Contributions to Discrete Mathematics

Volume 13, Number 2, Pages 63-73
ISSN 1715-0868

DECOMPOSITION OF THE COMPLETE BIPARTITE GRAPH WITH A 1-FACTOR REMOVED INTO PATHS AND STARS

JENQ-JONG LIN AND HUNG-CHIH LEE

Abstract

Let P_{k} denote a path on k vertices, and let S_{k} denote a star with k edges. For graphs F, G, and H, a decomposition of F is a set of edge-disjoint subgraphs of F whose union is F. A (G, H)-decomposition of F is a decomposition of F into copies of G and H using at least one copy of each. In this paper, necessary and sufficient conditions for the existence of the (P_{k+1}, S_{k})-decomposition of the complete bipartite graph with a 1-factor removed are given.

1. Introduction

Let F, G, and H be graphs. A decomposition of F is a set of edgedisjoint subgraphs of F whose union is F. A G-decomposition of F is a decomposition of F into copies of G. If F has a G-decomposition, we say that F is G-decomposable and write $G \mid F$. A (G, H)-decomposition of F is a decomposition of F into copies of G and H using at least one copy of each. If F has a (G, H)-decomposition, we say that F is (G, H)-decomposable and write $(G, H) \mid F$.

For positive integers m and $n, K_{m, n}$ denotes the complete bipartite graph with parts of sizes m and n. A k-path, denoted by P_{k}, is a path on k vertices. A k-star, denoted by S_{k}, is the complete bipartite graph $K_{1, k}$. A k-cycle, denoted by C_{k}, is a cycle of length k. A spanning subgraph H of a graph G is a subgraph of G with $V(H)=V(G)$. A 1-factor of G is a spanning subgraph of G in which each vertex of G is incident with exactly one edge. Note that $K_{m, n}$ has a 1-factor if and only if $m=n$. Letting I be a 1-factor of $K_{n, n}$, we use $K_{n, n}-I$ to denote $K_{n, n}$ with a 1-factor removed.

For positive integers l and n with $1 \leq l \leq n$, the crown $C_{n, l}$ is the bipartite graph with bipartition (A, B), where $A=\left\{a_{0}, a_{1}, \ldots, a_{n-1}\right\}$ and $B=\left\{b_{0}, b_{1}, \ldots, b_{n-1}\right\}$, and edge set $\left\{a_{i} b_{j}: 1 \leq j-i \leq l\right.$ with arithmetic

[^0]modulo $n\}$. Note that $K_{n, n}$ is isomorphic to $C_{n, n}$, and $K_{n, n}-I$ is isomorphic to $C_{n, n-1}$ for any 1-factor I.

For a graph G and a positive integer λ, we use λG to denote the multigraph obtained from G by replacing each edge e by λ edges each having the same endpoints as e.

Decomposition into isomorphic paths has attracted considerable attention; see $[7,9,10,11,14,15,18,22,25,31,33,35]$. Decomposition into k-stars has also attracted a fair share of interest; see [8, 20, 32, 34, 36, 37]. Abueida and Daven introduced the study of (G, H)-decompositions in [1], they investigated the (K_{k}, S_{k})-deomposition of the complete graph K_{n} in [2], and the $\left(C_{4}, E_{2}\right)$-decomposition of several graph products in [3], where E_{2} denotes the 4 -vertex graph having two disjoint edges. Abueida and O'Neil [5] settled the existence problem for $\left(C_{k}, S_{k-1}\right)$-decomposition of the complete multigraph λK_{n} for $k \in\{3,4,5\}$. Priyadharsini and Muthusamy [23,24] gave necessary and sufficient conditions for the existence of $\left(G_{n}, H_{n}\right)$ decompositions of λK_{n} and $\lambda K_{n, n}$, where $G_{n}, H_{n} \in\left\{C_{n}, P_{n}, S_{n-1}\right\}$.

Recently, Lee [16], Lee [17], Lee and Lin [19], and Lin [21] established necessary and sufficient conditions for the existence of $\left(C_{k}, S_{k}\right)$-decompositions of the complete bipartite graph, the complete bipartite multigraph, the complete bipartite graph with a 1 -factor removed, and the multicrown, respectively. Abueida and Lian [4] and Beggas et al. [6] investigated (C_{k}, S_{k})decompositions of the complete graph K_{n} and λK_{n}, giving some necessary or sufficient conditions for such decompositions to exist.

The problem of decomposing a graph into copies of a graph G and copies of a graph H where the number of copies of G and the number of copies of H are essential is also studied. Shyu gave necessary and sufficient conditions for the decomposition of K_{n} into paths and stars (both with 3 edges) [26], paths and cycles (both with k edges where $k=3,4$) [27, 28], and cycles and stars (both with 4 edges) [30]. Shyu [29] also gave necessary and sufficient conditions for the decomposition of $K_{m, n}$ into paths and stars both with 3 edges. Jeevadoss and Muthusamy [12, 13] considered the decomposability of $K_{m, n}, K_{n}$ and $\lambda K_{m, n}$ into paths and cycles having k edges, giving some necessary or sufficient conditions for such decompositions to exist.

In this paper, we consider the existence of $\left(P_{k+1}, S_{k}\right)$-decompositions of the complete bipartite graph with a 1 -factor removed, giving necessary and sufficient conditions.

2. Preliminaries

In this section we first collect some needed terminology and notations, and then present some results which are useful for our discussions to follow.

