Contributions to Discrete Mathematics

Volume 12, Number 1, Pages 83-90
ISSN 1715-0868

α-RESOLVABLE λ-FOLD G-DESIGNS

MARIO GIONFRIDDO, GIOVANNI LO FARO, SALVATORE MILICI, AND ANTOINETTE TRIPODI

Abstract

A λ-fold G-design is said to be α-resolvable if its blocks can be partitioned into classes such that every class contains each vertex exactly α times. In this paper we study the existence problem of an α resolvable λ-fold G-design of order v in the case when G is any connected subgraph of K_{4} and prove that the necessary conditions for its existence are also sufficient.

1. Introduction

For any graph Γ, let $V(\Gamma)$ and $E(\Gamma)$ be the vertex set and the edge set of Γ, respectively, and $\lambda \Gamma$ be the graph Γ with each of its edges replicated λ times. Throughout the paper K_{v} will denote the complete graph on v vertices, while $K_{v} \backslash K_{h}$ will denote the graph with $V\left(K_{v}\right)$ as the vertex set and $E\left(K_{v}\right) \backslash E\left(K_{h}\right)$ as the edge set (this graph is sometimes referred to as a complete graph of order v with a hole of size h), and $K_{n_{1}, n_{2}, \ldots, n_{t}}$ will denote the complete multipartite graph with t parts of sizes $n_{1}, n_{2}, \ldots, n_{t}$.

Let G and H be simple finite graphs. A λ-fold G-design of H (or $(\lambda H, G)$ design for short) is a pair (X, \mathcal{B}) where X is the vertex set of H and \mathcal{B} is a collection of isomorphic copies (called blocks) of the graph G, whose edges partition $E(\lambda H)$. If $\lambda=1$, we drop the term " 1 -fold". If $H=K_{v}$, we refer to such a λ-fold G-design as one of order v. A $(\lambda H, G)$-design is balanced if, for every vertex x of H, the number of blocks containing x is a constant r.

A $(\lambda H, G)$-design is said to be α-resolvable if it is possible to partition the blocks into classes (often referred to as α-parallel classes) such that every vertex of H appears in exactly α blocks of each class. When $\alpha=1$, we simply speak of resolvable designs and parallel classes. The existence problem of resolvable G-decompositions has been the subject of extensive research (see $[1,2,3,4,6,7,8,10,11,12,15,16,17,20,19])$. The α-resolvability, with $\alpha>1$, has been studied for $G=K_{3}$ by D. Jungnickel, R. C. Mullin, S. A. Vanstone [9]; Y. Zhang and B. Du [22]; $G=K_{4}$ by M. J. Vasiga, S. Furino

[^0]and A. C. H. Ling [18]; $G=C_{4}$ by M. X. Wen and T. Z. Hong [21]; and $G=K_{4}-e$ by M. Gionfriddo, G. Lo Faro, S. Milici, and A. Tripodi [5].

In this paper we shall focus on the existence of an α-resolvable λ-fold G design when $G=P_{3}, P_{4}, K_{1,3}, K_{3}+e$ (where $K_{3}+e$ is a kite, i.e., a triangle with a tail consisting of a single edge) completely solving the spectrum problem for any connected subgraph of K_{4}.

In what follows, we will denote by:

- $P_{k}=\left[a_{1}, a_{2}, \ldots, a_{k}\right], k \geq 3$, the simple graph on the k vertices $a_{1}, a_{2}, \ldots, a_{k}$ with $\left\{\left\{a_{1}, a_{2}\right\},\left\{a_{2}, a_{3}\right\}, \ldots,\left\{a_{k-1}, a_{k}\right\}\right\}$ as the edge set;
- $K_{1,3}=\left(a_{1} ; a_{2}, a_{3}, a_{4}\right)$ the 3 -star on the vertex set $\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$ with $\left\{\left\{a_{1}, a_{2}\right\},\left\{a_{1}, a_{3}\right\},\left\{a_{1}, a_{4}\right\}\right\}$ as the edge set;
- $K_{3}+e=\left(a_{1}, a_{2}, a_{3}\right)-a_{4}$ the kite on the vertex set $\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$ with $\left\{\left\{a_{1}, a_{2}\right\},\left\{a_{1}, a_{3}\right\},\left\{a_{2}, a_{3}\right\},\left\{a_{3}, a_{4}\right\}\right\}$ as the edge set.
By the definition of α-resolvability, we can derive the following necessary conditions:

$$
\begin{gather*}
\lambda v(v-1) \equiv 0(\bmod 2|E(G)|) \tag{1.1}\\
\alpha v \equiv 0(\bmod |V(G)|) \tag{1.2}\\
\lambda|V(G)|(v-1) \equiv 0(\bmod 2 \alpha|E(G)|) \tag{1.3}
\end{gather*}
$$

Note that any α-resolvable λ-fold G-design is balanced because every vertex of $V(G)$ appears exactly α times in each α-parallel class. Let $D(G)$ be the set of all degrees of the vertices of G. For every vertex x of an $\alpha-$ resolvable λ-fold G-design \mathcal{D} of order v and for every $d \in D(G)$, let $r_{d}(x)$ denote the number of blocks of \mathcal{D} containing x as a vertex of degree d. It is easy to see that the following relations hold:

$$
\begin{gather*}
\sum_{d \in D(G)} r_{d}(x) d=\lambda(v-1) \tag{1.4}\\
\sum_{d \in D(G)} r_{d}(x)=\lambda|V(G)| \frac{v-1}{2|E(G)|} . \tag{1.5}
\end{gather*}
$$

From Conditions (1.1) - (1.5) we can deduce minimum values for α and λ, say α_{0} and λ_{0}, respectively.

For any graph $G \in\left\{P_{3}, P_{4}, K_{1,3}, K_{3}+e\right\}$, similarly to Lemmas 2.1, 2.2 in [18], we have the following lemmas.

Lemma 1.1. If an α-resolvable λ-fold G-design of order v exists, then $\alpha_{0} \mid \alpha$ and $\lambda_{0} \mid \lambda$.

Lemma 1.2. If an α-resolvable λ-fold G-design of order v exists, then a t α-resolvable $n \lambda$-fold G-design of order v exists for any positive integers n and t where t divides $\lambda|V(G)|(v-1) /(2 \alpha|E(G)|)$.

The above two lemmas imply the following theorem (for the proof, see Theorem 2.3 in [18]).

Theorem 1.3. If an α_{0}-resolvable λ_{0}-fold G-design of order v exists and α and λ satisfy Conditions (1.1)-(1.5), then an α-resolvable λ-fold G-design of order v exists.

Therefore, in order to show that the necessary conditions for α-resolvable designs are also sufficient, we simply need to prove the existence of an $\alpha_{0}{ }^{-}$ resolvable λ_{0}-fold G-design of order v, for any given v.

2. Auxiliary definitions

A $\left(\lambda K_{n_{1}, n_{2}, \ldots, n_{t}}, G\right)$-design is known as a λ-fold group divisible design (or G-GDD for short), of type $\left\{n_{1}, n_{2}, \ldots, n_{t}\right\}$ (the parts are called the groups of the design). We usually use "exponential" notation to describe group-types: the group-type $1^{i} 2^{j} 3^{k} \ldots$ denotes i occurrences of $1, j$ occurrences of 2 , etc. When $G=K_{n}$ we will call it an n-GDD.

If the blocks of a λ-fold G-GDD can be partitioned into partial α-parallel classes, each of which contains all vertices except those of one group, we refer to the decomposition as a λ-fold (α, G)-frame; when $\alpha=1$, we simply speak of λ-fold G-frames (n-frames if additionally $G=K_{n}$). In a λ-fold (α, G) frame the number of partial α-parallel classes missing a specified group of size g is $\lambda g|V(G)| /(2 \alpha|E(G)|)$.

An incomplete α-resolvable λ-fold G-design of order $v+h, h \geq 1$, with a hole of size h is a $\left(\lambda\left(K_{v+h} \backslash K_{h}\right), G\right)$-design in which there are two types of classes, $\lambda(h-1)|V(G)| /(2 \alpha|E(G)|)$ partial classes which cover every vertex α times except those in the hole and $\lambda v|V(G)| /(2 \alpha|E(G)|)$ full classes which cover every vertex of $K_{v+h} \alpha$ times.

