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ON THE EQUATION
n∑
i=1

1

xi
= 1 IN DISTINCT ODD OR

EVEN NUMBERS

RAFAEL ARCE-NAZARIO, FRANCIS N. CASTRO, AND RAÚL FIGUEROA

Abstract. In this paper we combine theoretical results and computer
search to obtain information about the solutions of the equation

n∑
i=1

1

xi
= 1.

We calculate (a) mo(n) = min{max{xi | 1 ≤ i ≤ n}} and (b) me(n)
= min{max{xi | 1 ≤ i ≤ n}}, where the minimum is taken over all sets
{xi} satisfying the above equation in distinct odd integers when 13 ≤
n ≤ 41 (for case a) and in distinct even integers when 3 ≤ n ≤ 29 (for
case b). We compute the number of solutions of the above equation for:
• n = 13, 15 when xi ∈ {3α · 5β · 7γ};
• n ≤ 17 when xi ∈ {3α · 5β · 11γ};
• n ≤ 23 when xi ∈ {3α · 5β · 13γ}.

We also compute maxxi for {xi} satisfying the mentioned equation in
distinct even integers. Finally, we compute lim inf(xn/xn−k) for fixed k.

1. Introduction

In the book “Unsolved Problems in Number Theory” [7], Section D11
discusses the topic of Egyptian fractions. These are fractions that can be
expressed as a finite sum

∑n
i=1 1/xi of reciprocals of distinct positive integers.

Special attention has been given to the equation

(1.1)

n∑
i=1

1

xi
= 1,

where x1 < · · · < xn. The number of solutions of Equation (1.1) for 1 ≤ n ≤ 8
over distinct positive integers are given in [13]. Furthermore, in [4, 11, 1],
the authors computed the number of solutions of Equation (1.1) for n = 9, 11
over distinct odd positive integers.

A question proposed by Erdős and Graham about these fractions that
appears in [7] is to determine the value of m(n), the min max xi, where the
minimum is taken over all sets {xi} satisfying Equation (1.1). Section D11
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in [7] contains a table showing m(k) for 3 ≤ n ≤ 28. It is observed that m(n)
is nondecreasing for these values.

In [2, 15], the authors proved that any rational number with an odd
denominator can be written as the sum of distinct odd unit fractions. In [10],
G. Martin computed the asymptotic behavior of m(n) for Equation (1.1).
More precisely, he proved

(1.2) m(n) = min max
1≤i≤n

xi =
n

1− e−1
+O1

(
n log log 3n

log 3n

)
.

In this paper we consider the following problem: to determine the values of

mo(n) = min max
1≤i≤n

xi

and

me(n) = min max
1≤i≤n

xi,

where xi are distinct odd(even) positive integers satisfying Equation (1.1).
In fact, for each odd n, 13 ≤ n ≤ 41, we found the value of mo(n) and all

the sequences where mo(n) is the minimum value for the corresponding n.
The minimum n for which mo(n) exists is n = 9; the values mo(9) = 231 and
mo(11) = 105, were independently found by P. Shiu [11] and N. Burshtein
[3].

In [1], Arce et. al. computed mo(13) = 115. In this paper we compute
mo(n) for 15 ≤ n ≤ 41. For the case me(n) we compute me(n) for 3 ≤ n ≤ 29.
Our results imply that mo(n) and me(n) are nondecreasing for 11 ≤ n ≤ 41,
3 ≤ n ≤ 29, respectively. Note that Martin’s result in [10] implies that

me(n) =
n

1− e−2
+ (error term).

In [5], Chen-Elsholtz-Jiang proved a criterion for existence of solutions of
Equation (1.1) over subsets of the type

S(p1, . . . , pr) = {pα1
1 · · · p

αr
r |α1, . . . , αr ∈ N0},

where N0 are the nonnegative integers. Let Nn(p1, . . . , pr) be the set of
the solutions of Equation (1.1) with xi ∈ S(p1, . . . , pr) where any solu-
tion contains at least one xj that is divisible by pi for i = 1, ..., r. Note
that in general |Nn(p1, . . . , pr)| is not equal to Tn(p1, . . . , pr) of [5], as
|Nn(p1, . . . , pr)| ≤ Tn(p1, . . . , pr) and |Nn(p1, p2, p3)| = Tn(p1, p2, p3). It
is not difficult to prove that |Nn(p1, p2)| = 0, where p1, p2 are odd primes;
see [5] for details. Hence the simplest case is Nn(p1, p2, p3). In [3], Bur-
shtein proved that N11(3, 5, 7) = 17. Using the information in [1], we have
N11(p1, p2, p3) = 0 except in the case of p1 = 3, p2 = 5, and p3 = 7. Motivated
by the results of [5, 3, 1], we compute

• N13(3, 5, 7) = 2034 and N15(3, 5, 7) = 374349.
• Nn(3, 5, 11) = 0 for n ≤ 15 and N17(3, 5, 11) = 11.
• Nn(3, 5, 13) = 0 for n ≤ 21 and N23(3, 5, 13) = 63.
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We also prove Nn(p1, . . . , pr) ≥ 1 over S(p1, p2, . . . , pr) for n ≥ no odd and
some p1, . . . , pr odd primes.

