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Q4-FACTORIZATION OF λKn AND λKx(m)

OĞUZ DOĞAN

Abstract. In this study, we show that necessary conditions for Q4-
factorization of λKn and λKx(m) (complete x partite graph with parts
of size m) are sufficient. We proved that there exists a Q4-factorization
of λKx(m) if and only if mx ≡ 0 (mod 16) and λm(x− 1) ≡ 0 (mod 4).
This result immediately gives that λKn has a Q4-factorization if and
only if n ≡ 0 (mod 16) and λ ≡ 0 (mod 4).

1. Introduction

Given a graph H, an H-decomposition of a graph G is a collection of
edge-disjoint subgraphs of G, isomorphic to H, such that each edge of G
belongs to exactly one subgraph. Each subgraph H is called a block. Such
a decomposition is called resolvable if it is possible to partition the blocks
into classes (often referred to as parallel classes) such that each vertex of G
appears in exactly one block of each parallel class.

A resolvable H-decomposition of G is generally referred to as an H-
factorization of G, and each parallel class is called an H-factor of G. If H =
K2 (a single edge), then the H-factorization is known as a 1-factorization of
G. In general, if the factors are regular of degree k, then the factorization
is called a k-factorization. A near-one-factor of G is a set of edges that
cover all but one vertex. A set of near-one-factors which covers every edge
precisely once is called a near-one-factorization.

A complete graph Kn is a simple graph on n vertices in which each pair
of distinct vertices are connected by a unique edge. If the edges are taken
λ times, then the graph is denoted by λKn. A complete equipartite graph
Kx(m) has xm vertices, partitioned into x different parts of size m, so that
any two vertices are adjacent if and only if they are in different parts. If
there are λ copies of each edge, then the graph is denoted by λKx(m).
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Let k be a positive integer. A group divisible design of index 1, denoted
by k-GDD, is a triple (V,G,B) where:

(1) V is a finite set of points of size mn,
(2) G is a set of n subsets of V each with size m, called groups, which

partition V ,
(3) B is a collection of subsets of V with size k, called blocks, such that

every pair of points from distinct groups occurs in exactly one block,
and

(4) no pair of points belonging to a group occurs in any block.

A k-GDD is said to be resolvable and denoted by k-RGDD if its blocks
can be partitioned into parallel classes, each of which partitions the set of
points. A k-GDD or k-RGDD with n groups, each group is of size m will be
shown by k-GDD of type mn and k-RGDD of type mn, respectively. Note
that a Kk-decomposition of Kx(m) is a k-GDD of type mx.

The k-dimensional cube or k-cube is the simple graph whose vertices are
the k-tuples with entries in {0, 1} and edges are the pairs of k-tuples that
differ in exactly one position. This graph is bipartite and k-regular. The
k-cube is denoted by Qk. The number of vertices in a k-cube is 2k and
the number of edges is k2k−1. In particular, Q4, shown in Figure 1, has 16
vertices and 32 edges.
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Figure 1. Q4

In 1979, Kotzig posed two problems related to a Qk-decomposition and
a Qk-factorization of Kn, which are Problems 15 and 16 in [8]. Those two
open problems are:
Cube Decomposition Problem: For which values of n and k does there exist
a Qk-decomposition of Kn?
Cube Factorization Problem: For which values of n and k does there exist a
Qk-factorization of Kn?
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Kotzig [8] established necessary conditions for a Qk-decomposition of Kn:
If there exists such a decomposition then

(a) if k is even, then n ≡ 1
(
mod k2k

)
and

(b) if k is odd, then either
(i) n ≡ 1

(
mod k2k

)
or

(ii) n ≡ 0
(
mod 2k

)
and n ≡ 1 (mod k).

For even k, Kotzig [9] proved the sufficiency of necessary conditions. More-
over, for k = 3 [10] and k = 5 [3], the problems have been solved completely.
In addition, a Q3-decomposition of λKn is solved in [1].

