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DIAGONAL RECURRENCE RELATIONS FOR THE

STIRLING NUMBERS OF THE FIRST KIND

FENG QI

Abstract. The paper presents diagonal recurrence relations for the
Stirling numbers of the first kind and recovers three explicit formulas
for special values of the Bell polynomials of the second kind.

1. Introduction

In combinatorics, the Bell polynomials of the second kind, also known as
the partial Bell polynomials, denoted by Bn,k(x1, x2, . . . , xn−k+1) for n ≥
k ≥ 0, are defined by

(1.1) Bn,k(x1, x2, . . . , xn−k+1) =
∑

1≤i≤n,`i∈{0}∪N∑n
i=1 i `i=n∑n
i=1 `i=k

n!∏n−k+1
i=1 `i!

n−k+1∏
i=1

(xi
i!

)`i
;

see [1, p. 134, Theorem A]. For more information on the Bell polynomials
in general and Dyck paths in particular, please see the papers [7, 8] and the
references therein.

In mathematics, the Stirling numbers arise in a variety of combinatorics
problems and were introduced by James Stirling in the eighteenth century.
There are two different kinds of the Stirling numbers. The Stirling numbers
of the first kind, s(n, k), which are also called the signed Stirling numbers
of the first kind, can be generated by

(1.2)
[ln(1 + x)]k

k!
=

∞∑
n=k

s(n, k)
xn

n!
, |x| < 1.

The unsigned Stirling numbers of the first kind, (−1)n−ks(n, k), can be
interpreted as the number of permutations of {1, 2, . . . , n} with k cycles.
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number.

The author was partially supported by the National Natural Science Foundation of
China under Grant No. 11361038.

c©2016 University of Calgary

22



DIAGONAL RECURRENCE RELATIONS FOR STIRLING NUMBERS 23

Several “triangular,” “horizontal,” and “vertical” recurrence relations for
the Stirling numbers of the first kind s(n, k) are listed in [1, pp. 214–215,
Theorems A, B, and C] as

s(n, k) = s(n− 1, k − 1)− (n− 1)s(n− 1, k),

(n− k)s(n, k) =
∑

k+1≤`≤n
(−1)`−k

(
`

k − 1

)
s(n, `),

s(n, k) =
∑

k≤`≤n
s(n + 1, ` + 1)n`−k,

ks(n, k) =
∑

k−1≤`≤n−1
(−1)n−`−1

(
n

`

)
s(`, k − 1),

s(n + 1, k + 1) =
∑

k≤`≤n
(−1)`−1

n−∏̀
q=1

(` + q)s(`, k),

where, by convention, the empty product equals 1. Observe that the term
(−1)`−1 in the last recurrence relation was misprinted as (−1)n−1 in [1,
p. 215, Theorem B].

The aim of this paper is to present diagonal recurrence relations for the
Stirling numbers of the first kind s(n, k) based on an integral representation,
Faà di Bruno’s formula, and properties of the Bell polynomials of the second
kind Bn,k. Three explicit formulas for special values of the Bell polynomials
of the second kind Bn,k are recovered as by-products.

The main results are formulated in the following theorem.

Theorem 1.1. For n ≥ k ≥ 1, we have

Bn,k

(
1!

2
,
2!

3
, . . . ,

(n− k + 1)!

n− k + 2

)
= (−1)n−k

1

k!

k∑
m=1

(−1)m
(
k
m

)(
n+m
n

)s(n + m,m),

(1.3)

Bn,k(0, 1!, . . . ,(n− k)!)

= (−1)n−k
(
n

k

) k∑
m=0

(−1)m
(
k
m

)(
n−m
n−k

)s(n−m, k −m),
(1.4)

and

s(n, k) = (−1)k
n∑

m=1

(−1)m
k−1∑

`=k−m
(−1)`

(
n

`

)(
`

k −m

)
s(n− `, k − `)(1.5)

= (−1)n−k
k−1∑
`=0

(−1)`
(
n

`

)(
`− 1

k − n− 1

)
s(n− `, k − `),(1.6)
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where the conventions that
(
0
0

)
= 1,

(−1
−1
)

= 1, and
(
p
q

)
= 0 for p ≥ 0 > q are

adopted in Equation (1.6).