Let G be a graph. The degree of a vertex x of G, denoted by $\operatorname{deg}_{G} x$, is the number of edges incident with x. The vertex of degree k in S_{k} is the center, and any vertex of degree 1 is an endvertex of S_{k}. For $S \subseteq$ $V(G)$ and $T \subseteq E(G)$, we use $G[S]$ and $G-T$ to denote the subgraph of G
induced by S and the subgraph of G obtained by deleting T, respectively. When $G_{1}, G_{2}, \ldots, G_{t}$ are graphs, not necessarily disjoint, we write $G_{1} \cup G_{2} \cup$ $\cdots \cup G_{t}$ or $\bigcup_{i=1}^{t} G_{i}$ for the graph with vertex set $\bigcup_{i=1}^{t} V\left(G_{i}\right)$ and edge set $\bigcup_{i=1}^{t} E\left(G_{i}\right)$. When the edge sets are disjoint, $G=\bigcup_{i=1}^{t} G_{i}$ expresses the decomposition of G into $G_{1}, G_{2}, \ldots, G_{t}$. Let $v_{1} v_{2} \ldots v_{k}$ and ($v_{1}, v_{2}, \ldots, v_{k}$) denote the k-path and the k-cycle through vertices $v_{1}, v_{2}, \ldots, v_{k}$ in order, respectively, and let $\left(x ; y_{1}, y_{2}, \ldots, y_{k}\right)$ denote the k-star with center x and endvertices $y_{1}, y_{2}, \ldots, y_{k}$.

For the edge $a_{i} b_{j}$ in $C_{n, n-1}$, the label of $a_{i} b_{j}$ is $j-i(\bmod n)$. For example, in $C_{8,7}$ the labels of $a_{1} b_{6}$ and $a_{7} b_{3}$ are 5 and 4 , respectively. Note that each vertex of $C_{n, n-1}$ is incident with exactly one edge with label i for $i \in\{1,2, \ldots, n-1\}$. Let H be a subgraph of $C_{n, n-1}$ (recall that $C_{n, n-1}$ has partite sets $\left\{a_{0}, a_{1}, \ldots, a_{n-1}\right\}$ and $\left.\left\{b_{0}, b_{1}, \ldots, b_{n-1}\right\}\right)$. When r is a nonnegative integer, H_{+r} denotes the graph with vertex set $\left\{a_{i}: a_{i} \in V(H)\right\} \cup$ $\left\{b_{j+r}: b_{j} \in V(H)\right\}$ and edge set $\left\{a_{i} b_{j+r}: a_{i} b_{j} \in E(H)\right\}$, and $H+r$ denotes the subgraph of $C_{n, n-1}$ with vertex set $\left\{a_{i+r}: a_{i} \in V(H)\right\} \cup$ $\left\{b_{j+r}: b_{j} \in V(H)\right\}$ and edge set $\left\{a_{i+r} b_{j+r}: a_{i} b_{j} \in E(H)\right\}$ where the subscripts of a and b are taken modulo n. In particular, $H_{+0}=H+0=H$.

The following results are essential to our proof.
Proposition 2.1 ([20]). Let λ, k, l, and n be positive integers. $\lambda C_{n, l}$ is S_{k}-decomposable if and only if $k \leq l$ and $\lambda n l \equiv 0(\bmod k)$.
Proposition 2.2 ([37]). For integers m and n with $m \geq n \geq 1$, the graph $K_{m, n}$ is S_{k}-decomposable if and only if $m \geq k$ and

$$
\begin{cases}m \equiv 0(\bmod k) & \text { if } n<k \\ m n \equiv 0(\bmod k) & \text { if } n \geq k\end{cases}
$$

Proposition 2.3 ([31]). Let k, l, and n be positive integers. $C_{n, l}$ is $P_{k+1^{-}}$ decomposable if and only if $n l \equiv 0(\bmod k)$ and

$$
k \leq \begin{cases}2 & \text { if } l=n=2 \\ 2 n-3 & \text { if } l \text { is even and } n \geq 3 \\ l & \text { if } l \text { is odd } .\end{cases}
$$

Proposition 2.4 ([22]). Let k, m, and n be positive integers. There exists a P_{k+1}-decomposition of $K_{m, n}$ if and only if $m n \equiv 0(\bmod k)$ and one of the following cases occurs.

Case	k	m	n	Conditions
1	even	even	even	$k \leq 2 m, k \leq 2 n$, not both equalities
2	even	even	odd	$k \leq 2 m-2, k \leq 2 n$
3	even	odd	even	$k \leq 2 m, k \leq 2 n-2$
4	odd	even	even	$k \leq 2 m-1, k \leq 2 n-1$
5	odd	even	odd	$k \leq 2 m-1, k \leq n$
6	odd	odd	even	$k \leq m, k \leq 2 n-1$
7	odd	odd	odd	$k \leq m, k \leq n$

3. Main results

Since $K_{n, n}-I$ is isomorphic to the crown $C_{n, n-1}$ for any 1-factor I of $K_{n, n}, K_{n, n}-I$ is replaced by $C_{n, n-1}$ in the following discussions. We first give necessary conditions for a $\left(P_{k+1}, S_{k}\right)$-decomposition of $C_{n, n-1}$.

Lemma 3.1. If $C_{n, n-1}$ is $\left(P_{k+1}, S_{k}\right)$-decomposable, then $k \leq n-1$ and $n(n-1) \equiv 0(\bmod k)$.
Proof. Since the maximum size of a star in $C_{n, n-1}$ is $n-1, k \leq n-1$ is necessary. Since $C_{n, n-1}$ has $n(n-1)$ edges and each subgraph in a decomposition has k edges, k must divide $n(n-1)$.

