Contributions to Discrete Mathematics

Volume 11, Number 2, Pages 63-78
ISSN 1715-0868
ON THE EQUATION $\sum_{i=1}^{n} \frac{1}{x_{i}}=1$ IN DISTINCT ODD OR
EVEN NUMBERS

RAFAEL ARCE-NAZARIO, FRANCIS N. CASTRO, AND RAÚL FIGUEROA

Abstract. In this paper we combine theoretical results and computer search to obtain information about the solutions of the equation

$$
\sum_{i=1}^{n} \frac{1}{x_{i}}=1
$$

We calculate (a) $m_{o}(n)=\min \left\{\max \left\{x_{i} \mid 1 \leq i \leq n\right\}\right\}$ and (b) $m_{e}(n)$ $=\min \left\{\max \left\{x_{i} \mid 1 \leq i \leq n\right\}\right\}$, where the minimum is taken over all sets $\left\{x_{i}\right\}$ satisfying the above equation in distinct odd integers when $13 \leq$ $n \leq 41$ (for case a) and in distinct even integers when $3 \leq n \leq 29$ (for case b). We compute the number of solutions of the above equation for:

- $n=13,15$ when $x_{i} \in\left\{3^{\alpha} \cdot 5^{\beta} \cdot 7^{\gamma}\right\}$;
- $n \leq 17$ when $x_{i} \in\left\{3^{\alpha} \cdot 5^{\beta} \cdot 11^{\gamma}\right\}$;
- $n \leq 23$ when $x_{i} \in\left\{3^{\alpha} \cdot 5^{\beta} \cdot 13^{\gamma}\right\}$.

We also compute $\max x_{i}$ for $\left\{x_{i}\right\}$ satisfying the mentioned equation in distinct even integers. Finally, we compute $\liminf \left(x_{n} / x_{n-k}\right)$ for fixed k.

1. Introduction

In the book "Unsolved Problems in Number Theory" [7], Section D11 discusses the topic of Egyptian fractions. These are fractions that can be expressed as a finite sum $\sum_{i=1}^{n} 1 / x_{i}$ of reciprocals of distinct positive integers. Special attention has been given to the equation

$$
\begin{equation*}
\sum_{i=1}^{n} \frac{1}{x_{i}}=1 \tag{1.1}
\end{equation*}
$$

where $x_{1}<\cdots<x_{n}$. The number of solutions of Equation (1.1) for $1 \leq n \leq 8$ over distinct positive integers are given in [13]. Furthermore, in [4, 11, 1], the authors computed the number of solutions of Equation (1.1) for $n=9,11$ over distinct odd positive integers.

A question proposed by Erdős and Graham about these fractions that appears in $[7]$ is to determine the value of $m(n)$, the $\min \max x_{i}$, where the minimum is taken over all sets $\left\{x_{i}\right\}$ satisfying Equation (1.1). Section D11

[^0]in [7] contains a table showing $m(k)$ for $3 \leq n \leq 28$. It is observed that $m(n)$ is nondecreasing for these values.

In $[2,15]$, the authors proved that any rational number with an odd denominator can be written as the sum of distinct odd unit fractions. In [10], G. Martin computed the asymptotic behavior of $m(n)$ for Equation (1.1). More precisely, he proved

$$
\begin{equation*}
m(n)=\min \max _{1 \leq i \leq n} x_{i}=\frac{n}{1-e^{-1}}+O_{1}\left(\frac{n \log \log 3 n}{\log 3 n}\right) \tag{1.2}
\end{equation*}
$$

In this paper we consider the following problem: to determine the values of

$$
m_{o}(n)=\min \max _{1 \leq i \leq n} x_{i}
$$

and

$$
m_{e}(n)=\min \max _{1 \leq i \leq n} x_{i},
$$

where x_{i} are distinct odd(even) positive integers satisfying Equation (1.1).
In fact, for each odd $n, 13 \leq n \leq 41$, we found the value of $m_{o}(n)$ and all the sequences where $m_{o}(n)$ is the minimum value for the corresponding n. The minimum n for which $m_{o}(n)$ exists is $n=9$; the values $m_{o}(9)=231$ and $m_{o}(11)=105$, were independently found by P. Shiu [11] and N. Burshtein [3].

In [1], Arce et. al. computed $m_{o}(13)=115$. In this paper we compute $m_{o}(n)$ for $15 \leq n \leq 41$. For the case $m_{e}(n)$ we compute $m_{e}(n)$ for $3 \leq n \leq 29$. Our results imply that $m_{o}(n)$ and $m_{e}(n)$ are nondecreasing for $11 \leq n \leq 41$, $3 \leq n \leq 29$, respectively. Note that Martin's result in [10] implies that

$$
m_{e}(n)=\frac{n}{1-e^{-2}}+(\text { error term }) .
$$

In [5], Chen-Elsholtz-Jiang proved a criterion for existence of solutions of Equation (1.1) over subsets of the type

$$
S\left(p_{1}, \ldots, p_{r}\right)=\left\{p_{1}^{\alpha_{1}} \cdots p_{r}^{\alpha_{r}} \mid \alpha_{1}, \ldots, \alpha_{r} \in \mathbb{N}_{0}\right\}
$$

where \mathbb{N}_{0} are the nonnegative integers. Let $N_{n}\left(p_{1}, \ldots, p_{r}\right)$ be the set of the solutions of Equation (1.1) with $x_{i} \in S\left(p_{1}, \ldots, p_{r}\right)$ where any solution contains at least one x_{j} that is divisible by p_{i} for $i=1, \ldots, r$. Note that in general $\left|N_{n}\left(p_{1}, \ldots, p_{r}\right)\right|$ is not equal to $T_{n}\left(p_{1}, \ldots, p_{r}\right)$ of [5], as $\left|N_{n}\left(p_{1}, \ldots, p_{r}\right)\right| \leq T_{n}\left(p_{1}, \ldots, p_{r}\right)$ and $\left|N_{n}\left(p_{1}, p_{2}, p_{3}\right)\right|=T_{n}\left(p_{1}, p_{2}, p_{3}\right)$. It is not difficult to prove that $\left|N_{n}\left(p_{1}, p_{2}\right)\right|=0$, where p_{1}, p_{2} are odd primes; see [5] for details. Hence the simplest case is $N_{n}\left(p_{1}, p_{2}, p_{3}\right)$. In [3], Burshtein proved that $N_{11}(3,5,7)=17$. Using the information in [1], we have $N_{11}\left(p_{1}, p_{2}, p_{3}\right)=0$ except in the case of $p_{1}=3, p_{2}=5$, and $p_{3}=7$. Motivated by the results of $[5,3,1]$, we compute

- $N_{13}(3,5,7)=2034$ and $N_{15}(3,5,7)=374349$.
- $N_{n}(3,5,11)=0$ for $n \leq 15$ and $N_{17}(3,5,11)=11$.
- $N_{n}(3,5,13)=0$ for $n \leq 21$ and $N_{23}(3,5,13)=63$.

