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DECOMPOSITION OF THE COMPLETE BIPARTITE

GRAPH WITH A 1-FACTOR REMOVED INTO PATHS

AND STARS

JENQ-JONG LIN AND HUNG-CHIH LEE

Abstract. Let Pk denote a path on k vertices, and let Sk denote a star
with k edges. For graphs F , G, and H, a decomposition of F is a set of
edge-disjoint subgraphs of F whose union is F . A (G,H)-decomposition
of F is a decomposition of F into copies of G and H using at least
one copy of each. In this paper, necessary and sufficient conditions for
the existence of the (Pk+1, Sk)-decomposition of the complete bipartite
graph with a 1-factor removed are given.

1. Introduction

Let F , G, and H be graphs. A decomposition of F is a set of edge-
disjoint subgraphs of F whose union is F . A G-decomposition of F is a
decomposition of F into copies of G. If F has a G-decomposition, we say
that F is G-decomposable and write G|F . A (G,H)-decomposition of F is a
decomposition of F into copies of G and H using at least one copy of each.
If F has a (G,H)-decomposition, we say that F is (G,H)-decomposable and
write (G,H)|F .

For positive integers m and n, Km,n denotes the complete bipartite graph
with parts of sizes m and n. A k-path, denoted by Pk, is a path on k vertices.
A k-star, denoted by Sk, is the complete bipartite graph K1,k. A k-cycle,
denoted by Ck, is a cycle of length k. A spanning subgraph H of a graph
G is a subgraph of G with V (H) = V (G). A 1-factor of G is a spanning
subgraph of G in which each vertex of G is incident with exactly one edge.
Note that Km,n has a 1-factor if and only if m = n. Letting I be a 1-factor
of Kn,n, we use Kn,n − I to denote Kn,n with a 1-factor removed.

For positive integers l and n with 1 ≤ l ≤ n, the crown Cn,l is the
bipartite graph with bipartition (A,B), where A = {a0, a1, . . . , an−1} and
B = {b0, b1, . . . , bn−1}, and edge set {aibj : 1 ≤ j − i ≤ l with arithmetic
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modulo n}. Note that Kn,n is isomorphic to Cn,n, and Kn,n−I is isomorphic
to Cn,n−1 for any 1-factor I.

For a graph G and a positive integer λ, we use λG to denote the multi-
graph obtained from G by replacing each edge e by λ edges each having the
same endpoints as e.

Decomposition into isomorphic paths has attracted considerable atten-
tion; see [7, 9, 10, 11, 14, 15, 18, 22, 25, 31, 33, 35]. Decomposition into
k-stars has also attracted a fair share of interest; see [8, 20, 32, 34, 36, 37].
Abueida and Daven introduced the study of (G,H)-decompositions in [1],
they investigated the (Kk, Sk)-deomposition of the complete graph Kn in
[2], and the (C4, E2)-decomposition of several graph products in [3], where
E2 denotes the 4-vertex graph having two disjoint edges. Abueida and
O’Neil [5] settled the existence problem for (Ck, Sk−1)-decomposition of the
complete multigraph λKn for k ∈ {3, 4, 5}. Priyadharsini and Muthusamy
[23, 24] gave necessary and sufficient conditions for the existence of (Gn, Hn)-
decompositions of λKn and λKn,n, where Gn, Hn ∈ {Cn, Pn, Sn−1}.

Recently, Lee [16], Lee [17], Lee and Lin [19], and Lin [21] established nec-
essary and sufficient conditions for the existence of (Ck, Sk)-decompositions
of the complete bipartite graph, the complete bipartite multigraph, the com-
plete bipartite graph with a 1-factor removed, and the multicrown, respec-
tively. Abueida and Lian [4] and Beggas et al. [6] investigated (Ck, Sk)-
decompositions of the complete graph Kn and λKn, giving some necessary
or sufficient conditions for such decompositions to exist.

