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COMMENTS ON THE GOLDEN PARTITION

CONJECTURE

MARCIN PECZARSKI

Abstract. We generalize the result of Zaguia that the 1/3–2/3 Con-
jecture is satisfied by every N-free finite poset which is not a chain: we
show a wider class of posets which satisfy the Golden Partition Conjec-
ture. We generalize the result of Pouzet that the 1/3–2/3 Conjecture
is satisfied by every finite poset with a non-trivial automorphism: we
show that such posets satisfy the Golden Partition Conjecture.

1. Introduction

Throughout the whole paper, P denotes a finite poset (V,≤), where ≤
is a reflexive, antisymmetric, and transitive relation on a set V . By < we
denote the non-reflexive (asymmetric and transitive) counterpart of ≤. For
x, y ∈ V we say that x is a lower cover of y if x < y and there is no element
z ∈ V such that x < z < y. We say that P contains an N-poset if there
exist four distinct elements a, b, c, d ∈ V such that the element a is a lower
cover of the element b, the element c is a lower cover of the elements b and d,
and these are the only relations between the elements a, b, c, d, see Figure
1. We say that P is N-free if it does not contain an N-poset.
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Figure 1. An N-poset

A bijection α : V → V is an automorphism of P if for every x, y ∈ V , it
holds that x < y if and only if α(x) < α(y). We say that an automorphism
is non-trivial if it is not the identity map.

We define a comparison on P as a pair (x, y) of two distinct elements
x, y ∈ V for which we ask an oracle about a relation between x and y.
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If the chosen elements are incomparable in P , then there are two possible
outcomes: either x precedes y or x succeeds y. In the former case we extend
the relation of P by x < y and in the latter case by y < x. In both cases
we close the relation transitively. If the chosen elements are comparable in
P , then the oracle answers according to the relation and the poset remains
unchanged.

Related to our discussion is the 1/3–2/3 Conjecture which was formulated
independently by Kislitsyn, Fredman, and Linial [1, 3, 4]. Here we use an
equivalent formulation: if P is not a chain then we can point out a com-
parison such that regardless of the oracle’s answer, the following inequality
holds:

t0 ≥
3

2
t1,

where t0 and t1 denotes the number of linear extensions of the poset P and
the poset obtained after the comparison, respectively. Zaguia proved that
an N-free poset cannot be a counterexample to the 1/3–2/3 Conjecture, see
Theorem 1 in [6]. In Section 2 of [2], authors quote the argument of Pouzet
that proves that every poset with a non-trivial automorphism cannot be a
counterexample to the 1/3–2/3 Conjecture.

We formulated the Golden Partition Conjecture (GPC) in [5]: if P is
not a chain then we can point out two consecutive comparisons such that
regardless of the oracle’s answers the following inequality holds:

t0 ≥ t1 + t2,

where t0, t1, t2 denotes the number of linear extensions of the poset P ,
the poset obtained after the first comparison, the poset obtained after both
comparisons, respectively. The GPC generalizes the 1/3–2/3 Conjecture,
see Proposition 1 in [5].

We generalize the result of Zaguia in Section 2. We show a class of finite
posets containing all not totally ordered N-free posets, but also many other
posets. Every member of this class cannot be a counterexample to the GPC
and hence it cannot be a counterexample to the 1/3–2/3 Conjecture as well.
We generalize the result of Pouzet in Section 3. We show that every poset
with a non-trivial automorphism cannot be a counterexample to the GPC.
We benefit from three facts, but first we introduce an additional notation.

For x, y ∈ V , if x 6= y and y 6< x then by P + xy we denote the poset
(V,<′), where <′ is the transitive closure of the relation < extended by
x < y. By P + xy + uv, we mean (P + xy) + uv. We denote by e(P ) the
number of linear extensions of P . If x < y then e(P + xy) = e(P ), and by
convention we take e(P + yx) = 0, however there is no poset P + yx.

