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HAMILTONIAN PATHS IN m × n PROJECTIVE

CHECKERBOARDS

DALLAN MCCARTHY AND DAVE WITTE MORRIS

Abstract. For any two squares ι and τ of an m × n checkerboard,
we determine whether it is possible to move a checker through a route
that starts at ι, ends at τ , and visits each square of the board exactly
once. Each step of the route moves to an adjacent square, either to the
east or to the north, and may step off the edge of the board in a manner
corresponding to the usual construction of a projective plane by applying
a twist when gluing opposite sides of a rectangle. This generalizes work
of M. H. Forbush et al. for the special case where m = n.

1. Introduction

Place a checker in any square of an m× n checkerboard (or chessboard).
We determine whether it is possible for the checker to move through the
board, visiting each square exactly once. (In graph-theoretic terminology,
we determine whether there is a hamiltonian path that starts at the given
square.) Although other rules are also of interest (such as the well-known
knight moves discussed in [6] and elsewhere), we require each step of the
checker to move to an adjacent square that is either directly to the east or
directly to the north, except that we allow the checker to step off the edge
of the board.

Torus-shaped checkerboards are already understood (see, for example,
[3]), so we allow the checker to step off the edge of the board in a manner
that corresponds to the usual procedure for creating a projective plane, by
applying a twist when gluing each edge of a rectangle to the opposite edge:

Definition 1.1 (cf. [2, Defn. 1.1]). The squares of an m × n checkerboard
can be naturally identified with the set Zm × Zn of ordered pairs (p, q) of
integers with 0 ≤ p ≤ m−1 and 0 ≤ q ≤ n−1. Define E : Zm×Zn → Zm×Zn
and N : Zm × Zn → Zm × Zn by

(p, q)E =

{
(p+ 1, q) if p < m− 1

(0, n− 1− q) if p = m− 1
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and

(p, q)N =

{
(p, q + 1) if q < n− 1

(m− 1− p, 0) if q = n− 1.

The m × n projective checkerboard Bm,n is the digraph whose vertex set is
Zm × Zn, with a directed edge from σ to σE and from σ to σN , for each
σ ∈ Zm × Zn. We usually refer to the vertices of Bm,n as squares.

In a projective checkerboard Bm,n (with m,n ≥ 3), only certain squares
can be the initial square of a hamiltonian path, and only certain squares can
be the terminal square. A precise determination of these squares was found
by M. H. Forbush et al. [2] in the special case where m = n (that is, when the
checkerboard is square, rather than properly rectangular). In this paper, we
find both the initial squares and the terminal squares in the general case.
(Illustrative examples appear in Figures 1 to 4 on pages 3 to 6.)

Notation 1.2. For convenience, let

m = bm/2c, m− = b(m− 1)/2c, m+ = b(m+ 1)/2c = dm/2e = m− + 1,

n = bn/2c, n− = b(n− 1)/2c, n+ = b(n+ 1)/2c = dn/2e = n− + 1.

Theorem 1.3. Assume m ≥ n ≥ 3. There is a hamiltonian path in Bm,n
whose initial square is (p, q) if and only if either:

(1) p = 0 and n− ≤ q ≤ n− 1, or

(2) n− ≤ p ≤ m− 1 and q = 0, or

(3) m+ ≤ p ≤ m− 1 and q = n, or

(4) 0 ≤ p ≤ n and q = n−, or

(5) m ≤ p ≤ m− n+ and n+ 1 ≤ q ≤ n− 1, or

(6) n− ≤ p ≤ m− and 0 ≤ q ≤ n.

By rotating the checkerboard 180◦ (cf. Proposition 2.4), this theorem can
be restated as follows:

Theorem 1.4. Assume m ≥ n ≥ 3. There is a hamiltonian path in Bm,n
whose terminal square is (x, y) if and only if either:

(1) x = m− 1 and 0 ≤ y ≤ n, or

(2) 0 ≤ x ≤ m− n+ and y = n− 1, or

(3) 0 ≤ x ≤ m− 1 and y = n−, or

(4) m− n− 1 ≤ x ≤ m− 1 and y = n, or

(5) n− ≤ x ≤ m− and 0 ≤ y ≤ n− − 1, or

(6) m ≤ x ≤ m− n+ and n− ≤ y ≤ n− 1.

Remark 1.5. By symmetry, there is no harm in assuming that m ≥ n when
studying Bm,n. Furthermore, if min(m,n) ≤ 2, then it is easy to see that
Bm,n has a hamiltonian cycle. Therefore, every square is the initial square
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of a hamiltonian path (and the terminal square of some other hamiltonian
path) in the cases not covered by Theorems 1.3 and 1.4.

For any square ι of Bm,n, we determine not only whether there exists a
hamiltonian path that starts at ι, but also the terminal square of each of
these hamiltonian paths. This more detailed result is stated and proved in
Section 5. It yields Theorems 1.3 and 1.4 as corollaries. As preparation for
the proof, we recall some known results in Section 2, consider a very helpful
special case in Section 3, and explain how to reduce the general problem to
this special case in Section 4.

Remark 1.6. Suppose m and n are large. It follows from Theorem 1.3 that
a square in Bm,n is much less likely to be the starting point of a hamiltonian
path when the checkerboard is square than when it is very oblong:

• If m = n, then only a small fraction (≈ 3/n) of the squares are the
initial square of a hamiltonian path.
• In contrast, if m is much larger than n, then about half of the squares

are the initial square of a hamiltonian path.

The following question remains open (even when m = n).

Problem 1.7. Which squares are the terminal square of a hamiltonian path
that starts at (0, 0) in an m× n Klein-bottle checkerboard, where

(m− 1, q)E = (0, n− 1− q) and (p, n− 1)N = (p, 0).

5 × 5 6 × 5 7 × 5 8 × 5

9 × 5 10 × 5 11 × 5

30 × 5

Figure 1. The initial squares (•) of hamiltonian paths in
some m× 5 projective checkerboards.
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2. Preliminaries: definitions, notation, and previous results

We reproduce some of the elementary, foundational content of [2], slightly
modified to eliminate that paper’s standing assumption that m = n.

Notation 2.1 ([2, Notation 3.1]). We use [σ](X1X2 · · ·Xk), where Xi ∈
{E,N}, to denote the walk in Bm,n that visits (in order) the squares

σ, σX1, σX1X2, . . . , σX1X2 . . . Xk.

10 × 10 11 × 10

12 × 10 13 × 10

30 × 10

Figure 2. The initial squares (•) of hamiltonian paths in
some m× 10 projective checkerboards.
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Definition 2.2 ([2, Defn. 2.14]). For σ = (p, q) ∈ Bm,n, we define the
inverse of σ to be σ̃ = (m− 1− p, n− 1− q).
Remark 2.3. σ̃ can be obtained from σ by rotating the checkerboard 180
degrees.

Proposition 2.4 ([2, Prop. 2.15]). If there is a hamiltonian path from ι
to τ in Bm,n, then there is also a hamiltonian path from τ̃ to ι̃.

More precisely, if H = [ι](X1X2 · · ·Xk) is a hamiltonian path from ι to τ ,

then the inverse of H is the hamiltonian path H̃ = [τ̃ ](XkXk−1 · · ·X1) from
τ̃ to ι̃.

Definition 2.5 ([2, Defn. 2.14 and Prop. 2.15]). If m = n, then:

• The transpose σ∗ of any square σ of Bm,n is defined by (p, q)∗ = (q, p).

• For a hamiltonian path H = [ι](X1X2 · · ·Xk) from ι to τ , the trans-
pose of H is the hamiltonian path H∗ = [ι∗](X∗1X

∗
2 · · ·X∗k) from ι∗

to τ∗, where E∗ = N and N∗ = E.

2A. Direction-forcing diagonals.

Definition 2.6 ([2, Defn. 2.1]). Define a symmetric, reflexive relation ∼ on
the set of squares of Bm,n by σ ∼ τ if

{σE, σN} ∩ {τE, τN} 6= ∅.

5 × 5 6 × 5 7 × 5 8 × 5

9 × 5 10 × 5 11 × 5

30 × 5

Figure 3. The terminal squares ( ) of hamiltonian paths in
some m× 5 projective checkerboards.
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The equivalence classes of the transitive closure of ∼ are direction-forcing
diagonals. For short, we refer to them simply as diagonals. Thus, the
diagonal containing σ is

{σ, σNE−1, σ(NE−1)2, . . . , σEN−1}.
Notation 2.7 ([2, Notn. 2.3]). For 0 ≤ i ≤ m+ n− 2, let

Si = { (p, q) ∈ Bm,n | p+ q = i }.
We call Si a subdiagonal.