We also prove $N_{n}\left(p_{1}, \ldots, p_{r}\right) \geq 1$ over $S\left(p_{1}, p_{2}, \ldots, p_{r}\right)$ for $n \geq n_{o}$ odd and some p_{1}, \ldots, p_{r} odd primes.

In this paper we study solutions of Equation (1.1) satisfying some restrictions. We prove the existence of solutions of Equation (1.1) where the last k terms are close to each other in a multiplicative sense. The optimization problem of finding $m(n)$ was solved in [8,14]. In this paper we solve the optimization problem of finding $\max \left\{x_{i}\right\}$ over positive even numbers of the Equation (1.1).

The results in Section 2 are mainly computational, but in order to significantly reduce the computational time we had to develop some elementary constraints. We used some divisibility properties to obtain these constraints and they appear as theorem and corollaries in Section 2. The Tables in Section 2 summarize our results for $m_{o}(n), m_{e}(n)$. A complete list of sequences can be found in our page http://ccom.uprrp.edu/~rarce/dmath.html. In Section 3, we present the calculation of $m_{o}(27)$ and $m_{o}(29)$ to show that in some cases the constraints reduce the solution space enough that they can be completed by hand. In Section 4, we study the solutions of Equation (1.1) over $S\left(p_{1}, \ldots, p_{r}\right)$. In section 4 we also combine computational results with an identity to prove the solvability of Equation (1.1). In Section 5, we construct solutions of Equation (1.1) satisfying certain properties. Our results of this section imply that $\lim \inf x_{n} / x_{n-k}=1$ for fixed k. In the last section, we answer the optimization problem for $\max \left\{x_{i}\right\}$ over positive even numbers.

Our calculations have two goals:

- Prove that the optimization problem of computing $m_{o}(n)$ and $m_{e}(n)$ can be simplified significantly by using elementary arguments of divisibility, as well as prove that the divisibility constraints imposed by the Equation (1.1) allow us to compute $m_{o}(n)$ and $m_{e}(n)$ by hand.
- Provide more data about the behavior of $m_{o}(n)$ and $m_{e}(n)$.

2. Computation of $m_{o}(n)$ and $m_{e}(n)$

In this section we study the divisibility properties of the solutions of Equation (1.1). Using these properties, we were able to compute $m_{o}(n)$ and $m_{e}(n)$ for $13 \leq n \leq 41$ and $3 \leq n \leq 29$, respectively.

Theorem 2.1. Let p be an odd prime number. Let M be a positive integer and let $x_{1}, x_{2}, \ldots, x_{n}$ be a sequence of distinct odd positive integers such that

$$
1=\sum_{i=1}^{n} \frac{1}{x_{i}}
$$

and $x_{i}<M$, for all i.
(1) If p^{t} divides exactly k terms x_{1}, \ldots, x_{k}, and $p^{t+1} \nmid x_{i}$, for all i, let $a_{i}=x_{i} / p^{t}$ for $i=1, \ldots, k$, and let $A=a_{1} \cdot a_{2} \cdots a_{k}$. Then p divides $\sum_{i=1}^{k} A / a_{i}$
(2) If $p^{t} \mid x_{j}$, for some j, and $p^{t+1} \nmid x_{i}$, for all i, then p^{t} divides another term of the sequence $\left\{x_{i}\right\}$.
(3) If $p^{s} \mid x_{j}$, for some j, and $p^{s+1}>M$, then p^{s} divides at least three terms of the sequence $\left\{x_{i}\right\}$.

Proof. (1) For $j>k$ we have that $p^{t} / x_{j}=c_{j} / d_{j}$ where $p \mid c_{j}$ and $p \nmid d_{j}$. From Equation (1.1) we have

$$
p^{t}=\sum_{i=1}^{n} \frac{p^{t}}{x_{i}}=\sum_{i=1}^{k} \frac{1}{a_{i}}+\sum_{j=k+1}^{n} \frac{c_{j}}{d_{j}} .
$$

Let $D=d_{k+1} \cdot d_{k+2} \cdots d_{n}$, so $p \nmid D$. From

$$
A D p^{t}=D\left(\sum_{i=1}^{k} \frac{A}{a_{i}}\right)+A\left(\sum_{j=k+1}^{n} c_{j}\left(\frac{D}{d_{j}}\right)\right)
$$

it follows that p divides $\sum_{i=1}^{k} A / a_{i}$
(2) This follows from part 1 .
(3) If $x_{1}=a_{1} p^{s}, x_{2}=a_{2} p^{s}$ and $p^{s} \nmid x_{j}$ for $j>2$, then $a_{1}+a_{2} \equiv 0 \bmod p$ by part 1 . Since $a_{1}+a_{2}$ is even, then $a_{1}+a_{2} \geq 2 p$ so $a_{1}>p$ (or $a_{2}>p$) and $x_{1}>p^{s+1}>M$.

The following corollaries are for specific values of M :
Corollary 2.2. Let p and $x_{1}, x_{2}, \ldots, x_{n}$ be as in Theorem 2.1 and let $M=$ 240. Then:
(1) If $p>37, p \nmid x_{i}$ for all i;
(2) If $p \geq 7, p^{2} \nmid x_{i}$, for all i;
(3) $81 \nmid x_{i}$ and $29 \nmid x_{i}$, for all i.

