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THE NON-EXISTENCE OF DISTANCE-2 OVOIDS IN H(4)D

ANURAG BISHNOI AND FERDINAND IHRINGER

Abstract. We give a computer-assisted proof for the non-existence of
distance-2 ovoids in the dual split Cayley hexagon H(4)D. Furthermore,
we obtain bounds on the size of a partial distance-2 ovoid in H(4)D.

1. Introduction

The study of distance-j ovoids in generalized polygons was initiated by
Thas, who investigated the existence of distance-2 ovoids in generalized
quadrangles and distance-3 ovoids in generalized hexagons (which are simply
known as ovoids) [10]. The existence of distance-j ovoids is related to the
existence of particular perfect codes, cores of symmetric graphs, and various
other topics.

In this work, we show the non-existence of distance-2 ovoids in the dual
split Cayley hexagon H(4)D. For the split Cayley hexagon H(q) itself, the
existence of distance-2 ovoids is already known for q = 2, 3, 4 [12, 13, 14]
and the ovoids are completely classified [7, Sec. 18.3]. For H(q)D, only the
non-existence for q = 2 [3] and the existence for q = 3 [12] is known. Note
that we have H(q) isomorphic to H(q)D if and only if q is a power of 3 [11,
Cor. 3.5.7]. Here we present a computer-assisted proof for the next open
case, H(4)D.

Theorem 1.1. The dual split Cayley hexagon H(q)D does not possess a
distance-2 ovoid for q ∈ {2, 4}.

We note that Theorem 1.1 has been used in [1] to prove that there does
not exist any semi-finite generalized hexagon containing H(q)D as a full
subgeometry for q ∈ {2, 4}, thus answering specific cases of a version of
the question raised by Tits on existence of semi-finite generalized polygons.
In fact, non-existence of distance-2 ovoids in any given finite generalized
hexagon implies that every generalized hexagon containing the hexagon as
a full subgeometry must be finite [1, Cor. 3.9]. We believe that the compu-
tational techniques that we describe below might be useful in “small” cases
of other finite geometrical problems that have a similar flavour, and where
brute force or direct symmetry breaking does not work.
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2. Proof of the theorem

We refer to the standard text [11] for an introduction to generalized
polygons. The number of points in a generalized hexagon of order (s, t)
is (1 + s)(1 + st + s2t2). We denote the Desarguesian projective plane over
Fq by PG(2, q). Then H(q, 1) denotes the generalized hexagon of order (q, 1)
whose points are the incident point-line pairs of PG(2, q), lines are the points
and lines of PG(2, q), and incidence is reverse containment. The dual split
Cayley hexagon H(q)D is a generalized hexagon of order (q, q) (see [11] for a
definition). The following is a well known result on the relationship between
these generalized hexagons.

Lemma 2.1. The dual split Cayley hexagon H(q)D contains a subhexagon
H of order (q, 1) isomorphic to H(q, 1). Moreover, for every pair of lines
`1, `2 ∈ H(q)D that are at distance 6 from each other in the incidence graph,
there is a unique H(q, 1)-subhexagon of H(q)D containing both `1 and `2.

Definition 2.2. Let S = (P,L, I) be a generalized polygon.

(a) A partial distance-2 ovoid of S is a set of points O such that every line
contains at most one point of S.

(b) A distance-2 ovoid of S is a set of points O such that every line contains
exactly one point of S.

From double counting, it follows that the size of a distance-2 ovoid in a
generalized hexagon of order (s, t) is equal to s2t2 + st + 1. The following
Lemma follows directly from the definition of a distance-2 ovoid.

Lemma 2.3. Let H be a generalized hexagon of order (s, t). Let H′ be a
subhexagon of order (s, t′) of H and let O be a distance-2 ovoid of H. Then
H′ ∩ O is a distance-2 ovoid of H′ and

|O ∩ H′| = s2t′2 + st′ + 1.

In our case, we have H(4, 1) contained in H(4)D, and thus s = t = 4
and t′ = 1. Therefore, we want to determine if we can find a subset of size
273 which intersects each of the 1365 lines in a unique point from the 1365
points of H(4)D . While –as far as we know– it is not possible to solve this
problem by brute force or by standard symmetry breaking arguments (see
for example [7]) in any reasonable amount of time; in view of Lemmas 2.1
and 2.3, we can use the following idea:

First classify all distance-2 ovoids in H(4, 1) up to isomor-
phism under the action of the stabilizer of H(4, 1). Next,
see if any of these distance-2 ovoids can be extended to a
distance-2 ovoid of H(4)D.

