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THE OUTERCOARSENESS OF THE n-CUBE

ALEX FINK AND RICHARD K. GUY

Abstract. Guy and Nowakowski showed that the outercoarseness of
the n-cube was, for sufficiently large n, at least 0.96 of its maximum
possible value, n · 2n−4. Here we give some exact results, including that
the maximum is attained for all n ≥ 24. We construct explicit partitions
of the edges of the cube attaining this maximum in which each part is
a tepee, namely, the three-cube with a vertex and a non-incident edge
deleted. Its vertices and those of the cube are given binary labels, which
we often write in octal (base 8) or hexadecimal (base 16) notation.

1. Introduction

The coarseness of a graph is the maximum possible number of components
in an edge-partition of the graph with each part a non-planar graph. Interest
in coarseness, a one of several quantities one might associate to a graph to
measure its deviation from planarity, dates from Erdős’s introduction of
the concept. One application is to printing of circuits: if one can print
conducting material onto insulating sheets, with contact between the sheets
at and only at a set of points serving as the vertices, then the coarseness of
a graph is the number of sheets required to realise it [6]. Bounds or exact
values have been computed for the coarseness of several frequently studied
families of graphs, among them the n-dimensional cube Qn [5, 4].

Similarly, the outercoarseness ξo(G) of a graph G is the maximum number
of parts in an edge partition with each part non-outerplanar. An outerplanar
graph is a planar graph for which there is an imbedding in the plane with all
its vertices on the boundary of a single cell. Bounds for the outercoarseness
of the cube Qn were first announced without proof in [1], with the proofs
appearing in the follow-up article [2]. The upper bound given in these works
was

(1.1) ξo(Qn) ≤ n · 2n−4,

a consequence of a simple edge-counting argument, while the lower bound
was (0.96n− 1.15)2n−4 < ξo(Qn) for n not equal to 2, 5, 6 or 9.
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The present paper closes the gap between the above bounds for all n ≥ 24,
as well as certain lesser values of n, by exhibiting edge-partitions that show
that the upper bound (1.1) is in fact attainable. We also give improved
bounds in some smaller cases.

Halin [3] has given the analog, for outerplanar graphs, of Kuratowski’s
theorem for planar graphs:

Theorem 1.1 (Halin). A graph is outerplanar just if it does not contain a
subgraph homeomorphic to the complete graph K4 or to the complete bipartite
graph K2,3.

When we refer to a product G×H of two graphs we mean the Cartesian
product, in which two vertices (v, w) and (v′, w′) are joined by an edge if and
only if either v = v′ and w is adjacent to w′ in H, or v is adjacent to v′ in
G and w = w′.

For example, the n-cube, Qn, is the n-fold Cartesian product of Q1 = K2,
and is therefore a graph on 2n vertices. If we give the names 0 and 1 to
the two vertices of Q1, the vertices of Qn are thereby labelled with the n-
digit binary numbers. The vertex labels form a n-dimensional vector space
over F2, and the symbols “+” and “span” will refer to operations inside this
vector space. The operation + is also known as bitwise xor, or nim-sum.
After this introduction, we will begin to write the binary labels in octal or
hexadecimal notation. Although this labelling may be novel, it is purely a
space-saving measure, compressing three or four coordinates of the vertex
label to a single symbol.

The n-cube is regular with valence n. The n · 2n−1 edges connect pairs of
vertices whose labels differ in just one binary digit. Of the edges there are
2n−1 in each of n different directions, or having n different colors, according
to which of the n Cartesian factors Q1 give rise to them. The n-cube is
bipartite: the parts are the set of odious vertices and the set of evil vertices,
the digit-sums of whose labels are respectively odd and even, and which are
respectively represented by small black and white circles in Figure 1.

The smallest non-outerplanar subgraphs of Qn are shown in Figure 1,
where (a), (b), (c) are homeomorphs of K2,3 and (d) is a homeomorph of
K4. The vertex labels are in binary. Only (a) has as few as 8 edges, and it
is easy to see that no such graph can have fewer edges. So (a) will be the
graph of our choice, which we call a tepee.

This immediately gives us the upper bound (1.1),

ξo(Qn) ≤ n · 2n−4.