Proof. (1) Assume $p \mid x_{1}$. Since $p^{2}>M$ and $7 p>M$, we have that p divides exactly three terms, say $x_{1}=p, x_{2}=3 p$ and $x_{3}=5 p$, so $a_{1}=1, a_{2}=3$, and $a_{3}=5$. By Theorem 2.1, $\sum A / a_{i}=23 \equiv 0 \bmod p$; since $p>37$, this is a contradiction.
(2) Assume p^{2} divides some x_{i}. Then $p^{2}<M$ so $p=7,11,13$. Since $p^{3}>M$ and $7 p^{2}>M, p^{2}$ divides exactly three terms and, as before, p divides 23 but $p<23$, which is a contradiction.
(3) The case 81 follows from Theorem 2.1. For $p=29$ we have that p divides three or four terms. In the first case, $x_{1}=a_{1} p, x_{2}=a_{2} p, x_{3}=a_{3} p$, and $a_{1}, a_{2}, a_{3} \in\{1,3,5,7\}$, since $9 p>M$. If $\left\{a_{1}, a_{2}, a_{3}\right\}=\{1,3,5\},\{1,3,7\}$, $\{1,5,7\}$, or $\{3,5,7\}$, we respectively have that $\sum A / a_{i}=23,31,47$, or 71 , so p does not divide $\sum A / a_{i}$. If p divides 4 terms, then $a_{1}=1, a_{2}=3, a_{3}=5$ and $a_{4}=7$, and in this case $\sum A / a_{i}=176 \not \equiv 0 \bmod p$.

Corollary 2.3. Let p and $x_{1}, x_{2}, \ldots, x_{n}$ be as in Theorem 2.1. Let $M=200$, then $31 \nmid x_{i}$, and $19 \nmid x_{i}$ for all i.

We used an exhaustive computer search over the integers that comply with Theorem 2.1 and Corollaries 2.2, 2.3 to find all the sequences $x_{1}<x_{2}<$ $\cdots<x_{n}=m_{o}(n)$ satisfying Equation (1.1) with x_{i} odd positive integers. We also did an exhaustive computer search over the distinct even integers that comply with similar results to the ones in this section (we omit the proof because it follows along the same line of the proofs of the results of this section) to find all the sequences $x_{1}<x_{2}<\cdots<x_{n}=m_{e}(n)$ satisfying Equation (1.1) with x_{i} even positive integers. In the computation of $m_{o}(n)$ and $m_{e}(n)$, the results of this section limited the amount of possible values of the x_{i} 's. Tables 1 and 2 summarize our results.

The column $N_{e}(n)$ in Table 1 shows the number of sequences where the value $m_{e}(n)$ was obtained. In Table 2 the column $N_{o}(n)$ shows the number of sequences where the value $m_{o}(n)$ was obtained.

The restrictions imposed on the valid values for $x_{i}, 1 \leq i \leq n$, by using Theorem 2.1 and Corollaries 2.2, 2.3 significantly reduced the solution search space. The search space reduction translated to speedups of up to $70 \times$ for the computation of $m_{e}(n)$ where $14 \leq n \leq 18$, as seen in Figure 1. This allowed us to obtain results for $n \leq 29$ in $m_{o}(n)$ and $n \leq 41$ in $m_{e}(n)$, respectively.

TABLE 1. $m_{e}(n)$ for $3 \leq n \leq 29$

n	$m_{e}(n)$	$N_{e}(n)$	n	$m_{e}(n)$	$N_{e}(n)$
4	12	1	17	66	4
5	24	1	18	66	2
6	30	1	19	72	1
7	30	1	20	84	4
8	36	1	21	84	2
9	40	1	22	90	7
10	48	2	23	90	2
11	48	1	24	96	9
12	48	1	25	96	2
13	56	7	26	104	32
14	56	2	27	104	5
15	56	1	28	104	2
16	66	15	29	120	1

Conjectures.

- $m_{e}(n)$ is a nondecreasing function for $n \geq 3$.
- $m_{o}(n)$ is a nondecreasing function for $n \geq 11$.

3. Calculations of $m_{o}(27)$ and $m_{o}(29)$

In this section we show how to use Theorem 2.1 and Corollaries 2.2 and 2.3 to obtain $m_{o}(27)$ and $m_{o}(29)$. Other cases can be obtained similarly. We

Table 2. $m_{o}(n)$ for $11 \leq n \leq 41$

n	$m_{o}(n)$	$N_{o}(n)$	n	$m_{o}(n)$	$N_{o}(n)$
13	115	3	29	187	4
15	117	9	31	195	1
17	117	3	33	209	11
19	135	5	35	209	1
21	143	6	37	217	1
23	175	6	39	221	1
25	187	106	41	231	2
27	187	21			

Execution time for computing $\mathrm{m}_{-} \mathrm{e}(\mathrm{k})$ with and without restrictions

Figure 1. Execution time for the computation of $m_{e}(n)$ with and without the restrictions imposed by Theorem 2.1 and Corollaries 2.2, 2.3. The results were obtained on a workstation with one $\operatorname{Intel}(\mathrm{R}) \mathrm{Xeon}(\mathrm{R}) \mathrm{CPU} 5138$ @ 2.13 GHz , with 4 MB of cache and 32 GB of RAM.
are going to prove that

$$
m_{o}(27)=\min \max _{1 \leq i \leq 27}\left\{x_{i}\right\}=187
$$

and

$$
m_{o}(29)=\min \max _{1 \leq i \leq 29}\left\{x_{i}\right\}=187
$$

Using the results of Section 1, if $m_{o}(n)<200$, then the x_{i} 's are in the following set: $\{3,5,7,9,11,13,15,17,21,23,27,33,35,39,45,51,55,63,65,69,75,77$, $85,91,99,105,115,117,119,135,143,153,161,165,175,187,189,195\}$. The following is a solution of Equation (1.1) when $n=27$:

$$
\begin{gather*}
{[5,7,9,11,13,15,23,27,39,45,51,63,65,69,75,77,85,91,99} \tag{3.1}\\
105,115,119,135,143,153,175,187]
\end{gather*}
$$

Therefore $m_{o}(27) \leq 187$. Substituting 11 and 105 in (3.1) by $21,35,55,165$, we obtain a solution for $n=29$:

$$
\frac{1}{11}+\frac{1}{105}=\frac{1}{21}+\frac{1}{35}+\frac{1}{55}+\frac{1}{165}
$$

Hence, $m_{o}(29) \leq 187$.
Suppose $m_{o}(n)<187$, where $n \in\{27,29\}$. This implies that $m_{o}(n) \leq 175$. Using Theorem 2.1, if 17 appears in a minimal solution then one of the following has to appear:
(1) $17,153=3^{2} \cdot 17,187=11 \cdot 17$, or
(2) $51=3 \cdot 17,85=5 \cdot 17,119=9 \cdot 17,187=11 \cdot 17$.