In 1976, Wilson [13] proved that for each k, there is a Qk-decomposition
of Kn for all sufficiently large n satisfying the necessary conditions. In
addition in [7], it is proven that for each odd k, there is an infinite arithmetic
progression of even integers n for which a Qk-decomposition of Kn exists.

On the other hand, since these problems were introduced, progress on the
cube factorization problem has been done for some special values of n, see
[5] and [6]. Necessary conditions for the existence of a Qk-factorization of
Kn are

n ≡ 0
(

mod 2k
)

and n ≡ 1 (mod k) .

The first condition implies that n must be even and the second condition
implies that n must have opposite parity to k. Hence, if a Qk-factorization
of Kn exists, then k must be odd. For k = 3 [2], this problem is completely
solved; the other cases are still open.

If we consider λKn, then necessary conditions for a Q4-factorization of
λKn are

n ≡ 0 (mod 16) and λ(n− 1) ≡ 0 (mod 4) .

Necessary conditions for a Q4-factorization of λKx(m) are

mx ≡ 0 (mod 16) and λm(x− 1) ≡ 0 (mod 4) .

In [12] Q3-factorizations of λKx(m) are studied. The other cases are still
open for k > 3.

In this study, we investigate the sufficiency of necessary conditions for
Q4-factorizations of λKn and λKx(m). Theorem 1.1 establishes sufficiency
of necessary conditions.

Theorem 1.1. There exists a Q4-factorization of λKx(m) if and only if
mx ≡ 0 (mod 16) and λm(x− 1) ≡ 0 (mod 4).

In Section 2, we establish required small examples and preliminary results.
Theorem 1.1 is proven in Section 3. The result on complete graphs is also
given in this section.

The following two results are used several times throughout this paper.

Theorem 1.2. λKx(m) has a 1-factorization if and only if xm is even [4].

Theorem 1.3. A 4-RGDD of type 4m exists for every m ∈ Z+, except for
m ∈ {2, 3, 6} [11].
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2. Preliminary Results

In this section, some important constructions and examples are given.
These examples will be used in Section 3 to prove Theorem 1.1.

Example 2.1. Q4-factorization of K4(4).

Let the parts of K4(4) be denoted by X, Y, Z, W where X = {x1, x2, x3,
x4}, Y = {y1, y2, y3, y4}, Z = {z1, z2, z3, z4}, and W = {w1, w2, w3, w4}.
The labeling in Table 1 gives the blocks of the factorization: B1, B2, and
B3.

0000 0001 0010 0100 1000 0011 0101 1001 0110 1010 1100 0111 1011 1101 1110 1111

B1 x1 z1 z2 z3 z4 x2 x3 x4 y1 y2 y3 w1 w2 w3 w4 y4

B2 x1 w1 w2 w3 w4 z2 z3 x4 z4 x3 x2 y4 y3 y2 y1 z1

B3 x1 y1 y2 y3 y4 w3 w2 x4 w1 x3 x2 z1 z2 z3 z4 w4

Table 1. Q4-factors of K4(4)

Example 2.2. Q4-factorization of K2(8).

Let X and Y be the parts of K2(8) where X = {x1, x2, ..., x8} and Y =
{y1, y2, ..., y8}. The labeling in Table 2 gives a Q4-factorization of K2(8).

0000 0001 0010 0100 1000 0011 0101 1001 0110 1010 1100 0111 1011 1101 1110 1111

B1 x1 y1 y2 y3 y4 x2 x3 x4 x5 x6 x7 y5 y6 y7 y8 x8

B2 x1 y5 y6 y7 y8 x7 x6 x4 x5 x3 x2 y1 y2 y3 y4 x8

Table 2. Q4-factors of K2(8)

Example 2.3. Q4-factorization of K4(12).

