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THE ENDOMORPHISMS MONOIDS OF HELM GRAPH

AND ITS GENERALIZATION

A. RAJABI, A. ERFANIAN, AND A. AZIMI

Abstract. Let G be a graph. Then G is said to be End-regular if the
set of all endomorphisms of G forms a regular monoid. In this paper, we
discuss the End-regularity of Helm graphs and our generalization. We
also prove that the generalized Helm graph is End-orthodox if and only
if it is End-regular. Moreover, we investigate the End-regularity of the
join of two generalized Helm graphs.

1. Introduction

There are many relations between graph theory and algebraic structures.
For instance, the notion of End-regular graphs relates to both the semi-group
theory of algebra and graph theory.

The motivation of this paper comes from an open problem, posed by
Knauer and Wilkeit (see [12]), which states which graphs are End-regular.
It is very hard to determine and characterize all End-regular graphs, so
most researchers deal with some types of well-known graphs like End-regular
bipartite, End-orthodox bipartite graphs (see [19, 1] for more details) and
End-regular split graphs as considered in [10].

For nonbipartite and nonsplit graphs, there are some researches on End-
regularity, for instance, End-regularity complement of a path [5], End-
regularity of n-prism graphs [17], unicyclic graphs [11], generalized bicycle
graphs [15], and also End-regularity of book graphs [13, 16]. Pipattanajinda,
Knauer, and Arworn [14] defined a generalized wheel graph and obtained
some conditions that imply a generalized wheel graph be End-regular.

Let us remind some basic definitions, which are necessary. An element x
of a semi-group S is said to be regular if there exists an element y ∈ S such
that xyx = x. Also the element y is called a pseudo-inverse of x. A regular
element x of the semi-group S is called completely regular if xy = yx for
some pseudo-inverse y of x. A semi-group S is regular (completely regular)

Received by the editors August 18, 2017, and in revised form May 10, 2021.
Key words and phrases. Helm graph, endomorphism, End-regular, End-orthodox, gen-

eralized Helm graph, endospectrum, endotype.

This work is licensed under a Creative Commons “Attribution-
NoDerivatives 4.0 International” license.

38

https://creativecommons.org/licenses/by-nd/4.0/deed.en
https://creativecommons.org/licenses/by-nd/4.0/deed.en
https://creativecommons.org/licenses/by-nd/4.0/deed.en


THE ENDOMORPHISMS MONOIDS OF GENERALIZED HELM GRAPH 39

if every element of S is regular (completely regular). An element e of semi-
group S is said to be idempotent if e2 = e. If the set of all idempotents of
a semi-group S is a subsemi-group of S, then S is called idempotent-closed.
A semi-group S is called orthodox if S is regular and idempotent-closed.

In this paper, G stands as a finite simple graph (with no loops and multiple
edges). The vertex set and edge set of graph G are denoted by V (G) and
E(G), respectively. If u and v are two vertices such that u adjacent to v,
then we denote it shortly by u ∼ v and say that v is a neighbor of u. The
number of neighbors of the vertex u is called the degree of u, denoted by
deg(u). The set of all neighbors of vertex u in the graph G is denoted by
NG(u). The graph G is complete if all of its vertices are adjacent. The
complete graph of order n is shown by Kn. A subset K of vertices of the
graph G is called a clique if the induced subgraph over K is a complete
graph. A subset S of V (G) is called an independent set if there is no edge
between any two vertices in S.

Moreover, the graph G is said to be split if we can partition V (G) into
two subsets K and S such that the induced subgraph over K is a clique
and the induced subgraph over S is an independent set. A path is a finite
sequence of edges that joins a sequence of distinct vertices. A path of length
r is denoted by Pr. A cycle Cn can be obtained from a path Pn in which
the first and the last vertices coincide.

If a path Pr attaches to a vertex u, then it is called a pendant path of
length r. It is clear that if r = 1, then a pendant edge (or pendant vertex)
appears.

The join of two graphs G and H, shown by G+H, is a graph with vertex
set V (G+H) = V (G) ∪ V (H) and edge set

E(G+H) = E(G) ∪ E(H) ∪ {(u, v), u ∈ V (G), v ∈ V (H)}.

Note that in the above definition, we suppose that the vertex sets of G and
H are disjoint. The wheel graph Wn is Cn +K1.

Let G and H be two graphs. Then a map f from G to H is a homomor-
phism if u ∼ v implies that f(u) ∼ f(v). The set of all homomorphisms
from G to H is denoted by Hom(G,H). Moreover f is an isomorphism if f
is a bijective homomorphism and its set inverse f−1 is a homomorphism. A
homomorphism from G to itself is called an endomorphism. The set of all
endomorphisms of G is denoted by End(G). We know that End(G) is a semi-
group. Also an isomorphism of G onto itself is called an automorphism, and
the set of all automorphisms of a graph G is denoted by Aut(G). A graph
G is rigid if End(G) = 1, and G is unretractive if Aut(G) = End(G). It is
important to note that since our graphs are finite, injective endomorphisms
are automorphisms.