We now show that the necessary conditions are also sufficient. Since $P_{k+1}=S_{k}$ for $k=1,2$, the result holds for $k=1,2$ by Proposition 2.1. So it remains to consider the case $k \geq 3$. The proof is divided into cases $n \geq 2 k+1, n=2 k, 2 k-1 \geq n \geq k+2$, and $n=k+1$, which are treated in Lemmas 3.2, 3.3, 3.7, and 3.8, respectively.

Lemma 3.2. Let k and n be positive integers with $n \geq 2 k+1$. If $n(n-1) \equiv$ $0(\bmod k)$, then $C_{n, n-1}$ is $\left(P_{k+1}, S_{k}\right)$-decomposable.
Proof. Let $n-1=q k+r$ where q and r are integers with $0 \leq r<k$. From the assumption $n \geq 2 k+1$, we have $q \geq 2$. Note that

$$
\begin{aligned}
C_{n, n-1} & =C_{q k+r+1, q k+r} \\
& =C_{(q-1) k+1,(q-1) k} \cup C_{k+r+1, k+r} \cup K_{(q-1) k, k+r} \cup K_{k+r,(q-1) k} .
\end{aligned}
$$

Cleary, $\left|E\left(C_{(q-1) k+1,(q-1) k}\right)\right|,\left|E\left(K_{(q-1) k, k+r}\right)\right|$, and $\left|E\left(K_{k+r,(q-1) k}\right)\right|$ are multiples of k. Thus, $(k+r+1)(k+r) \equiv 0(\bmod k)$ from the assumption $n(n-1) \equiv 0(\bmod k)$. By Propositions 2.1 and $2.2, C_{(q-1) k+1,(q-1) k}$ together with $K_{(q-1) k, k+r}$ and $K_{k+r,(q-1) k}$ are S_{k}-decomposable. By Proposition 2.3, $C_{k+r+1, k+r}$ is P_{k+1}-decomposable. Hence, $C_{n, n-1}$ is $\left(P_{k+1}, S_{k}\right)$ decomposable.

Lemma 3.3. If k is an integer with $k \geq 3$, then the crown $C_{2 k, 2 k-1}$ is $\left(P_{k+1}, S_{k}\right)$-decomposable.
Proof. Let $A_{1}=\left\{a_{0}, a_{1}, \ldots, a_{k-1}\right\}, A_{2}=\left\{a_{k}, a_{k+1}, \ldots, a_{2 k-1}\right\}, B=\left\{b_{0}\right.$, $\left.b_{1}, \ldots, b_{2 k-1}\right\}$, and let $G_{i}=C_{2 k, 2 k-1}\left[A_{i} \cup B\right]$ for $i=1,2$. Note that $C_{2 k, 2 k-1}=G_{1} \cup G_{2}$. It is easy to check that G_{1} is isomorphic to G_{2} with isomorphism f such that $f\left(a_{i}\right)=a_{i+k}$ and $f\left(b_{j}\right)=b_{j+k}$ where the subscripts of a and b are taken modulo $2 k$ for $i \in\{0,1, \ldots, k-1\}$ and $j \in\{0,1, \ldots, 2 k-1\}$. Hence it is sufficient to show that G_{1} is $\left(P_{k+1}, S_{k}\right)$-decomposable. We distinguish two cases according to the parity of k.
Case 1: k is even.
Define a $(k+1)$-path $P=b_{1} a_{0} b_{2} a_{1} \ldots b_{k / 2} a_{k / 2-1} b_{k / 2+1}$. Note that $P_{+2 i}$, where the subscripts of b are taken modulo $2 k-1$, is a $(k+1)$-path for $i \in\{0,1, \ldots, k-2\}$. We can see that $P \cup P_{+2} \cup P_{+4} \cup \cdots \cup P_{+2(k-2)}$ is the subgraph of G_{1} consisting of all edges between $\left\{a_{0}, a_{1}, \ldots, a_{k / 2-1}\right\}$
and $B-\left\{b_{2 k-1}\right\}$. Moreover, $P_{+2 i}+k / 2$, where the subscripts of b are taken modulo $2 k-1$, is also a $(k+1)$-path, and $G_{1}\left[A_{1} \cup B-\left\{b_{2 k-1}\right\}\right]=$ $\bigcup_{i=0}^{k-2}\left(P_{+2 i} \cup\left(P_{+2 i}+k / 2\right)\right)$. Since $\left(b_{2 k-1} ; a_{0}, a_{1}, \ldots, a_{k-1}\right)$ is a k-star, G_{1} is $\left(P_{k+1}, S_{k}\right)$-decomposable.
Case 2: k is odd.
Observe that $G_{1}=C_{k, k-1} \cup K_{k, k}$. Since $k-1$ is even and $k \leq 2 k-3$ for $k \geq 3$, Proposition 2.3 implies that $C_{k, k-1}$ is P_{k+1}-decomposable. By Proposition 2.2, $K_{k, k}$ is S_{k}-decomposable. Hence G_{1} is $\left(P_{k+1}, S_{k}\right)$ decomposable.

Before plunging into the proof of the next case, we need the following results.
Proposition 3.4 ([20]). Let $\left\{a_{0}, a_{1}, \ldots, a_{n-1}, b_{0}, b_{1}, \ldots, b_{n-1}\right\}$ be the vertex set of the multicrown $\lambda C_{n, l}$. If there exist positive integers p and q so that $q<p \leq l$ and $\lambda n q \equiv 0(\bmod p)$, then there exists a spanning subgraph G of $\lambda C_{n, l}$ with $\operatorname{deg}_{G} b_{j}=\lambda q$ for $0 \leq j \leq n-1$, and G has an S_{p}-decomposition.

