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ON THE CHROMATIC NUMBER OF GENERALIZED

KNESER GRAPHS

AMIR JAFARI AND SHARAREH ALIPOUR

Abstract. For integers n, k, and i, the generalized Kneser graph K(n, k,
i), is a graph whose vertices are subsets of size k of the set {1, 2, ..., n}
and two vertices F and F ′ are connected if and only if their intersection
has less than i elements. In this paper we study the chromatic number of
this graph. Some new bounds and properties for this chromatic number
are derived.

1. Introduction

First let us fix some notation. For a finite setA, |A| denotes the cardinality

of A. We use
(
A
k

)
for the set of subsets of size k in A, we sometimes use

k-subset for its elements. Suppose that X is a finite set, |X| = n. For
integers k and i, the generalized Kneser graph K(n, k, i) is defined by

V (K(n, k, i)) =

(
X

k

)
,

E(K(n, k, i)) = {(F, F ′) : F, F ′ ∈
(
X

k

)
, |F ∩ F ′| < i}.

We use χ(n, k, i) for the chromatic number of K(n, k, i). Note that when
0 ≤ k ≤ n is not satisfied then V (K(n, k, i)) = ∅, and in such cases the
convention χ(n, k, i) = 0 is used. If i ≥ k, this graph is a complete graph
and χ(n, k, i) =

(
n
k

)
. Furthermore if i ≤ 0 or n ≤ 2k − i then K(n, k, i) is a

discrete graph with no edges and if 0 ≤ k ≤ n then χ(n, k, i) = 1.
Kneser [6] conjectured that when n ≥ 2k, the chromatic number of

K(n, k, 1) is equal to n−2k+ 2 . Lovász [8] and Bárány [2] proved this con-
jecture. Later, Tort [10] proved that χ(n, 3, 2) =

⌊
((n− 1)/2)2

⌋
for n ≥ 6.

Frankl [4] showed that for n > 10k3ek, χ(n, k, 2) = (k − 1)
(
s
2

)
+ rs, where

n = (k− 1)s+ r, 0 ≤ r < k− 1. In this paper we introduce some upper and
lower bounds for χ(n, k, i) and give an identity to compute them in some
new cases.
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2. Upper bounds

In this section we present some upper bounds for computing χ(n, k, i).

2.1. The first upper bound.

Lemma 2.1. For all integers n, k, and i, we have:

χ(n, k, i) ≤ χ(n− 1, k, i) + χ(n− 1, k − 1, i− 1).

Proof. If n < k, then all the terms in the inequality are zero. If k ≤ i, then
the inequality becomes the Pascal identity. If i ≤ 0, then all the terms in
the equality are 1. So we can assume that 0 < i < k ≤ n.

Let V1 be the set of vertices of K(n, k, i) corresponding to the k-subsets
containing 1. Obviously, it is possible to color the vertices of V1 with χ(n−
1, k−1, i−1) colors. This is consistent with the above convention χ(n, k, 0) =
1, since in case i = 1, V1 is a discrete graph which has chromatic number
1. Now V \ V1 is the set of vertices corresponding to the k-subsets not
containing 1, so we can color them with χ(n−1, k, i) new colors. So, we can
color all the vertices with χ(n− 1, k, i) +χ(n− 1, k− 1, i− 1) colors and the
lemma is proved. �

Using Lemma 2.1, we have:

Theorem 2.2. For all integers 0 < i ≤ k ≤ n , if n − 2k + 2i < i, then
χ(n, k, i) = 1 and otherwise,

χ(n, k, i) ≤
(
n− 2k + 2i

i

)
.

Proof. If n−2k+2i < i, then n < 2k− i and any two k-subsets of {1, . . . , n}
have at least i elements in common and hence K(n, k, i) is a discrete graph
with chromatic number 1. Now we prove the theorem by induction on n.
The case n = 1 is trivial. If n−2k+2i = i, then n = 2k−i and one sees that
K(n, k, i) is discrete and the chromatic number is 1 and

(
n−2k+2i

i

)
= 1. Now

suppose n− 2k+ 2i > i, then (n− 1)− 2k+ 2i ≥ i and (n− 1)− 2(k− 1) +

2(i− 1) ≥ i so by the inductive hypothesis χ(n− 1, k, i) ≤
(
n−2k+2i−1

i

)
and

χ(n− 1, k− 1, i− 1) ≤
(
n−2k+2i−1

i−1
)
. Notice that these inequalities also hold

when n = k or i = 1. Now the theorem follows from the previous lemma
and the Pascal identity. �

The following proposition gives a generalization of Lemma 2.1.