Therefore, since $m_{0}(n) \leq 175,17$ cannot appear in a minimal solution. Hence there are 29 possible values: $3,5,7,9,11,13,15,21,23,27,33,35,39,45$, $55,63,65,69,75,77,91,99,105,115,117,135,143,165,175$. This implies that $m_{o}(29)=187$ since

$$
\frac{1}{3}+\cdots+\frac{1}{175} \neq 1
$$

If 13 appears in a minimal solution, then one of the following will appear:
(1) $13,39=3 \cdot 13,117=9 \cdot 13$
(2) $13,39=3 \cdot 13,91=7 \cdot 13,117=9 \cdot 13,143=11 \cdot 13$
(3) $65=5 \cdot 13,91=7 \cdot 13,117=9 \cdot 13$
(4) $39=3 \cdot 13,65=5 \cdot 13,117=9 \cdot 13,143=11 \cdot 13$

Among the 29 possible values we count $13,3 \cdot 13, \ldots, 11 \cdot 13$ (six appearances of 13), but the number of times that 13 can appear without getting a contradiction are 4 or 5 . If 13 appears four times, then we have $29-2=27$ possible values. Hence, the only possible solution including 39, 65, 117, and 143 is: $[3,5,7,9,11,15,21,23,27,33,35,39,45,55,63,65,69,75,77$, $99,105,115,117,135,143,165,175]$, but its sum is not equal to 1 . If 13 appears 5 times, then we have $29-1=28$ possible values, as we do not have to consider 65 . Hence, in the list of 28 values we choose 22 from 23 possible values (distinct from $13,39,91,117,143$) and sum them. Those sums are not equal to 1 , and therefore $m_{o}(27)=187$.

The following is an example of the solutions we found for $m_{o}(27):[3,5$, $13,21,23,27,35,39,51,55,63,65,69,75,77,85,91,99,105,115,119,135$, $143,153,165,175,187]$.

4. Solutions of $\sum_{i=1}^{n} 1 / x_{i}=1$ with Restrictions

In [5], the authors considered egyptian fractions with restrictions. They considered solutions of Equation (1.1) over

$$
S\left(p_{1}, \ldots, p_{r}\right)=\left\{p_{1}^{\alpha_{1}} \cdots p_{r}^{\alpha_{r}} \mid \alpha_{i} \in \mathbb{N}_{0}, i=1, \ldots, r\right\}
$$

where \mathbb{N}_{0} is the set of nonnegative integers. In this section we consider the solutions of Equation (1.1) over the set $S\left(p_{1}, \ldots, p_{r}\right)$, where p_{1}, \ldots, p_{r} are odd primes. In some sense the simplest case is $S\left(p_{1}, p_{2}, p_{3}\right)$, since Equation (1.1) does not have solution over $S\left(p_{1}, p_{2}\right)$ with p_{1} and p_{2} odd primes (see Theorem 2.3 in [5]). Let $N_{n}\left(p_{1}, \ldots, p_{r}\right)$ be the set of solutions $\left(x_{1}, \ldots, x_{n}\right)$ of Equation (1.1) with $x_{i} \in S\left(p_{1}, \ldots, p_{r}\right)$, where any solution contains at least one x_{j} that is divisible by p_{i} for $i=1, \ldots, r$. Note that in general $\left|N_{n}\left(p_{1}, \ldots, p_{r}\right)\right|$ is not equal to the value $T_{n}\left(p_{1}, \ldots, p_{r}\right)$ of [5]. Using Theorem 2.3 in [5], we have that $\left|N_{n}\left(p_{1}, p_{2}, p_{3}\right)\right| \geq 1$ for $\left(p_{1}, p_{2}, p_{3}\right) \in\{(3,5,7),(3,5,11),(3,5,13)\}$, n sufficiently large, and $\left|N_{n}\left(p_{1}, p_{2}, p_{3}\right)\right|=0$ otherwise.

The algorithm to compute the solutions with restrictions employs the same backtracking strategy that was used to find the solutions for m_{e} and m_{o}. The main difference is that we begin the algorithm with L, a precomputed list of integers $x_{\alpha_{1} \cdots \alpha_{r}}$ in increasing order, where $x_{\alpha_{1} \cdots \alpha_{r}}=p_{1}^{\alpha_{1}} \cdots p_{r}^{\alpha_{r}}$ and $\alpha_{i} \in \mathbb{N}_{0}$. During backtracking, our algorithm can only choose among integers in L, which significantly speeds the computation. The largest integer $p_{1}^{\alpha_{1}} \cdots p_{r}^{\alpha_{r}}$ used from L during the computation of $\left|N_{15}(3,5,7)\right|$ was 19297377225.

Theorem 4.1. Let $\left|N_{n}\left(p_{1}, \ldots, p_{r}\right)\right|$ be the number of solutions of Equation (1.1) over $S\left(p_{1}, p_{2}, p_{3}\right)$. Then:
(1) $\left|N_{13}(3,5,7)\right|=2034$;
(2) $\left|N_{15}(3,5,7)\right|=374349$;
(3) $\left|N_{17}(3,5,11)\right|=11$ and $N_{n}(3,5,11)=0$ for $n \leq 15$;
(4) $\left|N_{23}(3,5,13)\right|=63$ and $N_{n}(3,5,13)=0$ for $n \leq 21$.

Remark: $N_{13}(3,5,7)$ can be obtained using an argument similar to the one in [3]. We decided not to proceed in that way since the result can be obtained quickly via computer. For the $N_{15}(3,5,7)$ case it would be very difficult to apply this method since there are too many subcases.