The following is trivial.
Lemma 3.5. If W is a graph consisting of a k-cycle C and at-star S such that S has its center in C and has at least one endvertex not in C, then W can be decomposed into a $(k+1)$-path and a t-star.
Lemma 3.6. Let k and r be positive integers with $r<k-1$ and let $t=$ $(r+1) r / k$. Suppose that t is an integer with $t \geq 2$. If G is a bipartite graph with bipartition $\left(A_{1}, B_{1} \cup B^{\prime}\right)$, where $\left|A_{1}\right|=\left|B_{1}\right|=k$ and $\left|B^{\prime}\right|=r+1$ such that $G\left[A_{1} \cup B_{1}\right]=C_{k, k-1}$ and $G\left[A_{1} \cup B^{\prime}\right]=K_{k, r+1}$, then G can be decomposed into $t-1$ copies of P_{k+1} and k copies of S_{k} with centers at distinct vertices in A_{1}, and $r+1$ copies of S_{k-r} with centers at distinct vertices in B^{\prime}.
Proof. Let $A_{1}=\left\{a_{0}, a_{1}, \ldots, a_{k-1}\right\}, B_{1}=\left\{b_{0}, b_{1}, \ldots, b_{k-1}\right\}$, and $B^{\prime}=\left\{b_{k}\right.$, $\left.b_{k+1}, \ldots, b_{k+r}\right\}$. Letting $F=G\left[A_{1} \cup B_{1}\right], H=G\left[A_{1} \cup B^{\prime}\right]$, and $p=\lfloor(t-1) / 2\rfloor$. Define a $2 k$-cycle $C=\left(b_{1}, a_{0}, b_{2}, a_{1}, \ldots, b_{k-1}, a_{k-2}, b_{0}, a_{k-1}\right)$, and for even t define a $(k+1)$-path P according to the parity of k as follows:

$$
P= \begin{cases}b_{2 p+1} a_{0} b_{2 p+2} a_{1} \ldots b_{2 p+k / 2} a_{k / 2-1} b_{2 p+k / 2+1} & \text { if } k \text { is even } \\ b_{2 p+1} a_{0} b_{2 p+2} a_{1} \ldots b_{2 p+(k+1) / 2} a_{(k-1) / 2} & \text { if } k \text { is odd }\end{cases}
$$

It is easy to check that $C, C_{+2}, \ldots, C_{+2(p-1)}$ and P, where the subscripts of b are taken modulo k, are edge-disjoint in F.

Define a subgraph W of F as follows:

$$
W= \begin{cases}\bigcup_{i=0}^{p-1} C_{+2 i} & \text { if } t \text { is odd } \\ \bigcup_{i=0}^{p-1} C_{+2 i} \cup P & \text { if } t \text { is even }\end{cases}
$$

Since $C_{2 k}$ can be decomposed into two copies of P_{k+1} and $2 p=t-1$ for odd t as well as $2 p+1=t-1$ for even t, W can be decomposed into $t-1$ copies of P_{k+1}. When t is odd, $\operatorname{deg}_{F-E(W)} a_{i}=k-2 p-1$. When t is even,

$$
\operatorname{deg}_{F-E(W)} a_{i}= \begin{cases}k-2 p-3 & \text { if } i \in\{0,1, \ldots,\lceil k / 2\rceil-2\}, \\ k-2 p-\delta & \text { if } i=\lceil k / 2\rceil-1, \\ k-2 p-1 & \text { if } i \in\{\lceil k / 2\rceil,\lceil k / 2\rceil+1, \ldots, k-1\},\end{cases}
$$

where

$$
\delta= \begin{cases}2 & \text { if } k \text { is odd } \\ 3 & \text { if } k \text { is even }\end{cases}
$$

For $i=0,1, \ldots, k-1$, let $X_{i}=(F-E(W))\left[\left\{a_{i}\right\} \cup B_{1}\right]$. Clearly X_{i} is a star with center a_{i}, and for odd t, we have $X_{i}=S_{k-2 p-1}$, and for even t, we have

$$
X_{i}= \begin{cases}S_{k-2 p-3} & \text { if } i \in\{0,1, \ldots,\lceil k / 2\rceil-2\}, \\ S_{k-2 p-\delta} & \text { if } i=\lceil k / 2\rceil-1, \\ S_{k-2 p-1} & \text { if } i \in\{\lceil k / 2\rceil,\lceil k / 2\rceil+1, \ldots, k-1\}\end{cases}
$$

In the remainder of the proof, we will show that H can be decomposed into $r+1$ copies of S_{k-r} with centers in B^{\prime}, k copies of $S_{2 p+1}$ with centers in A_{1} for odd $t,\lceil k / 2\rceil-1$ copies of $S_{2 p+3}$ with centers in $\left\{a_{0}, a_{1}, \ldots, a_{\lceil k / 2\rceil-2}\right\}$, and a copy of $S_{2 p+\delta}$ with center $a_{\lceil k / 2\rceil-1}$, together with $k-\lceil k / 2\rceil$ copies of $S_{2 p+1}$ with centers in $\left\{a_{\lceil k / 2\rceil}, a_{\lceil k / 2\rceil+1}, \ldots, a_{k-1}\right\}$ for even t.