The problem of decomposing a graph into copies of a graph G and copies
of a graph H where the number of copies of G and the number of copies of
H are essential is also studied. Shyu gave necessary and sufficient conditions
for the decomposition of Kn into paths and stars (both with 3 edges) [26],
paths and cycles (both with k edges where k = 3, 4) [27, 28], and cycles and
stars (both with 4 edges) [30]. Shyu [29] also gave necessary and sufficient
conditions for the decomposition of Km,n into paths and stars both with 3
edges. Jeevadoss and Muthusamy [12, 13] considered the decomposability
of Km,n, Kn and λKm,n into paths and cycles having k edges, giving some
necessary or sufficient conditions for such decompositions to exist.

In this paper, we consider the existence of (Pk+1, Sk)-decompositions of
the complete bipartite graph with a 1-factor removed, giving necessary and
sufficient conditions.

2. Preliminaries

In this section we first collect some needed terminology and notations,
and then present some results which are useful for our discussions to follow.

Let G be a graph. The degree of a vertex x of G, denoted by degG x,
is the number of edges incident with x. The vertex of degree k in Sk is
the center, and any vertex of degree 1 is an endvertex of Sk. For S ⊆
V (G) and T ⊆ E(G), we use G[S] and G− T to denote the subgraph of G
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induced by S and the subgraph of G obtained by deleting T , respectively.
When G1, G2, . . . , Gt are graphs, not necessarily disjoint, we write G1∪G2∪
· · · ∪ Gt or

⋃t
i=1Gi for the graph with vertex set

⋃t
i=1 V (Gi) and edge set⋃t

i=1E(Gi). When the edge sets are disjoint, G =
⋃t
i=1Gi expresses the

decomposition of G into G1, G2, . . . , Gt. Let v1v2 . . . vk and (v1, v2, . . . , vk)
denote the k-path and the k-cycle through vertices v1, v2, . . . , vk in order,
respectively, and let (x; y1, y2, . . . , yk) denote the k-star with center x and
endvertices y1, y2, . . . , yk.

For the edge aibj in Cn,n−1, the label of aibj is j − i (mod n). For ex-
ample, in C8,7 the labels of a1b6 and a7b3 are 5 and 4, respectively. Note
that each vertex of Cn,n−1 is incident with exactly one edge with label i for
i ∈ {1, 2, . . . , n− 1}. Let H be a subgraph of Cn,n−1 (recall that Cn,n−1 has
partite sets {a0, a1, . . . , an−1} and {b0, b1, . . . , bn−1}). When r is a nonneg-
ative integer, H+r denotes the graph with vertex set {ai : ai ∈ V (H)}∪
{bj+r : bj ∈ V (H)} and edge set {aibj+r : aibj ∈ E(H)}, and H + r
denotes the subgraph of Cn,n−1 with vertex set {ai+r : ai ∈ V (H)}∪
{bj+r : bj ∈ V (H)} and edge set {ai+rbj+r : aibj ∈ E(H)} where the
subscripts of a and b are taken modulo n. In particular, H+0 = H + 0 = H.

The following results are essential to our proof.

Proposition 2.1 ([20]). Let λ, k, l, and n be positive integers. λCn,l is
Sk-decomposable if and only if k ≤ l and λnl ≡ 0 (mod k).

Proposition 2.2 ([37]). For integers m and n with m ≥ n ≥ 1, the graph
Km,n is Sk-decomposable if and only if m ≥ k and{

m ≡ 0 (mod k) if n < k,

mn ≡ 0 (mod k) if n ≥ k.

Proposition 2.3 ([31]). Let k, l, and n be positive integers. Cn,l is Pk+1-
decomposable if and only if nl ≡ 0 (mod k) and

k ≤


2 if l = n = 2,

2n− 3 if l is even and n ≥ 3,

l if l is odd.

Proposition 2.4 ([22]). Let k, m, and n be positive integers. There exists
a Pk+1-decomposition of Km,n if and only if mn ≡ 0 (mod k) and one of
the following cases occurs.