A graph G is called End-regular (End-orthodox, End-completely-regular,
End-idempotent-closed) if the semi-group End(G) is regular (orthodox,
completely-regular, idempotent-closed).
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Let f ∈ Hom(G,H). For u, v ∈ V (G), let {f(u), f(v)} ∈ E(H). We set
U = f−1(f(u)) and V = f−1(f(v)). Then f is a half-strong homomorphism
if there exists at least one edge between U and V . If for each u ∈ U , there
exists at least one element v ∈ V such that u ∼ v or for each v ∈ V ,
there exists at least one element u ∈ U such that u ∼ v, then f is called a
locally strong homomorphism. We call f is a quasi-strong homomorphism
if there exists u′ ∈ U such that for any v ∈ V , we have u′ ∼ v and there
exists v′ ∈ V such that for any u ∈ U , we have u ∼ v′. Also f is a
strong homomorphism if all elements of U and V are adjacent. The set of
all half-strong endomorphisms of G, (locally-strong endomorphisms of G,
quasi-strong endomorphisms of G, strong endomorphisms of G) is denoted
by HEnd(G) (LEnd(G), QEnd(G), SEnd(G)). Also the set of idempotent
endomorphisms of a graph G is shown by Idp(G).

Let f ∈ End(G). Then we denote If as the endomorphic image of G
under f that is a subgraph of G with V (If ) = f(V (G)) and f(a) ∼ f(b) if
and only if there exist c ∈ f−1(f(a)) and d ∈ f−1(f(b)) such that c ∼ d in
G. Finally, for fixed f ∈ End(G), we define a relation ρf by (a, b) ∈ ρf if
and only if f(a) = f(b) for every a, b ∈ V (G). One can see that ρf is an
equivalence relation and for every a ∈ V (G), the related equivalence class
of a is denoted by [a]ρf .

Helm graphs are known graphs, which are not bipartite or split. The
paper is organized as follows. In section 2, we discuss when these graphs are
End-regular. We also define a generalization of Helm graphs and determine
when these generalized Helm graphs are End-regular, End-orthodox, and
completely-regular. Moreover, in section 3, we prove that the join of two
End-regular generalized Helm graphs is End-regular. In the last section, we
attempt to compute the endotype and endospectrum of Helm graphs.

2. End-regularity of generalized Helm Graphs

Now, we recall the following theorem from [8], which determines sufficient
and necessary conditions for an endomorphism f ∈ End(G) to be a regular.

Theorem 2.1 (Li [8]). Let G be a graph and let f ∈ End(G). Then f is
regular if and only if there exist idempotents g, h ∈ End(G) such that Ig = If
and ρh = ρf .

The following two lemmas from [10, 11] study regular endomorphisms.

Lemma 2.2 (Li and Chen [10]). Let G be a graph and let f ∈ End(G). If
f is regular, then f ∈ HEnd(G).

Lemma 2.3 (Ma, Wong, and Zhou [11]). Let f be a regular endomorphism
of a graph G with a pseudo-inverse g. Then g(x) ∈ f−1(x) for any x ∈
f(V (G)).

The following theorem states a sufficient and necessary condition for the
End-regularity of split graphs.



THE ENDOMORPHISMS MONOIDS OF GENERALIZED HELM GRAPH 41

Theorem 2.4 (Li and Chen [10]). Let G be a connected split graph with
V = K ∪ S and |K| = n. Then G is End-regular if and only if there exists
r ∈ {1, 2, . . . , n} such that deg(x) = r for any x ∈ S, or there exists a
vertex a ∈ S with deg(a) = n and there exists r ∈ {1, 2, . . . , n− 1} such that
deg(x) = r for any x ∈ S − {a} if S − {a} ≠ ∅.

Now, we are going to investigate the End-regularity of Helm graphs.
We recall that the wheel graph Wn consisting of a cycle on n vertices

such as u1, u2, . . . , un and a vertex such as c that is adjacent to each of
u1, u2, . . . , un.

Definition 2.5. The Helm graph Hn is a graph obtained from the wheel
graph Wn by adjoining pendant vertices v1, v2, . . . , vn, respectively. Exam-
ples of Helm graphs are presented in Figs. 1 and 2 for n = 3 and n = 4,
respectively.

c

u1

u2u3

v3

v1

v2

c

u1 u2

u3u4

v3

v1 v2

v4

Fig. 1. H3 Fig. 2. H4

We recall that the chromatic number of a graphG, denoted by χ(G), is the
smallest number of colors needed to color the vertices of G such that no two
adjacent vertices share the same color. Note that if there is a homomorphism
from a graph G to a graph H, then χ(G) ≤ χ(H).