In this paper we study solutions of Equation (1.1) satisfying some restric-
tions. We prove the existence of solutions of Equation (1.1) where the last
k terms are close to each other in a multiplicative sense. The optimization
problem of finding m(n) was solved in [8, 14]. In this paper we solve the
optimization problem of finding max{xi} over positive even numbers of the
Equation (1.1).

The results in Section 2 are mainly computational, but in order to signifi-
cantly reduce the computational time we had to develop some elementary
constraints. We used some divisibility properties to obtain these constraints
and they appear as theorem and corollaries in Section 2. The Tables in Sec-
tion 2 summarize our results for mo(n),me(n). A complete list of sequences
can be found in our page http://ccom.uprrp.edu/∼rarce/dmath.html. In
Section 3, we present the calculation of mo(27) and mo(29) to show that in
some cases the constraints reduce the solution space enough that they can
be completed by hand. In Section 4, we study the solutions of Equation
(1.1) over S(p1, . . . , pr). In section 4 we also combine computational results
with an identity to prove the solvability of Equation (1.1). In Section 5,
we construct solutions of Equation (1.1) satisfying certain properties. Our
results of this section imply that lim inf xn/xn−k = 1 for fixed k. In the last
section, we answer the optimization problem for max{xi} over positive even
numbers.

Our calculations have two goals:

• Prove that the optimization problem of computing mo(n) and me(n)
can be simplified significantly by using elementary arguments of
divisibility, as well as prove that the divisibility constraints imposed
by the Equation (1.1) allow us to compute mo(n) and me(n) by hand.
• Provide more data about the behavior of mo(n) and me(n).

2. Computation of mo(n) and me(n)

In this section we study the divisibility properties of the solutions of
Equation (1.1). Using these properties, we were able to compute mo(n) and
me(n) for 13 ≤ n ≤ 41 and 3 ≤ n ≤ 29, respectively.

Theorem 2.1. Let p be an odd prime number. Let M be a positive integer
and let x1, x2, . . . , xn be a sequence of distinct odd positive integers such that

1 =

n∑
i=1

1

xi

and xi < M , for all i.

(1) If pt divides exactly k terms x1, . . . , xk, and pt+1 - xi, for all i, let
ai = xi/p

t for i = 1, ..., k, and let A = a1 · a2 · · · ak. Then p divides∑k
i=1A/ai
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(2) If pt | xj, for some j, and pt+1 - xi, for all i, then pt divides another
term of the sequence {xi}.

(3) If ps | xj, for some j, and ps+1 > M , then ps divides at least three
terms of the sequence {xi}.

Proof. (1) For j > k we have that pt/xj = cj/dj where p | cj and p - dj .
From Equation (1.1) we have

pt =
n∑
i=1

pt

xi
=

k∑
i=1

1

ai
+

n∑
j=k+1

cj
dj
.

Let D = dk+1 · dk+2 · · · dn, so p - D. From

ADpt = D

(
k∑
i=1

A

ai

)
+A

 n∑
j=k+1

cj

(
D

dj

)
it follows that p divides

∑k
i=1A/ai

(2) This follows from part 1.
(3) If x1 = a1p

s, x2 = a2p
s and ps - xj for j > 2, then a1 + a2 ≡ 0 mod p

by part 1. Since a1 + a2 is even, then a1 + a2 ≥ 2p so a1 > p (or a2 > p) and
x1 > ps+1 > M .

�

The following corollaries are for specific values of M :

Corollary 2.2. Let p and x1, x2, . . . , xn be as in Theorem 2.1 and let M =
240. Then:

(1) If p > 37, p - xi for all i;
(2) If p ≥ 7, p2 - xi, for all i;
(3) 81 - xi and 29 - xi, for all i.