2. Proof of Theorem 1.1

Recently, three integral representations for the unsigned Stirling numbers
of the first kind (−1)n−ks(n, k) were discovered in [10]. The first among
them, [10, Theorem 2.1], states that, for 1 ≤ k ≤ n,

(2.1) s(n, k) =

(
n

k

)
lim
x→0

dn−k

dxn−k

{[∫ ∞
0

(∫ 1

1/e
txu−1 dt

)
e−u du

]k}
.

In combinatorial analysis, Faà di Bruno’s formula plays an important role
and may be described in terms of the Bell polynomials of the second kind
Bn,k by

(2.2)
dn

dtn
[f ◦ h(t)] =

n∑
k=1

f (k)(h(t))Bn,k

(
h′(t), h′′(t), . . . , h(n−k+1)(t)

)
;

see, for instance, [1, p. 139, Theorem C]. The Bell polynomials of the second
kind, Bn,k, satisfy

∞∑
n=k

Bn,k(x1, x2, . . . , xn−k+1)
tn

n!
=

1

k!

( ∞∑
m=1

xm
tm

m!

)k

,(2.3)

Bn,k

(
abx1, ab

2x2, . . . ,ab
n−k+1xn−k+1

)
= akbnBn,k(x1, xn, . . . , xn−k+1),

(2.4)

Bn,k

(
x2
2
,
x3
3
, . . . ,

xn−k+2

n− k + 2

)
=

n!

(n + k)!
Bn+k,k(0, x2, . . . , xn+1),(2.5)

where a and b are arbitrary complex numbers; see [1, pp. 133, 135–136] for
details.

Let

(2.6) h(x) =

∫ ∞
0

(∫ 1

1/e
txu−1 dt

)
e−u du.

It is clear that, for ` ∈ N,

h(`)(x) =

∫ ∞
0

[∫ 1

1/e
txu−1(ln t)` dt

]
u`e−u du

→
∫ ∞
0

[∫ 1

1/e

(ln t)`

t
dt

]
u`e−u du =

(−1)``!

` + 1

as x → 0. Setting f(v) = vk in Equation (2.2) and using the function
described in (2.6) to compute (2.1), we obtain

s(n, k) =

(
n

k

)
lim
x→0

n−k∑
m=1

f (m)(h(x))Bn−k,m
(
h′(x), . . . , h(n−k−m+1)(x)

)
(2.7)
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=



(
n

k

)
lim
x→0

k∑
m=1

f (m)(h(x))Bn−k,m
(
h′(x), . . . , h(n−k−m+1)(x)

)
,

n > 2k;(
n

k

)
lim
x→0

n−k∑
m=1

f (m)(h(x))Bn−k,m
(
h′(x), . . . , h(n−k−m+1)(x)

)
,

k ≤ n ≤ 2k

=



(
n

k

)
lim
x→0

k∑
m=1

f (m)(h(0))Bn−k,m
(
h′(0), . . . , h(n−k−m+1)(0)

)
,

n > 2k;(
n

k

)
lim
x→0

n−k∑
m=1

f (m)(h(0))Bn−k,m
(
h′(0), . . . , h(n−k−m+1)(0)

)
,

k ≤ n ≤ 2k

=



(
n

k

) k∑
m=1

k!

(k −m)!
Bn−k,m

(
− 1!

2
, . . .

. . . ,
(−1)n−k−m+1(n− k −m + 1)!

n− k −m + 2

)
, n > 2k;(

n

k

) n−k∑
m=1

k!

(k −m)!
Bn−k,m

(
− 1!

2
, . . .

. . . ,
(−1)n−k−m+1(n− k −m + 1)!

n− k −m + 2

)
, k ≤ n ≤ 2k

Taking xm = m!/(m + 1) in Equation (2.3) and using (1.2) give

∞∑
n=k

Bn,k

(
1!