Now we show the required star-decomposition of H by orienting the edges of H. For any vertex x of H, the outdegree $\operatorname{deg}_{H}^{+} x$ (indegree $\operatorname{deg}_{H}^{-} x$, respectively) of x in an orientation of H is the number of arcs incident from (to, respectively) x. It is sufficient to show that there exists an orientation of H such that

$$
\begin{equation*}
\operatorname{deg}_{H}^{+} b_{j}=k-r, \tag{3.1}
\end{equation*}
$$

where $j \in\{k, k+1, \ldots, k+r\}$, and for odd t

$$
\begin{equation*}
\operatorname{deg}_{H}^{+} a_{i}=2 p+1 \tag{3.2}
\end{equation*}
$$

where $i \in\{0,1, \ldots, k-1\}$, and for even t

$$
\operatorname{deg}_{H}^{+} a_{i}= \begin{cases}2 p+3 & \text { if } i \in\{0,1, \ldots,\lceil k / 2\rceil-2\}, \tag{3.3}\\ 2 p+\delta & \text { if } i=\lceil k / 2\rceil-1 \\ 2 p+1 & \text { if } i \in\{\lceil k / 2\rceil,\lceil k / 2\rceil+1, \ldots, k-1\}\end{cases}
$$

We first consider the edges oriented outward from A_{1} according to the parity of t. When t is odd, the edges $a_{i} b_{k+(2 p+1) i}, a_{i} b_{k+(2 p+1) i+1}, \ldots$, $a_{i} b_{k+(2 p+1) i+2 p}$ are all oriented outward from a_{i} for $i \in\{0, \ldots, k-1\}$. Let $\beta=$ $(2 p+3)(\lceil k / 2\rceil-1)$. When t is even, the edges $a_{i} b_{k+(2 p+3) i}, a_{i} b_{k+(2 p+3) i+1}, \ldots$, $a_{i} b_{k+(2 p+3) i+2 p+2}$ for $i \in\{0,1, \ldots,\lceil k / 2\rceil-2\}$, the edges $a_{\lceil k / 2\rceil-1} b_{k+\beta}$, $a_{\lceil k / 2\rceil-1} b_{k+\beta+1}, \ldots, a_{\lceil k / 2\rceil-1} b_{k+\beta+2 p+\delta-1}$, and the edges $a_{i} b_{k+(2 p+1) i+\beta+2 p+\delta}$, $a_{i} b_{k+(2 p+1) i+\beta+2 p+\delta+1}, \ldots, a_{i} b_{k+(2 p+1) i+\beta+4 p+\delta}$ for $i \in\{\lceil k / 2\rceil,\lceil k / 2\rceil+1, \ldots$, $k-1\}$ are all oriented outward from a_{i}. The subscripts of b are taken modulo $r+1$ in the set of numbers $\{k, k+1, \ldots, k+r\}$. Note that for odd t we orient $2 p+1$ edges from each a_{i}, and for even t we orient at most
$2 p+3$ edges from a_{i}. Since $2 p+1 \leq 2(t-1) / 2+1=t<r$ for odd t and $2 p+3 \leq 2(t-2) / 2+3=t+1<r+1$ for even t, this guarantees that there are enough edges for the above orientation. Finally, the edges which are not oriented yet are all oriented from B^{\prime} to A_{1}.

From the construction of the orientation, it is easy to see that (3.2) and (3.3) are satisfied, and for all $b_{w}, b_{w^{\prime}} \in B^{\prime}$, we have

$$
\begin{equation*}
\left|\operatorname{deg}_{H}^{-} b_{w}-\operatorname{deg}_{H}^{-} b_{w^{\prime}}\right| \leq 1 . \tag{3.4}
\end{equation*}
$$

So, we only need to check (3.1).
Since $\operatorname{deg}_{H}^{+} b_{w}+\operatorname{deg}_{H}^{-} b_{w}=k$ for $b_{w} \in B^{\prime}$, it follows from (3.4) that $\left|\operatorname{deg}_{H}^{+} b_{w}-\operatorname{deg}_{H}^{+} b_{w^{\prime}}\right| \leq 1$ for $b_{w}, b_{w^{\prime}} \in B^{\prime}$. Further, note that for odd t,

$$
\sum_{i=0}^{k-1} \operatorname{deg}_{H}^{+} a_{i}=(2 p+1) k=(2(t-1) / 2+1) k=t k
$$

and for even t,

$$
\begin{aligned}
\sum_{i=0}^{k-1} \operatorname{deg}_{H}^{+} a_{i} & =(2 p+3)(\lceil k / 2\rceil-1)+2 p+\delta+(2 p+1)(k-\lceil k / 2\rceil) \\
& =(2 p+1)(k-1)+2(\lceil k / 2\rceil-1+p)+\delta \\
& =\left\{\begin{array}{ll}
(2 p+1)(k-1)+2((k+1) / 2-1+p)+2 & \text { if } k \text { is odd, } \\
(2 p+1)(k-1)+2(k / 2-1+p)+3 & \text { if } k \text { is even, } \\
& =(2 p+2) k \\
& =(2(t-2) / 2+2) k \\
& =t k
\end{array} .\right.
\end{aligned}
$$

Thus

$$
\begin{aligned}
\sum_{w=k}^{k+r} \operatorname{deg}_{H}^{+} b_{w} & =\left|E\left(K_{k, r+1}\right)\right|-\sum_{i=0}^{k-1} \operatorname{deg}_{H}^{+} a_{i} \\
& =k(r+1)-t k \\
& =k(r+1)-r(r+1) \\
& =(k-r)(r+1)
\end{aligned}
$$

Therefore, $\operatorname{deg}_{H}^{+} b_{w}=k-r$ for $b_{w} \in B^{\prime}$. This proves (3.1). Hence there exists the required decomposition \mathscr{D} of H. Let X_{i}^{\prime} be the star with center at a_{i} in \mathscr{D} for $i \in\{0,1, \ldots, k-1\}$. Clearly $X_{i}+X_{i}^{\prime}$ is a k-star. This completes the proof.