Proof. (1) Assume p | x1. Since p2 > M and 7p > M , we have that p divides
exactly three terms, say x1 = p, x2 = 3p and x3 = 5p, so a1 = 1, a2 = 3, and
a3 = 5. By Theorem 2.1,

∑
A/ai = 23 ≡ 0 mod p; since p > 37, this is a

contradiction.
(2) Assume p2 divides some xi. Then p2 < M so p = 7, 11, 13. Since

p3 > M and 7p2 > M , p2 divides exactly three terms and, as before, p
divides 23 but p < 23, which is a contradiction.

(3) The case 81 follows from Theorem 2.1. For p = 29 we have that p
divides three or four terms. In the first case, x1 = a1p, x2 = a2p, x3 = a3p,
and a1, a2, a3 ∈ {1, 3, 5, 7}, since 9p > M . If {a1, a2, a3} = {1, 3, 5},{1, 3, 7},
{1, 5, 7}, or {3, 5, 7}, we respectively have that

∑
A/ai = 23, 31, 47, or 71, so

p does not divide
∑
A/ai. If p divides 4 terms, then a1 = 1, a2 = 3, a3 = 5

and a4 = 7, and in this case
∑
A/ai = 176 6≡ 0 mod p. �

Corollary 2.3. Let p and x1, x2, . . . , xn be as in Theorem 2.1. Let M = 200,
then 31 - xi, and 19 - xi for all i.
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We used an exhaustive computer search over the integers that comply
with Theorem 2.1 and Corollaries 2.2, 2.3 to find all the sequences x1 < x2 <
· · · < xn = mo(n) satisfying Equation (1.1) with xi odd positive integers.
We also did an exhaustive computer search over the distinct even integers
that comply with similar results to the ones in this section (we omit the
proof because it follows along the same line of the proofs of the results of
this section) to find all the sequences x1 < x2 < · · · < xn = me(n) satisfying
Equation (1.1) with xi even positive integers. In the computation of mo(n)
and me(n), the results of this section limited the amount of possible values
of the xi’s. Tables 1 and 2 summarize our results.

The column Ne(n) in Table 1 shows the number of sequences where the
value me(n) was obtained. In Table 2 the column No(n) shows the number
of sequences where the value mo(n) was obtained.

The restrictions imposed on the valid values for xi, 1 ≤ i ≤ n, by using
Theorem 2.1 and Corollaries 2.2, 2.3 significantly reduced the solution search
space. The search space reduction translated to speedups of up to 70× for
the computation of me (n) where 14 ≤ n ≤ 18, as seen in Figure 1. This
allowed us to obtain results for n ≤ 29 in mo(n) and n ≤ 41 in me (n) ,
respectively.

Table 1. me(n) for 3 ≤ n ≤ 29

n me(n) Ne(n) n me(n) Ne(n)
4 12 1 17 66 4
5 24 1 18 66 2
6 30 1 19 72 1
7 30 1 20 84 4
8 36 1 21 84 2
9 40 1 22 90 7
10 48 2 23 90 2
11 48 1 24 96 9
12 48 1 25 96 2
13 56 7 26 104 32
14 56 2 27 104 5
15 56 1 28 104 2
16 66 15 29 120 1

Conjectures.

• me(n) is a nondecreasing function for n ≥ 3.
• mo(n) is a nondecreasing function for n ≥ 11.

3. Calculations of mo(27) and mo(29)

In this section we show how to use Theorem 2.1 and Corollaries 2.2 and
2.3 to obtain mo(27) and mo(29). Other cases can be obtained similarly. We
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Table 2. mo(n) for 11 ≤ n ≤ 41

n mo(n) No(n) n mo(n) No(n)
13 115 3 29 187 4
15 117 9 31 195 1
17 117 3 33 209 11
19 135 5 35 209 1
21 143 6 37 217 1
23 175 6 39 221 1
25 187 106 41 231 2
27 187 21

Figure 1. Execution time for the computation of me(n)
with and without the restrictions imposed by Theorem 2.1
and Corollaries 2.2, 2.3. The results were obtained on a
workstation with one Intel(R) Xeon(R) CPU 5138 @ 2.13GHz,
with 4MB of cache and 32GB of RAM.

are going to prove that

mo(27) = min max
1≤i≤27

{xi} = 187
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and
mo(29) = min max

1≤i≤29
{xi} = 187.

Using the results of Section 1, ifmo(n) < 200, then the xi’s are in the following
set: {3, 5, 7, 9, 11, 13, 15, 17, 21, 23, 27, 33, 35, 39, 45, 51, 55, 63, 65, 69, 75, 77,
85, 91, 99, 105, 115, 117, 119, 135, 143, 153, 161, 165, 175, 187, 189, 195}. The
following is a solution of Equation (1.1) when n = 27:

[5, 7, 9, 11, 13, 15, 23, 27, 39, 45, 51, 63, 65, 69, 75, 77, 85, 91, 99,(3.1)

105, 115, 119, 135, 143, 153, 175, 187].