We now illustrate the process that is going to be used in the proof of Theorem 4.3. In [1] we introduced the following identity

$$
\begin{equation*}
\frac{1}{a b c}=\frac{1}{a b(a+b+c)}+\frac{1}{a c(a+b+c)}+\frac{1}{b c(a+b+c)} \tag{4.1}
\end{equation*}
$$

to construct new solutions of Equation (1.1). Using

$$
\begin{equation*}
\frac{1}{105}=\frac{1}{3 \cdot 5 \cdot 7}=\frac{1}{15 \cdot 15}+\frac{1}{21 \cdot 15}+\frac{1}{35 \cdot 15} \tag{4.2}
\end{equation*}
$$

the following solution (given in [12]) for Equation (1.1) in 11-variables over $S(3,5,17)$,

$$
1=\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+\frac{1}{9}+\frac{1}{15}+\frac{1}{21}+\frac{1}{27}+\frac{1}{35}+\frac{1}{63}+\frac{1}{105}+\frac{1}{135},
$$

can be lifted to a new solution in 13 -variables:

$$
1=\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+\frac{1}{9}+\frac{1}{15}+\frac{1}{21}+\frac{1}{27}+\frac{1}{35}+\frac{1}{63}+\frac{1}{135}+\frac{1}{225}+\frac{1}{315}+\frac{1}{5 \cdot 105}
$$

This process can be repeated to obtain a solution for any odd n greater that 9. In [5], the authors proved $N_{n}(3,5,7) \geq c_{1} \cdot 62^{k / 2}$ for a computable $c_{1}>0$ and any odd number $n=2 k+1 \geq 11$. We now prove $\left|N_{n}\left(p_{1}, \ldots, p_{r}\right)\right| \geq 1$ for some prime numbers p_{1}, \ldots, p_{r} and $n \geq n_{0}$ odd, where n_{0} is an odd positive integer.

Theorem 4.3.

(1) Let $11 \leq p \leq 37$ be prime. Then $\left|N_{n}(3,5,7, p)\right| \geq 1$ if and only if $n \geq 11$ is odd.
(2) $\left|N_{n}(3,5,11)\right| \geq 1$ if and only if $n \geq 17$ is odd.
(3) $\left|N_{n}(3,5,13)\right| \geq 1$ if and only if $n \geq 23$ is odd.

Proof. For the first part of the theorem we give a complete proof for the case $N_{13}(3,5,7,11)$. For the other cases, we give a solution and the number that we need to substitute in order to get a new solution.

To prove that $N_{13}(3,5,7,11) \geq 1$, we use the solution $[3,5,7,11,15,21,27,33,35,45,2079]$ and $2029=3 \cdot 231$. We then have that

$$
\frac{1}{231}=\frac{1}{1 \cdot 11 \cdot 21}=\frac{1}{363}+\frac{1}{693}+\frac{1}{33 \cdot 231} .
$$

Hence $[3,5,7,11,15,21,27,33,35,45,441,693,33 \cdot 231]$ is a new solution of Equation (1.1). We can repeat this process for any odd n greater than 13 .

- To prove that $N_{13}(3,5,7,13) \geq 1$, we use the following solution: $[3,5,7,9,15,21,35,39,45,49,637]$ and $637=1 \cdot 13 \cdot 49$.
- To prove that $N_{13}(3,5,7,17) \geq 1$, we use the following solution: $[3,5,7,9,15,17,21,35,153,357,595]$ and $595=1 \cdot 5 \cdot 119$.
- To prove that $N_{13}(3,5,7,19) \geq 1$, we use the following solution: $[3,5,7,9,15,19,21,35,95,285,315]$ and $315=3 \cdot 105$.
- To prove that $N_{13}(3,5,7,23) \geq 1$, we use the following solution: $[3,5,7,9,15,21,23,35,69,115,315]$ and $315=3 \cdot 105$.
- To prove that $N_{13}(3,5,7,29) \geq 1$, we use the following solution: $[3,5,7,9,15,21,25,29,45,725,3045]$ and $3045=29 \cdot 105$.
- To prove that $N_{13}(3,5,7,31) \geq 1$, we use the following solution: $[3,5,7,9,15,21,27,31,35,1953,29295]$ and $29295=279 \cdot 105$.
- To prove that $N_{13}(3,5,7,37) \geq 1$, we use the following solution: $[3,5,7,9,15,21,25,37,45,111,6475]$ and $6475=5(5 \cdot 7 \cdot 37)$.

For the second part of the theorem, we find the following solution for Equation (1.1) in 17 -variables over $S(3,5,11)$:

$$
\begin{aligned}
1= & \frac{1}{3}+\frac{1}{5}+\frac{1}{9}+\frac{1}{11}+\frac{1}{15}+\frac{1}{25}+\frac{1}{27}+\frac{1}{33}+\frac{1}{45}+\frac{1}{55}+\frac{1}{75}+\frac{1}{81}+\frac{1}{99} \\
& +\frac{1}{135}+\frac{1}{297}+\frac{1}{405}+\frac{1}{825} .
\end{aligned}
$$

Using

$$
\frac{1}{165}=\frac{1}{3 \cdot 5 \cdot 11}=\frac{1}{1 \cdot 11 \cdot 15}=\frac{1}{11 \cdot 27}+\frac{1}{15 \cdot 27}+\frac{1}{165 \cdot 27}
$$

we then obtain the following solution for $n=19$:

$$
\begin{aligned}
1 & =\frac{1}{3}+\frac{1}{5}+\frac{1}{9}+\frac{1}{11}+\frac{1}{15}+\frac{1}{25}+\frac{1}{27}+\frac{1}{33}+\frac{1}{45}+\frac{1}{55}+\frac{1}{75}+\frac{1}{81}+\frac{1}{99} \\
& +\frac{1}{135}+\frac{1}{297}+\frac{1}{405}+\frac{1}{5(3 \cdot 5 \cdot 11)} \\
& =\frac{1}{3}+\frac{1}{5}+\frac{1}{9}+\frac{1}{11}+\frac{1}{15}+\frac{1}{25}+\frac{1}{27}+\frac{1}{33}+\frac{1}{45}+\frac{1}{55}+\frac{1}{75}+\frac{1}{81}+\frac{1}{99} \\
& +\frac{1}{135}+\frac{1}{297}+\frac{1}{405}+\frac{1}{1485}+\frac{1}{2025}+\frac{1}{135 \cdot 165}
\end{aligned}
$$

We can continue this process to obtain $N_{n}(3,5,11) \geq 1$ for all odd $n \geq 17$. Using direct computation, we do not find any solution when $n \leq 15$.