Let the parts of K4(12) be denoted by X, Y, Z, W , where each of these
parts are divided into 3 sets denoted by Xi, Yi, Zi, and Wi for 1 ≤ i ≤ 3
containing 4 vertices each. Let xi,j , yi,j , zi,j , wi,j denote the vertices of Xi,
Yi, Zi, Wi, respectively for 1 ≤ i ≤ 3 and 1 ≤ j ≤ 4.

For each i, the parts Xi, Yi, Zi, and Wi form a copy of K4(4) which can be
decomposed into 3 Q4-factors by Example 2.1. Let these factors be denoted
by Bi,1, Bi,2, and Bi,3.

Consider the blocks obtained by the labeling in Table 3.

0000 0001 0010 0100 1000 0011 0101 1001 0110 1010 1100 0111 1011 1101 1110 1111

B′1,1 x2,1 y3,1 y3,2 y3,3 y3,4 x2,2 x2,3 x2,4 z2,1 z2,2 z2,3 w3,1 w3,2 w3,3 w3,4 z2,4

B′′1,1 x3,1 y2,1 y2,2 y2,3 y2,4 x3,2 x3,3 x3,4 z3,1 z3,2 z3,3 w2,1 w2,2 w2,3 w2,4 z3,4

B′1,2 x2,1 w3,4 w3,3 w3,2 w3,1 x2,2 x2,3 x2,4 y2,4 y2,3 y2,2 z3,1 z3,2 z3,3 z3,4 y2,1

B′′1,2 x3,1 w2,4 w2,3 w2,2 w2,1 x3,2 x3,3 x3,4 y3,4 y3,3 y3,2 z2,1 z2,2 z2,3 z2,4 y3,1

B′1,3 x2,1 z3,4 z3,3 z3,2 z3,1 x2,2 x2,3 x2,4 w2,1 w2,2 w2,3 y3,4 y3,3 y3,2 y3,1 w2,4

B′′1,3 x3,1 z2,4 z2,3 z2,2 z2,1 x3,2 x3,3 x3,4 w3,1 w3,2 w3,3 y2,4 y2,3 y2,2 y2,1 w3,4

Table 3. Q4-blocks of K4(12)
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Apply the permutation P = (x2,j , x1,j)(y2,j , y1,j)(z2,jz1,j)(w2,j , w1,j) on
the above blocks to obtain new blocks. These new blocks are named by the
following permutation: P (B′1,j) = B′2,j and P (B′′1,j) = B′′2,j for 1 ≤ j ≤ 3.

Independently, apply the permutation R = (x3,j , x1,j)(y3,j , y1,j)(z3,jz1,j)
(w3,j , w1,j) on the above blocks to obtain new blocks. These new blocks are
named by the following permutation: R(B′1,j) = B′3,j and R(B′′1,j) = B′′3,j
for 1 ≤ j ≤ 3. Then, πi,j = {Bi,j , B′i,j , B′′i,j , 1 ≤ i ≤ 3, 1 ≤ j ≤ 3} form the
9 factors of the Q4-factorization of K4(12).

Example 2.4. Q4-factorization of 2K8(2).

Let the parts be denoted by X,Y, Z,W,R, S, T, V , where each part has
two vertices. Consider the following 4 factors in Table 4.

0000 0001 0010 0100 1000 0011 0101 1001 0110 1010 1100 0111 1011 1101 1110 1111

B1 x1 y1 y2 w2 v2 x2 z2 t2 z1 t1 r1 w1 v1 s1 s2 r2

B2 x1 r1 z1 s2 t2 t1 y2 z2 v2 r2 w1 w2 x2 v1 y1 s1

B3 x1 w1 z2 v1 r2 y2 r1 v2 s2 t1 w2 t2 s1 x2 y1 z1

B4 x1 y1 y2 t1 s1 x2 v1 r1 v2 r2 w1 t2 s2 z1 z2 w2

Table 4. Q4-factors of 2K8(2)

The remaining 3 factors are obtained by considering the K4(4) formed by
the parts X ∪Y , Z ∪W , R∪S, T ∪V and taking the factors as in Example
2.1.