Therefore mo(27) ≤ 187. Substituting 11 and 105 in (3.1) by 21, 35, 55, 165,
we obtain a solution for n = 29:

1

11
+

1

105
=

1

21
+

1

35
+

1

55
+

1

165
.

Hence, mo(29) ≤ 187.
Suppose mo(n) < 187, where n ∈ {27, 29}. This implies that mo(n) ≤ 175.

Using Theorem 2.1, if 17 appears in a minimal solution then one of the
following has to appear:

(1) 17, 153 = 32 · 17, 187 = 11 · 17, or
(2) 51 = 3 · 17, 85 = 5 · 17, 119 = 9 · 17, 187 = 11 · 17.

Therefore, since m0(n) ≤ 175, 17 cannot appear in a minimal solution. Hence
there are 29 possible values: 3, 5, 7, 9, 11, 13, 15, 21, 23, 27, 33, 35, 39, 45,
55, 63, 65, 69, 75, 77, 91, 99, 105, 115, 117, 135, 143, 165, 175. This implies
that mo(29) = 187 since

1

3
+ · · ·+ 1

175
6= 1.

If 13 appears in a minimal solution, then one of the following will appear:

(1) 13, 39 = 3 · 13, 117 = 9 · 13
(2) 13, 39 = 3 · 13, 91 = 7 · 13, 117 = 9 · 13, 143 = 11 · 13
(3) 65 = 5 · 13, 91 = 7 · 13, 117 = 9 · 13
(4) 39 = 3 · 13, 65 = 5 · 13, 117 = 9 · 13, 143 = 11 · 13

Among the 29 possible values we count 13, 3 · 13, . . ., 11 · 13 (six appearances
of 13), but the number of times that 13 can appear without getting a
contradiction are 4 or 5. If 13 appears four times, then we have 29− 2 = 27
possible values. Hence, the only possible solution including 39, 65, 117, and
143 is: [3, 5, 7, 9, 11, 15, 21, 23, 27, 33, 35, 39, 45, 55, 63, 65, 69, 75, 77,
99, 105, 115, 117, 135, 143, 165, 175], but its sum is not equal to 1. If 13
appears 5 times, then we have 29− 1 = 28 possible values, as we do not have
to consider 65. Hence, in the list of 28 values we choose 22 from 23 possible
values (distinct from 13, 39, 91, 117, 143) and sum them. Those sums are
not equal to 1, and therefore mo(27) = 187.

The following is an example of the solutions we found for mo(27): [ 3, 5,
13, 21, 23, 27, 35, 39, 51, 55, 63, 65, 69, 75, 77, 85, 91, 99, 105, 115, 119, 135,
143, 153, 165, 175, 187].



70 R.ARCE-NAZARIO, F. CASTRO, AND R. FIGUEROA

4. Solutions of
∑n

i=1 1/xi = 1 with Restrictions

In [5], the authors considered egyptian fractions with restrictions. They
considered solutions of Equation (1.1) over

S(p1, . . . , pr) = {pα1
1 · · · p

αr
r |αi ∈ N0, i = 1, . . . , r},

where N0 is the set of nonnegative integers. In this section we consider the
solutions of Equation (1.1) over the set S(p1, . . . , pr), where p1, . . . , pr are odd
primes. In some sense the simplest case is S(p1, p2, p3), since Equation (1.1)
does not have solution over S(p1, p2) with p1 and p2 odd primes (see Theorem
2.3 in [5]). Let Nn(p1, . . . , pr) be the set of solutions (x1, . . . , xn) of Equation
(1.1) with xi ∈ S(p1, . . . , pr), where any solution contains at least one xj
that is divisible by pi for i = 1, ..., r. Note that in general |Nn(p1, . . . , pr)|
is not equal to the value Tn(p1, . . . , pr) of [5]. Using Theorem 2.3 in [5], we
have that |Nn(p1, p2, p3)| ≥ 1 for (p1, p2, p3) ∈ {(3, 5, 7), (3, 5, 11), (3, 5, 13)},
n sufficiently large, and |Nn(p1, p2, p3)| = 0 otherwise.