Case k m n Conditions

1 even even even k ≤ 2m, k ≤ 2n, not both equalities
2 even even odd k ≤ 2m− 2, k ≤ 2n
3 even odd even k ≤ 2m, k ≤ 2n− 2
4 odd even even k ≤ 2m− 1, k ≤ 2n− 1
5 odd even odd k ≤ 2m− 1, k ≤ n
6 odd odd even k ≤ m, k ≤ 2n− 1
7 odd odd odd k ≤ m, k ≤ n
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3. Main results

Since Kn,n − I is isomorphic to the crown Cn,n−1 for any 1-factor I of
Kn,n, Kn,n − I is replaced by Cn,n−1 in the following discussions. We first
give necessary conditions for a (Pk+1, Sk)-decomposition of Cn,n−1.

Lemma 3.1. If Cn,n−1 is (Pk+1, Sk)-decomposable, then k ≤ n − 1 and
n(n− 1) ≡ 0 (mod k).

Proof. Since the maximum size of a star in Cn,n−1 is n−1, k ≤ n−1 is neces-
sary. Since Cn,n−1 has n(n−1) edges and each subgraph in a decomposition
has k edges, k must divide n(n− 1). �

We now show that the necessary conditions are also sufficient. Since
Pk+1 = Sk for k = 1, 2, the result holds for k = 1, 2 by Proposition 2.1.
So it remains to consider the case k ≥ 3. The proof is divided into cases
n ≥ 2k + 1, n = 2k, 2k − 1 ≥ n ≥ k + 2, and n = k + 1, which are treated
in Lemmas 3.2, 3.3, 3.7, and 3.8, respectively.

Lemma 3.2. Let k and n be positive integers with n ≥ 2k+1. If n(n−1) ≡
0 (mod k), then Cn,n−1 is (Pk+1, Sk)-decomposable.

Proof. Let n− 1 = qk + r where q and r are integers with 0 ≤ r < k. From
the assumption n ≥ 2k + 1, we have q ≥ 2. Note that

Cn,n−1 = Cqk+r+1,qk+r

= C(q−1)k+1,(q−1)k ∪ Ck+r+1,k+r ∪K(q−1)k,k+r ∪Kk+r,(q−1)k.

Cleary, |E(C(q−1)k+1,(q−1)k)|, |E(K(q−1)k,k+r)|, and |E(Kk+r,(q−1)k)| are mul-
tiples of k. Thus, (k + r + 1)(k + r) ≡ 0 (mod k) from the assumption
n(n − 1) ≡ 0 (mod k). By Propositions 2.1 and 2.2, C(q−1)k+1,(q−1)k to-
gether with K(q−1)k,k+r and Kk+r,(q−1)k are Sk-decomposable. By Propo-
sition 2.3, Ck+r+1,k+r is Pk+1-decomposable. Hence, Cn,n−1 is (Pk+1, Sk)-
decomposable. �

Lemma 3.3. If k is an integer with k ≥ 3, then the crown C2k,2k−1 is
(Pk+1, Sk)-decomposable.

Proof. Let A1 = {a0, a1, . . . , ak−1}, A2 = {ak, ak+1, . . . , a2k−1}, B = {b0,
b1, . . . , b2k−1}, and let Gi = C2k,2k−1[Ai ∪ B] for i = 1, 2. Note that
C2k,2k−1 = G1∪G2. It is easy to check that G1 is isomorphic to G2 with iso-
morphism f such that f(ai) = ai+k and f(bj) = bj+k where the subscripts of
a and b are taken modulo 2k for i ∈ {0, 1, . . . , k−1} and j ∈ {0, 1, . . . , 2k−1}.
Hence it is sufficient to show that G1 is (Pk+1, Sk)-decomposable. We dis-
tinguish two cases according to the parity of k.
Case 1 : k is even.

Define a (k + 1)-path P = b1a0b2a1 . . . bk/2ak/2−1bk/2+1. Note that
P+2i, where the subscripts of b are taken modulo 2k−1, is a (k+1)-path
for i ∈ {0, 1, . . . , k − 2}. We can see that P ∪ P+2 ∪ P+4 ∪ · · · ∪ P+2(k−2)
is the subgraph of G1 consisting of all edges between {a0, a1, . . . , ak/2−1}
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and B − {b2k−1}. Moreover, P+2i + k/2, where the subscripts of b are
taken modulo 2k− 1, is also a (k+ 1)-path, and G1[A1 ∪B−{b2k−1}] =⋃k−2
i=0 (P+2i ∪ (P+2i + k/2)). Since (b2k−1; a0, a1, . . . , ak−1) is a k-star, G1

is (Pk+1, Sk)-decomposable.
Case 2 : k is odd.