For the third part of the theorem, we find the following solution for Equation (1.1) in 23 -variables over $S(3,5,13)$:

$$
[3,5,9,13,15,25,27,39,45,65,75,81,117,125,135,195,225,243,325,351
$$ $675,1125,15795]$.

Using

$$
\frac{1}{195}=\frac{1}{3 \cdot 5 \cdot 13}=\frac{1}{1 \cdot 5 \cdot 39}=\frac{1}{5 \cdot 45}+\frac{1}{39 \cdot 45}+\frac{1}{195 \cdot 45}
$$

and $3^{4} \cdot 195=15795$, we obtain a solution for equation (1.1) in 25 -variables over $S(3,5,13)$. We can repeat the process to obtain a solution for $n \geq 25$. Using the computer we do not find any solution for $n \leq 21$.

In [5], the authors proved that the set of natural numbers n such that the equation (1.1) has at least one solution over $S\left(p_{1}, \ldots, p_{r}\right)$ is a union of finitely many arithmetic progressions. Our calculations suggest the following: Let n_{0} be the smallest natural number such that $N_{n_{0}}\left(p_{1}, \ldots, p_{r}\right) \geq 1$. Then $N_{n}\left(p_{1}, \ldots, p_{r}\right) \geq 1$ for $n=2 k+1 \geq n_{0}$.

5. On the calculation of $\lim \inf \frac{x_{n}}{x_{n-k}}$

In this section we prove the existence of solutions of Equation (1.1) satisfying certain properties. Applying the obtained results, we prove that $\liminf x_{n} / x_{n-k}=1$ for fixed k.

Lemma 5.1. For each odd positive integer q there exists an increasing sequence $x_{1}, x_{2}, \ldots, x_{n}$ of odd positive integers such that $q \mid x_{n}$ and

$$
1=\frac{1}{x_{1}}+\frac{1}{x_{2}}+\cdots+\frac{1}{x_{n}} .
$$

Proof. Let $y_{1}, y_{2}, \ldots, y_{m}$ be an increasing sequence of odd positive integers such that $1=\sum_{i=1}^{m} 1 / y_{i}$. By using one of the identities

$$
\frac{1}{x}=\frac{1}{(3 x+1) / 2}+\frac{1}{3 x}+\frac{1}{3 x(3 x+1) / 2} \quad \text { if } x \equiv 3 \bmod 4
$$

or

$$
\frac{1}{x}=\frac{1}{(3 x+3) / 2}+\frac{1}{3 x}+\frac{1}{x(3 x+3) / 2} \quad \text { if } x \equiv 1 \bmod 4
$$

we can replace $1 / y_{m}$ by one of these sums of three distinct odd positive integers and obtain a new increasing sequence with $m+2$ terms of odd positive integers such that

$$
1=\sum_{i=1}^{m+2} \frac{1}{y_{i}},
$$

but now with a different y_{m}. Thus, we may assume that the sequence $y_{1}, y_{2}, \ldots, y_{m}$ also has the property that $q<y_{m}$. In $[2,15]$, it was proved that any rational number with odd denominator is a sum of a finite number of distinct terms from the sequence $1 / 3,1 / 5,1 / 7, \cdots$, so the fraction q / y_{m} has an expansion of the form,

$$
\frac{q}{y_{m}}=\sum_{j=1}^{s} \frac{1}{z_{j}},
$$

where the z_{j} are distinct odd positive integers. From here it follows that

$$
\frac{1}{y_{m}}=\sum_{j=1}^{s} \frac{1}{\left(q z_{j}\right)} .
$$

Notice that each term $q z_{j}$ is greater than y_{m}, so after substituting this expression for $1 / y_{m}$ into the equation $1=\sum_{i=1}^{m} 1 / y_{i}$, we obtain a sequence that satisfies the statement of the lemma.

Lemma 5.2. Let k be a positive even integer and $n_{1}<n_{2}<\cdots<n_{k}$ be a sequence of odd positive integers such that $n_{1}>k+2$. Let $d=n_{1} \cdot n_{2} \cdots n_{k}$ and $q=d-\sum_{i=1}^{k} d / n_{i}$. Then q is an odd integer, $d<q n_{1}$, and

$$
\begin{equation*}
\frac{1}{q}=\frac{1}{d}+\frac{1}{q n_{1}}+\frac{1}{q n_{2}}+\cdots+\frac{1}{q n_{k}} . \tag{5.1}
\end{equation*}
$$

Proof. Since k is an even integer and the n_{i} are odd, the integer q is odd. Moreover,

$$
\frac{1}{q}-\sum_{i=1}^{k} \frac{1}{q n_{i}}=\frac{1}{q}\left(1-\sum_{i=1}^{k} \frac{1}{n_{i}}\right)=\frac{1}{q} \cdot \frac{q}{d}=\frac{1}{d} .
$$

To show that $d<q n_{1}$ notice that

$$
\sum_{j=1}^{k} \frac{n_{1} d}{n_{j}}<k d
$$

so

$$
q n_{1}=n_{1} d-\sum_{j=1}^{k} \frac{n_{1} d}{n_{j}}>\left(n_{1}-k\right) d>d .
$$

This proves the lemma.
Theorem 5.3. Let k, $n_{1}<n_{2}<\cdots<n_{k}$, and q be as in Lemma 5.2. Then there exists a sequence $x_{1}<x_{2}<\cdots<x_{n}$ of odd positive integers such that

$$
1=\frac{1}{x_{1}}+\frac{1}{x_{2}}+\cdots+\frac{1}{x_{n}}
$$

and whose last k terms are

$$
x_{n}=a q n_{k}, x_{n-1}=a q n_{k-1}, \cdots, x_{n-(k-1)}=a q n_{1} .
$$

Proof. By Lemma 5.1there exists a sequence $z_{1}<z_{2}<\cdots<z_{m}$ such that $q \mid z_{m}$ and

$$
1=\frac{1}{z_{1}}+\frac{1}{z_{2}}+\cdots+\frac{1}{z_{m}} .
$$

Therefore $z_{m}=a q$ for some odd integer a. We now multiply both sides of (5.1) by $1 / a$ and then substitute $1 / z_{m}=1 / q a$ by this new value to give the theorem.