The algorithm to compute the solutions with restrictions employs the same
backtracking strategy that was used to find the solutions for me and mo. The
main difference is that we begin the algorithm with L, a precomputed list of
integers xα1···αr in increasing order, where xα1···αr = pα1

1 · · · pαrr and αi ∈ N0.
During backtracking, our algorithm can only choose among integers in L,
which significantly speeds the computation. The largest integer pα1

1 · · · pαrr
used from L during the computation of |N15(3, 5, 7)| was 19297377225.

Theorem 4.1. Let |Nn(p1, . . . , pr)| be the number of solutions of Equation
(1.1) over S(p1, p2, p3). Then:

(1) |N13(3, 5, 7)| = 2034;
(2) |N15(3, 5, 7)| = 374349;
(3) |N17(3, 5, 11)| = 11 and Nn(3, 5, 11) = 0 for n ≤ 15;
(4) |N23(3, 5, 13)| = 63 and Nn(3, 5, 13) = 0 for n ≤ 21.

Remark: N13(3, 5, 7) can be obtained using an argument similar to the one in
[3]. We decided not to proceed in that way since the result can be obtained
quickly via computer. For the N15(3, 5, 7) case it would be very difficult to
apply this method since there are too many subcases.

We now illustrate the process that is going to be used in the proof of
Theorem 4.3. In [1] we introduced the following identity

(4.1)
1

abc
=

1

ab(a+ b+ c)
+

1

ac(a+ b+ c)
+

1

bc(a+ b+ c)

to construct new solutions of Equation (1.1). Using

(4.2)
1

105
=

1

3 · 5 · 7
=

1

15 · 15
+

1

21 · 15
+

1

35 · 15
,
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the following solution (given in [12]) for Equation (1.1) in 11-variables over
S(3, 5, 17),

1 =
1

3
+

1

5
+

1

7
+

1

9
+

1

15
+

1

21
+

1

27
+

1

35
+

1

63
+

1

105
+

1

135
,

can be lifted to a new solution in 13-variables:

1 =
1

3
+

1

5
+

1

7
+

1

9
+

1

15
+

1

21
+

1

27
+

1

35
+

1

63
+

1

135
+

1

225
+

1

315
+

1

5 · 105
.

This process can be repeated to obtain a solution for any odd n greater that
9. In [5], the authors proved Nn(3, 5, 7) ≥ c1 · 62k/2 for a computable c1 > 0
and any odd number n = 2k+ 1 ≥ 11. We now prove |Nn(p1, . . . , pr)| ≥ 1 for
some prime numbers p1, . . . , pr and n ≥ n0 odd, where n0 is an odd positive
integer.

Theorem 4.3.

(1) Let 11 ≤ p ≤ 37 be prime. Then |Nn(3, 5, 7, p)| ≥ 1 if and only if
n ≥ 11 is odd.

(2) |Nn(3, 5, 11)| ≥ 1 if and only if n ≥ 17 is odd.
(3) |Nn(3, 5, 13)| ≥ 1 if and only if n ≥ 23 is odd.

Proof. For the first part of the theorem we give a complete proof for the case
N13(3, 5, 7, 11). For the other cases, we give a solution and the number that
we need to substitute in order to get a new solution.

To prove that N13(3, 5, 7, 11) ≥ 1, we use the solution
[3, 5, 7, 11, 15, 21, 27, 33, 35, 45, 2079] and 2029 = 3 · 231. We then have that

1

231
=

1

1 · 11 · 21
=

1

363
+

1

693
+

1

33 · 231
.

Hence [3, 5, 7, 11, 15, 21, 27, 33, 35, 45, 441, 693, 33 · 231] is a new solution of
Equation (1.1). We can repeat this process for any odd n greater than 13.

• To prove that N13(3, 5, 7, 13) ≥ 1, we use the following solution:
[3, 5, 7, 9, 15, 21, 35, 39, 45, 49, 637] and 637 = 1 · 13 · 49.
• To prove that N13(3, 5, 7, 17) ≥ 1, we use the following solution:

[3, 5, 7, 9, 15, 17, 21, 35, 153, 357, 595] and 595 = 1 · 5 · 119.
• To prove that N13(3, 5, 7, 19) ≥ 1, we use the following solution:

[3, 5, 7, 9, 15, 19, 21, 35, 95, 285, 315] and 315 = 3 · 105.
• To prove that N13(3, 5, 7, 23) ≥ 1, we use the following solution:

[3, 5, 7, 9, 15, 21, 23, 35, 69, 115, 315] and 315 = 3 · 105.
• To prove that N13(3, 5, 7, 29) ≥ 1, we use the following solution:

[3, 5, 7, 9, 15, 21, 25, 29, 45, 725, 3045] and 3045 = 29 · 105.
• To prove that N13(3, 5, 7, 31) ≥ 1, we use the following solution:

[3, 5, 7, 9, 15, 21, 27, 31, 35, 1953, 29295] and 29295 = 279 · 105.
• To prove that N13(3, 5, 7, 37) ≥ 1, we use the following solution:

[3, 5, 7, 9, 15, 21, 25, 37, 45, 111, 6475] and 6475 = 5(5 · 7 · 37).
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For the second part of the theorem, we find the following solution for
Equation (1.1) in 17-variables over S(3, 5, 11):

1 =
1

3
+

1

5
+

1

9
+

1

11
+

1

15
+

1

25
+

1

27
+

1

33
+

1

45
+

1

55
+

1

75
+

1

81
+

1

99

+
1

135
+

1

297
+

1

405
+

1

825
.

Using

1

165
=

1

3 · 5 · 11
=

1

1 · 11 · 15
=

1

11 · 27
+

1

15 · 27
+

1

165 · 27

we then obtain the following solution for n = 19:

1 =
1

3
+

1

5
+

1

9
+

1

11
+

1

15
+

1

25
+

1

27
+

1

33
+

1

45
+

1

55
+

1

75
+

1

81
+

1

99

+
1

135
+

1

297
+

1

405
+

1

5(3 · 5 · 11)

=
1

3
+

1

5
+

1

9
+

1

11
+

1

15
+

1

25
+

1

27
+

1

33
+

1

45
+

1

55
+

1

75
+

1

81
+

1

99

+
1

135
+

1

297
+

1

405
+

1

1485
+

1

2025
+

1

135 · 165
.

We can continue this process to obtain Nn(3, 5, 11) ≥ 1 for all odd n ≥ 17.
Using direct computation, we do not find any solution when n ≤ 15.

For the third part of the theorem, we find the following solution for
Equation (1.1) in 23-variables over S(3, 5, 13):

[3, 5, 9, 13, 15, 25, 27, 39, 45, 65, 75, 81, 117, 125, 135, 195, 225, 243, 325, 351,
675, 1125, 15795].

Using

1

195
=

1

3 · 5 · 13
=

1

1 · 5 · 39
=

1

5 · 45
+

1

39 · 45
+

1

195 · 45

and 34 · 195 = 15795, we obtain a solution for equation (1.1) in 25-variables
over S(3, 5, 13). We can repeat the process to obtain a solution for n ≥ 25.
Using the computer we do not find any solution for n ≤ 21. �

In [5], the authors proved that the set of natural numbers n such that
the equation (1.1) has at least one solution over S(p1, . . . , pr) is a union of
finitely many arithmetic progressions. Our calculations suggest the following:
Let n0 be the smallest natural number such that Nn0(p1, . . . , pr) ≥ 1. Then
Nn(p1, . . . , pr) ≥ 1 for n = 2k + 1 ≥ n0.

5. On the calculation of lim inf xn
xn−k

In this section we prove the existence of solutions of Equation (1.1) sat-
isfying certain properties. Applying the obtained results, we prove that
lim inf xn/xn−k = 1 for fixed k.
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Lemma 5.1. For each odd positive integer q there exists an increasing
sequence x1, x2, . . . , xn of odd positive integers such that q|xn and

1 =
1

x1
+

1

x2
+ · · ·+ 1

xn
.

Proof. Let y1, y2, . . . , ym be an increasing sequence of odd positive integers
such that 1 =

∑m
i=1 1/yi. By using one of the identities

1

x
=

1

(3x+ 1)/2
+

1

3x
+

1

3x(3x+ 1)/2
if x ≡ 3 mod 4

or
1

x
=

1

(3x+ 3)/2
+

1

3x
+

1

x(3x+ 3)/2
if x ≡ 1 mod 4

we can replace 1/ym by one of these sums of three distinct odd positive
integers and obtain a new increasing sequence with m + 2 terms of odd
positive integers such that

1 =
m+2∑
i=1

1

yi
,

but now with a different ym. Thus, we may assume that the sequence
y1, y2, . . . , ym also has the property that q < ym. In [2, 15], it was proved
that any rational number with odd denominator is a sum of a finite number
of distinct terms from the sequence 1/3, 1/5, 1/7, · · ·, so the fraction q/ym
has an expansion of the form,

q

ym
=

s∑
j=1

1

zj
,

where the zj are distinct odd positive integers. From here it follows that

1

ym
=

s∑
j=1

1

(qzj)
.