Lemma 2.5. There exists a Q4-factorization of K4(16k+4) for k ≥ 0.

Proof. There exists a 4-RGDD of type 44k+1 for each k ≥ 0 by Theorem 1.3.
Let bi,j be the jth block of the ith parallel class. For each 1 ≤ i ≤ 4k + 1
and 1 ≤ j ≤ 4k + 1 blow-up vertices in each block by 4 to obtain a copy of
K4(4) on bi,j × {1, 2, 3, 4} for each i and j. Then place a Q4-factorization of
K4(4) on the blown-up blocks. There are 3 factors in each Q4-factorization
of K4(4) by Example 2.1; let the factors for each blown-up bij be Bi,j,k for
1 ≤ k ≤ 3. Then the followings are the factors of the Q4-factorization:

πi,1 = {Bi,j,1, 1 ≤ j ≤ 4k + 1},
πi,2 = {Bi,j,2, 1 ≤ j ≤ 4k + 1},
πi,3 = {Bi,j,3, 1 ≤ j ≤ 4k + 1},

where 1 ≤ i ≤ 4k + 1. The number of parallel classes is 12k + 3 and the
number of Q4’s in each parallel class is 4k + 1 as expected. �

Lemma 2.6. There exists a Q4-factorization of K4(16k+12) for k ≥ 0.

Proof. Since there exists a 4-RGDD of type 44k+3 for each k ≥ 1 by Theorem
1.3, a Q4-factorization of K4(16k+12) can be obtained as in the proof of
Lemma 2.5. The case k = 0 is obtained in Example 2.3. �

Lemma 2.7. There exists a Q4-factorization of Kt(16k) and K2t(8k) for
k, t ≥ 1.
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Proof. Consider a 1-factorization of Kt(2k) which is known to exist for k, t ≥
1 by Theorem 1.2. Let the factors be F1, F2, . . . , Fn, where n = (2k)(t− 1).
Let the edges of the factors Fi be E(Fi) = {ei,1, ei,2, . . . , ei,s}, where s = kt.
When each vertex of Kt(2k) is blown-up by 8, then each edge in the 1-factors
correspond to a copy of K2(8). By Example 2.2, K2(8) has a Q4-factorization
into two Q4’s. Let Bi,j,1, Bi,j,2 be the Q4 factors of each copy of K2(8)

corresponding to the edge ei,j . Hence, parallel classes of the factorization of
Kt(16k) are:

πi,1 = {Bi,j,1, 1 ≤ j ≤ s}, πi,2 = {Bi,j,2, 1 ≤ j ≤ s} for 1 ≤ i ≤ 2k(t− 1).

Similarly, consider a 1-factorization of K2t(k) which is known to exist by
Theorem 1.2. As above, blow-up each vertex of K2t(k) by 8. Hence, parallel
classes of the factorization of K2t(8k) are:

πi,1 = {Bi,j,1, 1 ≤ j ≤ s}, πi,2 = {Bi,j,2, 1 ≤ j ≤ s} for 1 ≤ i ≤ k(2t− 1).

�

3. Q4-Factorization of λKx(m) and λKn

We study this problem depending on the value of λ modulo 4 and the
values of x and m. Recall that necessary conditions for a Q4-factorization
of λKx(m) are:

(3.1) mx ≡ 0 (mod 16) and λm(x− 1) ≡ 0 (mod 4) .

Case 1: λ ≡ 1 or 3 (mod 4). By (3.1), if λ ≡ 1 or 3 (mod 4), necessary
conditions for Q4-factorizations of λKx(m) reduce to mx ≡ 0 (mod 16) and
m ≡ 0 (mod 4). These are equivalent to necessary conditions for λ = 1.
We will construct a Q4-factorization of Kx(m) and will take λ copies of the
factors.

Two subcases on m will be considered.
Subcase 1.1: m ≡ 4, 12 (mod 16).

