in Proposition 8.1. Then Proposition 8.1 tells us how to
obtain MR(C’,C") = I from MY(C,C’). The determinant is not affected
by the row operations of part 3 of Proposition 8.1, and the row operations
of parts 1 and 2 — interchanging the v and w rows, and multiplying one of
these rows by —1 — both have the effect of multiplying the determinant by
—1. We conclude that in this case det MR(C,C’) = det I = 1.

If some other signed versions of C' and C’ are used, then the effect is to
replace MR(C,C’) with A - M2(C,C") - A, as in the proof of Corollary 8.3.
As det A = %1, this replacement does not change the determinant.

The general case follows from part 3 of Corollary 8.3 by induction, because
C’ can be obtained from C' using a sequence of transpositions. ([
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Corollary 8.5. Let C' be an Euler system of F', and P a circuit partition
with Yo (v) # P(v) Yv € V(F). Then the following conditions are equivalent.

1) P is an Euler system.
det MY (C, P) = 1.
det MY (C, P) # 0.
det Zg(C, P) = 1.
det Ir (C, P) # 0.

(
(2
(3
(4
5

~— — — —

(

Proof. Lemma 8.4 gives us the implication 1 = 2. The equality

I Jr(C,P)

0 _ )

MR(Ca P) - (0 IR(C, P)

tells us that det M2(C, P) = det Zg(C, P), so we have 2 < 4 and 3 & 5.
The implication 2 = 3 is obvious. According to Theorem 2.2, condition 3

implies that every edge of T'ch(P) is a loop; this in turn implies that P is
an Euler system. O

Theorem 8.6. (Lauri [23] and Macris and Pulé [24]) Let C' be any signed
version of any Euler system of F. Then the number of Euler systems of F
that respect the edge directions given by C is det(I + ZIr(C)).

Proof. Let vy, ..., v, be the vertices of F', and let x1, ..., z, be independent
indeterminates. For each subset S C {1,...,n}, let Pg be the circuit partition
of F' that involves ¢¢c(v;) whenever i € S, and xc(v;) whenever i ¢ S. Let

E={5 C{l,...,n}| Ps is an Euler system of F'}.

Let X be the matrix with entries x1, ..., , on the diagonal, and other entries
0. Then Corollary 8.5 tells us that

det(X + Zp(C)) = > (H x) det MR(C, Pg) = > (H g;> :

SC{l,..n} \i€S see \ies
That is, det(X + Zgr(C)) is a version of the indicator function of the set £.
The theorem follows by setting x1, ..., z, equal to 1. O

Theorem 8.6 implies that in polynomial time, one can calculate the num-
ber of Euler systems of F' that respect the edge directions defined by C. Ge
and Stefankovic [14] proved that in contrast, the problem of counting all the
Euler systems of F' is # P-complete.
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