We note that the stabilizer of a subgeometry of H(4)D which is isomor-
phic to H(4, 1), under the action of the automorphism group of H(4)D is in
fact isomorphic to the automorphism group of H(4, 1). As the point graph of
H(q, 1)D corresponds to the incidence graph of the projective plane PG(2, q),
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a distance-2 ovoid in H(q, 1) corresponds to a perfect matching of the inci-
dence graph of PG(2, q). It is folklore that the number of perfect matchings
in a balanced bipartite graph corresponds to the permanent of the biadja-
cency matrix of that graph. It is easy to verify the following by calculating
the corresponding permanent.

Lemma 2.4 ([8, A000794]). The number of perfect matchings in the inci-
dence graph of PG(2, 4) is 18534400.

Notice that a perfect matching is an exact cover, and so we can use
Knuth’s Dancing Links Algorithm [5] to enumerate all perfect matchings in
a bipartite graph.

Proposition 2.5. Let G be the automorphism group of H(4)D. Let H be a
subhexagon of H(4)D ismormorphic to H(4, 1). Then there are exactly 350
non-isomorphic distance-2 ovoids in H with respect to GH, the stabilizer of
H under the action of G.

We used a computer to prove Proposition 2.5. The following algorithm
was able to classify all 350 distance-2 ovoids in a few minutes at the time of
writing.1 We rely on Linton’s algorithm SmallestImageSet(H, S), which
returns the lexicographically smallest element in the orbit of a set S under
the action of a group H [6]. We used the implementation of Dancing Links in
SAGE [2] to iterate through all perfect matchings and the implementation
of SmallestImageSet in the GRAPE [9] package of GAP [4] to find the
representatives of these 350 isomorphism classes of distance-2 ovoids.2 For
each distance-2 ovoid O′ of H, we can define an integer linear optimization
problem (ILP) which is feasible if and only if H(4)D has a distance-2 ovoid
containing O′. Then the ILP solvers easily shows that these equations are
infeasible for all of the 350 cases.3 This proves Theorem 1.1.

Remark. For the next open case, H(5)D, our algorithmic approach fails for
several reasons:

(a) The incidence graph of PG(2, 5) has 4598378639550 perfect matchings
while the automorphism group of PG(2, 5) has size 744000. So a clas-
sification of all non-isomorphic distance-2 ovoids of H(5, 1) seems to be
out of reach.

(b) Even for one given distance-2 ovoid of H(5, 1), the corresponding integer
linear program takes too long to solve with a state-of-the-art ILP solver.

One can use the same methods to obtain bounds on partial distance-2 ovoids
in H(q)D.

1Running time: 28m37.576s with Sage Version 6.4.1 with a Intel Core i5-2400 CPU @
3.10 GHz processor.

2We provide our full code online: http://math.ihringer.org/data.php
3We verified this with CPLEX (several versions), Gurobi Optimizer (several versions)

and the constraint solver Minion. The 350 ILPs in 350 files in the LP format took 540.3
seconds with Gurobi Optimizer version 6.5.0 build v6.5.0rc1 (linux64) with an Intel Core
i5-3550 CPU @ 3.30GHz processor.

http://math.ihringer.org/data.php
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Lemma 2.6. Let O be a partial distance-2 ovoid of H(q)D. Suppose that no
subhexagon H of H(q)D isomorphic to H(q, 1) contains q2 + q + 1 points of
O. Then |O| ≤ (q2 − q + 1)(q2 + q).

Proof. Let P be the set of points of H(q)D. We double count pairs (p,H),
where H a subhexagon of H(q)D isomorphic to H(q, 1) and p ∈ O∩H. From
Lemma 2.1 we can see that each point is contained in (1+q)q3/2 subhexagons
isomorphic to H(q, 1) which tells us that there are |O|(1 + q)q3/2 such pairs.
Again by Lemma 2.1, there are q3(1+q)(q2−q+1)/2 subhexagons of H(q)D

which are isomorphic to H(q, 1). Under the condition |O ∩H| ≤ q2 + q, this
yields |O| ≤ (q2 − q + 1) · (q2 + q). �

To prove bounds for all partial distance-2 ovoids of H(q)D, q ∈ {2, 4},
we can use the following computational approach. If the corresponding ILP
does not have a solution larger than some integer b > (q2 − q + 1)(q2 + q)
for all of the non-isomorphic distance-2 ovoids of H(q, 1), then by Lemma
2.6 we obtain b as an upper bound on the size of a partial distance-2 ovoids.
Using this approach we have proved the following.

Theorem 2.7. A maximum partial distance-2 ovoid O of H(q)D satisfies
the following:

(a) |O| = 19 for q = 2,
(b) 261 ≤ |O| ≤ 265 for q = 4.
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