3. The case $\mathbf{G}=\mathbf{P}_{\mathbf{3}}$

In this section the existence of an α_{0}-resolvable λ_{0}-fold P_{3}-design of any order v is proved by distinguishing the following cases.
Case 1: $v \equiv 0(\bmod 6): \lambda_{0}=4$ and $\alpha_{0}=1$.
For a solution, see [4].
Case 2: $v \equiv 1,5(\bmod 12): \lambda_{0}=1$ and $\alpha_{0}=3$.
In Z_{v} develop the base blocks: $[i, 0,(v+1) / 2-i], i=1,2, \ldots,(v-$ 1)/4.

Case 3: $v \equiv 2,4,8,10(\bmod 12): \lambda_{0}=4$ and $\alpha_{0}=3$.
In Z_{v} develop the base blocks: $[i, 0,1+i], i=1,2, \ldots, v-2 ;[v-1,0,1]$.
Case $4: v \equiv 3(\bmod 12): \lambda_{0}=2$ and $\alpha_{0}=1$..
For a solution see [4].
Case 5: $v \equiv 7,11(\bmod 12): \lambda_{0}=2$ and $\alpha_{0}=3$.
In Z_{v} develop the base blocks: $[i, 0, v-i], i=1,2, \ldots,(v-1) / 2$.
Case 6: $v \equiv 9(\bmod 12): \lambda_{0}=1$ and $\alpha_{0}=1$.
For a solution see [4].

4. The case $\mathbf{G}=\mathbf{P}_{\mathbf{4}}$

Here, we construct an α_{0}-resolvable λ_{0}-fold P_{4}-design of any order v.
Case 1: $v \equiv 0,8(\bmod 12): \lambda_{0}=3$ and $\alpha_{0}=1$.
For a solution see [4].
Case 2: $v \equiv 1(\bmod 6): \lambda_{0}=1$ and $\alpha_{0}=4$.
In Z_{v} develop the base blocks: $[i, 0,(v+2) / 3-i,(2 v+1) / 3], i=$ $1,2, \ldots,(v-1) / 6$.
Case 3: $v \equiv 2,6(\bmod 12): \lambda_{0}=3$ and $\alpha_{0}=2$.
Let $Z_{v / 2} \times Z_{2}$ be the vertex set. In $Z_{v / 2}$ develop the base blocks: $\left[i_{0}, 0_{0}, i_{1}, 0_{1}\right], i=1,2, \ldots,(v-2) / 2 ;\left[i_{0}, 0_{0}, i_{1}, 0_{1}\right], i=1,2, \ldots,(v-2) / 4 ;$ $\left[((v+2) / 4+i)_{1}, 0_{0}, i_{1},((v-2) / 4)_{0}\right], i=0,1, \ldots,(v-6) / 4$; $\left[0_{1}, 0_{0},((v-2) / 4)_{1},((v-2) / 4)_{0}\right]$.
Case 4: v $\equiv 3,5(\bmod 6): \lambda_{0}=3$ and $\alpha_{0}=4$.
In Z_{v} develop the base blocks: $[i, 0, v-i,(v-1) / 2], i=1,2, \ldots,(v-$ $3) / 2 ;[(v-1) / 2,0,1,(v+1) / 2]$.
Case 5: v $\equiv 4(\bmod 12): \lambda_{0}=1$ and $\alpha_{0}=1$.
For a solution see [4].
Case 6: $v \equiv 10(\bmod 12): \lambda_{0}=1$ and $\alpha_{0}=2$.
Let $v=12 k+10$ and $Z_{6 k+5} \times Z_{2}$ be the vertex set. In $Z_{6 k+5}$ develop the base blocks: $\left[i_{0}, 0_{0}, i_{1}, 0_{1}\right], i=1,2, \ldots, 3 k+2$;
$\left[(3 k+3+i)_{1}, 0_{0},(5 k+2-i)_{1},(5 k+3)_{0}\right], i=0,1, \ldots, k-1$;
$\left[(5 k+3)_{1}, 0_{0}, 0_{1},(k+1)_{0}\right]$.