Observe that G1 = Ck,k−1 ∪Kk,k. Since k − 1 is even and k ≤ 2k − 3
for k ≥ 3, Proposition 2.3 implies that Ck,k−1 is Pk+1-decomposable.
By Proposition 2.2, Kk,k is Sk-decomposable. Hence G1 is (Pk+1, Sk)-
decomposable.

�

Before plunging into the proof of the next case, we need the following
results.

Proposition 3.4 ([20]). Let {a0, a1, . . . , an−1, b0, b1, . . . , bn−1} be the vertex
set of the multicrown λCn,l. If there exist positive integers p and q so that
q < p ≤ l and λnq ≡ 0 (mod p), then there exists a spanning subgraph G of
λCn,l with degG bj = λq for 0 ≤ j ≤ n− 1, and G has an Sp-decomposition.

The following is trivial.

Lemma 3.5. If W is a graph consisting of a k-cycle C and a t-star S such
that S has its center in C and has at least one endvertex not in C, then W
can be decomposed into a (k + 1)-path and a t-star.

Lemma 3.6. Let k and r be positive integers with r < k − 1 and let t =
(r+ 1)r/k. Suppose that t is an integer with t ≥ 2. If G is a bipartite graph
with bipartition (A1, B1 ∪B′), where |A1| = |B1| = k and |B′| = r + 1 such
that G[A1∪B1] = Ck,k−1 and G[A1∪B′] = Kk,r+1, then G can be decomposed
into t− 1 copies of Pk+1 and k copies of Sk with centers at distinct vertices
in A1, and r + 1 copies of Sk−r with centers at distinct vertices in B′.

Proof. Let A1 = {a0, a1, . . . , ak−1}, B1 = {b0, b1, . . . , bk−1}, and B′ = {bk,
bk+1, . . . , bk+r}. Letting F = G[A1∪B1], H = G[A1∪B′], and p = b(t−1)/2c.
Define a 2k-cycle C = (b1, a0, b2, a1, . . . , bk−1, ak−2, b0, ak−1), and for even t
define a (k + 1)-path P according to the parity of k as follows:

P =

{
b2p+1a0b2p+2a1 . . . b2p+k/2ak/2−1b2p+k/2+1 if k is even,

b2p+1a0b2p+2a1 . . . b2p+(k+1)/2a(k−1)/2 if k is odd.

It is easy to check that C,C+2, . . . , C+2(p−1) and P , where the subscripts of
b are taken modulo k, are edge-disjoint in F .

Define a subgraph W of F as follows:

W =

{⋃p−1
i=0 C+2i if t is odd,⋃p−1
i=0 C+2i ∪ P if t is even.

Since C2k can be decomposed into two copies of Pk+1 and 2p = t−1 for odd
t as well as 2p+ 1 = t− 1 for even t, W can be decomposed into t− 1 copies
of Pk+1. When t is odd, degF−E(W ) ai = k − 2p− 1. When t is even,
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degF−E(W ) ai =


k − 2p− 3 if i ∈ {0, 1, . . . , dk/2e − 2},
k − 2p− δ if i = dk/2e − 1,

k − 2p− 1 if i ∈ {dk/2e, dk/2e+ 1, . . . , k − 1},
where

δ =

{
2 if k is odd,

3 if k is even.

