Contributions to Discrete Mathematics

Q_{4}-FACTORIZATION OF λK_{n} AND $\lambda K_{x(m)}$

OĞUZ DOĞAN

Abstract

In this study, we show that necessary conditions for $Q_{4}{ }^{-}$ factorization of λK_{n} and $\lambda K_{x(m)}$ (complete x partite graph with parts of size m) are sufficient. We proved that there exists a Q_{4}-factorization of $\lambda K_{x(m)}$ if and only if $m x \equiv 0(\bmod 16)$ and $\lambda m(x-1) \equiv 0(\bmod 4)$. This result immediately gives that λK_{n} has a Q_{4}-factorization if and only if $n \equiv 0(\bmod 16)$ and $\lambda \equiv 0(\bmod 4)$.

1. Introduction

Given a graph H, an H-decomposition of a graph G is a collection of edge-disjoint subgraphs of G, isomorphic to H, such that each edge of G belongs to exactly one subgraph. Each subgraph H is called a block. Such a decomposition is called resolvable if it is possible to partition the blocks into classes (often referred to as parallel classes) such that each vertex of G appears in exactly one block of each parallel class.

A resolvable H-decomposition of G is generally referred to as an H factorization of G, and each parallel class is called an H-factor of G. If $H=$ K_{2} (a single edge), then the H-factorization is known as a 1-factorization of G. In general, if the factors are regular of degree k, then the factorization is called a k-factorization. A near-one-factor of G is a set of edges that cover all but one vertex. A set of near-one-factors which covers every edge precisely once is called a near-one-factorization.

A complete graph K_{n} is a simple graph on n vertices in which each pair of distinct vertices are connected by a unique edge. If the edges are taken λ times, then the graph is denoted by λK_{n}. A complete equipartite graph $K_{x(m)}$ has $x m$ vertices, partitioned into x different parts of size m, so that any two vertices are adjacent if and only if they are in different parts. If there are λ copies of each edge, then the graph is denoted by $\lambda K_{x(m)}$.

[^0]Let k be a positive integer. A group divisible design of index 1 , denoted by k-GDD, is a triple (V, G, B) where:
(1) V is a finite set of points of size $m n$,
(2) G is a set of n subsets of V each with size m, called groups, which partition V,
(3) \mathcal{B} is a collection of subsets of V with size k, called blocks, such that every pair of points from distinct groups occurs in exactly one block, and
(4) no pair of points belonging to a group occurs in any block.

A k-GDD is said to be resolvable and denoted by k-RGDD if its blocks can be partitioned into parallel classes, each of which partitions the set of points. A k-GDD or k-RGDD with n groups, each group is of size m will be shown by k-GDD of type m^{n} and k-RGDD of type m^{n}, respectively. Note that a K_{k}-decomposition of $K_{x(m)}$ is a k-GDD of type m^{x}.

The k-dimensional cube or k-cube is the simple graph whose vertices are the k-tuples with entries in $\{0,1\}$ and edges are the pairs of k-tuples that differ in exactly one position. This graph is bipartite and k-regular. The k-cube is denoted by Q_{k}. The number of vertices in a k-cube is 2^{k} and the number of edges is $k 2^{k-1}$. In particular, Q_{4}, shown in Figure 1 , has 16 vertices and 32 edges.

Figure 1. Q_{4}

In 1979, Kotzig posed two problems related to a Q_{k}-decomposition and a Q_{k}-factorization of K_{n}, which are Problems 15 and 16 in [8]. Those two open problems are:
Cube Decomposition Problem: For which values of n and k does there exist a Q_{k}-decomposition of K_{n} ?
Cube Factorization Problem: For which values of n and k does there exist a Q_{k}-factorization of K_{n} ?

Kotzig [8] established necessary conditions for a Q_{k}-decomposition of K_{n} : If there exists such a decomposition then
(a) if k is even, then $n \equiv 1\left(\bmod k 2^{k}\right)$ and
(b) if k is odd, then either
(i) $n \equiv 1\left(\bmod k 2^{k}\right)$ or
(ii) $n \equiv 0\left(\bmod 2^{k}\right)$ and $n \equiv 1(\bmod k)$.

For even k, Kotzig [9] proved the sufficiency of necessary conditions. Moreover, for $k=3$ [10] and $k=5$ [3], the problems have been solved completely. In addition, a Q_{3}-decomposition of λK_{n} is solved in [1].