10 × 10 11 × 10

12 × 10 13 × 10

30 × 10

Figure 4. The terminal squares ( ) of hamiltonian paths in
some m× 10 projective checkerboards.
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Proposition 2.8 ([2, Prop. 2.4]). For each i with 0 ≤ i ≤ m + n − 3, the
set Di = Si ∪ Sm+n−3−i is a diagonal. The only other diagonal Dm+n−2

consists of the single square (m− 1, n− 1).

Corollary 2.9 ([2, Notn. 2.5]). Let D be a diagonal, other than Dm+n−2.
Then we may write D = Sa ∪ Sb with a ≤ b and a+ b = m+ n− 3.

Definition 2.10 ([2, Defn. 2.7]). If H is a hamiltonian path in Bm,n, then
the diagonal containing the terminal square τ is called the terminal diagonal
of H. All other diagonals are nonterminal diagonals.

Definition 2.11 ([2, Defn. 2.8]). Let H be a hamiltonian path in Bm,n. A
square σ travels east (in H) if the edge from σ to σE is in H. Similarly, σ
travels north (in H) if the edge from σ to σN is in H.

The following important observation is essentially due to R. A. Rankin [5,
proof of Thm. 2].

Proposition 2.12 ([2, Prop. 2.9], cf. [4, Prop. on p. 82], [1, Lem. 6.4c]).
If H is a hamiltonian path in Bm,n, then, for each nonterminal diagonal D,
either every square in D travels north, or every square in D travels east.
For short, we say that either D travels north or D travels east. �

Proposition 2.13 ([2, Prop. 2.10], cf. [1, Lem. 6.4b]). Let D be the terminal
diagonal of a hamiltonian path H in Bm,n, with initial square ι and terminal
square τ , and let σ ∈ D.

• if τN 6= ι, then τNE−1 travels east;

• if τE 6= ι, then τEN−1 travels north;

• if σ travels east and σN 6= ι, then σNE−1 travels east;

• if σ travels east, then σEN−1 does not travel north;

• if σ travels north and σE 6= ι, then σEN−1 travels north; and

• if σ travels north, then σNE−1 does not travel east. �

Corollary 2.14 ([2, Cor. 2.11], cf. [1, Lem. 6.4a]). If H is a hamiltonian
path in Bm,n, then the diagonal that contains ιE−1 and ιN−1 is the terminal
diagonal.

The following corollary follows from Proposition 2.13 by induction.

Corollary 2.15 ([2, Cor. 2.12]). Let D be the terminal diagonal of a hamil-
tonian path H in Bm,n, with initial square ι and terminal square τ , and let
|D| denote the cardinality of D.

(1) For each σ ∈ D, there is a unique integer u(σ) ∈ {1, 2, . . . , |D|} with

σ = τ(NE−1)u(σ); the square σ travels east iff u(σ) < u(ιE−1).

(2) Similarly, there is a unique integer v(σ) ∈ {1, 2, . . . , |D|} with σ =

ιE−1(EN−1)v(σ); the square σ travels east iff v(σ) < v(τ).
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Corollary 2.16 ([2, Cor. 2.13]). A hamiltonian path is uniquely determined
by specifying

(1) its initial square;

(2) its terminal square; and

(3) which of its nonterminal diagonals travel east.

2B. Further restrictions on hamiltonian paths.

Proposition 2.17 ([2, Thm. 3.2]). If m,n ≥ 3, then (0, 0) is not the ini-
tial square of any hamiltonian path in Bm,n. Therefore, Dm+n−2 is not
the terminal diagonal of any hamiltonian path (and Bm,n does not have a
hamiltonian cycle).

Lemma 2.18 ([2, Lem. 3.4]). Suppose Sa ∪Sb is the terminal diagonal of a
hamiltonian path H in Bm,n, with m,n ≥ 3 and a ≤ b. Choose (p, q) ∈ Sb+1,
and let P be the unique path in H that starts at (p, q) and ends in Sa, without
passing through Sa. Then the terminal square of P is the inverse of (p, q).

Definition 2.19. Let Sa ∪ Sb be the terminal diagonal of a hamiltonian
path, with a ≤ b, and let Si ∪Sj be some other diagonal of Bm,n, with i ≤ j
and i+ j < m+ n− 2. We say that:

(1) Si ∪ Sj is an outer diagonal if i < a (or, equivalently, j > b).

(2) Si ∪ Sj is an inner diagonal if i > a (or, equivalently, j < b).

Lemma 2.18 has the following important consequence.

Corollary 2.20 (cf. [2, Thm. 3.5]). Assume that H is a hamiltonian path
from ι to τ in Bm,n, with m ≥ n ≥ 3. Define HE and HN to be the
subdigraphs of Bm,n, such that

• ι has invalence 0, but the invalence of all other squares is 1 in both
HE and HN ,

• τ has outvalence 0, but the outvalence of all other squares is 1 in
both HE and HN ,

• each inner diagonal travels exactly the same way in HE and HN as
it does in H, and

• each outer diagonal travels east in HE, but travels north in HN .

Then:

(1) HE is a hamiltonian path from ι to τ .

(2) HN is a hamiltonian path from ι to τ if and only if the diagonal
Sn−1 ∪ Sm−2 is not outer.

3. Hamiltonian paths in which all nonterminal diagonals
travel north

We eventually need to understand all of the hamiltonian paths in Bm,n,
but this section considers only the much simpler special case in which every
nonterminal diagonal is required to travel north. Although this may seem
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to be a very restrictive assumption, Proposition 4.6 below will allow us to
obtain the general case from this one.

Proposition 3.1. Assume Sa∪Sb is the terminal diagonal of a hamiltonian
path H in Bm,n, with m ≥ n ≥ 3 and a ≤ b. Let τ+ be the southeasternmost
square in Sb. If all nonterminal diagonals travel north in H, then a ≤
m− 2 ≤ b, and τ+E is the initial square of either H or the inverse of H (or
the transpose or transpose-inverse of H, if m = n = a + 2 = b + 1), unless

a+ 1 = b = n = m− 2, in which case the initial square (of either H or H̃)
might also be τ+ = (n, 0).

Proof. From Corollary 2.20(2), we know that a ≤ n−1 and m−2 ≤ b. Since
n ≤ m, this immediately implies a ≤ m− 2 ≤ b, unless a = n− 1 = m− 1.
But then b = m + n − 3 − a = m − 2 < a, which contradicts the fact that
a ≤ b.

For convenience, write τ+ = (x, y). Assume, for the purposes of contra-
diction, that the initial square is not as described. We consider two cases.

Case 1: Assume x = m− 1. Note that τ+E = (0, n− 1− y) is the inverse
of τ+, so τ+ cannot be the terminal square of H (since τ+E is not the initial
square of the inverse of H, because of our assumption that the initial square
is not as described).

Assume, for the moment, that τ+E is not in the terminal diagonal. Then,
by assumption, τ+E travels north. So τ+ cannot travel east. (Otherwise,
the hamiltonian path H would contain the cycle [τ+](EN2y+1) because b >
n−1.) Therefore, since τ+ is not the terminal square of H, we conclude that
τ+ travels north. Since τ+E is not the initial square (and must therefore
be entered from either τ+ or τ+EN

−1, we conclude that τ+EN
−1 travels

north. So H contains the cycle [τ+](N2n). This is a contradiction.
We may now assume that τ+E is in the terminal diagonal. However,

τ+EN
−1 is also in the terminal diagonal (since it is obviously in the same

diagonal as τ+, which is in the terminal diagonal). It follows that τ+EN
−1 ∈

Sa and τ+E ∈ Sb, with b = a+ 1. Since

b = x+ y = (m− 1) + y ≥ m− 1,

this implies

2m− 3 ≥ m+ n− 3 = a+ b = 2b− 1 ≥ 2(m− 1)− 1 = 2m− 3.

Therefore, we must have equality throughout both strings of inequalities, so

y = 0, m = n, b = m− 1, and a = m− 2.

(Since m = n, the desired contradiction can be obtained from [2, Thm. 3.12],
but, for completeness, we provide a direct proof.) Since (m − 1, 0) = (m −
1, y) = τ+ is not the terminal square, it must travel either north or east. We
consider these two possibilities individually.