The following is a consequence of Theorem 5.3:
Corollary 5.4. Let $k \geq 1$ be a natural number. Then

$$
\lim \inf \frac{x_{n}}{x_{n-k}}=1
$$

Proof. We are going to prove the case when $k=2$. By Theorem 5.3, there exists a solution of Equation (1.1) for each pair $\left(n_{1}, n_{2}\right)=(2 n+1,2 n+3)$, where n is a natural number greater than 1 . This implies the corollary.
6. On max x_{i} SATISFYing $\sum_{i=1}^{n} 1 / x_{i}=1$ over the even numbers

In this section we compute $\max x_{i}$ for sets of x_{i} satisfying Equation (1.1) over distinct even numbers.

Let \mathbb{E} be the set of positive even numbers. In [16], Sylvester introduced the sequence $a_{1}=2, a_{2}=3, a_{3}=7, \ldots, a_{n+1}=a_{1} a_{2} \cdots a_{n}+1$, which satisfies the equation

$$
S=\frac{1}{a_{1}}+\frac{1}{a_{2}}+\cdots+\frac{1}{a_{n}}+\frac{1}{a_{1} a_{2} \cdots a_{n}}=1 .
$$

From [$8,6,14$], it is known that

$$
\begin{equation*}
\max \left\{x_{i} \in \mathbb{N} \left\lvert\, \sum_{i=1}^{n+1} \frac{1}{x_{i}}=1\right.\right\}=a_{1} \cdots a_{n}, \tag{6.1}
\end{equation*}
$$

and if $x_{1} \leq x_{2} \leq \cdots \leq x_{n}$ are natural numbers that satisfy

$$
\frac{1}{x_{1}}+\cdots+\frac{1}{x_{n}}<1
$$

then

$$
\begin{equation*}
\frac{1}{x_{1}}+\cdots+\frac{1}{x_{n}} \leq \frac{1}{a_{1}}+\cdots+\frac{1}{a_{n}} . \tag{6.2}
\end{equation*}
$$

In fact, Equation (6.2) implies Equation (6.1).
Theorem 6.1. Let a_{1}, \cdots, a_{n} be the sequence defined above. Then

$$
\max \left\{x_{n+1} \left\lvert\, \sum_{i=1}^{n+1} \frac{1}{x_{i}}=1\right., x_{1}<\cdots<x_{n+1}, x_{i} \in \mathbb{E}\right\}=2 a_{1} \cdots a_{n-1} .
$$

Proof. Observe that

$$
S_{e}=\frac{1}{2}+\frac{1}{2 a_{1}}+\cdots+\frac{1}{2 a_{n-1}}+\frac{1}{2 a_{1} \cdots a_{n-1}}=1
$$

Let $c_{1}=2$ and $c_{i}=2 a_{i-1}$ for $2 \leq i \leq n$. Then

$$
\frac{1}{c_{1}}+\frac{1}{c_{2}}+\cdots+\frac{1}{c_{n}}+\frac{1}{2 a_{1} \cdots a_{n-1}}=1 .
$$

We claim that

$$
\begin{equation*}
\max \left\{x_{i} \in \mathbb{E} \left\lvert\, \sum_{i=1}^{n+1} \frac{1}{x_{i}}=1\right.\right\}=2 a_{1} \cdots a_{n-1} . \tag{6.3}
\end{equation*}
$$

Let $x_{1}, x_{2}, \cdots, x_{n+1} \in \mathbb{E}$ be a sequence such that

$$
\frac{1}{x_{1}}+\cdots+\frac{1}{x_{n+1}}=1=\frac{1}{2}+\frac{1}{2 a_{1}}+\cdots+\frac{1}{2 a_{1} \cdots a_{n-1}},
$$

where $x_{1}<x_{2}<\cdots<x_{n+1}$. Then

$$
\frac{1}{x_{1}}+\cdots+\frac{1}{x_{n+1}}-\frac{1}{2}=\frac{1}{2 a_{1}}+\cdots+\frac{1}{2 a_{1} \cdots a_{n-1}}
$$

so

$$
\frac{1}{\left(x_{1} / 2\right)}+\cdots+\frac{1}{\left(x_{n+1} / 2\right)}-1=\frac{1}{a_{1}}+\cdots+\frac{1}{a_{1} \cdots a_{n-1}}=1 .
$$

This implies that

$$
\frac{1}{\left(x_{1} / 2\right)}+\cdots+\frac{1}{\left(x_{n+1} / 2\right)}=2 .
$$

If $x_{1}=2$, then

$$
\frac{1}{\left(x_{2} / 2\right)}+\cdots+\frac{1}{\left(x_{n+1} / 2\right)}=1 .
$$

Therefore $x_{n+1} / 2 \leq a_{1} \cdots a_{n-1}$ and hence $x_{n+1} \leq 2 a_{1} \cdots a_{n-1}$.
Suppose $x_{1} \geq 4$ and let $x_{i}^{\prime}=x_{i} / 2$. Suppose there exists a subset A of $B=\left\{x_{1}^{\prime}, \ldots, x_{n+1}^{\prime}\right\}$ such that

$$
\sum_{i \in A} \frac{1}{x_{i}^{\prime}}=1
$$

Then

$$
\sum_{i \in A} \frac{1}{x_{i}^{\prime}}=1
$$

and

$$
\sum_{i \in A^{c}} \frac{1}{x_{i}^{\prime}}=1,
$$

where $A^{c}=B-A$. Note that $x_{i}^{\prime} \leq a_{1} \cdots a_{m}$, where $m=\max \left\{|A|,\left|A^{c}\right|\right\}$. Hence $x_{i} \leq 2 a_{1} \cdots a_{m}$, In particular, $x_{n+1} \leq 2 a_{1} \cdots a_{n-1}$, so we can assume that $\sum_{i \in A} 1 / x_{i}^{\prime} \neq 1$ for any subset A of $B=\left\{x_{1}^{\prime}, \ldots, x_{n+1}^{\prime}\right\}$.