In 1976, Wilson [13] proved that for each k, there is a Q_{k}-decomposition of K_{n} for all sufficiently large n satisfying the necessary conditions. In addition in [7], it is proven that for each odd k, there is an infinite arithmetic progression of even integers n for which a Q_{k}-decomposition of K_{n} exists.

On the other hand, since these problems were introduced, progress on the cube factorization problem has been done for some special values of n, see [5] and [6]. Necessary conditions for the existence of a Q_{k}-factorization of K_{n} are

$$
n \equiv 0\left(\bmod 2^{k}\right) \text { and } n \equiv 1(\bmod k) .
$$

The first condition implies that n must be even and the second condition implies that n must have opposite parity to k. Hence, if a Q_{k}-factorization of K_{n} exists, then k must be odd. For $k=3$ [2], this problem is completely solved; the other cases are still open.

If we consider λK_{n}, then necessary conditions for a Q_{4}-factorization of λK_{n} are

$$
n \equiv 0(\bmod 16) \text { and } \lambda(n-1) \equiv 0(\bmod 4) .
$$

Necessary conditions for a Q_{4}-factorization of $\lambda K_{x(m)}$ are

$$
m x \equiv 0(\bmod 16) \text { and } \lambda m(x-1) \equiv 0(\bmod 4) .
$$

In [12] Q_{3}-factorizations of $\lambda K_{x(m)}$ are studied. The other cases are still open for $k>3$.

In this study, we investigate the sufficiency of necessary conditions for Q_{4}-factorizations of λK_{n} and $\lambda K_{x(m)}$. Theorem 1.1 establishes sufficiency of necessary conditions.

Theorem 1.1. There exists a Q_{4}-factorization of $\lambda K_{x(m)}$ if and only if $m x \equiv 0(\bmod 16)$ and $\lambda m(x-1) \equiv 0(\bmod 4)$.

In Section 2, we establish required small examples and preliminary results. Theorem 1.1 is proven in Section 3. The result on complete graphs is also given in this section.

The following two results are used several times throughout this paper.
Theorem 1.2. $\lambda K_{x(m)}$ has a 1-factorization if and only if $x m$ is even [4].
Theorem 1.3. $A 4-R G D D$ of type 4^{m} exists for every $m \in \mathbb{Z}^{+}$, except for $m \in\{2,3,6\}$ [11].

2. Preliminary Results

In this section, some important constructions and examples are given. These examples will be used in Section 3 to prove Theorem 1.1.

Example 2.1. Q_{4}-factorization of $K_{4(4)}$.
Let the parts of $K_{4(4)}$ be denoted by X, Y, Z, W where $X=\left\{x_{1}, x_{2}, x_{3}\right.$, $\left.x_{4}\right\}, Y=\left\{y_{1}, y_{2}, y_{3}, y_{4}\right\}, Z=\left\{z_{1}, z_{2}, z_{3}, z_{4}\right\}$, and $W=\left\{w_{1}, w_{2}, w_{3}, w_{4}\right\}$. The labeling in Table 1 gives the blocks of the factorization: B_{1}, B_{2}, and B_{3}.

	0000	0001	0010	0100	1000	0011	0101	1001	0110	1010	1100	0111	1011	1101	1110
B_{1}	x_{1}	z_{1}	z_{2}	z_{3}	z_{4}	x_{2}	x_{3}	x_{4}	y_{1}	y_{2}	y_{3}	w_{1}	w_{2}	w_{3}	w_{4}
B_{2}	x_{1}	w_{1}	w_{2}	w_{3}	w_{4}	z_{2}	z_{3}	x_{4}	z_{4}	x_{3}	x_{2}	y_{4}	y_{3}	y_{2}	y_{1}
B_{3}	x_{1}	y_{1}	y_{2}	y_{3}	y_{4}	w_{3}	w_{2}	x_{4}	w_{1}	x_{3}	x_{2}	z_{1}	z_{2}	z_{3}	z_{4}

TABLE 1. Q_{4}-factors of $K_{4(4)}$
Example 2.2. Q_{4}-factorization of $K_{2(8)}$.
Let X and Y be the parts of $K_{2(8)}$ where $X=\left\{x_{1}, x_{2}, \ldots, x_{8}\right\}$ and $Y=$ $\left\{y_{1}, y_{2}, \ldots, y_{8}\right\}$. The labeling in Table 2 gives a Q_{4}-factorization of $K_{2(8)}$.