Lemma 3.7. Let k and n be integers with $3 \leq k<n-1<2 k-1$. If $n(n-1) \equiv 0(\bmod k)$, then $C_{n, n-1}$ is $\left(P_{k+1}, S_{k}\right)$-decomposable.

Proof. Let $n-1=k+r$. From the assumption $k<n-1<2 k-1$, we have $0<r<k-1$. Let $t=(r+1) r / k$. Since $k \mid n(n-1)$, we have $k \mid(r+1) r$,
which implies that t is a positive integer. The proof is divided into two parts according to the value of t.
Case 1: $t=1$.
When $t=1, k=(r+1) r$. This implies that k is even, and hence $k \geq 4$; in turn, we have $r \geq 2$. Let $A_{0}=\left\{a_{0}, a_{1}, \ldots, a_{k / 2-1}\right\}$ and $B_{0}=\left\{b_{0}, b_{1}, \ldots, b_{k / 2-1}\right\}$. We distinguish two subcases.
Subcase 1.1: $r=2$.
For $r=2, k=(r+1) r=6$, and $n=k+r+1=9$. Let $H_{1}=$ $C_{9,8}\left[A_{0} \cup B\right]$ and $H_{2}=C_{9,8}\left[\left(A-A_{0}\right) \cup B\right]$. Clearly $C_{9,8}=H_{1} \cup H_{2}$. Let $P=b_{1} a_{0} b_{2} a_{1} b_{3} a_{2} b_{4}$, we have $\operatorname{deg}_{H_{1}-E(P)} a_{i}=6$ for $i \in\{0,1,2\}$. This implies $H_{1}-E(P)$ is S_{6}-decomposable. Let $F_{i}=\left(b_{i} ; a_{3}, a_{4}, \ldots, a_{8}\right)$ for $i \in\{0,1\}$ and $G_{j}=\left(a_{j} ; b_{2}, \ldots, b_{j-1}, b_{j+1}, b_{j+2}, \ldots, b_{8}\right)$ for $j \in$ $\{3,4, \ldots, 8\}$. It is easy to check that F_{i} and G_{j} are 6 -stars and $\left\{F_{0}, F_{1}, G_{3}, G_{4}, \ldots, G_{8}\right\}$ is an S_{6}-decomposition of H_{2}.
Subcase 1.2: $r \geq 3$.
We will show that $C_{n, n-1}$ can be decomposed into copies of S_{k} together with a copy of P_{k+1}. Let $D_{0}=C_{n, n-1}\left[A_{0} \cup B_{0}\right], D_{1}=$ $C_{n, n-1}\left[\left(A-A_{0}\right) \cup B_{0}\right]$, and $D_{2}=C_{n, n-1}\left[A \cup\left(B-B_{0}\right)\right]$. Clearly $C_{n, n-1}=D_{0} \cup D_{1} \cup D_{2}$. Note that D_{0} is isomorphic to $C_{k / 2, k / 2-1}, D_{1}$ is isomorphic to $K_{k / 2+r+1, k / 2}$, and D_{2} is isomorphic to $C_{k / 2+r+1, k / 2+r}$ $\cup K_{k / 2, k / 2+r+1}$. Let $C=\left(a_{0}, b_{k / 2-1}, a_{1}, b_{0}, a_{2}, b_{1}, \ldots, a_{k / 2-1}, b_{k / 2-2}\right)$ and $D=D_{0}-E(C)$. Trivially C is a k-cycle in D_{0} and $D=$ $C_{k / 2, k / 2-3}$. Note that $0<r-2<k / 2-r-1<k / 2-3$ for $r \geq 3$ and $(k / 2)(r-2)=r(r+1)(r-2) / 2=r(k / 2-r-1)$. Therefore, Proposition 3.4 implies that there exists a spanning subgraph X of D such that $\operatorname{deg}_{X} b_{j}=r-2$ for $0 \leq j \leq k / 2-1$, and X has an $S_{k / 2-r-1^{-}}$ decomposition \mathscr{D} with $|\mathscr{D}|=r$. Furthermore, each $S_{k / 2-r-1}$ has its center in A_{0} since $\operatorname{deg}_{X} b_{j}=r-2<k / 2-r-1$. Suppose that the centers of $(k / 2-r-1)$-stars in \mathscr{D} are $a_{i_{1}}, a_{i_{2}}, \ldots, a_{i_{r}}$. Let $S(w)$ be the $(k / 2-r-1)$-star with center $a_{i_{w}}$ in \mathscr{D} and let $Y=D-E(X) \cup D_{1}$. Note that $\operatorname{deg}_{Y} b_{j}=(k / 2-3-(r-2))+(k / 2+r+1)=k$ for $0 \leq j \leq k / 2-1$. Hence Y is S_{k}-decomposable. For $w \in\{1,2, \ldots, r\}$, define $S^{\prime}(w)=D_{2}\left[\left\{a_{i_{w}}\right\} \cup\left(B-B_{0}\right)\right]$ and $Z=D_{2}-E\left(\bigcup_{w=1}^{r} S^{\prime}(w)\right)$. Clearly $S^{\prime}(w)$ is a $(k / 2+r+1)$-star with center $a_{i_{w}}$ in D_{2}, and $S(w) \cup S^{\prime}(w)$ is a k-star. Moreover, $\operatorname{deg}_{Z} b_{j}=k+r-r=k$ for $k / 2 \leq j \leq k+r$. Thus Z is S_{k}-decomposable. By Lemma 3.5, $C \cup S(1) \cup S^{\prime}(1)$ can be decomposed into a $(k+1)$-path and a k-star.
Case 2: $t \geq 2$.
Let $A_{1}=\left\{a_{0}, a_{1}, \ldots, a_{k-1}\right\}, A^{\prime}=\left\{a_{k}, a_{k+1}, \ldots, a_{k+r}\right\}, B_{1}=\left\{b_{0}\right.$, $\left.b_{1}, \ldots, b_{k-1}\right\}$, and $B^{\prime}=\left\{b_{k}, b_{k+1}, \ldots, b_{k+r}\right\}$. Moreover, let $G=C_{n, n-1}$ $\left[A_{1} \cup B\right], F=C_{n, n-1}\left[A^{\prime} \cup B_{1}\right]$, and $H=C_{n, n-1}\left[A^{\prime} \cup B^{\prime}\right]$. Clearly $C_{n, n-1}=$ $G \cup F \cup H$. Note that G is isomorphic to $C_{k, k-1} \cup K_{k, r+1}, H$ is isomorphic to $C_{r+1, r}$, and F is isomorphic to $K_{r+1, k}$, Proposition 2.2 implies that $K_{r+1, k}$ is S_{k}-decomposable. By Lemma 3.6, there exists a decomposition
\mathscr{D} of G into $t-1$ copies of P_{k+1}, k copies of S_{k} with centers at distinct vertices in A_{1}, and $r+1$ copies of S_{k-r} with centers at distinct vertices in B^{\prime}. For $i \in\{k, k+1, \ldots, k+r\}$, let Z_{i} be the $(k-r)$-star with center b_{i} in \mathscr{D} and let $Z_{i}^{\prime}=H\left[A^{\prime} \cup b_{i}\right]$. Trivially $Z_{i} \cup Z_{i}^{\prime}=S_{k}$. Thus $C_{n, n-1}$ is (P_{k+1}, S_{k})-decomposable.