Assume, for the moment, that (m−1, 0) travels east (to (0,m−1), because
m = n). Clearly, (0,m − 1) does not travel north (because H does not
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contain the cycle [(m − 1, 0)](EN)). Also, (0,m − 1) = τ+E is not the
terminal square (because it is not the initial square of the transpose-inverse
of H, by our assumption that the initial square is not as described). So
(0,m− 1) must travel east. Since (0,m− 1)N = (m− 1, 0) is not the initial
square (because our assumption that the initial square is not as described
implies (0,m − 1) = τ+E is not the initial square of the transpose of H),
we conclude from Proposition 2.13 that (m − 2, 0) = (0,m − 1)NE−1 also
travels east. And (1,m− 1) travels north, because it is not in the terminal
diagonal. So H contains the cycle

(0,m− 1)
E→ (1,m− 1)

N→ (m− 2, 0)
E→ (m− 1, 0)

E→ (0,m− 1).

This is a contradiction.
We may now assume that (m−1, 0) travels north. Since (m−1, 0)E = τ+E

is not the initial square, we conclude from Proposition 2.13 that (0,m−2) =
(m− 1, 0)EN−1 also travels north. By applying the same argument to the
transpose of H, we see that (0,m− 1) and (m− 2, 0) must travel east. Also,
(1,m − 1) travels north, because it is not in the terminal diagonal. So H
contains the cycle

(m−1, 0)
N2m−2

−→ (0,m−2)
N→ (0,m−1)

E→ (1,m−1)
N→ (m−2, 0)

E→ (m−1, 0).

This contradiction completes the proof of Case 1.

Case 2: Assume x < m − 1. Since (x, y) = τ+ is the southeasternmost
square in Sb, we must have y = 0 (otherwise, (x + 1, y − 1) is a square
in Sb is farther southeast), so b = x < m− 1. Since we know from the first
sentence of the proof that m − 2 ≤ b, we conclude that b = m − 2 (and
a = m+ n− 3− b = n− 1). Therefore

τ+ = (m− 2, 0), so τ+E = (m− 1, 0).

Note that (0, n− 1) cannot travel north (otherwise, H contains the cycle
[(m−1, 0)](N2n), since (0, n−1) is the only square of this cycle that is in the
terminal diagonal). Also, (0, n − 1) is not the terminal square (since (m −
1, 0) = τ+E is not the initial square of the inverse of H, by our assumption
that the initial square is not as described). Therefore (0, n− 1) must travel
east. Then, since (0, n − 1)N = (m − 1, 0) = τ+E is not the initial square,
we know that (m− 2, 0) = τ+ also travels east.

Since H cannot contain the cycle

(m− 1, 0)
N2n−1

−→ (0, n− 1)
E→ (1, n− 1)

N→ (m− 2, 0)
E→ (m− 1, 0),

we know that (1, n − 1) does not travel north. Therefore this square is
in the terminal diagonal, which means b = 1 + (n − 1) = n, so we have
a+ 1 = n = b = m− 2. Hence, we are in the exceptional case at the end of
the statement of the proposition. Therefore, (1, n − 1) is not the terminal
square of H (since (m − 2, 0) = τ+ is not the initial square of the inverse
of H). Since we have already seen that it does not travel north, we conclude
that (1, n− 1) travels east.
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Applying the argument of the preceding paragraph to the inverse ofH tells

us that (1, n−1) travels east in H̃. Taking the inverse, this means (m−2, 0)
travels east in H. Also, we know that (2, n − 1) travels north (because it
is not in the terminal diagonal), and we know that (m − 3, 0) travels east
(because (m− 3, 0)EN−1 = (1, n− 1) travels east and (m− 3, 0)E = τ+ is
not the initial square). Therefore, H contains the cycle

(m− 1, 0)
N2n−1

−→ (0, n− 1)
E2

→ (2, n− 1)
N→ (m− 3, 0)

E2

→ (m− 1, 0).

This is a contradiction. �

The above proposition usually allows us to assume that the initial square
of a hamiltonian cycle is τ+E (if all nonterminal diagonals travel north).
The following result finds the possible terminal squares in this case.

The proof of this proposition (and also Lemma 3.3) constructs hamil-
tonian paths in projective checkerboards of various sizes, with particular
initial squares and terminal squares. These paths are specified by stating
the initial square and a list of arcs to traverse, using the format of Nota-
tion 2.1. It would be tedious to formally prove that the specified walk visits
every square exactly once (and terminates at the desired square), but, in
each case, it should not be difficult for the reader to verify that this is true.
Illustrations of the hamiltonian paths are provided in order to facilitate this.

Proposition 3.2. Let

• m ≥ n ≥ 3,

• Sa ∪ Sb be a diagonal in Bm,n,

• τ+ be the southeasternmost square in Sb, and

• τ be any square in Sa ∪ Sb.
There is a hamiltonian path H from τ+E to τ in which all nonterminal
diagonals travel north if and only if τ is either (m−, a−m−) or (m, b−m)
(and τ = (m−, a−m−) if a = b), and a ≤ m− 2 ≤ b.
Proof. Let σa = (m−, a−m−) and σb = (m, b−m).

(⇒) Corollary 2.20(2) tells us that a ≤ m−2 ≤ b. (See the first paragraph
of the proof of Proposition 3.1.) This establishes one conclusion of the
proposition.

We now wish to show that τ is either σa or σb, and that τ = σa if a = b.
Assume the contrary.

Note that τ+ must travel north in H, since τ+E is the initial square (and
Bm,n does not have a hamiltonian cycle).

Case 1: Assume m is odd. Note that m− = m in this case (and we have
m − 1 −m = m). Since H cannot contain the cycle [(m, 0)](Nn), we know
that some square in this cycle does not travel north in H. This square must
be in the terminal diagonal, so it is either σa or σb. It is therefore not the
terminal square, so it must travel east.
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From the preceding paragraph, we see that the square σb must exist
in Bm,n, so b−m ≤ n− 1. Therefore

a−m+ 1 = (m+ n− 3)− b−m+ 1

≥ (m+ n− 3)− (m+ n− 1)−m+ 1

= 0.

Also,
a−m+ 1 ≤ b−m+ 1 ≤ (n− 1) + 1 = n,

so a−m+ 1 ≤ n− 1 unless a = b = m+ n− 1. But the alternative yields a
contradiction:

m+ n− 3 = a+ b = 2(m+ n− 1) = m+ 2n− 3 > m+ n− 3.

Therefore, the square (m− 1, a−m+ 1) exists (and is in Sa).
Suppose σb travels east. Since τ+E is the initial square, we see from

Corollary 2.15 that (m − 1, a −m + 1) travels east. If a < b, this implies
that H contains the cycle

σb
ENn−b+a+1

−→ (m− 1, a−m+ 1)
ENb−a−1

−→ σb.

On the other hand, if a = b, this implies that H contains the cycle

σb
ENn+1

−→ (m− 1, b−m+ 1)
ENn−1

−→ σb.

In either case, we have a contradiction.
We may now assume that σb travels north. So it must be σa that travels

east (and σa 6= σb, so a 6= b). From Corollary 2.15, we see that

(m− 1, a−m+ 1) travels east and (m+ 1, b−m− 1) travels north.

So H contains the cycle

σa
E→ (m+ 1, a−m)

Nb−a−1

−→ (m+ 1, b−m− 1)

Nn−b+a+2

−→ (m− 1, a−m+ 1)
E→ (m, a−m+ 1)

Nb−a−1

−→ σb
Nn−b+a

−→ σa.

This is a contradiction.

Case 2: Assume m is even. Note that m− = m−1 in this case (and we have
m− 1−m = m− 1). Since H does not contain the cycle [(m, 0)](N2n), we
know that some square in this cycle does not travel north. In other words,
there is a square (x, y) that does not travel north, such that x ∈ {m−1,m}.

Assume, for the moment, that b − m = n − 1. Then σb is the only
square that is in the intersection of the terminal diagonal with the cycle
[(m, 0)](N2n), so it must be σb that does not travel north. Since, by as-
sumption, σb is not the terminal square, we conclude that σb travels east.
Then Corollary 2.15 implies that (m− 2, 0) = σbNE

−1 also travels east. So
H contains the cycle

σb
E→ (m+ 1, n− 1)

N→ (m− 2, 0)
E→ (m− 1, 0)

N2n−1

−→ σb.

This is a contradiction.
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We may now assume b−m ≤ n− 2, so

a = (m+ n− 3)− b ≥ (m+ n− 3)− (n− 2 +m) = m− 1−m = m−.