The first necessary condition implies that 4|x. We look for a Q4-factoriz-
ation of K4t(16k+4) and K4t(16k+12) for k ≥ 0 and t ≥ 1.

Let the vertices of K4t(16k+4) be partitioned into t vertex-disjoint sub-
graphs each isomorphic to K4(16k+4). By Lemma 2.5, these subgraphs have
Q4-factorizations. The remaining edges of K4t(16k+4) correspond to a copy
of Kt(64k+16). By Lemma 2.7, this graph has a Q4-factorization. Combining
these factors gives the Q4-factorization of K4t(16k+4).

Similarly, if vertices of K4t(16k+12) are partitioned into t vertex-disjoint
subgraphs each isomorphic to K4(16k+12), by Lemma 2.6, these subgraphs
have Q4-factorizations. The remaining edges correspond to a copy of
Kt(64k+48) which has a Q4-factorization by Lemma 2.7.
Subcase 1.2: m ≡ 0, 8 (mod 16).

When m ≡ 0 (mod 16), both of the necessary conditions are satisfied.
So, we look for a Q4-factorization of Kt(16k) which follows by Lemma 2.7.
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For m ≡ 8 (mod 16), to satisfy the first necessary condition, x should be
even. We look for a Q4-factorization of K2t(16k+8) which follows by Lemma
2.7.
Case 2: λ ≡ 2 (mod 4).

By (3.1), necessary conditions for Q4-factorizations of λKx(m) reduce to
m ≡ 0 (mod 2) and mx ≡ 0 (mod 16). When m ≡ 0 (mod 4), this problem
is solved in Case 3.1 above. So, we only need to consider m ≡ 2 (mod 4).
We will construct a Q4-factorization of 2K8t(2k) and take λ/2 copies of it.

Example 3.1. There exists a Q4 factorization of 2K2(16) − 2F where 2F
represents two copies of a 2-factor of 2K2(16) with 4-cycles.

Let the parts of 2K2(16) be denoted by X and Y and the vertices be labeled
by xi and yi, respectively for 1 ≤ i ≤ 16. Let F be a 2-factor consisting of
the 4-cycles: F = (x2i−1, y2i, x2i, y2i−1) for 1 ≤ i ≤ 8.

Consider the blocks in Table 5.

0000 0001 0010 0100 1000 0011 0101 1001 0110 1010 1100 0111 1011 1101 1110 1111

B1 x1 y3 y4 y5 y7 x2 x7 x5 x8 x6 x3 y6 y8 y1 y2 x4

B′1 x9 y11 y12 y13 y15 x10 x15 x13 x16 x14 x11 y14 y16 y9 y10 x12

B2 x3 y6 y5 y8 y2 x4 x1 x7 x2 x8 x5 y7 y1 y4 y3 x6

B′2 x11 y14 y13 y16 y10 x12 x9 x15 x10 x16 x13 y15 y9 y12 y11 x14

B3 x1 y3 y5 y6 y8 x7 x8 x6 x2 x4 x3 y4 y2 y1 y7 x5

B′3 x9 y11 y13 y14 y16 x15 x16 x14 x10 x12 x11 y12 y10 y9 y15 x13

Table 5. Q4-blocks of 2K16 − 2F

{Bi, B′i}, 1 ≤ i ≤ 3 gives the 3 factors of the Q4-factorization of 2K2(16)−2F .
Let X1 = {x1, x2, ..., x8} and X2 = {x9, x10, ..., x16}, and define Y1 and Y2

similarly. The edges between X1 and Y2 and also between Y1 and X2 form
a copy of 2K2(8) which has a Q4-factorization by Example 2.2.

Lemma 3.2. There exists a Q4-factorization of 2K8(2k) for k ≥ 1.

Proof. When k = 1, Example 2.4 gives the required factorization for 2K8(2).
If k is even, Case 1 gives the result. Let k be odd and k ≥ 3. Consider
Figure 2 representing 2K8(2k). The edges in each rectangle form 2K8(2) and
the edges between any two rectangles form a copy of 2K2(16)− 2F , where F
represents a 2-factor of 2K2(16) with 4-cycles as in Example 3.1.