Lemma 3.8. If k is an integer with $k \geq 3$, then $C_{k+1, k}$ is $\left(P_{k+1}, S_{k}\right)$ decomposable.

Proof. The proof is divided into two parts according to the parity of k.
Case 1: k is odd.
Note that $C_{k+1, k}$ can be decomposed into $C_{k, k-1}$ and two copies of S_{k}. Since $k-1$ is even and $k \leq 2 k-3$ for $k \geq 3$, Proposition 2.3 implies that $C_{k, k-1}$ is P_{k+1}-decomposable. Hence $C_{k+1, k}$ is $\left(P_{k+1}, S_{k}\right)$-decomposable.
Case 2: k is even.
Let $A_{1}=\left\{a_{0}, a_{1}, \ldots, a_{k / 2-1}\right\}$ and $A_{2}=\left\{a_{k / 2}, a_{k / 2+1}, \ldots, a_{k}\right\}$. For $i \in\{1,2\}$, define $G_{i}=C_{k+1, k}\left[A_{i} \cup B\right]$. Clearly $C_{k+1, k}=G_{1} \cup G_{2}$. We will show that G_{1} is P_{k+1}-decomposable and G_{2} is S_{k}-decomposable.

Let $P=b_{1} a_{0} b_{2} a_{1} \ldots b_{k / 2} a_{k / 2-1} b_{k / 2+1}$. Note that P is a $(k+1)$-path containing all of the edges incident with the vertices in A_{1}, having labels 1 and 2. Furthermore, $P_{+2 i}$ is a $(k+1)$-path containing all of the edges incident with the vertices in A_{1}, having labels $2 i+1$ and $2 i+2$ for $i=0,1,2, \ldots, k / 2-1$. Hence $P \cup P_{+2} \cup P_{+4} \cup \cdots \cup P_{+(k-2)}$ is a subgraph of $C_{k+1, k}$ consisting of all edges incident with the vertices in A_{1}, that is, $\bigcup_{i=0}^{k / 2-1} P_{+2 i}=G_{1}$. Therefore, G_{1} is P_{k+1}-decomposable.

Let $Q_{i}=G_{2}\left[\left\{a_{i}\right\} \cup B\right]$ for $i \in\{k / 2, k / 2+1, \ldots, k\}$. It is easy to check that $Q_{i}=S_{k}$ and $\bigcup_{i=k / 2}^{k} Q_{i}=G_{2}$. Hence G_{2} is S_{k}-decomposable. This completes the proof.

Now, we are ready for the main result. It is obtained by combining Lemmas 3.1-3.3, 3.7, and 3.8.

Theorem 3.9. Let k and n be positive integers and let I be a 1-factor of $K_{n, n}$. The graph $K_{n, n}-I$ is $\left(P_{k+1}, S_{k}\right)$-decomposable if and only if $k \leq n-1$ and $n(n-1) \equiv 0(\bmod k)$.