Proposition 2.3. For any integer 1 ≤ m < i,

χ(n, k, i) ≤
m∑
j=0

χ(n−m, k − j, i− j)
(
m

j

)
.

Proof. Let Y ⊂ X be a proper subset of X and |Y | = m. For j = 0, . . . ,m,
let Vj ⊂ V be the set of vertices such that their corresponding k-subsets
have exactly j elements of Y . For each subset of size j inside Y , the vertices
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of Vj which contain that subset can be colored with χ(n −m, k − j, i − j)
colors. Since, we have

(
m
j

)
subsets of size j inside Y , the vertices of Vj can

be colored with χ(n −m, k − j, i − j)
(
m
j

)
colors. Adding these, we have a

method for coloring all the vertices and hence, the proposition is proved. �

Using Lemma 2.1, we compute an upper bound for χ(n, 4, 3).

Lemma 2.4. For n > 4, we have χ(n, 4, 3) ≤ n3/12 +O(n2).

Proof. Lemma 2.1 implies the following inequalities

χ(n, 4, 3) ≤ χ(n− 1, 4, 3) + χ(n− 1, 3, 2),

χ(n− 1, 4, 3) ≤ χ(n− 2, 4, 3) + χ(n− 2, 3, 2),

...

χ(6, 4, 3) ≤ χ(5, 4, 3) + χ(5, 3, 2).

We sum both sides of the inequalities, so we have

χ(n, 4, 3) ≤ χ(5, 4, 3) + χ(5, 3, 2) +

n−1∑
m=6

χ(m, 3, 2).

According to [10] we know that χ(m, 3, 2) =
⌊
((m− 1)/2)2

⌋
for m ≥ 6. We

also know that χ(5, 4, 3) = 1 and χ(5, 3, 2) = 3, so

χ(n, 4, 3) ≤ 4 +
n−1∑
m=6

⌊
(
m− 1

2
)
2
⌋
.

This yields, if n is even,

χ(n, 4, 3) ≤ (n− 2)(n− 1)(n)

12
− n(n− 2)

8
− 3,

and if n is odd,

χ(n, 4, 3) ≤ (n− 1)(n− 2)(n− 3)

12
+

(n− 1)(n− 3)

8
− 3.

�

By generalizing Lemma 2.4 we have the following Proposition.

Proposition 2.5. For all integers 2 < k + 1 < n,

χ(n, k + 1, k) ≤ nk

2.k!
+O(nk−1).

Proof. The proof is by induction on k. We know that χ(n, 3, 2) = n2/4 +
O(n). Suppose that χ(n, k + 1, k) ≤ nk/(2.k!) + O(nk−1), we prove that
χ(n, k + 2, k + 1) = nk+1/(2.(k + 1)!) +O(nk).
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According to Lemma 2.1, we have the following inequalities,

χ(n, k + 2, k + 1) ≤ χ(n− 1, k + 2, k + 1) + χ(n− 1, k + 1, k),

χ(n− 1, k + 2, k + 1) ≤ χ(n− 2, k + 2, k + 1) + χ(n− 2, k + 1, k),

...

χ(k + 3, k + 2, k + 1) ≤ χ(k + 2, k + 2, k + 1) + χ(k + 2, k + 1, k).

So, if we sum these inequalities, we get

χ(n, k + 2, k + 1) ≤ nk+1

2.(k + 1)!
+O(nk).

�

2.2. The relation between Turán problem and χ(n, k, i). Let t(n, k, i)
be the minimum number of i-element subsets of X, |X| = n, such that any
k-subset of X contains at least one of them. The determination of t(n, k, i)
is known as Turán’s problem. It is easily seen that χ(n, k, i) ≤ t(n, k, i).
Frankl [4] has conjectured that for i ≥ 2 and n ≥ n0(k, i), one has

χ(n, k, i) = t(n, k, i).