There exists a near-one-factorization of Kk for odd k [4]. Consider a
near-one-factor of Kk where V (Kk) = {1, 2..., k}. For each isolated vertex s
of near-one-factor, consider edges of the corresponding rectangle in Figure
2 and for each edge {i, j} of near-one-factor, consider the edges between
rectangles i and j. By Examples 2.4 and 3.1, 2K8(2) and 2K2(16) − 2F
have Q4-factorizations, respectively. For each near-one-factor of Kk, the
corresponding Q4-factor of 2K8(2k) is obtained. This procedure is repeated
for each near-one-factor of Kk and a Q4-factorization of 2K8(2k) is obtained.

�

Lemma 3.3. There exists a Q4 factorization of 2K8t(2k) for k ≥ 1 and
t ≥ 1.
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Figure 2. 2K8(2k)

Proof. Let 2K8t(2k) be partitioned into t vertex-disjoint subgraphs each iso-
morphic to 2K8(2k). By Lemma 3.2, these subgraphs have Q4-factorizations.
The remaining edges correspond to a copy of 2Kt(16k) which has a Q4-
factorization by Lemma 2.7. These factors together give the Q4-factorization
of 2K8t(2k). �

Case 3: λ ≡ 0 (mod 4) By (3.1), if λ ≡ 0 (mod 4), necessary conditions
reduce to mx ≡ 0 (mod 16). 4K4t(4k), 4K2t(8k) and 4Kt(16k) have Q4-
factorizations by Case 1. λ/4 copies of the factors of these factorizations
give required Q4-factorizations of λK2t(8k) and λKt(16k). So, two subcases
on x will be considered.
Subcase 3.1: x ≡ 8 (mod 16). For this case, m ≡ 0 (mod 2). λ/2 copies
of the factors of a Q4-factorization of 2K8t(2k) given in Lemma 3.3 give the
desired factorization of λK8t(2k).
Subcase 3.2: x ≡ 0 (mod 16).

For this case, m is arbitrary; so, we look for a Q4-factorization of 4K16t(k).
λ/4 copies of this factorization give a Q4-factorization of λK16t(k).

Consider the vertex disjoint subgraphs Hi of 4K16t(k), where each Hi is
isomorphic to 4K16(k) for 1 ≤ i ≤ t.

To get a Q4-factorization of Hi, consider a resolvable (K16,K4)-design.
Blow-up each vertex in each of 5 parallel classes by k and assume that each
parallel class corresponds to a complete multipartite graph where the parts
are the blocks of parallel classes. This graph corresponds to a K4(4k) which
has a Q4-factorization by Case 1. The number of factors in each K4(4k) is
3k.

Let πi,j,l denote the Q4 factors of Hi for the jth parallel class of K4(4k);
1 ≤ i ≤ t, 1 ≤ j ≤ 5, 1 ≤ l ≤ 3k. Then the followings are the factors of the
factorization of Hi’s for each i: {πi,j,l, 1 ≤ j ≤ 5, 1 ≤ l ≤ 3k}.
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The remaining edges of 4K16t(k) correspond to a copy of 4Kt(16k), which
has a Q4-factorization by Lemma 2.7. Combining the factors gives a Q4-
factorization of 4K16t(k).

Here, we restate Theorem 1.1 and it is proven by the above cases. Hence,
the claim asserted in the introduction part will be completed.

Theorem 1.1. There exists a Q4-factorization of λKx(m) if and only if
mx ≡ 0 (mod 16) and λm(x− 1) ≡ 0 (mod 4).

Proof. The Cases 1, 2, and 3 establish the proof of Theorem 1.1. �

By taking m = 1 and n = x, we immediately get the result on complete
graphs: There exists a Q4-factorization of λKn if and only if n ≡ 0 (mod 16)
and λ ≡ 0 (mod 4).
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