For i = 0, 1, . . . , k− 1, let Xi = (F −E(W ))[{ai} ∪B1]. Clearly Xi is a star
with center ai, and for odd t, we have Xi = Sk−2p−1, and for even t, we have

Xi =


Sk−2p−3 if i ∈ {0, 1, . . . , dk/2e − 2},
Sk−2p−δ if i = dk/2e − 1,

Sk−2p−1 if i ∈ {dk/2e, dk/2e+ 1, . . . , k − 1}.
In the remainder of the proof, we will show that H can be decomposed

into r+1 copies of Sk−r with centers in B′, k copies of S2p+1 with centers in
A1 for odd t, dk/2e−1 copies of S2p+3 with centers in {a0, a1, . . . , adk/2e−2},
and a copy of S2p+δ with center adk/2e−1, together with k − dk/2e copies of
S2p+1 with centers in {adk/2e, adk/2e+1, . . . , ak−1} for even t.

Now we show the required star-decomposition of H by orienting the edges
of H. For any vertex x of H, the outdegree deg+H x (indegree deg−H x, respec-
tively) of x in an orientation of H is the number of arcs incident from (to,
respectively) x. It is sufficient to show that there exists an orientation of H
such that

deg+H bj = k − r,(3.1)

where j ∈ {k, k + 1, . . . , k + r}, and for odd t

deg+H ai = 2p+ 1(3.2)

where i ∈ {0, 1, . . . , k − 1}, and for even t

(3.3) deg+H ai =


2p+ 3 if i ∈ {0, 1, . . . , dk/2e − 2},
2p+ δ if i = dk/2e − 1,

2p+ 1 if i ∈ {dk/2e, dk/2e+ 1, . . . , k − 1}.
We first consider the edges oriented outward from A1 according to the par-

ity of t. When t is odd, the edges aibk+(2p+1)i, aibk+(2p+1)i+1, . . . ,
aibk+(2p+1)i+2p are all oriented outward from ai for i ∈ {0, . . . , k−1}. Let β =
(2p+3)(dk/2e−1). When t is even, the edges aibk+(2p+3)i, aibk+(2p+3)i+1, . . . ,
aibk+(2p+3)i+2p+2 for i ∈ {0, 1, . . . , dk/2e − 2}, the edges adk/2e−1bk+β,
adk/2e−1bk+β+1, . . . , adk/2e−1 bk+β+2p+δ−1, and the edges aibk+(2p+1)i+β+2p+δ,
aibk+(2p+1)i+β+2p+δ+1, . . . , aibk+(2p+1)i+β+4p+δ for i ∈ {dk/2e, dk/2e+ 1, . . . ,
k− 1} are all oriented outward from ai. The subscripts of b are taken mod-
ulo r + 1 in the set of numbers {k, k + 1, . . . , k + r}. Note that for odd
t we orient 2p + 1 edges from each ai, and for even t we orient at most



DECOMPOSITION INTO PATHS AND STARS 69

2p + 3 edges from ai. Since 2p + 1 ≤ 2(t − 1)/2 + 1 = t < r for odd t and
2p+ 3 ≤ 2(t− 2)/2 + 3 = t+ 1 < r+ 1 for even t, this guarantees that there
are enough edges for the above orientation. Finally, the edges which are not
oriented yet are all oriented from B′ to A1.

From the construction of the orientation, it is easy to see that (3.2) and
(3.3) are satisfied, and for all bw, bw′ ∈ B′, we have

| deg−H bw − deg−H bw′ | ≤ 1.(3.4)

So, we only need to check (3.1).
Since deg+H bw + deg−H bw = k for bw ∈ B′, it follows from (3.4) that

| deg+H bw − deg+H bw′ | ≤ 1 for bw, bw′ ∈ B′. Further, note that for odd t,

k−1∑
i=0

deg+H ai = (2p+ 1)k = (2(t− 1)/2 + 1)k = tk,

and for even t,

k−1∑
i=0

deg+H ai = (2p+ 3)(dk/2e − 1) + 2p+ δ + (2p+ 1)(k − dk/2e)

= (2p+ 1)(k − 1) + 2(dk/2e − 1 + p) + δ

=

{
(2p+ 1)(k − 1) + 2((k + 1)/2− 1 + p) + 2 if k is odd,

(2p+ 1)(k − 1) + 2(k/2− 1 + p) + 3 if k is even,

= (2p+ 2)k

= (2(t− 2)/2 + 2)k

= tk

Thus

k+r∑
w=k

deg+H bw = |E(Kk,r+1)| −
k−1∑
i=0

deg+H ai

= k(r + 1)− tk
= k(r + 1)− r(r + 1)