We use the fact that odd cycles are unretractive (see [7, Corollary 7.2.2]).
This amounts to the fact there is no retraction from an odd cycle onto a
proper subset. This fact is due to the result that odd cycles are 3-chromatic
while proper subsets are 2-colorable. Similarly, the chromatic number of the
wheel graph Wn for odd n is 4 and the chromatic number of proper subsets
is at most 3. Hence the wheel graph is unretractive, too. We use that fact
in the next lemma. To determine the End-regularity of Hn, we state the
following two lemmas.

Lemma 2.6. Let f ∈ End(Hn), where n is an odd number and n ≥ 5. Then
f(c) = c and f(ui) ∈ V (Cn) for every ui ∈ Cn.

Proof. Suppose that f(c) = vi. This case is impossible. Indeed, each triangle
containing c must be sent on a triangle containing vi, but there is no such
triangle. Suppose that f(c) = ui. There are n triangles containing c and
two triangles containing ui, since n > 3. Thus the wheel graph Wn is sent
on a proper subset of itself. This is impossible, indeed, since n is odd, the
chromatic number of Cn is 3. Hence the chromatic number of the wheel
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graph Wn is 4 and the chromatic number of proper subsets is at most 3.
Hence f(c) = c. Next, since vj is a pendant vertex, no ui can be sent on vj .
Finally, since f(c) = c and ui is joined to c, ui cannot be sent on c. Hence
f(V (Cn)) ⊆ V (Cn) as claimed. □

One can observe that the condition n ≥ 5 in the above lemma is nec-
essary. Because, if we consider the case when n = 3, then it is pos-
sible to define the endomorphism f ∈ End(H3) such that f(u1) = u2,
f(u2) = f(v1) = f(v3) = c, f(u3) = f(v2) = u1, and f(c) = u3, which
does not hold the property of Lemma 2.6.

As a consequence of Lemma 2.6, we can state the following lemma, which
proves that the image of odd cycle C2k+1 in H2k+1 under every endomor-
phism is again the odd cycle C2k+1.
It is not difficult to see that we can give other proofs for Lemma 2.6 directly
and without the use of coloring arguments from graph theory.

Lemma 2.7. If k ≥ 2 and f ∈ End(H2k+1), then f(C2k+1) = C2k+1.

Proof. It follows from the property that C2n+1 is unretractive.
□

Now, we have enough tools to investigate the End-regularity of Helm
graphs.

Theorem 2.8. The Helm graph Hn is End-regular if and only if n is an
odd number.

Proof. Suppose that n = 2k, for k ≥ 2. Then we define the map f by the
following rule:

f(x) =


c, x = c, v1,

u3, x = v2,

u2, x = v2i−1, i ̸= 1, x = u2i,

u1, x = v2i, i ̸= 1, x = u2i−1.

It is easy to check that f ∈ End(H2k), but f /∈ HEnd(H2k). As in the
above definition, f(v2) is adjacent to f(v1), but there exists no vertex in
f−1(f(v1)) such that it is adjacent to a vertex in f−1(f(v2)). Thus H2k is
not End-regular, by Lemma 2.2.

Assume that n = 2k+1 for k ≥ 1. If k = 1, then it is easy to see that H3

is a split graph made of the clique K = {u1, u2, u3, c} and the independent
set S = {v1, v2, v3}. Since deg(x) = 1 for all x ∈ S, then H3 is End-regular
by Theorem 2.4. Now, suppose that k ≥ 2; then n = 2k + 1 ≥ 5. Let
f ∈ End(H2k+1); then we define endomorphisms g and h as follows:
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g(x) =


x, x = ui, x = c,

x, x = vi, vi ∈ Im f,

c, x = vi, vi /∈ Im f,

h(x) =


x, x = ui, x = c,

uj , x = vi, f(vi) = f(uj),

c, x = vi, f(vi) = c,

vi, x = vi, f(vi) ̸= f(uj), c.

It is clear that g and h are idempotent endomorphisms in H2k+1 and If = Ig
is a wheel graph Wn maybe with some pendant vertices. We show that
ρf = ρh. Let f(x) = f(y), where x, y ∈ V (H2k+1). Since f(C2k+1) = C2k+1

by Lemma 2.7, there are the following two cases:
Case 1: x = c and y = vi for some i ∈ {1, 2, . . . , 2k + 1}.