References

1. A. Abueida and M. Daven, Multidesigns for graph-pairs of order 4 and 5, Graphs Combin. 19 (2003), 433-447.
2. _, Multidecompositons of the complete graph, Ars Combin. 72 (2004), 17-22.
3._, Multidecompositions of several graph products, Graphs Combin. 29 (2013), 315-326.
3. A. Abueida and C. Lian, On the decompositions of complete graphs into cycles and stars on the same number of edges, Discuss. Math. Graph Theory 34 (2014), 113-125.
4. A. Abueida and T. O'Neil, Multidecomposition of λk_{m} into small cycles and claws, Bull. Inst. Combin. Appl. 49 (2007), 32-40.
5. F. Beggas, M. Haddad, and H. Kheddouci, Decomposition of complete multigraphs into stars and cycles, Discuss. Math. Graph Theory 35 (2015), 629-639.
6. A. Bouchet and J. L. Fouquet, Trois types de décomposition d'un graphe en chaînes, Ann Discrete Math. 17 (1983), 131-141.
7. D. E. Bryant, S. El-Zanati, C. V. Eyden, and D. G. Hoffman, Star decompositions of cubes, Graphs Combin. 17 (2001), 55-59.
8. K. Heinrich, Path-decompositions, Matematiche (Catania) 47 (1992), 241-258.
9. K. Heinrich, J. Liu, and M. Yu, P_{4}-decomposition of regular graphs, J. Graph Theory 31 (1999), 135-143.
10. M. S. Jacobson, M. Truszczyński, and Z. Tuza, Decompositions of regular bipartite graphs, Discrete Math. 89 (1991), 17-27.
11. S. Jeevadoss and A. Muthusamy, Decomposition of complete bipartite graphs into paths and cycles, Discrete Math. 331 (2014), 98-108.
13._, Decomposition of complete bipartite multigraphs into paths and cycles having k edges, Discuss. Math. Graph Theory 35 (2015), 715-731.
12. A. Kotzig, From the theory of finite regular graphs of degree three and four, C Casopis Pĕst Mat 82 (1957), 76-92.
13. C. S. Kumar, On p_{4}-decomposition of graphs, Taiwanese J. Math. 7 (2003), 657-664.
14. H.-C. Lee, Multidecompositions of complete bipartite graphs into cycles and stars, Ars Combin. 108 (2013), 355-364.
15. , Decomposition of the complete bipartite multigraph into cycles and stars, Discrete Math. 338 (2015), 1362-1369.
16. H.-C. Lee, M.-J. Lee, and C. Lin, Isomorphic path decompositions of $\lambda k_{n, n, n}\left(\lambda k_{n, n, n}^{*}\right)$ for odd n, Taiwanese J. Math 13 (2009), 393-402.
17. H.-C. Lee and J.-J. Lin, Decomposition of the complete bipartite graph with a 1-factor removed into cycles and stars, Discrete Math. 313 (2013), 2354-2358.
18. C. Lin, J.-J. Lin, and T.-W. Shyu, Isomorphic star decomposition of multicrowns and the power of cycles, Ars Combin. 53 (1999), 249-256.
19. J.-J. Lin, Decompositions of multicrowns into cycles and stars, Taiwanese J. Math. 19 (2015), 1261-1270.
20. C. A. Parker, Complete bipartite graph path decompositions, Ph.D. thesis, Auburn University, Auburn, Alabama, 1998.
21. H. M. Priyadharsini and A. Muthusamy, $\left(G_{m}, H_{m}\right)$-multifactorization of λk_{m}, J. Combin. Math. Combin. Comput. 69 (2009), 145-150.
24._, Bull. inst. combin. appl., $\left(G_{m}, H_{m}\right)$-multidecomposition of $K_{m, m}(\lambda) \mathbf{6 6}$ (2012), 42-48.
22. T.-W. Shyu, Path decompositions of $\lambda k_{n, n}$, Ars Combin. 85 (2007), 211-219.
\qquad , Decomposition of complete graphs into paths and stars, Discrete Math. 310 (2010), 2164-2169.
23. , Decompositions of complete graphs into paths and cycles, Ars Combin. 97 (2010), 257-270.
24. , Decomposition of complete graphs into paths of length three and triangles, Ars Combin. 107 (2012), 209-224.
29._, Decomposition of complete bipartite graphs into paths and stars with same number of edges, Discrete Math. 313 (2013), 865-871.
30._, Decomposition of complete graphs into cycles and stars, Graphs Combin. 29 (2013), 301-313.
25. T.-W. Shyu and C. Lin, Isomorphic path decomposition of crowns, Ars Combin. 67 (2003), 97-103.
26. M. Tarsi, Decomposition of complete multigraphs into stars, Discrete Math. 26 (1979), 273-278.
33.__, Decomposition of complete multigraph into simple paths: nonbalanced handcuffied designs, J. Combin. Theory Ser. A 34 (1983), 60-70.
27. S. Tazawa, Decomposition of a complete multipartite graph into isomorphic claws, SIAM J. Algebraic Discrete Methods 6 (1985), 413-417.
28. M. Truszczyński, Note on the decomposition of $\lambda k_{m, n}\left(\lambda k_{m, n}^{*}\right)$ into paths, Discrete Math. 55 (1985), 89-96.
29. K. Ushio, S. Tazawa, and S. Yamamoto, On claw-decomposition of complete multipartite graphs, Hiroshima Math. J. 8 (1978), 207-210.
30. S. Yamamoto, H. Ikeda, S. Shigeede, K. Ushio, and N. Hamada, On claw decomposition of complete graphs and complete bigraphs, Hiroshima Math. J. 5 (1975), 33-42.

Department of Finance, Ling Tung University, Taichung, Taiwan E-mail address: jjlin@teamail.ltu.edu.tw

Department of Information Technology, Ling Tung University, Taichung, Taiwan
E-mail address: birdy@teamail.ltu.edu.tw

[^0]: Received by the editors April 7, 2016, and in revised form August 26, 2017. 2000 Mathematics Subject Classification. 05C38, 05C51.
 Key words and phrases. decomposition, complete bipartite graph, path, star, crown.
 The research of the first author was supported by the National Science Council of Taiwan under grant NSC 100-2115-M-275-003.