5. The case $\mathbf{G}=\mathbf{K}_{\mathbf{1}, \mathbf{3}}$

To solve the spectrum problem for α-resolvable λ-fold $K_{1,3}$-designs we distinguish the following cases.
Case 1: $v \equiv 0,8(\bmod 12): \lambda_{0}=6$ and $\alpha_{0}=1$.
For a solution see [4].
Case 2: $v \equiv 1(\bmod 6): \lambda_{0}=1$ and $\alpha_{0}=4$.
In Z_{v} develop the base blocks: $(0 ; i,(v-1) / 6+i,(v-1) / 3+i), i=$ $1,2, \ldots,(v-1) / 6$.
Case 3: $v \equiv 2(\bmod 12): \lambda_{0}=6$ and $\alpha_{0}=2$.
Let $v=12 k+2$ and $Z_{12 k+1} \cup\{\infty\}$ be the vertex set. In $Z_{12 k+1}$ develop the two base classes:

$$
\begin{aligned}
P_{1}: & \{(12 k-i+1 ; i, 12 k-2 i+1,12 k-2 i+2): i=2,3, \ldots, 6 k- \\
& 1\} \cup\{(\infty ; 0,1,12 k),(12 k ; 1,12 k-1, \infty),(6 k+1 ; 0,2,6 k)\} ; \\
P_{2}: & \{(12 k-i+1 ; i, 12 k-2 i,, 12 k-2 i+1), i=2,3, \ldots, 6 k, i \neq \\
& 4 k\} \cup\{(12 k ; 0,4 k, 12 k-1),(12 k ; 1,12 k-2, \infty),(8 k+1 ; 4 k, \\
& 4 k+1, \infty)\} .
\end{aligned}
$$

Case 4: $v \equiv 3,5(\bmod 6): \lambda_{0}=3$ and $\alpha_{0}=4$.
In Z_{v} develop the base blocks: $(0 ; i, v-i, 1+i), \quad i=1,2, \ldots,(v-$
$3) / 2 ;(0 ;(v-1) / 2,(v+1) / 2,1)$.
Case 5: $v \equiv 4(\bmod 12): \lambda_{0}=2$ and $\alpha_{0}=1$.
For a solution see [4].

Case 6: $v \equiv 6(\bmod 12)$, then $\lambda_{0}=6$ and $\alpha_{0}=2$.
Let $v=12 k+6$ and $Z_{12 k+5} \cup\{\infty\}$ be the vertex set. In $Z_{12 k+5}$ develop the two base classes:

$$
\begin{aligned}
P_{1}: & \{(12 k-i+5 ; i, 12 k-2 i+5,12 k-2 i+6): i=2,3, \ldots, 6 k+ \\
& 1, i \neq 4 k+2\} \cup\{(\infty ; 0,1,4 k+2),(12 k+4 ; 1,12 k+3, \infty), \\
& (6 k+3 ; 0,2,6 k+2),(8 k+3 ; 4 k+1,4 k+2,12 k+4)\} ; \\
P_{2}: & \{(12 k-i+5 ; i, 12 k-2 i+4,12 k-2 i+5): i=2,3, \ldots, 6 k+ \\
& 2\} \cup\{(12 k+4 ; 0,12 k+3, \infty),(12 k+4 ; 1,12 k+2, \infty)\} .
\end{aligned}
$$

Case 7: $v \equiv 10(\bmod 12): \lambda_{0}=2$ and $\alpha_{0}=2$.
This case follows by the following lemmas.
Lemma 5.1. There exists an incomplete 2-resolvable 2-fold $K_{1,3}$-design of order 10 with a hole of size 4.
Proof. Let $V=Z_{6} \cup H$ be the vertex set, where $H=\left\{\infty_{1}, \infty_{2}, \infty_{3}, \infty_{4}\right\}$ is the hole. The partial classes are:

$$
\{(3 ; 4,0,2),(4 ; 5,1,0),(5 ; 3,2,1)\},\{(0 ; 4,5,1),(1 ; 5,3,2),(2 ; 3,4,0)\} .
$$