Notice that each term qzj is greater than ym, so after substituting this
expression for 1/ym into the equation 1 =

∑m
i=1 1/yi, we obtain a sequence

that satisfies the statement of the lemma. �

Lemma 5.2. Let k be a positive even integer and n1 < n2 < · · · < nk be a
sequence of odd positive integers such that n1 > k + 2. Let d = n1 · n2 · · ·nk
and q = d−

∑k
i=1 d/ni. Then q is an odd integer, d < qn1, and

(5.1)
1

q
=

1

d
+

1

qn1
+

1

qn2
+ · · ·+ 1

qnk
.

Proof. Since k is an even integer and the ni are odd, the integer q is odd.
Moreover,

1

q
−

k∑
i=1

1

qni
=

1

q

(
1−

k∑
i=1

1

ni

)
=

1

q
· q
d

=
1

d
.
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To show that d < qn1 notice that

k∑
j=1

n1d

nj
< kd,

so

qn1 = n1d−
k∑
j=1

n1d

nj
> (n1 − k)d > d.

This proves the lemma. �

Theorem 5.3. Let k, n1 < n2 < · · · < nk, and q be as in Lemma 5.2. Then
there exists a sequence x1 < x2 < · · · < xn of odd positive integers such that

1 =
1

x1
+

1

x2
+ · · ·+ 1

xn
and whose last k terms are

xn = aqnk, xn−1 = aqnk−1, · · · , xn−(k−1) = aqn1.

Proof. By Lemma 5.1there exists a sequence z1 < z2 < · · · < zm such that
q|zm and

1 =
1

z1
+

1

z2
+ · · ·+ 1

zm
.

Therefore zm = aq for some odd integer a. We now multiply both sides of
(5.1) by 1/a and then substitute 1/zm = 1/qa by this new value to give the
theorem. �

The following is a consequence of Theorem 5.3:

Corollary 5.4. Let k ≥ 1 be a natural number. Then

lim inf
xn
xn−k

= 1.

Proof. We are going to prove the case when k = 2. By Theorem 5.3, there
exists a solution of Equation (1.1) for each pair (n1, n2) = (2n+ 1, 2n+ 3),
where n is a natural number greater than 1. This implies the corollary. �

6. On maxxi satisfying
∑n

i=1 1/xi = 1 over the even numbers

In this section we compute maxxi for sets of xi satisfying Equation (1.1)
over distinct even numbers.

Let E be the set of positive even numbers. In [16], Sylvester introduced the
sequence a1 = 2, a2 = 3, a3 = 7, . . . , an+1 = a1a2 · · · an + 1, which satisfies
the equation

S =
1

a1
+

1

a2
+ · · ·+ 1

an
+

1

a1a2 · · · an
= 1.

From [8, 6, 14], it is known that

(6.1) max

{
xi ∈ N

∣∣∣∣ n+1∑
i=1

1

xi
= 1

}
= a1 · · · an,
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and if x1 ≤ x2 ≤ · · · ≤ xn are natural numbers that satisfy

1

x1
+ · · ·+ 1

xn
< 1,

then

(6.2)
1

x1
+ · · ·+ 1

xn
≤ 1

a1
+ · · ·+ 1

an
.

In fact, Equation (6.2) implies Equation (6.1).

Theorem 6.1. Let a1, · · · , an be the sequence defined above. Then

max

{
xn+1

∣∣∣∣ n+1∑
i=1

1

xi
= 1, x1 < · · · < xn+1, xi ∈ E

}
= 2a1 · · · an−1.

Proof. Observe that

Se =
1

2
+

1

2a1
+ · · ·+ 1

2an−1
+

1

2a1 · · · an−1
= 1.

Let c1 = 2 and ci = 2ai−1 for 2 ≤ i ≤ n. Then

1

c1
+

1

c2
+ · · ·+ 1

cn
+

1

2a1 · · · an−1
= 1.

We claim that

(6.3) max

{
xi ∈ E

∣∣∣∣ n+1∑
i=1

1

xi
= 1

}
= 2a1 · · · an−1.

Let x1, x2, · · · , xn+1 ∈ E be a sequence such that

1

x1
+ · · ·+ 1

xn+1
= 1 =

1

2
+

1

2a1
+ · · ·+ 1

2a1 · · · an−1
,

where x1 < x2 < · · · < xn+1. Then

1

x1
+ · · ·+ 1

xn+1
− 1

2
=

1

2a1
+ · · ·+ 1

2a1 · · · an−1
so

1

(x1/2)
+ · · ·+ 1

(xn+1/2)
− 1 =

1

a1
+ · · ·+ 1

a1 · · · an−1
= 1.

This implies that
1

(x1/2)
+ · · ·+ 1

(xn+1/2)
= 2.