	0000	0001	0010	0100	1000	0011	0101	1001	0110	1010	1100	0111	1011	1101	1110
1111															
B_{1}	x_{1}	y_{1}	y_{2}	y_{3}	y_{4}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}	y_{5}	y_{6}	y_{7}	y_{8}
B_{2}	x_{1}	y_{5}	y_{6}	y_{7}	y_{8}	x_{7}	x_{6}	x_{4}	x_{5}	x_{3}	x_{2}	y_{1}	y_{2}	y_{3}	y_{4}

Table 2. Q_{4}-factors of $K_{2(8)}$
Example 2.3. Q_{4}-factorization of $K_{4(12)}$.
Let the parts of $K_{4(12)}$ be denoted by X, Y, Z, W, where each of these parts are divided into 3 sets denoted by X_{i}, Y_{i}, Z_{i}, and W_{i} for $1 \leq i \leq 3$ containing 4 vertices each. Let $x_{i, j}, y_{i, j}, z_{i, j}, w_{i, j}$ denote the vertices of X_{i}, Y_{i}, Z_{i}, W_{i}, respectively for $1 \leq i \leq 3$ and $1 \leq j \leq 4$.

For each i, the parts X_{i}, Y_{i}, Z_{i}, and W_{i} form a copy of $K_{4(4)}$ which can be decomposed into $3 Q_{4}$-factors by Example 2.1. Let these factors be denoted by $B_{i, 1}, B_{i, 2}$, and $B_{i, 3}$.

Consider the blocks obtained by the labeling in Table 3.

	0000	0001	0010	0100	1000	0011	0101	1001	0110	1010	1100	0111	1011	1101	1110	1111
$B_{1,1}^{\prime}$	$x_{2,1}$	$y_{3,1}$	$y_{3,2}$	$y_{3,3}$	$y_{3,4}$	$x_{2,2}$	$x_{2,3}$	$x_{2,4}$	$z_{2,1}$	$z_{2,2}$	$z_{2,3}$	$w_{3,1}$	$w_{3,2}$	$w_{3,3}$	$w_{3,4}$	$z_{2,4}$
$B_{1,1}^{\prime \prime}$	$x_{3,1}$	$y_{2,1}$	$y_{2,2}$	$y_{2,3}$	$y_{2,4}$	$x_{3,2}$	$x_{3,3}$	$x_{3,4}$	$z_{3,1}$	$z_{3,2}$	$z_{3,3}$	$w_{2,1}$	$w_{2,2}$	$w_{2,3}$	$w_{2,4}$	$z_{3,4}$
$B_{1,2}^{\prime}$	$x_{2,1}$	$w_{3,4}$	$w_{3,3}$	$w_{3,2}$	$w_{3,1}$	$x_{2,2}$	$x_{2,3}$	$x_{2,4}$	$y_{2,4}$	$y_{2,3}$	$y_{2,2}$	$z_{3,1}$	$z_{3,2}$	$z_{3,3}$	$z_{3,4}$	$y_{2,1}$
$B_{1,2}^{\prime \prime}$	$x_{3,1}$	$w_{2,4}$	$w_{2,3}$	$w_{2,2}$	$w_{2,1}$	$x_{3,2}$	$x_{3,3}$	$x_{3,4}$	$y_{3,4}$	$y_{3,3}$	$y_{3,2}$	$z_{2,1}$	$z_{2,2}$	$z_{2,3}$	$z_{2,4}$	$y_{3,1}$
$B_{1,3}^{\prime}$	$x_{2,1}$	$z_{3,4}$	$z_{3,3}$	$z_{3,2}$	$z_{3,1}$	$x_{2,2}$	$x_{2,3}$	$x_{2,4}$	$w_{2,1}$	$w_{2,2}$	$w_{2,3}$	$y_{3,4}$	$y_{3,3}$	$y_{3,2}$	$y_{3,1}$	$w_{2,4}$
$B_{1,3}^{\prime \prime}$	$x_{3,1}$	$z_{2,4}$	$z_{2,3}$	$z_{2,2}$	$z_{2,1}$	$x_{3,2}$	$x_{3,3}$	$x_{3,4}$	$w_{3,1}$	$w_{3,2}$	$w_{3,3}$	$y_{2,4}$	$y_{2,3}$	$y_{2,2}$	$y_{2,1}$	$w_{3,4}$