The full classes are:

$$
\begin{aligned}
& \left\{\left(\infty_{1} ; 0,1,2\right),\left(\infty_{2} ; 0,1,2\right),\left(3 ; 4, \infty_{3}, \infty_{4}\right),\left(4 ; 5, \infty_{3}, \infty_{4}\right),\left(5 ; 3, \infty_{1}, \infty_{2}\right)\right\}, \\
& \left\{\left(\infty_{2} ; 3,4,5\right),\left(\infty_{3} ; 3,4,5\right),\left(0 ; 1, \infty_{1}, \infty_{4}\right),\left(1 ; 2, \infty_{1}, \infty_{4}\right),\left(2 ; 0, \infty_{2}, \infty_{3}\right)\right\}, \\
& \left\{\left(\infty_{3} ; 0,1,2\right),\left(\infty_{4} ; 3,4,5\right),\left(3 ; 0, \infty_{1}, \infty_{2}\right),\left(4 ; 1, \infty_{1}, \infty_{2}\right),\left(5 ; 2, \infty_{3}, \infty_{4}\right)\right\}, \\
& \left\{\left(\infty_{4} ; 0,1,2\right),\left(\infty_{1} ; 3,4,5\right),\left(0 ; 5, \infty_{2}, \infty_{3}\right),\left(1 ; 3, \infty_{2}, \infty_{3}\right),\left(2 ; 4, \infty_{1}, \infty_{4}\right)\right\} .
\end{aligned}
$$

As a consequence of Lemma 5.1 and the existence of a 2 -resolvable 2 -fold $K_{1,3}$-design of order $v=4$, the following lemma is obtained.
Lemma 5.2. There exists a 2 -resolvable 2 -fold $K_{1,3-\text {-design }}$ of order $v=10$.
Lemma 5.3. There exists a 2 -resolvable 2-fold $K_{1,3}-G D D$ of type 6^{2}.
Proof. Take $\{a, b, c, d, e, f\}$ and $\{1,2,3,4,5,6\}$ as groups and consider the classes:

$$
\begin{aligned}
& \{(a ; 1,2,4),(b ; 2,3,5),(c ; 3,1,6),(4 ; d, f, a),(5 ; e, d, b),(6 ; f, e, c)\}, \\
& \{(a ; 2,5,6),(b ; 3,4,6),(c ; 1,5,4),(1 ; d, f, b),(2 ; e, d, c),(3 ; f, e, a)\}, \\
& \{(d ; 3,4,6),(e ; 1,4,5),(f ; 2,5,6),(1 ; b, e, a),(2 ; c, f, b),(3 ; d, a, c)\}, \\
& \{(d ; 1,2,5),(e ; 2,3,6),(f ; 3,1,4),(4 ; b, e, c),(5 ; c, f, a),(6 ; d, a, b)\} .
\end{aligned}
$$

Lemma 5.4. For every $v \equiv 10(\bmod 12)$, there exists a 2 -resolvable 2 -fold $K_{1,3}$-design of order v.

Proof. Let $v=12 k+10$. The case $v=10$ follows by Lemma 5.2. For $k \geq 1$, start from a 2 -frame of type $1^{2 k+1}$ with groups $G_{i}, i=1,2, \ldots, 2 k+1$, expand each vertex six times and add a set H of size 4 such that $H \cap\left(\cup_{i=1}^{2 k+1} G_{i}\right)=$ \emptyset. For $i=1,2, \ldots, 2 k+1$, let P_{i} be the partial class which misses the
group G_{i} and for each block $b \in P_{i}$ place on $b \times\{1,2, \ldots, 6\}$ a copy of a 2-resolvable 2 -fold $K_{1,3}$-GDD of type 6^{2}, which exists by Lemma 5.3; this gives four partial classes missing $G_{i} \times\{1,2, \ldots, 6\}$, say $P_{i, 1}, P_{i, 2}, P_{i, 3}, P_{i, 4}$. For $i=1,2, \ldots, 2 k+1$, place on $H \cup\left(G_{i} \times\{1,2, \ldots, 6\}\right)$ a copy \mathcal{D}_{i} of an incomplete 2-resolvable 2-fold $K_{1,3}$-design of order 10 with a hole of size 4, which exists by Lemma 5.1. Finally, filling in the hole H with a copy \mathcal{D} of a 2 -resolvable 2 -fold ($K_{1,3}$)-design of order 4 gives a 2 -fold ($K_{1,3}$)-design of order v which is also 2 -resolvable. Indeed, for every $i=1,2, \ldots, 2 k+1$ combining $P_{i, 1}, P_{i, 2}, P_{i, 3}, P_{i, 4}$ with the full classes of \mathcal{D}_{i} gives four 2-parallel classes, while combining the two classes of \mathcal{D} with the union of the partial classes of $\mathcal{D}_{i}, i=1,2, \ldots, 2 k+1$ gives the remaining ones.