Therefore Sa contains the square (m−, a−m−) = σa. Note that σa cannot
travel north. (Otherwise, Corollary 2.15 implies that σb also travels north,
contrary to the fact that at least one of these two squares does not travel
north.) Since, by assumption, σa is not the terminal square, we conclude
that σa travels east.

Since H does not contain the cycle [σa](E,N
n), we conclude that a 6= b

and σb does not travel north. Therefore σb travels east. Then Corollary 2.15
tells us that (m− 1, b−m+ 1) and every square in Sa all travel east. So H
contains the cycle

σb
E→ (m+ 1, b−m)

Nn−b+a+2

−→ (m− 2, a−m+ 2)

E→ (m− 1, a−m+ 2)
Nb−a−1

−→ (m− 1, b−m+ 1)

E→ (m, b−m+ 1)
Nn−b+a

−→ σa
E→ (m, a−m+ 1)

Nb−a−1

−→ σb.

This is a contradiction.

(⇐) We use (. . . )k to represent the concatenation of k copies of the se-
quence (. . . ). (For example, (N3, E)2 = (N,N,N,E,N,N,N,E).)

If σa exists (that is, if a ≥ m−), then we have the following hamiltonian
path Ha from τ+E to σa (see Figure 5):{

[τ+E]
(
(N2n−1, E)m

−
, Nn−1

)
if n is odd,

[τ+E]
(
(N2n−1, E)m

−
, N2n−1

)
if n is even.

Now assume σb exists (that is, b ≤ m+ n− 1) and a 6= b.
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Figure 5. Illustrative examples of the hamiltonian path Ha
from τ+E (•) to σa ( ). (The terminal diagonal is shaded.)
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• If m is odd, then we have the following hamiltonian path Hb from
τ+E to σb (see Figure 6):

[τ+E]
(
(N2n−1, E)b−n+1,

(N b−a−1, E,N2i−1, E,N2n+a−b−2i+1, E)m+n−b−1
i=1 ,

N b−a−1
)
.

• If m is even, then we have the following hamiltonian path Hb from
τ+E to σb (see Figure 7):

[τ+E]
(
(N2n−1, E)b−n+1,

(N b−a−1, E,N2i−1, E,N2n+a−b−2i+1, E)m+n−b−2
i=1 ,

N b−a−1, E,Nn+a−b, E,N b−a−1
)
. �

We conclude this section by finding the terminal square in the exceptional
case that is at the end of the statement of Proposition 3.1:

Lemma 3.3. Let τ be any square in Bm,m−2, with m ≥ 5. There is a
hamiltonian path H from (m− 2, 0) to τ in which all nonterminal diagonals
travel north if and only if τ = (m− 1,m− − 1).

Proof. Let n = m− 2, a = m− 3 = n− 1 and b = a+ 1 = n.
(⇒) Since the initial square is (m− 2, 0) = (a, 0)E, we know from Corol-

lary 2.14 that Sa is a terminal subdiagonal. Then the other part of the
terminal diagonal is Sm+n−3−a = Sb.

Since H does not contain the cycle [(m−1, 0)](N2n), we know that (0, n−
1) does not travel north. From Corollary 2.15, this implies that the terminal
square τ is somewhere in Sa, and that every square in Sb travels east.
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Figure 6. Illustrative examples of the hamiltonian path Hb
from τ+E (•) to σb ( ) when m is odd. (The terminal diag-
onal is shaded.)
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There are no inner diagonals (since b = a + 1), so, by Corollary 2.20(1),
we may let H′ be the hamiltonian path from (m − 2, 0) to τ in which all
nonterminal diagonals travel east.

Case 1: Assume m and n are odd. Since H′ does not contain the cycle
[(0, n)](Em), we know that (n, n) does not travel east. We may also assume
it is not the terminal square, for otherwise τ = (n, n) = (m − 1,m− − 1)
(since n = n− and n = m − 2), as desired. So (n, n) travels north. From
Corollary 2.15, we conclude that (n + 1, n − 1) also travels north. So H′
contains the cycle

(n, n)
N→ (n, n+ 1)

Em+1

→ (n+ 1, n− 1)
N→ (n+ 1, n)

Em−1

→ (n, n).

This is a contradiction.

Case 2: Assume m and n are even. Since H′ does not contain the cycle
[(0, n)](E2m), we know that (n, n−), (n, n), (n−, n), and (n−, n+ 1) do not
all travel east. From Corollary 2.15, we conclude that (n, n−) does not
travel east. We may also assume it is not the terminal square, for otherwise
τ = (n, n−) = (m − 1,m− − 1), as desired. So (n, n−) travels north. Then
H′ contains the cycle

(n, n−)
N→ (n, n)

Em

→ (n, n−).

This is a contradiction.
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Figure 7. Illustrative examples of the hamiltonian path Hb
from τ+E (•) to σb ( ) when m is even. (The terminal
diagonal is shaded.)
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(⇐) We have the following hamiltonian path from (m − 2, 0) to (m −
1,m− − 1) in Bm,n when n = m− 2 (see Figure 8):{

[(m− 2, 0)]
(
(E,N2n+1−2i, E2, N2i)ni=1, E,N

n
)

if m and n are odd,

[(m− 2, 0)](E,N2n+1−2i, E2, N2i)ni=1# if m and n are even

(where # indicates deletion of the last term of the sequence). �

4. Reduction to diagonals that travel north

Definition 4.1. A diagonal Si ∪ Sj of Bm,n with i ≤ j is said to be rowful
if n− 1 ≤ i ≤ j ≤ m− 2. (In other words, Si ∪Sj is rowful if Si and Sj each
contain a square from every row of the checkerboard.) The subdiagonals Si
and Sj of a rowful diagonal are also said to be rowful.

Lemma 4.4 below shows that if a rowful diagonal travels east, then it
basically just stretches the checkerboard to make it wider (see Figure 9).
Proposition 4.6 uses this observation to show that finding a hamiltonian path
between any two given squares of Bm,n reduces to the problem of finding
a hamiltonian path in a smaller checkerboard, such that all nonterminal
diagonals travel north.

Warning 4.2. The subdiagonal Sm−1 is not rowful, even though it contains
a square from every row of the checkerboard (if m ≥ n), because it is a
constituent of the diagonal Sn−2 ∪ Sm−1, which is not rowful.
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Figure 8. Illustrative examples (with m odd on the left,
and m even on the right) of the hamiltonian path from (m−
2, 0) (•) to (m − 1,m− − 1) ( ) in Bm,m−2, such that all
nonterminal diagonals travel north. (The terminal diagonal
is shaded.)
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Notation 4.3. For i, j ∈ N, define ∆i,j : N→ {0, 1, 2} by

∆i,j(k) =
∣∣{i, j} ∩ {0, 1, 2 . . . , k − 1}

∣∣.
Then, for each square (p, q) of Bm,n, we let

∆�i,j(p, q) =
(
p−∆i,j(p+ q), q

)
.

Lemma 4.4. Suppose

• τ0 and τ are two squares of Bm,n that are in the same diagonal, and

• Si∪Sj is a rowful diagonal of Bm,n that is not the diagonal containing
τ0 and τ .

Then there is a hamiltonian path H from τ0E to τ in Bm,n, such that Si∪Sj
travels east, if and only if there is a hamiltonian path H′ from

(
∆�i,j(τ0)

)
E

to ∆�i,j(τ) in Bm−∆i,j(m+n),n.
More precisely, if σ is any square of Bm,n that is not in Si ∪ Sj, then the

square ∆�i,j(σ) travels the same direction in H′ as the square σ travels in H.

Proof. Assume, for the moment, that j 6= i+ 1 (so SiE ∩ Sj = ∅). Define a
digraph B′ from Bm,n by

(1) replacing each directed edge σ → φ, such that φ ∈ Si ∪ Sj , with a
directed edge from σ to φE, and

(2) deleting all the squares in Si ∪ Sj (and the incident edges).
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Figure 9. The diagonals marked AA
AA, BB

BB, CC
CC, DD

DD are rowful
and travel east. Removing them yields a hamiltonian path
in a smaller checkerboard. (As usual, the terminal diagonal
is shaded.)
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It is clear that hamiltonian paths in B′ correspond to hamiltonian paths
in Bm,n such that Si ∪ Sj travels east. Since the digraph B′ is isomorphic
to Bm−∆i,j(m+n),n (via the map ∆�i,j), the desired conclusion is immediate.