He has also claimed the following:

χ(n, k, i) = (1 + o(1))t(n, k, i).

Turán’s problem [11] is well known and there are many results about it.
Turán himself calculated t(n, k, 2) to be χ(n, k, 2) for n > n0(k). Chung and
Lu [3] showed that

lim
n→∞

t(n, 4, 3)(
n
3

) ≤ 3 +
√

17

12
= 0.593592 . . . .

Also, the asymptotic value of t(n, 4, 3) is conjectured in [11] as follows:

lim
n→∞

t(n, 4, 3)(
n
3

) =
5

9
.

Kostochka [7] gave several different constructions which achieve the con-
jectured asymptotic value for t(n, 4, 3). According to Frankl, χ(n, 4, 3) =
(1 +o(1))t(n, 4, 3). So, for the family of examples given by Kostochka [7] we
should have, χ(n, 4, 3) = (1+o(1))

(
n
3

)
5/9. On the other hand by Proposition

2.4, we have χ(n, 4, 3) ≤ n3/12 +O(n2). This is in contradiction to Frankl’s
claim.

2.3. The second upper bound. In this subsection we give another upper
bound for χ(n, k, i) for all 1 < i < k < n, which is a generalization of the
method used in [4].
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Proposition 2.6. Let q = dk/(i− 1)e− 1 and n = qs+ r, where 0 ≤ r < q,
then

χ(n, k, i) ≤ (q − r)
(
s

i

)
+ r

(
s+ 1

i

)
.

Proof. Suppose that we partition the elements of X into q − r subsets of
size s and r subsets of size s + 1. Let I be the set of all subsets of size i
from each of these q subsets. Then, |I| = (q − r)

(
s
i

)
+ r
(
s+1
i

)
. We consider

a color for each of the elements of I. We claim that any k-subset A of X
contains at least one of the elements of I. Because otherwise A contains at
most i− 1 elements of each of these q partitions, so it has at most q(i− 1)
elements, but since q = dk/(i− 1)e − 1, this number is less than k which is
a contradiction. Therefore, we can color the vertices of K(n, k, i) with one
of the elements of I that they contain. �

3. An Inequality

We also have the following inequality which in some cases gives us better
upper bounds.

Theorem 3.1. For any 0 < i < k < n,

χ(n+ 2, k + 1, i) ≤ χ(n, k, i).

Proof. We give a coloring of K(n+2, k+1, i) with χ(n, k, i) colors. First, to
any (k+1)-subset A of {1, .., n+2}, we associate a k-subset A′ of {1, 2, .., n}
as follows: If A does not contain both of n+1 and n+2, then A′ is obtained
by deleting the largest element of A. Otherwise, A′ is obtained by deleting
both n + 1 and n + 2 and adding the largest element from {1, 2, .., n} that
does not belong to A. We claim that for any pair of (k+1)-subsets A and B
of {1, 2, ..., n+ 2}, |A′ ∩B′| ≤ |A ∩B|. Then by giving A the color of A′ we
give an example of coloring K(n+2, k+1, i) with χ(n, k, i) colors. To prove
our claim, if neither of A and B contain both n + 1 and n + 2, then since
A′ ⊆ A and B′ ⊆ B, the claim is obvious. If both A and B contain both
n+1 and n+2 then since we delete two common elements and add only one
element, the claim follows. Now suppose A contains n+ 1 and n+ 2 and B
contains exactly one of n+1 and n+2. Since one common element is deleted
and only one new element is added the claim follows. Finally, we consider
the case where A contain both n + 1 and n + 2 and B contains neither of
them. If the largest element in B is inside A, since that common element is
deleted and only one element is added in A′, the claim follows. Otherwise,
the largest element in B is not in A and therefore the new element added
in A′ will not be in B′, so the last case for proving our claim is settled. �

Using this inequality we have the following upper bounds:

χ(2k, k, 2) ≤ χ(6, 3, 2) = 6.

This upper bound is the same as the one obtained from Theorem 2.2.

χ(2k + 1, k, 2) ≤ χ(7, 3, 2) = 9.
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Note that if we use Theorem 2.2 the obtained upper bound will be 10.
Finally if we use the computation of χ(n, 3, 2) in [10] and this theorem, we
have:

χ(2k + i, k, 2) ≤ χ(i+ 6, 3, 2) =

⌊(
i+ 5

2

)2
⌋
.