2
,
2!

3
, . . . ,

(n− k + 1)!

n− k + 2

)
tn

n!
=

1

k!

( ∞∑
m=1

tm

m + 1

)k

=
(−1)k

k!

[
ln(1− t)

t
+ 1

]k
=

(−1)k

k!

k∑
i=0

(
k

i

)[
ln(1− t)

t

]i

= (−1)k
1

k!

k∑
i=0

(
k

i

)
i!

ti

∞∑
`=i

(−1)`s(`, i)
t`

`!

= (−1)k
k∑

i=0

1

(k − i)!

∞∑
`=i

(−1)`s(`, i)
t`−i

`!
.

This implies that

Bn,k

(
1!

2
,
2!

3
, . . . ,

(n− k + 1)!

n− k + 2

)
= n!(−1)k

k∑
i=0

(−1)n+i

(k − i)!

s(n + i, i)

(n + i)!
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= (−1)n−k
1

k!

k∑
i=0

(
k
i

)(
n+i
i

)(−1)is(n + i, i),

from here Equation (1.3) follows.
Substituting Equation (1.3) into (2.5) leads to

Bn+k,k(0, 1!, 2! . . . , n!) = (−1)n−k
(
n + k

k

) k∑
i=0

(−1)i
(
k
i

)(
n+i
i

)s(n + i, i),

which may be rewritten as Equation (1.4).
By virtue of Equation (2.4), we have

(2.8) Bn−k,m

(
−1

2
,
2

3
, . . . ,

(−1)n−k−m+1(n− k −m + 1)!

n− k −m + 2

)
= (−1)n−kBn−k,m

(
1!

2
,
2!

3
, . . . ,

(n− k −m + 1)!

n− k −m + 2

)
.

After substituting Equation (1.3) into (2.8), then into (2.7), and finally
simplifying, we find that when 2k ≥ n ≥ k ≥ 1,

(2.9) s(n, k) =
n−k∑
m=1

m∑
`=1

(−1)m+`

(
n

k − `

)(
k − `

m− `

)
s(n− k + `, `),

and when n > 2k > 0,

(2.10) s(n, k) =
k∑

m=1

m∑
`=1

(−1)m+`

(
n

k − `

)(
k − `

m− `

)
s(n− k + `, `).

Using the convention that s(n, k) = 0 for 0 ≤ n < k, we can unify Equations
(2.9) and (2.10) into

(2.11) s(n, k) =

n∑
m=1

m∑
`=1

(−1)m+`

(
n

k − `

)(
k − `

k −m

)
s(n− k + `, `),

which can be further formulated as Equation (1.5).
Interchanging the two sums in (1.5) and computing the inner sum yields

s(n, k) = (−1)k
k−1∑

`=k−n
(−1)`

(
n

`

)[ n∑
m=k−`

(−1)m
(

`

k −m

)]
s(n− `, k − `)

= (−1)n−k
k−1∑

`=k−n
(−1)`

(
n

`

)(
`− 1

k − n− 1

)
s(n− `, k − `),

which can be rewritten as Equation (1.6). The proof of Theorem 1.1 is
complete.
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3. Remarks

Remark 3.1. The recurrence relations (1.5) and (1.6) are neither “trian-
gular”, nor “vertical”, nor “horizontal” recurrence relations as listed in [1,
pp. 214–215, Theorems A, B, and C], so we call them “diagonal” recurrence
relations for the Stirling numbers of the first kind s(n, k).

Remark 3.2. Equation (1.5) is also true if we change the sum over m from
1 to k instead of from 1 to n.

Remark 3.3. From [11, Corollary 2.3], we may compute the Stirling num-
bers of the first kind, s(n, k), for 2 ≤ k ≤ n by the equation

s(n, k) = (−1)n−k(n− 1)!
n−1∑

`1=k−1

1

`1

`1−1∑
`2=k−2

1

`2
· · ·

`k−3−1∑
`k−2=2

1

`k−2

`k−2−1∑
`k−1=1

1

`k−1
.