If j = i+1, then the definition of B′ needs a slight modification: instead of
considering only a directed edge σ → φ, one needs to allow for the possibility

of a longer path. Namely, if there is a path σ → φ
E→ α with φ ∈ Si and

α ∈ Sj , then, instead of inserting the edge σ to φE (which cannot exist
in B′, because φE = α is one of the squares deleted in (2)), one inserts the
edge σ → αE, because H must proceed from σ to αE (via φ and α) if it
travels from σ to φ. �

When m = n, it was proved in [2, Prop. 3.3] that if some inner diagonal
travels east in a hamiltonian path, then all inner diagonals must travel east.
That is not always true when m 6= n, but we have the following weaker
statement:

Lemma 4.5 (cf. [2, Prop. 3.3]). Let H be a hamiltonian path in Bm,n with
m ≥ n. If D is any inner diagonal that travels east in H, then either D is
rowful, or all inner diagonals travel east.

Proof. By repeated application of Lemma 4.4, we may assume that all rowful
diagonals travel north. In this situation, we wish to show that if some inner
diagonal Si ∪ Sj travels east, then all inner diagonals travel east. Assume
j is minimal (or, equivalently, that i is maximal), such that Si ∪ Sj is an
inner diagonal that travels east, and i ≤ j. This means Si+1, Si+2, . . . , Sj−1

all travel north. From the first sentence of the proof, we know that Si ∪ Sj
is not rowful, so j ≥ m− 1. Therefore, we may let σ = (m− 1, j −m+ 1).
Since σ ∈ Sj and the first coordinate of σ is m − 1, we see that σEN−1 ∈
Si, so σE ∈ Si+1. So H contains the cycle [σ](E,N2(j−m)+3). This is a
contradiction. �

The following result essentially reduces the proof of Theorem 1.3 to the
special case considered in Section 3, where all nonterminal diagonals travel
north. (Although the diagonals travel east in conclusion (3b) of the following
proposition, passing to the transpose yields a hamiltonian path in which all
nonterminal diagonals travel north, because the checkerboard Bm′,n is square
in this case.)

Proposition 4.6. Assume

• Sa∪Sb is a diagonal of Bm,n, with m ≥ n, a ≤ b, and a+b 6= m+n−2,

• (x, y) is a square in Sa ∪ Sb,
• (p, q) is a square of Bm,n with p+ q − 1 ∈ {a, b},
• o = max

(
a− n+ 1, 0

)
,

• e ∈ N,

• e1 =

{
0 if p+ q − 1 = a,

e if p+ q − 1 = b,
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• e2 =

{
0 if x+ y = a,

e if x+ y = b,

• m′ = m− 2o− e.
There is a hamiltonian path H from (p, q) to (x, y) in Bm,n, such that ex-
actly e rowful inner subdiagonals travel east, if and only if

(1) 0 ≤ e ≤ max
(
min(m− n, b− a− 1), 0

)
,

(2) e is even if m+ n is even, and

(3) there is a hamiltonian path H′ from (p− o− e1, q) to (x− o− e2, y)
in Bm′,n, such that either

(a) all nonterminal diagonals travel north in H′, and m′ ≥ n, or
(b) all nonterminal diagonals travel east in H′, and m′ = n ≥ a+3.

Proof. (⇒) Note, first, that max
(
min(m− n, b− a− 1), 0

)
is the number of

rowful inner subdiagonals, so (1) is obvious. In addition, if m + n is even,
then every diagonal is the union of two distinct subdiagonals (which means
that the subdiagonals counted by e come in pairs), so e must be even. This
establishes (2).

By Corollary 2.20(1), we may assume that all outer diagonals travel east.
The definition of o implies that it is the number of rowful outer diagonals.
Furthermore, for any outer diagonal Si ∪Sj , we have i < a ≤ b < j (and, by
assumption, we have p+ q ∈ {a+ 1, b+ 1} and x+ y ∈ {a, b}). Therefore

∆i,j(p, q) = ∆i,j(x, y) = |{i}| = 1.

Therefore, by repeated application of Lemma 4.4, we conclude that there
is a hamiltonian path H′ from (p− o, q) to (x− o, y) in Bm−2o,n, such that
exactly e rowful inner subdiagonals travel east in H′.

The definitions of e1 and e2 imply that

e1 =
∑

∆i,j(p, q) and e2 =
∑

∆i,j(x, y),

where the sums are taken over all pairs (i, j) such that Si ∪ Sj is a rowful
diagonal that travels east (with i ≤ j). Therefore, repeated application
of Lemma 4.4 to H′ yields a hamiltonian path H′′ from (p − o − e1, q) to
(x− o− e2, y) in Bm−2o−e,n, such that no rowful inner diagonals travel east.

• If a ≤ n−1, then o = 0 and e ≤ m−n, som′ ≥ m−2(0)−(m−n) = n.

• If a ≥ n, then o = a− n+ 1 and e ≤ max(b− a− 1, 0) ≤ b− a, so

m′ = m− 2o− e ≥ m− 2(a− n+ 1)− (b− a)

= m+ 2n− 2− (a+ b) = n+ 1 > n.

In either case, we have m′ ≥ n.
The terminal diagonal of H′′ is Sa′ ∪ Sb′ , where{

a′ = a− o if x+ y = a,

b′ = b− o− e if x+ y = b.
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By definition, we have o ≥ a− n+ 1. Therefore:

• If x+ y = a, then

a′ = a− o ≤ a− (a− n+ 1) = n− 1,

so (0, n− 1) is not in an outer diagonal of H′.
• If x+ y = b, then

m′ − 2 = m− 2o− e− 2 = (m− o− e)− o− 2

≤ (m− o− e)− (a− n+ 1)− 2 = b′,

so (m′ − 2, 0) is not in an outer diagonal of H′.
In either case, Corollary 2.20(2) tells us that changing all of the outer di-
agonals of H′′ to travel north yields a hamiltonian path H′′′ with the same
endpoints. If no inner diagonal travels east in H′′, then all nonterminal
diagonals travel north in H′′′, so H′′′ is a hamiltonian path as described in
conclusion (3a).

We may now assume some inner diagonal Si∪Sj travels east in H′′. From
the definition of H′′, we know Si ∪ Sj is not rowful. So Lemma 4.5 tells us
that all inner diagonals travel east. Since we have already assumed (near
the start of the proof) that all outer diagonals travel east, this implies that
all nonterminal diagonals travel east.

Note that there are no rowful nonterminal diagonals in Bm′,n. (All inner
diagonals travel east, but, by the definition of H′′, no rowful diagonal travels
east.) Since, by the assumption of the preceding paragraph, some inner
diagonal travels east, this implies there must be at least one inner diagonal
that is not rowful. So a ≤ n− 3.

All that remains is to show that m′ = n. Suppose not, which means
n < m′. So Sn−1 ∪ Sm′−2 is a rowful diagonal, and n− 1 ≤ m′ − 2. This is
not the terminal diagonal Sa ∪ Sb, because a ≤ n− 3. This contradicts the
fact that there are no rowful nonterminal diagonals.

(⇐) We need to construct a hamiltonian path H from (p, q) to (x, y). (For
convenience, we will call a diagonal of Bm,n inner if it would be inner with
respect to such a hamiltonian path.) From (1), we know that e is no more
than the number of rowful inner subdiagonals, so we may choose a set E of
de/2e rowful inner diagonals. Furthermore:

(1) If e is even, we choose each diagonal in E to be the union of two
distinct subdiagonals.

(2) If e is odd, then (2) tells us that m + n is also odd, so we may
choose E to contain the diagonal S(m+n−3)/2 that consists of only
one subdiagonal.

Then the diagonals in E constitute precisely e subdiagonals.
Now, applying Lemma 4.4(⇐) (repeatedly) to the de/2e rowful inner di-

agonals in E and to all o rowful outer diagonals of Bm,n yields a hamiltonian
path H from (p, q) to (x, y) in Bm,n.
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Note that all rowful inner diagonals travel north in H′. (Namely, either
all nonterminal diagonals travel north, or m′ = n, in which case, there are
no rowful inner diagonals, so the claim is vacuously true.) Therefore, the
diagonals in E are the only rowful inner diagonals that travel east in H. So
exactly e rowful inner subdiagonals travel east, as desired. �

5. The general case

In this section, we utilize Proposition 4.6 and the results of Section 3 to
determine which pairs of squares in Bm,n are joined by a hamiltonian pathH,
and use this information to establish Theorems 1.3 and 1.4. First, Propo-
sition 5.2 sharply restricts the possibilities for the initial square (perhaps
after replacing H with its inverse). Then Propositions 5.4 to 5.6 determine
the terminal squares of the hamiltonian paths (if any) that start at each
of these potential initial squares. Theorems 1.3 and 1.4 are straightforward
consequences of these much more detailed results.