4. Duality

In this section we present an equality which helps us to find the exact
value or improve the upper bounds for some special cases of χ(n, k, i).

Theorem 4.1. For 0 < i < k < n,

χ(n, k, i) = χ(n, n− k, n− 2k + i).

Proof. First, we recall the following easy observation about k-subsets of X.
If A and B are two k-subsets of X such that |A ∩B| < i, then |Ac ∩Bc| <
n−2k+i, where Ac and Bc are the complements of A and B in X. Therefore,
sending a k-subset A of X to the (n − k)-subset Ac of X will provide an
isomorphism between K(n, k, i) and K(n, n− k, n− 2k+ i) and hence, they
have the same chromatic numbers. �

Using this equality we can improve some upper bounds and also compute
the exact chromatic number of some special cases, for example:

χ(n, n− 3, n− 4) = χ(n, 3, 2) =

⌊
(
n− 1

2
)
2
⌋
.

This yields χ(7, 4, 3) = 9 and also by Theorem 3.1 for i ≥ 0

χ(7 + 2i, 4 + i, 3) ≤ 9.

5. Lower bounds

5.1. A lower bound from topology. In this section we present a lower
bound for χ(n, k, i). Our proof is similar to the topological method used by
Greene in [5, 9].

Theorem 5.1. For 0 < i < k < n

n− 2k + 2i ≤ χ(n, k, i).

Proof. Let d = n−2k+2i−1 and take n generic points on the d-dimensional
sphere Sd. This means that no d+1 of these points lie on a hyperplane that
contains the origin. Assume we can color all the k-subsets of these n points
with d colors. For 1 ≤ j ≤ d, let Uj be the open set of points x ∈ Sd

such that there is a k-subset of color j such that at least k − i+ 1 elements
of it lie in the open hemisphere with center x. Notice that Uj can not
contain two antipodal points. Otherwise we would have two k-subsets of
color j such that each of them has at least k − i+ 1 elements in one of two
disjoint hemispheres, so their intersection has at most i−1 elements which is
impossible. If we define Ud+1 = Sd \ (∪dj=1Uj) then Sd = U1∪U2∪ ...∪Ud+1
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and according to Borsuk-Ulam theorem [1] one of the Uj ’s should contain
two antipodal points. This has to be Ud+1 which means there are two
disjoint open hemispheres each of which contain at most k − i points and
therefore the remaining at least n− 2(k − i) = d+ 1 points should lie on a
hyperplane that contains the origin. This contradicts the genericity of our
chosen points. �

5.2. Lower bound using independence number. The independence
number of a graph G, α(G), is defined to be the maximum number of ver-
tices of G that are pairwise disconnected. Obviously, for coloring G, at least
we need n/α(G) colors where n is the number of vertices of G, i.e.⌈

n

α(G)

⌉
≤ χ(G).

Using this, we compute the independence number of K(n, k, i) to give a
lower bound for χ(n, k, i). According to [?], we have

Theorem 5.2. The independence number of K(4m, 2m, 2) is

1

2

((
4m

2m

)
−
(

2m

m

)2
)
.

By Theorem 5.1 and Theorem 2.2 we have,

4 ≤ χ(2k, k, 2) ≤ 6.

While using Theorem 5.2 we have,

5 ≤ χ(8, 4, 2) ≤ 6.

This gives a better bound than Theorem 5.1. Using a computer, we have
computed the exact value of χ(8, 4, 2) to be 6. Stirling’s formula implies

that the independence number of K(4m, 2m, 2) is asymptotic to
(
4m
2m

)
/2, so

the lower bound will become 3 which is worse than the bound found using
topology. We have the following conjecture for χ(2k, k, 2),

Conjecture. For any k ≥ 3 we have, χ(2k, k, 2) = 6.

6. Conclusion and open problems

In this paper we have presented some new results on the chromatic number
of generalized Kneser graphs. We have given some new upper and lower
bounds. Also, we have given some new inequalities and also some other
equalities which help us to improve the bounds and compute the exact value
for some special cases. We conjecture that some of these inequalities can
become equalities.
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