We set some terminology for the anatomy of a tepee. Let e0 = 00 . . . 01,
e1 = 00 . . . 10, . . . , en−1 = 10 . . . 00 be the standard basis of the F2-vector
space whose elements are the vertices of Qn, so that the neighbours of a
vertex v are all vertices of form v + ei with 0 ≤ i ≤ n− 1. Then a tepee in
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Figure 1. Non-outerplanar subgraphs of Qn

orientation ijk contains the edges

(v, v + ei), (v, v + ej),

(v + ei + ek, v + ei), (v + ej + ek, v + ej),

(v + ei + ek, v + ek), (v + ej + ek, v + ek),

(v + ei + ek, v + ei + ej + ek), (v + ej + ek, v + ei + ej + ek)(1.2)

for some vertex v, which we will call the tip of the tepee. The tepee’s
trivalent vertices are v + ei + ek and v + ej + ek, and its remaining vertices
are bivalent. A tepee subgraph of a cube is completely specified by its tip
and orientation, and this specification is unique up to exchange of i and j.
For example, the tepee in Figure 1(a) has tip 011, and orientation 012 (or
equally 102). When checking the orientations, bear in mind that we have
labelled the bits from right to left, e.g., vertex 011 means 0e2 + 1e1 + 1e0!

2. Small values of n

The bound (1.1) can’t be attained for small n. For n = 1 and 2, Qn is
outerplanar, so that ξo(Q1) = ξo(Q2) = 0. On the other hand Q3 is not
outerplanar, but has only 12 edges, so that ξo(Q3) = 1. Although Q4 has
32 edges, the bound of 4 can’t be attained since the graph of Figure 1(a)
has two trivalent vertices, so that some of the edges of the 4-valent graph
Q4 can’t be used. That ξo(Q4) = 3 may be seen from Figure 2 whose vertex
labels are written in octal. It shows the decomposition of Q4 into two tepees
in orientation 120 with tips 02 and 12, and a copy of Figure 1(c): there are
7 unused edges, indicated by dotted lines.
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Figure 2. A decomposition of Q4

3. The 5-cube

We can see that ξo(Q5) < 10 because the 20 3-valent vertices of 10 tepees
can occupy only 20 of the 5-valent vertices of Q5, leaving 12 odd-valent
vertices, so that at least 6 edges must be wasted.

To see that ξo(Q5) = 9, we will write vertex labels in octal. We regard Q5

as the product Q4 × Q1 with the edges coming from the Q4 factor having
directions 0, 1, 2 and 3, and from the Q1 having direction 4. This gives
two subgraphs Q4 of Q5, one of which has vertices 00 through 17, the other
20 through 37. Into the subgraph on vertices 00 through 17, we place the
tepee shown in Figure 3, at left, together with the one shown in the left of
Figure 2. The 16 unused edges are shown in the second part of Figure 3.
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Figure 3. Two decompositions of Q4

We also place two tepees in the Q4 subgraph on vertices 20 through 37,
namely the images of the first two under the isomorphism between the two
Q4 taking binary 0dcba to 0dbca+ 00010. The unused edges in this Q4 form
the configuration in the third part of Figure 3.

The second and third parts of Figure 3 are connected by sixteen edges in
direction 4. Four of these, namely octal (0x, 2x), x = 0, 2, 4, 6, are wasted.



26 ALEX FINK AND RICHARD K. GUY

Four of them, (1y, 3y), y = 1, 3, 5, 7, together with the edges between their
endpoints in the two Q4, form a Q3, which is non-outerplanar. The four
pairs, (1x, 3x) and (0y, 2y), y = x+1, together with the edges in the centre
and right of Figure 3 in directions 0 and 3 form tepees. With the tepees
from the two Q4, we have 1 + 4 + (2×2) = 9 non-outerplanar graphs and

ξo(Q5) = 9.

4. The 6-cube

If Q6 had an exact packing with 24 tepees, every vertex of Q6 would have
to be occupied either by three bivalent or two trivalent tepee vertices. Thus
the tepees would be arranged into rings, where neighboring tepees in each
ring share a trivalent vertex.

A program was run to find packings with rings of tepees, which found that
the maximal packing of this sort uses 16 tepees. This establishes ξo(Q6) <
24. Here is a packing of 16 tepees in four rings of four, with vertex labels
given in two-digit octal, and each ring described by one column:

orientn tip orientn tip orientn tip orientn tip
012 06 012 53 012 17 012 42
345 50 345 05 345 41 345 14
012 35 012 60 012 24 012 71
345 63 345 36 345 72 345 27

More compactly, this arrangement uses 8 copies of the half-ring consisting
of one tepee in orientation 012 with tip 06 and one in orientation 345 with
tip 50, translating it by the elements of span{11, 22, 44}.