= (k − r)(r + 1)

Therefore, deg+H bw = k − r for bw ∈ B′. This proves (3.1). Hence there
exists the required decomposition D of H. Let X ′i be the star with center at
ai in D for i ∈ {0, 1, . . . , k− 1}. Clearly Xi +X ′i is a k-star. This completes
the proof. �

Lemma 3.7. Let k and n be integers with 3 ≤ k < n − 1 < 2k − 1. If
n(n− 1) ≡ 0 (mod k), then Cn,n−1 is (Pk+1, Sk)-decomposable.

Proof. Let n− 1 = k+ r. From the assumption k < n− 1 < 2k− 1, we have
0 < r < k − 1. Let t = (r + 1)r/k. Since k | n(n− 1), we have k | (r + 1)r,
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which implies that t is a positive integer. The proof is divided into two parts
according to the value of t.
Case 1 : t = 1.

When t = 1, k = (r + 1)r. This implies that k is even, and hence
k ≥ 4; in turn, we have r ≥ 2. Let A0 = {a0, a1, . . . , ak/2−1} and
B0 = {b0, b1, . . . , bk/2−1}. We distinguish two subcases.
Subcase 1.1 : r = 2.

For r = 2, k = (r + 1)r = 6, and n = k + r + 1 = 9. Let H1 =
C9,8[A0∪B] and H2 = C9,8[(A−A0)∪B]. Clearly C9,8 = H1∪H2. Let
P = b1a0b2a1b3a2b4, we have degH1−E(P ) ai = 6 for i ∈ {0, 1, 2}. This

implies H1 − E(P ) is S6-decomposable. Let Fi = (bi; a3, a4, . . . , a8)
for i ∈ {0, 1} and Gj = (aj ; b2, . . . , bj−1, bj+1, bj+2, . . . , b8) for j ∈
{3, 4, . . . , 8}. It is easy to check that Fi and Gj are 6-stars and
{F0, F1, G3, G4, . . . , G8} is an S6-decomposition of H2.

Subcase 1.2 : r ≥ 3.
We will show that Cn,n−1 can be decomposed into copies of Sk

together with a copy of Pk+1. Let D0 = Cn,n−1[A0 ∪ B0], D1 =
Cn,n−1[(A − A0) ∪ B0], and D2 = Cn,n−1[A ∪ (B − B0)]. Clearly
Cn,n−1 = D0∪D1∪D2. Note that D0 is isomorphic to Ck/2,k/2−1, D1

is isomorphic to Kk/2+r+1,k/2, and D2 is isomorphic to Ck/2+r+1,k/2+r

∪Kk/2,k/2+r+1. Let C = (a0, bk/2−1, a1, b0, a2, b1, . . . , ak/2−1, bk/2−2)
and D = D0 − E(C). Trivially C is a k-cycle in D0 and D =
Ck/2,k/2−3. Note that 0 < r − 2 < k/2 − r − 1 < k/2 − 3 for r ≥ 3
and (k/2)(r − 2) = r(r + 1)(r − 2)/2 = r(k/2 − r − 1). Therefore,
Proposition 3.4 implies that there exists a spanning subgraph X of D
such that degX bj = r−2 for 0 ≤ j ≤ k/2−1, and X has an Sk/2−r−1-
decomposition D with |D | = r. Furthermore, each Sk/2−r−1 has its
center in A0 since degX bj = r − 2 < k/2 − r − 1. Suppose that the
centers of (k/2−r−1)-stars in D are ai1 , ai2 , . . . , air . Let S(w) be the
(k/2− r− 1)-star with center aiw in D and let Y = D−E(X) ∪D1.
Note that degY bj = (k/2 − 3 − (r − 2)) + (k/2 + r + 1) = k for
0 ≤ j ≤ k/2− 1. Hence Y is Sk-decomposable. For w ∈ {1, 2, . . . , r},
define S′(w) = D2[{aiw} ∪ (B − B0)] and Z = D2 − E(

⋃r
w=1 S

′(w)).
Clearly S′(w) is a (k/2 + r + 1)-star with center aiw in D2, and
S(w) ∪ S′(w) is a k-star. Moreover, degZ bj = k + r − r = k for
k/2 ≤ j ≤ k + r. Thus Z is Sk-decomposable. By Lemma 3.5,
C ∪S(1)∪S′(1) can be decomposed into a (k+ 1)-path and a k-star.