Proposition 4.6 will be employed several times in this section. To facilitate
this, we fix the following notation:

Notation 5.1. Given a hamiltonian path H in Bm,n (with m ≥ n ≥ 3), we
let:

• Sa ∪ Sb be the terminal diagonal of H, with a ≤ b,
• (x, y) be the terminal square of H (so (x, y) ∈ Sa ∪ Sb),
• (p, q) be the initial square of H (so p + q − 1 ∈ {a, b} by Corol-

lary 2.14),

• o = max
(
a− n+ 1, 0

)
,

• e be the number of rowful inner subdiagonals that travel east in H,

• e1 =

{
0 if p+ q − 1 = a,

e if p+ q − 1 = b,

• e2 =

{
0 if x+ y = a,

e if x+ y = b,

• m′ = m− 2o− e,
• p′ = p− o− e1,

• x′ = x− o− e2,

• H′ be the hamiltonian path from (p′, q) to (x′, y) in Bm′,n that is
provided by Proposition 4.6,

• Sa′ ∪ Sb′ be the terminal diagonal of H′, with a′ ≤ b′, so

a′ = a− o and b′ = b− o− e,
• τ+ be the southeasternmost square of Sb in Bm,n,

• τ ′+ be the southeasternmost square of Sb′ in Bm′,n.
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Proposition 5.2. Assume H is a hamiltonian path in Bm,n with m ≥ n ≥ 3.
Then the initial square of either H or the inverse of H is τ+E, unless all
inner diagonals travel east, in which case, the initial square (of either H
or H̃) might also be of the form (p, 0), with 1 ≤ p ≤ b(m+ n)/2c − 1.

Proof. We consider the two possibilities presented in Proposition 4.6(3) as
separate cases.

Case 1: Assume all nonterminal diagonals travel north in H′. From the
conclusion of Proposition 3.1, we see that there are three possibilities to
consider (perhaps after replacing H with its inverse, which also replaces H′
with its inverse).

Subcase 1.1: Assume the initial square of H′ is τ ′+E. Then the initial
square of H is τ+E.

Subcase 1.2: Assume m′ = n = a′ + 2 = b′ + 1 and the initial square
of the transpose of H′ is τ ′+E. Since τ ′+ = (b′, 0) = (m′ − 1, 0), we have
τ ′+E = (0, n− 1), so the initial square of H′ is the transpose of this, namely
(n− 1, 0). This means p′ = n− 1 and q = 0, so the initial square of H is

(p, q) = (p′ + o+ e1, q) = (n− 1 + o+ e1, 0),

which is obviously of the form (p, 0). (Also, since a′ 6= b′, we have a 6= b, so
a < (m + n − 3)/2, which means a ≤ b(m + n − 4)/2c = b(m + n)/2c − 2.
Therefore p = p + q = a + 1 ≤ b(m + n)/2c − 1.) Furthermore, since
a′ + 2 = b′ + 1, we have a′ + 1 = b′, so H′ has no inner diagonals. This
implies that every inner diagonal of H travels east.

Subcase 1.3: Assume a′ + 1 = b′ = n = m′ − 2 and the initial square
of H′ is (n, 0). Then e1 = 0 (since p′+ q−1 = n−0−1 = a′) and the initial
square of H is (n+ o, 0), which is of the form (p, 0). (Also, since a′ 6= b′, we
have p ≤ b(m+ n)/2c − 1, as in the preceding subcase.) Furthermore, since
a′+ 1 = b′, we know that H′ has no inner diagonals, so every inner diagonal
of H travels east.

Case 2: Assume all nonterminal diagonals travel east in H′, and m′ = n ≥
a′ + 3. Since m′ = n, we may let (H′)∗ be the transpose of H′. All nonter-
minal diagonals travel north in (H′)∗ (and n /∈ {a + 1, a + 2}), so Proposi-
tion 3.1 tells us (perhaps after replacing H with its inverse) that the initial
square (ι′)∗ of (H′)∗ is τ ′+E. We have

b′ = m′ + n− (a′ + 3) ≥ m′ + 0 = m′,

so τ ′+ = (m′ − 1, b′ −m′ + 1), which means τ ′+E = (0, a′ + 1). Therefore the
initial square of H′ is the transpose of this, namely (a′+ 1, 0). So the initial
square of H is (a′ + 1 + o, 0) = (a+ 1, 0), which is of the form (p, 0). (Also,
since a′ ≤ n−3, we have a′ 6= b′, so p ≤ b(m+n)/2c−1, as in the preceding
subcases.) �

It is important to note that the possibilities for the square τ+E can be
described quite precisely:
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Lemma 5.3. If H is a hamiltonian path in Bm,n, with m ≥ n, then either:

(1) τ+E = (0, q) with 1 ≤ q ≤ n− 1, or

(2) τ+E = (p, 0), with d(m+ n− 1)/2e ≤ p ≤ m− 1 (and m 6= n).

Thus, Proposition 5.2 tells us that the initial square of H is of the form
(0, q) or (p, 0) (perhaps after passing to the inverse). We will find all of the
corresponding terminal squares in Propositions 5.4 to 5.6.

Proposition 5.4. Assume ι = (0, q) with 1 ≤ q ≤ n − 1 and m ≥ n ≥ 3.
There is a hamiltonian path H in Bm,n from ι to (x, y) if and only if either

(1) x+ y = q − 1 ≥ n− and n− ≤ x ≤ m−, or

(2) x+ y = m+ n− q − 2 and m ≤ x ≤ m− n+ (and q ≥ n−).

Proof. (⇒) Note that a = a′ = q − 1,

b = m+ n− 3− a = m+ n− q − 2,

o = e1 = 0, and τ ′+ = (m′−1, n−q−1). Also note that, since a ≤ n−2, the
largest possible value of e is m−n. Proposition 4.6(3) gives us two cases to
consider.

Case 1: Assume all nonterminal diagonals travel north in H′. Proposi-
tion 3.2 tells us there are (at most) two possibilities for the terminal square
(x′, y).

Subcase 1.1: Assume x′ + y = a and x′ = b(m′ − 1)/2c. We have
x+ y = a = q − 1 and (since o = e2 = 0)

x = x′ = b(m′ − 1)/2c = b(m− e− 1)/2c.
The smallest possible value of e is 0, so x ≤ m−. Conversely, since the
largest possible value of e is m−n, we have x ≥ b(m−(m−n)−1)/2c = n−.
(Therefore q − 1 ≥ x ≥ n−.)

Subcase 1.2: Assume x′ + y = b′ 6= a and x′ = bm′/2c. We have

x+ y = b = m+ n− q − 2

and
x = x′ + e = bm′/2c+ e = b(m− e)/2c+ e = b(m+ e)/2c.

The smallest possible value of e is 0, so x ≥ m. Conversely, since the largest
possible value of e is m− n, we have

x ≤ b(2m− n)/2c = m− dn/2e = m− n+.

Therefore
m+ n− q − 2 = x+ y ≤ (m− n+) + (n− 1),

so q ≥ n+ − 1 = n−.

Case 2: Assume all nonterminal diagonals travel east in H′ and m′ = n ≥
a + 3. Since m′ = n, we may let (H′)∗ be the transpose of H′. Then, let

(̃H′)∗ be the inverse of (H′)∗, and note that all nonterminal diagonals travel

north in both (H′)∗ and (̃H′)∗. Since n /∈ {a+1, a+2}, Proposition 3.1 tells
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us that τ ′+E = (0, q) is the initial square of either (H′)∗ or (̃H′)∗. Since the
initial square of (H′)∗ is (q, 0) 6= (0, q), we conclude that τ ′+E is the initial

square of (̃H′)∗. The terminal square of this hamiltonian path is the inverse
(m′ − q − 1,m′ − 1) of the initial square of (H′)∗.

Also, we see from Proposition 3.2 that the terminal square of (̃H′)∗ is(
bm′/2c, b′ − bm′/2c

)
(since (m′ − q − 1) + (m′ − 1) = b′). Therefore, we

must have m′−q−1 = bm′/2c, so q = b(m′−1)/2c. Also, the terminal square

of H′ is the transpose of the inverse of the initial square (0, q) of (̃H′)∗, so

x′ = m′ − 1− q = bm′/2c and y = m′ − 1− 0 = m′ − 1.