This equation may be reformulated as

(−1)n−k
s(n, k)

(n− 1)!
=

n−1∑
m=k−1

1

m

[
(−1)m−(k−1)

s(m, k − 1)

(m− 1)!

]
.

Remark 3.4. By applying the integral representation described in Equa-
tion (2.1), some properties for the Stirling numbers of the first kind s(n, k),
including the logarithmic convexity with respect to n ≥ 0 of the sequence{

|s(n + k, k)|(
n+k
k

) }
n≥0

for any fixed k ∈ N (see [10, Corollary 5.1]), were established in [10, Sec-
tion 5].

Remark 3.5. It is well known in combinatorics that

(3.1) Bn,k(1!, 2!, . . . , (n− k + 1)!) =

(
n

k

)(
n− 1

k − 1

)
(n− k)!

for n ≥ k ≥ 1; see [1, p. 135, Theorem B]. We now recover this identity in
an alternative way.

In [14, Theorems 2.1 and 2.2], it was inductively obtained, for i ∈ N and
t 6= 0,

(3.2)
die1/t

dti
= (−1)ie1/t

1

t2i

i−1∑
k=0

ai,kt
k

and

(3.3)
die−1/t

dti
=

e−1/t

t2i

i−1∑
k=0

(−1)kai,kt
k,

where

ai,k =

(
i

k

)(
i− 1

k

)
k!
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for all 0 ≤ k ≤ i − 1 and an,n−k are the Lah numbers L(n, k); see also [13,
Equations (1.3) and (1.4)]. For more information on the Lah numbers
L(n, k), please refer to the recent references [2, 5, 6] and related references
therein.

From Equations (2.2) and (2.4), it follows that, for i ∈ N and t 6= 0,

die1/t

dti
= e1/t

i∑
k=1

Bi,k

(
−1!

t2
,

2!

t3
, . . . , (−1)i−k+1 (i− k + 1)!

ti−k+2

)

= (−1)ie1/t
i∑

k=1

1

ti+k
Bi,k(1!, 2!, . . . , (i− k + 1)!)

(3.4)

and

die−1/t

dti
= e−1/t

i∑
k=1

Bi,k

(
1!

t2
,−2!

t3
, . . . , (−1)i−k

(i− k + 1)!

ti−k+2

)

= e−1/t
i∑

k=1

(−1)kBi,k

(
−1!

t2
,

2!

t3
, . . . , (−1)i−k+1 (i− k + 1)!

ti−k+2

)

= e−1/t
i∑

k=1

(−1)i+k

ti+k
Bi,k(1!, 2!, . . . , (i− k + 1)!).

Combining Equation (3.2) with (3.4) and Equation (3.3) with the above
equation, respectively, shows

(−1)i
1

t2i

i−1∑
k=0

ai,kt
k = (−1)i

i∑
k=1

1

ti+k
Bi,k(1!, 2!, . . . , (i− k + 1)!)

and

1

t2i

i−1∑
k=0

(−1)kai,kt
k =

i∑
k=1

(−1)i+k

ti+k
Bi,k(1!, 2!, . . . , (i− k + 1)!).

As a result,

i∑
k=1

ai,i−kt
k =

i∑
k=1

Bi,k(1!, 2!, . . . , (i− k + 1)!)tk,

which implies

Bn,k(1!, 2!, . . . , (n− k + 1)!) = an,n−k

= (n− k)!

(
n

n− k

)(
n− 1

n− k

)
= (n− k)!

(
n

k

)(
n− 1

k − 1

)
.

Thus we have reestablished the identity described in Equation (3.1).

Remark 3.6. We can find Equation (1.3) in [15].
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Remark 3.7. In [3, 4, 12, 15] and the related references therein, several
special values of the Bell polynomials of the second kind Bn,k are discovered,
collected, and applied.

Remark 3.8. This paper is a revised version of the preprint [9].
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