Case 2 : t ≥ 2.
Let A1 = {a0, a1, . . . , ak−1}, A′ = {ak, ak+1, . . . , ak+r}, B1 = {b0,

b1, . . . , bk−1}, and B′ = {bk, bk+1, . . . , bk+r}. Moreover, let G = Cn,n−1
[A1∪B], F = Cn,n−1[A

′∪B1], and H = Cn,n−1[A
′∪B′]. Clearly Cn,n−1 =

G∪F ∪H. Note that G is isomorphic to Ck,k−1∪Kk,r+1, H is isomorphic
to Cr+1,r, and F is isomorphic to Kr+1,k, Proposition 2.2 implies that
Kr+1,k is Sk-decomposable. By Lemma 3.6, there exists a decomposition
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D of G into t− 1 copies of Pk+1, k copies of Sk with centers at distinct
vertices in A1, and r + 1 copies of Sk−r with centers at distinct vertices
in B′. For i ∈ {k, k+ 1, . . . , k+ r}, let Zi be the (k− r)-star with center
bi in D and let Z ′i = H[A′ ∪ bi]. Trivially Zi ∪ Z ′i = Sk. Thus Cn,n−1 is
(Pk+1, Sk)-decomposable.

�

Lemma 3.8. If k is an integer with k ≥ 3, then Ck+1,k is (Pk+1, Sk)-
decomposable.

Proof. The proof is divided into two parts according to the parity of k.
Case 1 : k is odd.

Note that Ck+1,k can be decomposed into Ck,k−1 and two copies of Sk.
Since k−1 is even and k ≤ 2k−3 for k ≥ 3, Proposition 2.3 implies that
Ck,k−1 is Pk+1-decomposable. Hence Ck+1,k is (Pk+1, Sk)-decomposable.

Case 2 : k is even.
Let A1 = {a0, a1, . . . , ak/2−1} and A2 = {ak/2, ak/2+1, . . . , ak}. For

i ∈ {1, 2}, define Gi = Ck+1,k[Ai ∪ B]. Clearly Ck+1,k = G1 ∪ G2. We
will show that G1 is Pk+1-decomposable and G2 is Sk-decomposable.

Let P = b1a0b2a1 . . . bk/2ak/2−1bk/2+1. Note that P is a (k + 1)-path
containing all of the edges incident with the vertices in A1, having labels
1 and 2. Furthermore, P+2i is a (k + 1)-path containing all of the edges
incident with the vertices in A1, having labels 2i + 1 and 2i + 2 for
i = 0, 1, 2, . . . , k/2−1. Hence P ∪P+2∪P+4∪· · ·∪P+(k−2) is a subgraph
of Ck+1,k consisting of all edges incident with the vertices in A1, that is,⋃k/2−1
i=0 P+2i = G1. Therefore, G1 is Pk+1-decomposable.
Let Qi = G2[{ai}∪B] for i ∈ {k/2, k/2 + 1, . . . , k}. It is easy to check

that Qi = Sk and
⋃k
i=k/2Qi = G2. Hence G2 is Sk-decomposable. This

completes the proof.
�

Now, we are ready for the main result. It is obtained by combining
Lemmas 3.1–3.3, 3.7, and 3.8.

Theorem 3.9. Let k and n be positive integers and let I be a 1-factor of
Kn,n. The graph Kn,n−I is (Pk+1, Sk)-decomposable if and only if k ≤ n−1
and n(n− 1) ≡ 0 (mod k).
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