This means that we are in precisely the situation considered in Subcase 1.2,
so the argument there verifies that the conditions of (2) are satisfied.

(⇐) We assume the notation of Proposition 4.6 (with p = 0, because the
initial square is (0, q)).

(1) Since q ≤ n− 1 and x+ y = q − 1, we have a = q − 1 = x+ y, o = 0,
and e1 = e2 = 0. Also, since

b(m− 0− 1)/2c = m− ≥ x and b(m− (m− n)− 1)/2c = n− ≤ x,
there exists e ∈ {0, 1, . . . ,m − n}, such that b(m − e − 1)/2c = x. (That
is, b(m′ − 1)/2c = x.) Furthermore, we may assume e is even if m + n is
even (because the two extremes 0 and m − n are even in this case). Then
Proposition 3.2 provides a hamiltonian path H′ in Bm′,n from (0, q) to (x, y),
such that all nonterminal diagonals travel north. So Proposition 4.6 yields
a hamiltonian path from (0, q) to (x, y) in Bm,n.

(2) We have x+ y = b, o = 0, e1 = 0, and e2 = e. Also, since

b(m+ 0)/2c = m ≤ x and b(m+ (m− n))/2c = m− n+ ≥ x,
there exists e ∈ {0, 1, . . . ,m− n}, such that b(m+ e)/2c = x. Furthermore,
we may assume e is even if m + n is even. Then Proposition 3.2 provides
a hamiltonian path H′ in Bm′,n from (0, q) to

(
b(m− e)/2c, y

)
= (x− e, y),

such that all nonterminal diagonals travel north. So Proposition 4.6 yields
a hamiltonian path from (0, q) to (x, y) in Bm,n. �

Proposition 5.5. Assume 1 ≤ p ≤ b(m+n)/2c− 1 and m ≥ n ≥ 3. There
is a hamiltonian path H in Bm,n from (p, 0) to (x, y), such that all inner
diagonals travel east, if and only if either

(1) x+ y = p− 1 ≥ n−, and y = n−, or

(2) x+ y = m+ n− p− 2, y = n, and n− ≤ p ≤ n− 1.

Proof. We prove only (⇒), but the argument can be reversed. We may as-
sume that all nonterminal diagonals travel east in H (see Corollary 2.20(1)).
Note that q = 0, a = p− 1, and e1 = 0. We consider two cases.

Case 1: Assume p ≤ n− 1. Then τ+ = (m− 1, n− p− 1) and τ+E = (0, p).
We have a = p− 1 ≤ n− 2, so e = m− n and o = 0, so

m′ = m− e = m− (m− n) = n.
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Therefore, we may let (H′)∗ be the transpose of H′. The initial square
of (H′)∗ is (0, p) = τ ′+E, and all nonterminal diagonals travel north in (H′)∗,
so Proposition 3.2 tells us there are only two possible terminal squares. (Note
that, since we are considering the transpose, the role of x in Proposition 3.2
is played by y here.)

Subcase 1.1: Assume x′ + y = a and y = b(m′ − 1)/2c. We have
x + y = x′ + y = a = p − 1 and y = n−. Since x + y = p − 1, this implies
p− 1 ≥ n−.

Subcase 1.2: Assume x′ + y = b′ and y = bm′/2c. We have

x+ y = b = m+ n− 3− a = m+ n− p− 2

and y = n. Since x+ y = m+n− p− 2 and x ≤ m− 1, this implies p ≥ n−.

Case 2: Assume p ≥ n. All inner diagonals are rowful (since a = p − 1 ≥
n − 1), and they all travel east in H (by assumption), so H′ has no inner
diagonals, which means b′ ≤ a′+1. Also, since p ≤ b(m+n)/2c−1, we have

a = p− 1 ≤
⌊
m+ n− 4

2

⌋
<
m+ n− 3

2
≤ b.

Thus a 6= b, so a′ 6= b′. Therefore b′ = a′ + 1.
Since a = p − 1 ≥ n − 1, we have o = a − n + 1 = p − n, which means

p′ = n, so a′ = n − 1. Since b′ = a′ + 1, this implies m′ = n + 2. Then
m′ 6= n, so Proposition 4.6(3) tells us that all nonterminal diagonals travel
north in H′. Then Lemma 3.3 tells us that y = b(m′ − 1)/2c − 1 = n−. We
also have x+ y = a = p− 1 (and p− 1 ≥ n− 1 ≥ n−). �

Proposition 5.6. Assume b(m + n)/2c ≤ p ≤ m − 1, and m > n ≥ 3.
There is a hamiltonian path H in Bm,n from (p, 0) to (x, y) if and only if
either

(1) x+y = m+n−p−2, m−p+n− ≤ x ≤ m−, and p 6= (m+n−1)/2,
or

(2) x+ y = p− 1 and m ≤ x ≤ p− n+, or

(3) x = m−, y = n−, and p = (m+ n− 1)/2 (so m+ n is odd).

Proof. (⇒) Note that b = p− 1, o = a−n+ 1 (since b ≤ m− 2), a′ = n− 1,
q = 0, e1 = e, and τ ′+ = (b′, 0). The largest possible value of e is 2p−m−n,
unless m + n is odd and p = (m + n − 1)/2, in which case the only value
of e is 0. As usual, Proposition 4.6(3) gives us two cases to consider.

Case 1: Assume all nonterminal diagonals travel north in H′. Proposi-
tion 3.2 tells us there are (at most) two possibilities for the terminal square
(x′, y) of H′.

Subcase 1.1: Assume x′ + y = a′ and x′ = b(m′ − 1)/2c. We have
x+ y = a = m+ n− 3− b = m+ n− p− 2. Also,

x = x′ + o+ e2 = b(m′ − 1)/2c+ o+ 0 = b(m− e− 1)/2c.
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The smallest possible value of e is 0, so x ≤ m−. Conversely, if p 6= (m+n−
1)/2, then the largest possible value of e is 2p−m− n, so x ≥ m− p+ n−.
However, if p = (m+ n− 1)/2, then e = 0, so x = m− and

y = a− x = m+ n− p− 2−m− = n−.

Subcase 1.2: Assume x′ + y = b′, x′ = bm′/2c, and a′ 6= b′. We have
x+ y = b = p− 1. Also, since a′ 6= b′, we have a 6= b, so b 6= (m+ n− 3)/2,
which means p 6= (m+ n− 1)/2. Furthermore,

x = x′ + o+ e = bm′/2c+ o+ e = b(m+ e)/2c.
The smallest possible value of e is 0, so x ≥ m. Conversely, since the largest
possible value of e is 2p−m− n, we have x ≤ p− n+.

Case 2: Assume all nonterminal diagonals travel east in H′, and m′ = n ≥
a′ + 3. To see that this is impossible, recall that the initial square of H is
(b+1, 0) = τ+E, so the initial square of H′ is (b′+1, 0) = τ ′+E. This implies
b′ + 1 ≤ m′ − 1. Therefore b′ ≤ m′ − 2. However, we must have b′ ≥ m′ − 1,
since m′ = n. This is a contradiction.

(⇐) We assume the notation of Proposition 4.6 (with q = 0, because the
initial square is (p, 0)). Note that b = p − 1 ≥ d(m + n − 3)/2e, so e1 = e
and o = a− n+ 1. Also, we have b− a− 1 = 2p−m− n.

(1) We have x+ y = a, so e2 = 0. Since

b(m− 0− 1)/2c = m− ≥ x
and

b(m− (2p−m− n)− 1)/2c = m− p+ n− ≤ x,
there is some e, such that 0 ≤ e ≤ 2p −m − n and b(m − e − 1)/2c = x.
Furthermore, we may assume e is even if m + n is even. Proposition 3.2
provides a hamiltonian pathH′ in Bm′,n from (p−o−e, 0) to (b(m′−1)/2c, y′),
for some y′, such that the terminal square is on the lower subdiagonal of
the terminal diagonal. So Proposition 4.6 yields a hamiltonian path from
(p, 0) to (b(m′ − 1)/2c+ o, y′) = (x, y′) in Bm,n. Since (x, y′) is on the lower
subdiagonal Sa of the terminal diagonal, we must have y′ = y.