Table 3. Q_{4}-blocks of $K_{4(12)}$

Apply the permutation $P=\left(x_{2, j}, x_{1, j}\right)\left(y_{2, j}, y_{1, j}\right)\left(z_{2, j} z_{1, j}\right)\left(w_{2, j}, w_{1, j}\right)$ on the above blocks to obtain new blocks. These new blocks are named by the following permutation: $P\left(B_{1, j}^{\prime}\right)=B_{2, j}^{\prime}$ and $P\left(B_{1, j}^{\prime \prime}\right)=B_{2, j}^{\prime \prime}$ for $1 \leq j \leq 3$.

Independently, apply the permutation $R=\left(x_{3, j}, x_{1, j}\right)\left(y_{3, j}, y_{1, j}\right)\left(z_{3, j} z_{1, j}\right)$ $\left(w_{3, j}, w_{1, j}\right)$ on the above blocks to obtain new blocks. These new blocks are named by the following permutation: $R\left(B_{1, j}^{\prime}\right)=B_{3, j}^{\prime}$ and $R\left(B_{1, j}^{\prime \prime}\right)=B_{3, j}^{\prime \prime}$ for $1 \leq j \leq 3$. Then, $\pi_{i, j}=\left\{B_{i, j}, B_{i, j}^{\prime}, B_{i, j}^{\prime \prime}, 1 \leq i \leq 3,1 \leq j \leq 3\right\}$ form the 9 factors of the Q_{4}-factorization of $K_{4(12)}$.
Example 2.4. Q_{4}-factorization of $2 K_{8(2)}$.
Let the parts be denoted by X, Y, Z, W, R, S, T, V, where each part has two vertices. Consider the following 4 factors in Table 4.

	0000	0001	0010	0100	1000	0011	0101	1001	0110	1010	1100	0111	1011	1101	1110	1111
B_{1}	x_{1}	y_{1}	y_{2}	w_{2}	v_{2}	x_{2}	z_{2}	t_{2}	z_{1}	t_{1}	r_{1}	w_{1}	v_{1}	s_{1}	s_{2}	r_{2}
B_{2}	x_{1}	r_{1}	z_{1}	s_{2}	t_{2}	t_{1}	y_{2}	z_{2}	v_{2}	r_{2}	w_{1}	w_{2}	x_{2}	v_{1}	y_{1}	s_{1}
B_{3}	x_{1}	w_{1}	z_{2}	v_{1}	r_{2}	y_{2}	r_{1}	v_{2}	s_{2}	t_{1}	w_{2}	t_{2}	s_{1}	x_{2}	y_{1}	z_{1}
B_{4}	x_{1}	y_{1}	y_{2}	t_{1}	s_{1}	x_{2}	v_{1}	r_{1}	v_{2}	r_{2}	w_{1}	t_{2}	s_{2}	z_{1}	z_{2}	w_{2}

Table 4. Q_{4}-factors of $2 K_{8(2)}$
The remaining 3 factors are obtained by considering the $K_{4(4)}$ formed by the parts $X \cup Y, Z \cup W, R \cup S, T \cup V$ and taking the factors as in Example 2.1.

Lemma 2.5. There exists a Q_{4}-factorization of $K_{4(16 k+4)}$ for $k \geq 0$.
Proof. There exists a 4-RGDD of type $4^{4 k+1}$ for each $k \geq 0$ by Theorem 1.3. Let $b_{i, j}$ be the j th block of the i th parallel class. For each $1 \leq i \leq 4 k+1$ and $1 \leq j \leq 4 k+1$ blow-up vertices in each block by 4 to obtain a copy of $K_{4(4)}$ on $b_{i, j} \times\{1,2,3,4\}$ for each i and j. Then place a Q_{4}-factorization of $K_{4(4)}$ on the blown-up blocks. There are 3 factors in each Q_{4}-factorization of $K_{4(4)}$ by Example 2.1; let the factors for each blown-up $b_{i j}$ be $B_{i, j, k}$ for $1 \leq k \leq 3$. Then the followings are the factors of the Q_{4}-factorization:

$$
\begin{aligned}
& \pi_{i, 1}=\left\{B_{i, j, 1}, 1 \leq j \leq 4 k+1\right\}, \\
& \pi_{i, 2}=\left\{B_{i, j, 2}, 1 \leq j \leq 4 k+1\right\}, \\
& \pi_{i, 3}=\left\{B_{i, j, 3}, 1 \leq j \leq 4 k+1\right\},
\end{aligned}
$$

where $1 \leq i \leq 4 k+1$. The number of parallel classes is $12 k+3$ and the number of Q_{4} 's in each parallel class is $4 k+1$ as expected.
Lemma 2.6. There exists a Q_{4}-factorization of $K_{4(16 k+12)}$ for $k \geq 0$.
Proof. Since there exists a 4-RGDD of type $4^{4 k+3}$ for each $k \geq 1$ by Theorem 1.3, a Q_{4}-factorization of $K_{4(16 k+12)}$ can be obtained as in the proof of Lemma 2.5. The case $k=0$ is obtained in Example 2.3.

Lemma 2.7. There exists a Q_{4}-factorization of $K_{t(16 k)}$ and $K_{2 t(8 k)}$ for $k, t \geq 1$.

Proof. Consider a 1-factorization of $K_{t(2 k)}$ which is known to exist for $k, t \geq$ 1 by Theorem 1.2. Let the factors be $F_{1}, F_{2}, \ldots, F_{n}$, where $n=(2 k)(t-1)$. Let the edges of the factors F_{i} be $E\left(F_{i}\right)=\left\{e_{i, 1}, e_{i, 2}, \ldots, e_{i, s}\right\}$, where $s=k t$. When each vertex of $K_{t(2 k)}$ is blown-up by 8 , then each edge in the 1 -factors correspond to a copy of $K_{2(8)}$. By Example 2.2, $K_{2(8)}$ has a Q_{4}-factorization into two Q_{4} 's. Let $B_{i, j, 1}, B_{i, j, 2}$ be the Q_{4} factors of each copy of $K_{2(8)}$ corresponding to the edge $e_{i, j}$. Hence, parallel classes of the factorization of $K_{t(16 k)}$ are:

$$
\pi_{i, 1}=\left\{B_{i, j, 1}, 1 \leq j \leq s\right\}, \pi_{i, 2}=\left\{B_{i, j, 2}, 1 \leq j \leq s\right\} \text { for } 1 \leq i \leq 2 k(t-1)
$$

Similarly, consider a 1 -factorization of $K_{2 t(k)}$ which is known to exist by Theorem 1.2. As above, blow-up each vertex of $K_{2 t(k)}$ by 8. Hence, parallel classes of the factorization of $K_{2 t(8 k)}$ are:

$$
\pi_{i, 1}=\left\{B_{i, j, 1}, 1 \leq j \leq s\right\}, \pi_{i, 2}=\left\{B_{i, j, 2}, 1 \leq j \leq s\right\} \text { for } 1 \leq i \leq k(2 t-1)
$$

3. Q_{4}-FACTORIZATION OF $\lambda K_{x(m)}$ AND λK_{n}

We study this problem depending on the value of λ modulo 4 and the values of x and m. Recall that necessary conditions for a Q_{4}-factorization of $\lambda K_{x(m)}$ are:

$$
\begin{equation*}
m x \equiv 0(\bmod 16) \text { and } \lambda m(x-1) \equiv 0(\bmod 4) \tag{3.1}
\end{equation*}
$$

Case 1: $\lambda \equiv 1$ or $3(\bmod 4)$. By (3.1), if $\lambda \equiv 1$ or $3(\bmod 4)$, necessary conditions for Q_{4}-factorizations of $\lambda K_{x(m)}$ reduce to $m x \equiv 0(\bmod 16)$ and $m \equiv 0(\bmod 4)$. These are equivalent to necessary conditions for $\lambda=1$. We will construct a Q_{4}-factorization of $K_{x(m)}$ and will take λ copies of the factors.

Two subcases on m will be considered.
Subcase 1.1: $m \equiv 4,12(\bmod 16)$.
The first necessary condition implies that $4 \mid x$. We look for a Q_{4}-factorization of $K_{4 t(16 k+4)}$ and $K_{4 t(16 k+12)}$ for $k \geq 0$ and $t \geq 1$.