Suppose we take out some collection of x_{i}^{\prime} from $B=\left\{x_{1}^{\prime}, \ldots, x_{n+1}^{\prime}\right\}$ such that the sum of the reciprocal of the elements left in B is less than 1, but when we add x_{n+1}^{\prime} to the set, we obtain a sum greater than 1 . Call this set A and observe that

$$
\sum_{x_{i}^{\prime} \in A} \frac{1}{x_{i}^{\prime}}<1
$$

Let $|A|=k$ and use Equation (6.2) to obtain

$$
\sum_{x_{i}^{\prime} \in A} \frac{1}{x_{i}^{\prime}} \leq \frac{1}{a_{1}}+\cdots+\frac{1}{a_{k}} .
$$

We then have that

$$
\sum_{x_{i}^{\prime} \in A} \frac{1}{x_{i}^{\prime}}+\frac{K}{\prod_{x_{i}^{\prime} \in A} x_{i}^{\prime}}=1=\frac{1}{a_{1}}+\cdots+\frac{1}{a_{k}}+\frac{1}{a_{1} \cdots a_{k}}
$$

for some natural number K. Then

$$
\frac{1}{x_{n+1}^{\prime}}>\frac{K}{\prod_{x_{i}^{\prime} \in A} x_{i}^{\prime}}
$$

and hence $K x_{n+1}^{\prime}<\prod_{x_{i}^{\prime} \in A} x_{i}^{\prime}$. Furthermore, we have that

$$
\frac{K}{\prod_{x_{i}^{\prime} \in A} x_{i}^{\prime}} \geq \frac{1}{a_{1} \ldots a_{n-1}}
$$

and hence $\prod_{x_{i}^{\prime} \in A} x_{i}^{\prime} \leq K a_{1} \cdots a_{n-1}$. This implies that $x_{n+1}^{\prime}<a_{1} a_{2} \cdots a_{n-1}$.
Suppose now for any subset A of B satisfying

$$
\sum_{x_{i}^{\prime} \in A} \frac{1}{x_{i}^{\prime}}<1,
$$

we have that

$$
\sum_{x_{i}^{\prime} \in A} \frac{1}{x_{i}^{\prime}}+\frac{1}{x_{n+1}^{\prime}}<1 .
$$

We choose A_{0} with maximal sum, i.e, for any $A \subseteq B$ satisfying

$$
\sum_{x_{i}^{\prime} \in A} \frac{1}{x_{i}^{\prime}}<1,
$$

we have

$$
\sum_{x_{i}^{\prime} \in A} \frac{1}{x_{i}^{\prime}} \leq \sum_{x_{i}^{\prime} \in A_{0}} \frac{1}{x_{i}^{\prime}}
$$

We can substitute values x_{i}^{\prime} of A_{0} by y_{i}^{\prime} such that

$$
\sum_{y_{i}^{\prime} \in A_{0}} \frac{1}{y_{i}^{\prime}}<1
$$

and

$$
\sum_{y_{i}^{\prime} \in A_{0}} \frac{1}{y_{i}^{\prime}}+\frac{1}{x_{n+1}^{\prime}} \geq 1
$$

Now we can apply the method of the previous case to obtain the inequality $x_{n+1}^{\prime} \leq a_{1} \cdots a_{n-1}$.

Acknowledgment

We are grateful to the referee for his/her comments.

References

1. R. Arce-Nazario, F. Castro, and R. Figueroa, On the number of solutions of $\sum_{i=1}^{11} \frac{1}{x_{i}}=1$ in distinct odd natural numbers, J. Number Theory 133 (2013), no. 6, 2036-2046. MR 3027952
2. R. Breush, Solution to problem e4512, American Math. Monthly 61 (1954), 200-201.
3. N. Burshtein, Improving solutions of $\sum_{i=1}^{k} \frac{1}{x_{i}}=1$ with restrictions as required by Barbeau respectively by Johnson, Discrete Math. 306 (2006), no. 13, 1438-1439. MR 2237726
4. \qquad , The equation $\sum_{i=1}^{9} \frac{1}{x_{i}}=1$ in distinct odd integers has only the five known solutions, J. Number Theory 127 (2007), no. 1, 136-144. MR 2351669
5. Y-G. Chen, C. Elsholtz, and L-L. Jiang, Egyptian fractions with restrictions, Acta Arith. 154 (2012), no. 2, 109-123. MR 2945656
6. D. R. Curtiss, On Kellogg's Diophantine Problem, Amer. Math. Monthly 29 (1922), no. 10, 380-387. MR 1520110
7. R. K. Guy, Unsolved problems in number theory, third ed., Problem Books in Mathematics, Springer-Verlag, New York, 2004. MR 2076335
8. O. Kellogg, On a diophantine equation, Amer. Math. Monthly 28 (1921), 300-303.
9. G. Martin, Dense Egyptian fractions, Trans. Amer. Math. Soc. 351 (1999), no. 9, 3641-3657. MR 1608486
10. , Denser Egyptian fractions, Acta Arith. 95 (2000), no. 3, 231-260. MR 1793163
11. P. Shiu, Egyptian fraction representations of 1 with odd denominators, Math. Gaz. 93 (2009), 271-276.
12. W. Sierpiński, Sur les décompositions de nombres rationnels en fractions primaires, Mathesis 65 (1956), 16-32. MR 0078385
13. N. Sloane and S. Plouffe, Integer Sequences A006585.
14. K. Soundararajan, Approximating from below using n egyptian fractions, 2005, pp. 1-2.
15. B. M. Stewart, Sums of distinct divisors, Amer. J. Math. 76 (1954), 779-785. MR 0064800
16. J. J. Sylvester, On a Point in the Theory of Vulgar Fractions, Amer. J. Math. 3 (1880), no. 4, 332-335. MR 1505274

Department of Computer Science, University of Puerto Rico, Río Piedras Campus
E-mail address: rafael.arce@upr.edu
Department of Mathematics, University of Puerto Rico, Río Piedras Campus
E-mail address: franciscastr@gmail.com
Department of Mathematics, University of Puerto Rico, Río Piedras Campus
E-mail address: junioyjulio@gmail.com

[^0]: Received by the editors February 26, 2015, and in revised form February 14, 2016.
 2010 Mathematics Subject Classification. Primary: 11D68; Secondary: 11Y50 .
 Key words and phrases. Unit fractions, Egyptian fractions.