6. The case $\mathbf{G}=\mathbf{K}_{\mathbf{3}}+\mathbf{e}$

For $G=K_{3}+e$ we have the following cases with the corresponding solutions.
Case 1: $v \equiv 0(\bmod 4): \lambda_{0}=2$ and $\alpha_{0}=1$.
For a solution see [4].
Case 2: $v \equiv 1(\bmod 8): \lambda_{0}=1$ and $\alpha_{0}=4$.
In $Z_{8 k+1}$ develop the base blocks ([13]): $(4 k-i, 2 k+1+i, 0)-(2 k-2 i)$, $i=0,1, \ldots, k-1$.
Case 3: $v \equiv 2(\bmod 4): \lambda_{0}=4$ and $\alpha_{0}=2$.
Let $Z_{2 k+1} \times Z_{2}$ be the vertex set. In $Z_{2 k+1}$ develop the base blocks: $\left(i_{j},(2 k+1-i)_{j}, 0_{j+1}\right)-i_{j+1}, i=1,2, \ldots, k, j \in Z_{2} ;\left(i_{j},(2 k-1-\right.$ i) $\left.{ }_{j}, 0_{j+1}\right)-(i+1)_{j+1}, i=1,2, \ldots, k-1, j \in Z_{2} ;\left(1_{0}, 1_{1}, 0_{0}\right)-2_{1}$, $\left(1_{1}, 1_{0}, 0_{1}\right)-0_{0},\left(0_{0}, 2_{0}, 0_{1}\right)-2_{1}$.
Case $4: v \equiv 3(\bmod 4): \lambda_{0}=4$ and $\alpha_{0}=4$.
In $Z_{4 k+3}$ develop the base blocks: $(i, 4 k+3-i, 0)-(1+i), i=$ $1,2, \ldots, 2 k ;(2 k+1,2 k+2,0)-1$.
Case 5: $v \equiv 5(\bmod 8): \lambda_{0}=2$ and $\alpha_{0}=4$.
In $Z_{8 k+5}$ develop the base blocks ([14]): $(i, 4 k+3-i, 0)-(4 k-1+2 i)$, $i=1,2, \ldots, 2 k+1$.

7. Main result

Theorem 1.3 along with the results of the previous sections allows us to obtain our main result.

Theorem 7.1. For any graph $G \in\left\{P_{3}, P_{4}, K_{1,3}, K_{3}+e\right\}$, the necessary conditions (1.1) - (1.5) for the existence of α-resolvable λ-fold G-designs are also sufficient.