If x1 = 2, then
1

(x2/2)
+ · · ·+ 1

(xn+1/2)
= 1.

Therefore xn+1/2 ≤ a1 · · · an−1 and hence xn+1 ≤ 2a1 · · · an−1.
Suppose x1 ≥ 4 and let x′i = xi/2. Suppose there exists a subset A of

B = {x′1, . . . , x′n+1} such that ∑
i∈A

1

x′i
= 1.
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Then ∑
i∈A

1

x′i
= 1

and ∑
i∈Ac

1

x′i
= 1,

where Ac = B − A. Note that x′i ≤ a1 · · · am, where m = max{|A|, |Ac|}.
Hence xi ≤ 2a1 · · · am,. In particular, xn+1 ≤ 2a1 · · · an−1, so we can assume
that

∑
i∈A 1/x′i 6= 1 for any subset A of B = {x′1, . . . , x′n+1}.

Suppose we take out some collection of x′i from B = {x′1, . . . , x′n+1} such
that the sum of the reciprocal of the elements left in B is less than 1, but
when we add x′n+1 to the set, we obtain a sum greater than 1. Call this set
A and observe that ∑

x′i∈A

1

x′i
< 1.

Let |A| = k and use Equation (6.2) to obtain∑
x′i∈A

1

x′i
≤ 1

a1
+ · · ·+ 1

ak
.

We then have that∑
x′i∈A

1

x′i
+

K∏
x′i∈A

x′i
= 1 =

1

a1
+ · · ·+ 1

ak
+

1

a1 · · · ak
,

for some natural number K. Then

1

x′n+1

>
K∏

x′i∈A
x′i

and hence Kx′n+1 <
∏
x′i∈A

x′i. Furthermore, we have that

K∏
x′i∈A

x′i
≥ 1

a1 . . . an−1

and hence
∏
x′i∈A

x′i ≤ Ka1 · · · an−1. This implies that x′n+1 < a1a2 · · · an−1.
Suppose now for any subset A of B satisfying∑

x′i∈A

1

x′i
< 1,

we have that ∑
x′i∈A

1

x′i
+

1

x′n+1

< 1.

We choose A0 with maximal sum, i.e, for any A ⊆ B satisfying∑
x′i∈A

1

x′i
< 1,
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we have ∑
x′i∈A

1

x′i
≤
∑
x′i∈A0

1

x′i
.

We can substitute values x′i of A0 by y′i such that∑
y′i∈A0

1

y′i
< 1

and ∑
y′i∈A0

1

y′i
+

1

x′n+1

≥ 1.

Now we can apply the method of the previous case to obtain the inequality
x′n+1 ≤ a1 · · · an−1. �

Acknowledgment

We are grateful to the referee for his/her comments.

References

1. R. Arce-Nazario, F. Castro, and R. Figueroa, On the number of solutions of
∑11
i=1

1
xi

= 1

in distinct odd natural numbers, J. Number Theory 133 (2013), no. 6, 2036–2046.
MR 3027952

2. R. Breush, Solution to problem e4512, American Math. Monthly 61 (1954), 200–201.

3. N. Burshtein, Improving solutions of
∑k
i=1

1
xi

= 1 with restrictions as required by

Barbeau respectively by Johnson, Discrete Math. 306 (2006), no. 13, 1438–1439.
MR 2237726

4. , The equation
∑9
i=1

1
xi

= 1 in distinct odd integers has only the five known

solutions, J. Number Theory 127 (2007), no. 1, 136–144. MR 2351669
5. Y-G. Chen, C. Elsholtz, and L-L. Jiang, Egyptian fractions with restrictions, Acta

Arith. 154 (2012), no. 2, 109–123. MR 2945656
6. D. R. Curtiss, On Kellogg’s Diophantine Problem, Amer. Math. Monthly 29 (1922),

no. 10, 380–387. MR 1520110
7. R. K. Guy, Unsolved problems in number theory, third ed., Problem Books in Mathe-

matics, Springer-Verlag, New York, 2004. MR 2076335
8. O. Kellogg, On a diophantine equation, Amer. Math. Monthly 28 (1921), 300–303.
9. G. Martin, Dense Egyptian fractions, Trans. Amer. Math. Soc. 351 (1999), no. 9,

3641–3657. MR 1608486
10. , Denser Egyptian fractions, Acta Arith. 95 (2000), no. 3, 231–260. MR 1793163
11. P. Shiu, Egyptian fraction representations of 1 with odd denominators, Math. Gaz. 93

(2009), 271–276.
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