We also wrote a second, unclever, program which placed tepees unre-
strictedly. It quickly found our current best known solutions with 21 te-
pees; it seemed to plateau there, though we never let it run to exhaus-
tion. The table below exhibits one of its packings of 21 tepees in Q6. The
source code of both of these programs, with a brief explanation of their
output formats, can be found at http://www.maths.qmul.ac.uk/~fink/

outercoarseness/Q6.html.

orientn tip orientn tip orientn tip
012 05 145 44 123 33
345 50 053 44 150 74
342 11 054 47 231 44
054 41 150 50 123 55
032 12 124 30 024 50
054 42 450 17 123 72
345 53 231 24 123 73

The resulting bounds are

21 ≤ ξo(Q6) ≤ 23.

http://www.maths.qmul.ac.uk/~fink/outercoarseness/Q6.html
http://www.maths.qmul.ac.uk/~fink/outercoarseness/Q6.html
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5. The 7-cube

We can show that 48 ≤ ξo(Q7) ≤ 54.
Taking the upper bound first, every non-outerplanar subgraph of a cube

has at least 7 vertices with valence ≥ 2; observe that this is true of the
minimal such graphs in Figure 1. Suppose that t non-outerplanar graphs
are packed in Q7. Each vertex of Q7 can only accommodate three vertices
of valence ≥ 2, proving t ≤ b3 · 27/7c = 54.

The lower bound is attained by the following packing of 48 tepees. Writing
in octal, place 32 tepees with their tips two each at the sixteen vertices of
span{011, 022, 044, 100}, one in orientation 012 and one in orientation 345
for each tip location. Place the remaining sixteen as follows:

four in orientation 036 with tips 003 + span{022, 044};
four in orientation 146 with tips 003 + span{011, 044};
four in orientation 256 with tips 003 + span{011, 022};
and four in orientation 256 with tips span{011, 022}.

6. Values of n attaining the upper bound

Here we construct exact packings demonstrating that ξo(Qn) attains its
maximum value n · 2n−4 for all n ≥ 8 other than n = 9, 10, 11, 14, 15, 19, 23,
which we cannot address at present. These constructions are based on the
following elements:

(1) Exact tepee packings of Q8, Q12, Q4 × K1,2 and Q8 × K1,2. By
taking products of these we obtain all graphs Q4k × (Q4 × K1,2)

m

for integers k,m ≥ 0, aside from Q4.
(2) A partial arrangement of tepees in Q5 which, together with packings

of G and G ×K1,2, provides a packing of G × Q5 for any graph G.
In view of item 1, iteration of this construction yields an exact tepee
packing of every cube Q4k+9m for integers k,m ≥ 0, aside from Q4

and Q9.

We provide the constructions in items 1 and 2 above in sections 6.1 and
6.2 respectively.

6.1. Cubes and cubes times K1,2.

6.1.1. The 8-cube. That ξo(Q8) = 128 is shown by the following elegant
packing of 128 tepees. In Figure 4 the vertex labels are 2-digit hexadeci-
mal numbers. Each diagram represents four tepees, and is to be replicated
eight times. The upper two by adding the span of {ff,66,0c} over F2 (i.e.,
00,ff,66,99,0c,f3,6a,95) and the lower two by adding the span of {ff,66,03}
(i.e., 00,ff,66,99,03,fc,65,9a). The reader may verify that these exactly cover
the 8 · 27 edges of Q8.
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Figure 4. Q8 is the union of 128 tepees

6.1.2. The 12-cube. We exhibit an exact packing of Q12 establishing that
ξo(Q12) = 3072.

There is a graph homomorphism p from Q12 to Q6 sending the vertex
(x, y) ∈ F6

2 × F6
2 to x + y ∈ F6

2. This homomorphism induces a two-to-one
map from the twelve edge directions of Q12 to the six of Q6, following which
we grant the directions of Q12 the names 0x,. . . ,5x and 0y,. . . ,5y.