Let the vertices of $K_{4 t(16 k+4)}$ be partitioned into t vertex-disjoint subgraphs each isomorphic to $K_{4(16 k+4)}$. By Lemma 2.5, these subgraphs have Q_{4}-factorizations. The remaining edges of $K_{4 t(16 k+4)}$ correspond to a copy of $K_{t(64 k+16)}$. By Lemma 2.7, this graph has a Q_{4}-factorization. Combining these factors gives the Q_{4}-factorization of $K_{4 t(16 k+4)}$.

Similarly, if vertices of $K_{4 t(16 k+12)}$ are partitioned into t vertex-disjoint subgraphs each isomorphic to $K_{4(16 k+12)}$, by Lemma 2.6, these subgraphs have Q_{4}-factorizations. The remaining edges correspond to a copy of $K_{t(64 k+48)}$ which has a Q_{4}-factorization by Lemma 2.7.
Subcase 1.2: $m \equiv 0,8(\bmod 16)$.
When $m \equiv 0(\bmod 16)$, both of the necessary conditions are satisfied. So, we look for a Q_{4}-factorization of $K_{t(16 k)}$ which follows by Lemma 2.7.

For $m \equiv 8(\bmod 16)$, to satisfy the first necessary condition, x should be even. We look for a Q_{4}-factorization of $K_{2 t(16 k+8)}$ which follows by Lemma 2.7.

Case 2: $\lambda \equiv 2(\bmod 4)$.
By (3.1), necessary conditions for Q_{4}-factorizations of $\lambda K_{x(m)}$ reduce to $m \equiv 0(\bmod 2)$ and $m x \equiv 0(\bmod 16)$. When $m \equiv 0(\bmod 4)$, this problem is solved in Case 3.1 above. So, we only need to consider $m \equiv 2(\bmod 4)$. We will construct a Q_{4}-factorization of $2 K_{8 t(2 k)}$ and take $\lambda / 2$ copies of it.

Example 3.1. There exists a Q_{4} factorization of $2 K_{2(16)}-2 F$ where $2 F$ represents two copies of a 2 -factor of $2 K_{2(16)}$ with 4-cycles.

Let the parts of $2 K_{2(16)}$ be denoted by X and Y and the vertices be labeled by x_{i} and y_{i}, respectively for $1 \leq i \leq 16$. Let F be a 2 -factor consisting of the 4-cycles: $F=\left(x_{2 i-1}, y_{2 i}, x_{2 i}, y_{2 i-1}\right)$ for $1 \leq i \leq 8$.

Consider the blocks in Table 5.

	0000	0001	0010	0100	1000	0011	0101	1001	0110	1010	1100	0111	1011	1101	1110	1111
B_{1}	x_{1}	y_{3}	y_{4}	y_{5}	y_{7}	x_{2}	x_{7}	x_{5}	x_{8}	x_{6}	x_{3}	y_{6}	y_{8}	y_{1}	y_{2}	x_{4}
B_{1}^{\prime}	x_{9}	y_{11}	y_{12}	y_{13}	y_{15}	x_{10}	x_{15}	x_{13}	x_{16}	x_{14}	x_{11}	y_{14}	y_{16}	y_{9}	y_{10}	x_{12}
B_{2}	x_{3}	y_{6}	y_{5}	y_{8}	y_{2}	x_{4}	x_{1}	x_{7}	x_{2}	x_{8}	x_{5}	y_{7}	y_{1}	y_{4}	y_{3}	x_{6}
B_{2}^{\prime}	x_{11}	y_{14}	y_{13}	y_{16}	y_{10}	x_{12}	x_{9}	x_{15}	x_{10}	x_{16}	x_{13}	y_{15}	y_{9}	y_{12}	y_{11}	x_{14}
B_{3}	x_{1}	y_{3}	y_{5}	y_{6}	y_{8}	x_{7}	x_{8}	x_{6}	x_{2}	x_{4}	x_{3}	y_{4}	y_{2}	y_{1}	y_{7}	x_{5}
B_{3}^{\prime}	x_{9}	y_{11}	y_{13}	y_{14}	y_{16}	x_{15}	x_{16}	x_{14}	x_{10}	x_{12}	x_{11}	y_{12}	y_{10}	y_{9}	y_{15}	x_{13}