Fact 1. Let x, y, z ∈ V be three distinct elements. A triple (x, y, z) is called
a balanced triple in P if

e(P + xy + yz) ≤ max{e(P + yx), e(P + zy)} ≤ 1

2
e(P ).
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We proved that if P contains a balanced triple, then it cannot be a coun-
terexample to the GPC, see Lemma 1 in [5].

Fact 2. Let (x, y) be an incomparable pair in P . An element z is called a
slave for the pair (x, y) if z is above x and incomparable with y or z is below
y and incomparable with x. We proved that if an incomparable pair (x, y)
has at most one slave in P and e(P + xy) ≥ e(P )/2, then P cannot be a
counterexample to the GPC, see Lemma 2 in [5].

Fact 3. Let x, y, z ∈ V be three distinct elements. A triple (x, y, z) is called
a cyclic triple in P if

e(P + xy) >
1

2
e(P ), e(P + yz) >

1

2
e(P ), e(P + zx) >

1

2
e(P ).

We proved that if P contains a cyclic triple, then it cannot be a counterex-
ample to the GPC, see Lemma 3 in [5].

2. Not only N-free posets

For x ∈ V , we denote by U(x) the upper set of the element x, i.e. U(x) =
{y ∈ V : x < y}. Note that there may exist elements u, v such that u ∈ U(x),
v < u and the elements x and v are incomparable in P .

We define a class P of finite posets as follows. If P ∈ P then P is not a
chain and P contains two distinct elements x, y with the same set of lower
covers and such that elements in sets U(x) ∪ {x} and U(y) ∪ {y} form two
chains. Note that the common set of lower covers may be empty and the
sets U(x) and U(y) do not need to be disjoint. The proof of Theorem 1 in
[6] shows that every finite not totally ordered N-free poset belongs to the
class P. Obviously P contains many other posets not necessarily N-free.

Now we prove that every poset in P cannot be a counterexample to the
GPC. Without loss of generality we can label the two elements in the def-
inition of the class P such that e(P + xy) ≥ e(P )/2. Let x = x1 < x2 <
x3 < . . . be the chain of elements of the set U(x)∪{x}. Let r be the largest
index for which e(P + xry) ≥ e(P )/2.

If there exists a successor xr+1 incomparable in P with y, then (xr, y, xr+1)
is a balanced triple in P . Indeed, we have max{e(P +yxr), e(P +xr+1y)} ≤
e(P )/2. As elements x and y have the same set of lower covers, then for
every z such that z < y, it holds that z < x and thus also z < xr because
U(x) ∪ {x} is a chain. Moreover, for every z such that xr < z, it holds that
z = xr+1 or xr+1 < z. Therefore, in every linear extension of P+xry+yxr+1,
the elements between xr and y are incomparable in P with xr and y. Hence,
if we exchange the elements xr and y, we obtain a linear extension of P+yxr.
This means that e(P + xry + yxr+1) ≤ e(P + yxr). The proof is complete
by Fact 1.

If there is no successor xr+1 incomparable in P with y then the pair (xr, y)
has no slave. The proof is complete by Fact 2.
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Observe that we can define another class of posets satisfying the GPC
replacing the assumption that U(y) ∪ {y} forms a chain by the assumption
that e(P + xy) ≥ e(P )/2.

3. Posets with a non-trivial automorphism

We assume now that P has a non-trivial automorphism α. This implies
that P is not a chain.

If P contains a pair (x, y) such that e(P + xy) = e(P )/2, then we take
this pair as the first comparison. We have t1 = t0/2 and t2 ≤ t1. Therefore
P satisfies the GPC.

If P does not contain a pair (x, y) such that e(P + xy) = e(P )/2, then
V contains at least three elements. We define a relation � on V such that
x � y if e(P + xy) > e(P )/2. Because e(P + xy) = e(P + α(x)α(y)), α
respects �, i.e. x� y if and only if α(x)� α(y). If � was transitive then
it would be a linear order and α would be the identity, which contradicts
the assumption. Hence the relation � is not transitive and P contains a
cyclic triple. The proof is complete by Fact 3.

Note that if P is additionally cycle-free, then it contains a pair (x, y) such
that e(P + xy) = e(P )/2, see the main theorem in [2].
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