We produce our packing of Q12 as follows: we provide an arrangement of
tepees in Q6, and in each tepee, tag each class of edges in a single direction
with the symbol x or y. Altogether each edge of Q6 will be covered by two
tepee edges, one tagged x and one tagged y. This arrangement on Q6 can be
pulled back across the homomorphism p to the requisite packing of Q12, as
suggested by the labels: a tepee with tip v and orientation abc, whose edges
in directions a, b, c are tagged respectively α, β, γ ∈ {x, y}, pulls back to 64
tepees with tips at each of the preimages of v, all in orientation aα bβ cγ.

We present our arrangement on Q6 using two-digit octal numbers for the
vertices. It has 48 tepees; together these have the requisite 64 · 48 = 3072
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preimages in Q12. At each of the vertices 00, 11, 22, 33, 44, 55, 66, 77 are
placed the tips of six tepees.

Tip location Orientations

00 0y1x2x 1y2x3x 2y3x4x 3y4x5x 4y5x0x 5y0x1x
11 0x1x2y 1y2y3y 2x3y4x 3x4x5y 4y5y0y 5x0y1x
22 0x1y2x 1x2x3y 2y3y4y 3x4y5x 4x5x0y 5y0y1y
33 0y1y2y 1x2y3x 2x3x4y 3y4y5y 4x5y0x 5x0x1y
44 0y1y2y 1x2y3x 2x3x4y 3y4y5y 4x5y0x 5x0x1y
55 0x1y2x 1x2x3y 2y3y4y 3x4y5x 4x5x0y 5y0y1y
66 0x1x2y 1y2y3y 2x3y4x 3x4x5y 4y5y0y 5x0y1x
77 0y1x2x 1y2x3x 2y3x4x 3y4x5x 4y5x0x 5y0x1x

6.1.3. The Cartesian product Q4×K1,2. Let Q4 sit in directions 0 through 3,
and label its vertices in hexadecimal; and let the directions of the two edges
of K1,2 be 4 and 5. All of the tepees in the packing have their tips at the
middle vertex of K1,2, so we will only give their position in Q4. They have

orientation 014 and tips 0, 5, a, f;
orientation 015 and tips 3, 6, 9, c;
orientation 234 and tips 1, 4, b, e;
orientation 235 and tips 2, 7, 8, d.

6.1.4. The Cartesian product Q8 ×K1,2. We first look at a single Q8, and
label its vertices in hexadecimal. The capital letters ABCDEFGH will
denote the directions or colors of edges; edges in these directions respectively
have ends with difference (or, equivalently, sum) 01 02 04 08 10 20 40 80.

Consider two rings of four tepees, with trivalent vertices at 00 03 0c 0f
and 30 33 3c 3f, respectively, where the third color of the tepees whose sets
of trivalent vertices are {00, 03}, {0c, 0f}, {30, 3c}, and {33, 3f} is E, and
the third color of the tepees whose sets of trivalent vertices are {00, 0c},
{03, 0f}, {30, 33}, and {3c, 3f} is F . The 64 edges of these tepees consist
entirely of squares in the pairs of colors AB, CD, and EF . They include
the sixteen squares with pairs of opposite vertices

{00, 03}, {0c, 0f}, {10, 13}, {1c, 1f}, {30, 33}, {3c, 3f}, {00, 30}, {03, 33}
{00, 0c}, {03, 0f}, {20, 2c}, {23, 2f}, {30, 3c}, {33, 3f}, {0c, 3c}, {0f , 3f}.

We place eight such groups of eight tepees in Q8. Four of them are in
the orientation displayed above, displaced by 00, 55, aa, and ff respectively.
The other four are the images of the displayed tepee under the symmetries
of Q8 that exchange directions A with G, B with H, C with E, and D with
F , and map 00 to 01, 54, ab, and fe respectively.

These 64 tepees occupy half of the edges in Q8. In any Q4 with colors
ABCD or EFGH, exactly four of the squares with colors AB or CD or
EF or GH have been completely filled, and the other four such squares are
completely empty. Furthermore, in a Q4 of colors ABCD, each evil vertex
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lies on just one of the unfilled squares, whereas in a Q4 of colors EFGH,
each odious vertex lies on just one of the unfilled squares.

In our whole graph Q8×K1,2, we will place this configuration of 64 tepees
in each of the three Q8. This leaves us to fill the remaining half of the edges
in each Q8 as well as all of the edges of the original 256 copies of K1,2.