Table 5. Q_{4}-blocks of $2 K_{16}-2 F$
$\left\{B_{i}, B_{i}^{\prime}\right\}, 1 \leq i \leq 3$ gives the 3 factors of the Q_{4}-factorization of $2 K_{2(16)}-2 F$.
Let $X_{1}=\left\{x_{1}, x_{2}, \ldots, x_{8}\right\}$ and $X_{2}=\left\{x_{9}, x_{10}, \ldots, x_{16}\right\}$, and define Y_{1} and Y_{2} similarly. The edges between X_{1} and Y_{2} and also between Y_{1} and X_{2} form a copy of $2 K_{2(8)}$ which has a Q_{4}-factorization by Example 2.2.
Lemma 3.2. There exists a Q_{4}-factorization of $2 K_{8(2 k)}$ for $k \geq 1$.
Proof. When $k=1$, Example 2.4 gives the required factorization for $2 K_{8(2)}$. If k is even, Case 1 gives the result. Let k be odd and $k \geq 3$. Consider Figure 2 representing $2 K_{8(2 k)}$. The edges in each rectangle form $2 K_{8(2)}$ and the edges between any two rectangles form a copy of $2 K_{2(16)}-2 F$, where F represents a 2 -factor of $2 K_{2(16)}$ with 4 -cycles as in Example 3.1.

There exists a near-one-factorization of K_{k} for odd k [4]. Consider a near-one-factor of K_{k} where $V\left(K_{k}\right)=\{1,2 \ldots, k\}$. For each isolated vertex s of near-one-factor, consider edges of the corresponding rectangle in Figure 2 and for each edge $\{i, j\}$ of near-one-factor, consider the edges between rectangles i and j. By Examples 2.4 and $3.1,2 K_{8(2)}$ and $2 K_{2(16)}-2 F$ have Q_{4}-factorizations, respectively. For each near-one-factor of K_{k}, the corresponding Q_{4}-factor of $2 K_{8(2 k)}$ is obtained. This procedure is repeated for each near-one-factor of K_{k} and a Q_{4}-factorization of $2 K_{8(2 k)}$ is obtained.

Lemma 3.3. There exists a Q_{4} factorization of $2 K_{8 t(2 k)}$ for $k \geq 1$ and $t \geq 1$.

Figure 2. $2 K_{8(2 k)}$

Proof. Let $2 K_{8 t(2 k)}$ be partitioned into t vertex-disjoint subgraphs each isomorphic to $2 K_{8(2 k)}$. By Lemma 3.2, these subgraphs have Q_{4}-factorizations. The remaining edges correspond to a copy of $2 K_{t(16 k)}$ which has a $Q_{4^{-}}$ factorization by Lemma 2.7. These factors together give the Q_{4}-factorization of $2 K_{8 t(2 k)}$.

Case 3: $\lambda \equiv 0(\bmod 4)$ By (3.1), if $\lambda \equiv 0(\bmod 4)$, necessary conditions reduce to $m x \equiv 0(\bmod 16) .4 K_{4 t(4 k)}, 4 K_{2 t(8 k)}$ and $4 K_{t(16 k)}$ have $Q_{4^{-}}$ factorizations by Case 1. $\lambda / 4$ copies of the factors of these factorizations give required Q_{4}-factorizations of $\lambda K_{2 t(8 k)}$ and $\lambda K_{t(16 k)}$. So, two subcases on x will be considered.
Subcase 3.1: $x \equiv 8(\bmod 16)$. For this case, $m \equiv 0(\bmod 2) . ~ \lambda / 2$ copies of the factors of a Q_{4}-factorization of $2 K_{8 t(2 k)}$ given in Lemma 3.3 give the desired factorization of $\lambda K_{8 t(2 k)}$.
Subcase 3.2: $x \equiv 0(\bmod 16)$.
For this case, m is arbitrary; so, we look for a Q_{4}-factorization of $4 K_{16 t(k)}$. $\lambda / 4$ copies of this factorization give a Q_{4}-factorization of $\lambda K_{16 t(k)}$.

Consider the vertex disjoint subgraphs H_{i} of $4 K_{16 t(k)}$, where each H_{i} is isomorphic to $4 K_{16(k)}$ for $1 \leq i \leq t$.