References

1. J. C. Bermond, K. Heinrich, and M. L. Yu, Existence of resolvable path designs, Eur. J. Combin. 11 (1990), 205-211.
2. C. J. Colbourn, D. R. Stinson, and L. Zhu, More frames with block size four, J. Combin. Math. Combin. Comput. 23 (1997), 3-20.
3. G. Ge and A. C. H. Ling, On the existence of resolvable ($\left.K_{4}-e\right)$-designs, J. Comb. Des. 15 (2007), 502-510.
4. M. Gionfriddo, G. Lo Faro, S. Milici, and A. Tripodi, Resolvable $\left(K_{4}-e\right)$-designs of order v and index λ, Utilitas Mathematica 101 (2016), 119-127.
5. The spectrum of α-resolvable λ-fold $\left(K_{4}-e\right)$-designs, Ars Math. Contempo. 10 (2016), 371-381.
6. H. Hanani, On resolvable balanced incomplete block designs, J. Comb. Theory A 17 (1974), 275-289.
7. H. Hanani, D. K. Ray-Chaudhuri, and R. M. Wilson, On resolvable designs, Discrete Math. 3 (1972), 343-357.
8. J. D. Horton, Resolvable path designs, J. Comb. Theory A 39 (1985), 117-131.
9. D. Jungnickel, R. C. Mullin, and S. A. Vanstone, The spectrum of α-resolvable block designs with block size 3, Discrete Math. 97 (1991), 269-277.
10. S. Küçükçifçi, G. Lo Faro, S. Milici, and A. Tripodi, Resolvable 3-star designs, Discrete Math. 338 (2015), 608-614.
11. S. Küçükçifçi, S. Milici, and Z. Tuza, Maximum uniformly resolvable decompositions of K_{v} and $K_{v}-I$ into 3-stars and 3-cycles, Discrete Math. 338 (2015), 1667-1673.
12. G. Lo Faro, S. Milici, and A. Tripodi, Uniformly resolvable decompositions of K_{v} into paths on two, three and four vertices, Discrete Math. 338 (2015), 2212-2219.
13. G. Lo Faro and A. Tripodi, The doyen-wilson theorem for kite systems, Discrete Math. 306 (2006), 2695-2701.
14. Embeddings of λ-fold kite systems $\lambda \geq \mathbf{2}$, Australas. J. Combin. 36 (2006), 143-150.
15. S. Milici, A note on uniformly resolvable decompositions of K_{v} and $K_{v}-I$ into 2-stars and 4-cycles, Australas. J. Combin. 56 (2013), 195-200.
16. S. Milici and Z. Tuza, Uniformly resolvable decompositions of K_{v} into P_{3} and K_{3} graphs, Discrete Math. 331 (2014), 137-141.
17. R. Su and L. Wang, Minimum resolvable covering of K_{v} with copies of $K_{4}-e$, Graphs Combinator. 27 (2011), 883-896.
18. M. J. Vasiga, S. Furino, and A. C. H. Ling, The spectrum of α-resolvable designs with block size four, J. Comb. Des. 9 (2001), 1-16.
19. L. Wang, Completing the spectrum of resolvable $\left(K_{4}-e\right)$-designs, Ars Combinatoria 105 (2012), 289-291.
20. L. Wang and R. Su, On the existence of maximum resolvable ($K_{4}-e$)-packings, Discrete Math. 310 (2010), 887-896.
21. M. X. Wen and T. Z. Hong, α-resolvable cycle systems for cycle length 4, J. Mathematical Research Exposition 29 (2009), 1102-1106.
22. Y. Zhang and B. Du, α-resolvable group divisible designs with block size three, J. Comb. Des. 13 (2005), 139-151.

Dipartimento di Matematica e Informatica
 Università di Catania
 Catania, Italia
 E-mail address: gionfriddo@dmi.unict.it

Dipartimento di Scienze Matematiche e Informatiche
Scienze Fisiche e Scienze della Terra
Università di Messina
Messina, Italia
E-mail address: lofaro@unime.it
Dipartimento di Matematica e Informatica Università di Catania

Catania, Italia
E-mail address: milici@dmi.unict.it
Dipartimento di Scienze Matematiche e Informatiche Scienze Fisiche e Scienze della Terra

Università di Messina
Messina, Italia
E-mail address: atripodi@unime.it

[^0]: Received by the editors December 22, 2015, and in revised form May 25, 2016.
 2010 Mathematics Subject Classification. 05B05.
 Key words and phrases. Keywords: α-resolvable G-design; α-parallel class.
 Supported by PRIN and I.N.D.A.M. (G.N.S.A.G.A.), Italy (M. Gionfriddo, G. Lo Faro, A. Tripodi).

 Supported by MIUR and I.N.D.A.M. (G.N.S.A.G.A.), Italy (Salvatore Milici).