Two tepees can be placed in Q2 ×K1,2 so as to leave just two opposite
subgraphs K1,2 unfilled. We pack the remainder of the graph with these,
oriented so that they fill a square in each Q8 and the two K1,2 corresponding
to opposite vertices of each square.

In particular, we place one of these pairs of tepees in each of the 4·32 = 128
unfilled squares of colors AB or CD or EF or GH in the three subgraphs
Q8. This fills every remaining edge of these subgraphs. We place a copy
of K1,2 at each evil vertex of a square of colors AB or CD, and at each
odious vertex of a square of colors EF or GH. By our earlier observations,
there’s always just one square available for each vertex of the Q8, so each
K1,2 is filled just once. This completes the packing. In all we have used
3 · 64 + 128 · 2 = 448 tepees, as required to pack 3 · 8 · 128 + 256 · 2 = 3584
edges.

6.2. A partial Q5. We will pack Q5 with eight copies of the graph U shown
in Figure 5 obtained from Q3 by deleting two opposite edges. The graph U
accommodates a tepee in any of four ways with K1,2 remaining.

00
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03

10

11

12
13

1

Figure 5. The graph U

View Q4 as Q2 ×Q2, and select a pair of opposite vertices of each Q2 in
such a way that every vertex is selected once (for instance, select the evil
vertices in squares in one pair of directions and the odious vertices in squares
in the other pair of directions). Now, pack Q5 with two parallel copies of
this Q4, and join each square in one Q4 to its counterpart in the other by
edges between the selected vertices. This yields a packing of Q5 with eight
copies of U .

If we label the vertices of Q5 with hexadecimal labels, then the trivalent
vertices of the eight copies of U can be taken to fall at

{00, 03}, {05, 06}, {0a, 09}, {0f, 0c}
{11, 1d}, {14, 18}, {1b,17}, {1e,12}
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(these are pairs of trivalent vertices at opposite corners of a square) and the
sums (over F2) of 10 with each of these. Call these copies U0, . . . , U7.

It is possible to select a tepee from each U in such a way that the remain-
ing edges form eight disconnected copies of K1,2, for instance by removing
from each U the two edges incident to 12,17,18,1d,09,0c,03,06 in U0, . . . , U7

respectively.
Therefore let G be a graph such that G and G×K1,2 have exact packings.

In the graph G×Q5, each of the copies of Q5 can be packed with eight copies
of U , with the unused edges positioned so as to make up eight copies each
of G and G ×K1,2, which have exact packings themselves. Altogether this
yields an exact packing of G×Q5.

As we saw in item 2 of the discussion opening Section 6, this construction
results in packings of all of the cube graphs Q4k+9m for integers k,m ≥ 0
aside from Q4 and Q9.

6.2.1. Example: the 13-cube. View Q13 as Q8 × Q5. After partially filling
the copies of Q5 as in Section 6.2, we are left with eight copies each of Q8

and Q8×K1,2, whose packings we have presented in Sections 6.1.1 and 6.1.4.
Altogether this uses

28 · 8 tepees in the 28 partially filled subgraphs Q5;
23 · 27 tepees in the 23 Q8 corresponding to the full vertices
of the Q5;
23 · 3 · 23 · 23 tepees in the 23 · 3 half-filled Q8 within the 23

Q8 ×K1,2;
23 · 27 · 2 tepees in the rest of the Q8 ×K1,2;

which totals 13 · 29.
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4. F. Harary, J. P. Hayes, and H.-J. Wu, A survey of the theory of hypercube graphs,
Comput. Math. Applic. 15 (1988), no. 4, 277–289.

5. J. Hartman, Bounds on the coarseness of the n-cube, Canad. Math. Bull. 22 (1979),
171–175, MR 1100049.

6. P. C. Kainen, Thickness and coarseness of graphs, Abhandlungen aus dem Mathema-
tischen Seminar der Universität Hamburg 39 (1973), no. 1, 88–95, MR 0335322.



32 ALEX FINK AND RICHARD K. GUY

Queen Mary, University of London, London, England
E-mail address, Alex Fink: a.fink@qmul.ac.uk

The University of Calgary, Calgary Alberta, Canada
E-mail address, Richard K. Guy: rkg@cpsc.ucalgary.ca


	1. Introduction
	2. Small values of n
	3. The 5-cube
	4. The 6-cube
	5. The 7-cube
	6. Values of n attaining the upper bound
	6.1. Cubes and cubes times K1,2
	6.2. A partial Q5

	References