(2) We have x+ y = b, so e2 = e. Since

b(m+ 0)/2c = m ≤ x
and

b
(
m+ (b− a− 1)

)
/2c = b

(
m+ (2p−m− n)

)
/2c = p− n+ ≥ x,

there is some e, such that 0 ≤ e ≤ b−a+1 and b(m+e)/2c = x. Furthermore,
we may assume e is even if m + n is even. Proposition 3.2 provides a
hamiltonian path H′ in Bm′,n from (p− o− e, 0) to (bm′/2c, y′), for some y′,
such that the terminal square is on the upper subdiagonal of the terminal
diagonal. So Proposition 4.6 yields a hamiltonian path from (p, 0) to (b(m′−
1)/2c + o, y′) in Bm,n. Since (x, y′) is on the upper subdiagonal Sb of the
terminal diagonal, we must have y′ = y.
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(3) Since b = p − 1 = (m + n − 3)/2, we have a = b. Let e = 0.
Proposition 3.2 provides a hamiltonian path H′ in Bm′,n from (p − o, 0) to
(b(m′−1)/2c, y′), for some y′, such that (b(m′−1)/2c, y′) is on the terminal
diagonal Sb−o. So Proposition 4.6 yields a hamiltonian path from (p, 0) to
(b(m′ − 1)/2c+ o, y′) = (m−, y′) = (x, y′) in Bm,n. Since (x, y′) must be on
the terminal diagonal Sb, we have y′ = y. �

Proof of Theorems 1.3 and 1.4. It is immediate from Proposition 2.4 that a
square σ is the initial square of a hamiltonian path if and only if its inverse
σ̃ is the terminal square of a hamiltonian path. Therefore, Theorems 1.3
and 1.4 are logically equivalent: the squares listed in one theorem are sim-
ply the inverses of the squares listed in the other. So it suffices to prove
Theorem 1.4. That is, we wish to show that the terminal squares (and the
inverses of the initial squares) listed in Propositions 5.4 to 5.6 combine to
give precisely the squares listed in Theorem 1.4.

Case 1: The inverses of the initial squares in Proposition 5.4. The set of
initial squares is { (0, q) | n− ≤ q ≤ n − 1 }. Their inverses form the set
{ (m− 1, y) | 0 ≤ y ≤ n− 1−n− }. Since n− 1−n− = n, these are precisely
the squares in Theorem 1.4(1).

Case 2: The inverses of the initial squares in Propositions 5.5 and 5.6. The
combined set of these initial squares is { (p, 0) | n− ≤ p ≤ m − 1 }. Their
inverses form the set { (x, n−1) | 0 ≤ x ≤ m−1−n− }. Since m−1−n− =
m− n+, these are precisely the squares in Theorem 1.4(2).

Case 3: The terminal squares in Proposition 5.5, and also 5.6(3) when m is
even and n is odd. The terminal squares in Proposition 5.5(1) have y = n−,
so x = p − 1 − n− = p − n+. Since p can take on any value from n+ to
b(m+ n)/2c − 1, this means that x ranges from 0 to

b(m+ n)/2c − 1− n+ =

{
m− 2 if m is even and n is odd,

m− 1 otherwise.

Thus, these are precisely the squares listed in Theorem 1.4(3), except that
the square (m−1, n−) is missing when m is even and n is odd. Fortunately,
in this case, the missing square is precisely the square listed in Proposi-
tion 5.6(3).

The terminal squares in Proposition 5.5(2) have y = n, so x ranges from

m+ n− (n− 1)− 2− n = m− n− 1

to

m+ n− n− − 2− n = m− 1.
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Thus, these are precisely the squares listed in Theorem 1.4(4).

Case 4: The terminal squares in Propositions 5.4(1) and 5.6(1), and also
5.6(3) when m is odd and n is even. The terminal squares in Proposi-
tion 5.4(1) are:

{ (x, y) | n− ≤ x ≤ m−, x+ y ≤ n− 2 }.
Since x ≥ n−, we have y ≤ n − 1. So these are the squares listed in
Theorem 1.4(5) that satisfy x+ y ≤ n− 2.

Now consider Proposition 5.6(1). Since x+y = m+n−p−2, the constraint
x ≥ m− p+ n−, can be replaced with

y ≤ m+ n− p− 2− (m− p+ n−) = n− n− − 2 = n− 1.

Also, the range d(m + n)/2e ≤ p ≤ m − 1 means that x + y is allowed to
take any value from n− 1 to

m+ n− d(m+ n)/2e − 2 = b(m+ n)/2c − 2.

Since x + y ≥ n − 1 and y ≤ n − 1, we have x ≥ (n − 1) − (n − 1) > n−.
Thus, the terminal squares in Proposition 5.4(2) are:

{ (x, y) | n− ≤ x ≤ m−, y ≤ n− 1, n− 1 ≤ x+ y ≤ b(m+ n)/2c − 2 }.
Therefore, the union of these two sets consists of precisely the squares

(x, y) listed in Theorem 1.4(5) that satisfy

x+ y ≤ b(m+ n)/2c − 2.

However, any square (x, y) listed in Theorem 1.4(5) satisfies x+ y ≤ m− +
n− 1. Since

b(m+ n)/2c − 2 ≥ m

2
+
n

2
− 5

2
≥ m− + (n− 1)− 1,

we conclude that in order for a square (x, y) of Theorem 1.4(5) to be missing
from the union, equality must hold throughout (so m is odd and n is even)
and we must have x = m− and y = n − 1 = n−. This is precisely the
square listed in Proposition 5.6(3). So these three sets together constitute
the squares listed in Theorem 1.4(5).

Case 5: The terminal squares in Proposition 5.4(2) and Proposition 5.6(2).
First, we consider Proposition 5.6(2). Since x + y = p − 1, the constraint
x ≤ p − n+ can be replaced with y ≥ n−. Also, since x + y ≤ m − 2, this
implies x ≤ m−2−n− < m−n+. Observe that there is no harm in replacing
the inequality x < m− n+ with x ≤ m− n+. (If x = m− n+, then y ≥ n−
implies x+ y ≥ m− 1, which contradicts x+ y ≤ m− 2.) Therefore, the set
of terminal squares is

{ (x, y) | m ≤ x ≤ m−n+, n− ≤ y ≤ n−1, b(m+n)/2c−1 ≤ x+y ≤ m−2 }.
We now consider Proposition 5.4(2). The constraint n− ≤ q ≤ n − 1

means that x + y is allowed to take any value from m − 1 to m + n − 1.
However, since x ≤ m − n+ and y ≤ n − 1, the upper bound is redundant.
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Also, since x ≤ m−n+ and x+y ≥ m−1, we must have y ≥ n−. Therefore,
the set of terminal squares is

{ (x, y) | m ≤ x ≤ m− n+, n− ≤ y ≤ n− 1, m− 1 ≤ x+ y }.
Therefore, the union of these two sets consists of precisely the squares

(x, y) listed in Theorem 1.4(6) that satisfy

x+ y ≥ b(m+ n)/2c − 1.

However, it is easy to see that every one of the squares satisfies this condition
(since x ≥ m and y ≥ n−), so we conclude that these two sets constitute
the squares listed in Theorem 1.4(6). �

Remark 5.7. The above results assume n ≥ 3. For completeness, we state,
without proof, the analogous results for n = 1, 2. It was already pointed
out in Remark 1.5 that every square is both an initial square and a terminal
square in these cases, but we now provide a precise list of the pairs of squares
that can be joined by a hamiltonian path.

(1) Assume n = 1. Then every square in the board is of the form
(∗, 0). There is a hamiltonian path from (p, 0) to (x, 0) if and only if
(p, 0) = (x, 0)E. More precisely, every hamiltonian path is obtained
by removing an edge from the hamiltonian cycle (Em).

(2) Assume m ≥ n = 2. Figure 10 lists the initial square (p, q) and
terminal square (x, y) of every hamiltonian path in Bm,2.

initial terminal
square square restrictions, if any
(p, q) (x, y)

A2 (p, q) (p, q)E−1

B2 (0, 1) (0, 0)

C2 (1, 0) (m− 2, 1)

D2 (m− 1, 1) (m− 1, 0)

E2 (0, 1) (m− 2, 1) m ≥ 3

F2 (1, 0) (m− 1, 0) m is odd

G2 (1, 0) (m− 1, 0) m ≥ 4

H2 (p, 1) (m− 2− p, 1) m ≥ 4 and m+ ≤ p ≤ m− 2

I2 (p, 0) (m− p, 0) m ≥ 4 and p ≥ m+ + 1

J2 (p, 0) (p− 2, 1) m ≥ 5 and p /∈ {1,m,m+ 1}r {m−}

Figure 10. Endpoints of the hamiltonian paths in Bm,n
when n = 2 (and m ≥ 2).
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