To get a Q_{4}-factorization of H_{i}, consider a resolvable (K_{16}, K_{4})-design. Blow-up each vertex in each of 5 parallel classes by k and assume that each parallel class corresponds to a complete multipartite graph where the parts are the blocks of parallel classes. This graph corresponds to a $K_{4(4 k)}$ which has a Q_{4}-factorization by Case 1 . The number of factors in each $K_{4(4 k)}$ is $3 k$.

Let $\pi_{i, j, l}$ denote the Q_{4} factors of H_{i} for the j th parallel class of $K_{4(4 k)}$; $1 \leq i \leq t, 1 \leq j \leq 5,1 \leq l \leq 3 k$. Then the followings are the factors of the factorization of H_{i} 's for each $i:\left\{\pi_{i, j, l}, 1 \leq j \leq 5,1 \leq l \leq 3 k\right\}$.

The remaining edges of $4 K_{16 t(k)}$ correspond to a copy of $4 K_{t(16 k)}$, which has a Q_{4}-factorization by Lemma 2.7. Combining the factors gives a $Q_{4}{ }^{-}$ factorization of $4 K_{16 t(k)}$.

Here, we restate Theorem 1.1 and it is proven by the above cases. Hence, the claim asserted in the introduction part will be completed.

Theorem 1.1. There exists a Q_{4}-factorization of $\lambda K_{x(m)}$ if and only if $m x \equiv 0(\bmod 16)$ and $\lambda m(x-1) \equiv 0(\bmod 4)$.
Proof. The Cases 1, 2, and 3 establish the proof of Theorem 1.1.
By taking $m=1$ and $n=x$, we immediately get the result on complete graphs: There exists a Q_{4}-factorization of λK_{n} if and only if $n \equiv 0(\bmod 16)$ and $\lambda \equiv 0(\bmod 4)$.

References

1. P. Adams, D. Bryant, and S. El-Zanati, Lambda-fold cube decompositions., Australas. J. Combin. 11 (1995), 197-210.
2. P. Adams, D. Bryant, and B. Maenhaut, Cube factorizations of complete graphs, J. Combin. Des. 12 (2004), no. 5, 381-388.
3. D. Bryant, S. El-Zanati, B. Maenhaut, and C. Vanden Eynden, Decomposition of complete graphs into 5-cubes, J. Combin. Des. 14 (2006), no. 2, 159-166.
4. C. J. Colbourn, Crc Handbook of Combinatorial Designs, CRC Press, 2010.
5. S. El-Zanati, M. Plantholt, and C. Vanden Eynden, Graph decompositions into generalized cubes, Ars Combin. 49 (1998), 237-247.
6. S. El-Zanati and C. Vanden Eynden, Factorizations of complete multipartite graphs into generalized cubes, J. Graph Theory 33 (2000), no. 3, 144-150.
7. \qquad , Decomposing complete graphs into cubes, Discuss. Math. Graph Theory 26 (2006), no. 1, 141-147.
8. A. Kotzig, Selected open problems in graph theory, Graph Theory and Related Topics, Academic Press New York, 1979, pp. 258-267.
9._, Decompositions of complete graphs into isomorphic cubes, J. Combin. Theory Ser. B 31 (1981), no. 3, 292-296.
9. M. Maheo, Strongly graceful graphs, Discrete Math. 29 (1980), no. 1, 39-46.
10. X. Sun and G. Ge, Resolvable group divisible designs with block size four and general index, Discrete Math. 309 (2009), no. 10, 2982-2989.
11. J. Wang, Cube factorizations of complete multipartite graphs, Ars Combin. 99 (2011), 243-256.
12. R. M. Wilson, Decompositions of complete graphs into subgraphs isomorphic to a given graph, (1975).

Department of Mathematics, Koç University, Rumelifeneri Yolu, 34450
SARIYER-İSTANBUL
E-mail address: odogan13@ku.edu.tr

[^0]: Received by the editors September 20, 2019, and in revised form October 01, 2019.
 2010 Mathematics Subject Classification. 05C70, 05C51.
 Key words and phrases. factorization, cube decomposition, complete graph, complete multipartite graph.

 This research was supported by the Scientific and Technological Research Council of Turkey, Grant Number: 114F505. The author is grateful to the anonymous referee, Selda Küçükçifçi, and Emine Şule Yazıcı for valuable comments on this manuscript.