In this case, we have h(x) = c = h(vi) = h(y).
Case 2: x = uj and y = vi for some i, j ∈ {1, 2, . . . , 2k + 1}, i ̸= j.

We have h(x) = h(uj) = uj = h(vi) = h(y).
Thus h(x) = h(y) in both cases and it implies that ρf ⊆ ρh. According

to the definition, h(x) = h(y) entails that x = vi and y = vj for some i ̸= j.
If h(x) = h(y) = c, then f(x) = f(y) = c or if h(x) = h(y) = uk, then
f(x) = f(uk) = f(y); thus ρf = ρh and End(H2k+1) is regular for all k ≥ 2
by Theorem 2.1. □

In 2016, Indriati et al. [6] defined a type of generalized Helm graph. Now,
we are going to give another generalization of Helm graphs, which is also a
generalization of [6]. Before we define that, let us recall that the Cartesian
product G□H of the graphs G and H is a graph such that the vertex set of
G□H is the Cartesian product V (G) × V (H); and two vertices (x, y) and
(x′, y′) are adjacent in G□H if and only if either x = x′ and y is adjacent
to y′ in H, or y = y′ and x is adjacent to x′ in G. Also, a G-layer Gx

(x ∈ V (H)) of the Cartesian product G□H is the subgraph induced by the
set of vertices {(u, x) : u ∈ V (G)}. An H-layer is defined analogously (see
[2, p. 40]).

Definition 2.9. Let n ≥ 3, let m ≥ 1, and let r ≥ 1. Consider the Cartesian
product Cn□P(m+1)r that joins a vertex c to every vertex of Cn-layer Cn1

and removes edges between all of vertices of Cn-layer Cnx for x ̸= kr and
1 < k < m. This graph is called a generalized Helm graph and denoted by
Hn(m, r). In other words, Hn(m, r) is m cycles of length n such that each
vertex of each cycle joins to the corresponding vertex of the later cycle with
a path of length r, also a pendant path Pr joins to each vertex of the last
cycle, and a vertex such as c joins to vertices of the first cycle with n Prs.

As an example of a generalized Helm graph, H5(3, 2) is shown in Fig. 3.
We observe that the generalized Helm graph Hn(1, 1) coincides with the
ordinary Helm graph Hn. With the above definition, we determine the
vertices of the generalized Helm graph precisely by the following method.

Let n ≥ 3, let m ≥ 1, let r ≥ 1, and let 1 ≤ j ≤ m. We denote Cj
n as a

cycle of length n for every 1 < j < m, and Gj as a graph isomorphic to a

cycle Cj
n whose each vertex has a pendant path of length r, and G0 denotes
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a graph with a vertex c, in which it has n pendant paths of length r. We
label vertices of G0 and Gj as follows:

V (G0) = {c, v11, v21, . . . , vr1, v12, v22, . . . , vr2, . . . , v1n, v2n, . . . , vrn}

such that for each i, v1i is adjacent to c and v1i ∼ v2i ∼ v3i ∼ · · · ∼ vri .

V (Cj
n) = {vjr1 , vjr2 , vjr3 , . . . , vjrn },

such that vjri ∼ vjri+1, and indices are in module n.

V (Gj) = V (Cj
n) ∪ {v(j−1)r+1

i , v
(j−1)r+2
i , . . . , v

(j−1)r+r
i }

such that v
(j−1)r+l
i ∼ v

(j−1)r+l+1
i for every 0 ≤ l ≤ r − 1.

So, V (Hn(m, r)) =
⋃m

i=0 V (Gi) and E(Hn(m, r)) =
⋃m

i=1E(Gi).
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Fig. 3. H5(3, 2)

Theorem 2.10. If m ≥ 2 or r ≥ 2, then Hn(m, r) is not End-regular.

Proof. Suppose that r ≥ 2. It is not difficult to see that the following
endomorphism is in End(Hn):

f(x) =



vji+1, x = vji , 1 ≤ j ≤ mr and 1 ≤ i ≤ n− 1,

vj1, x = vjn, and 1 ≤ j ≤ mr,

vmr
1 , x = vmr+1

1 ,

vmr+1
1 , x = vmr+2

1 ,

vmr
i , x = vmr+j

i , j is odd 1 ≤ j ≤ r and x ̸= vmr+1
1 ,

vmr−1
i , x = vmr+j

i , j is even, 2 ≤ j ≤ r and x ̸= vmr+2
1 .
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Let f be regular. Then there exists a pseudo-inverse g such that

fgf = f . So g(vmr+1
1 ) = vmr+2

1 by Lemma 2.3. Also, g(vmr
1 ) ⊆ {vmr+j

1 , vmr
n }

such that j is odd and 1 ≤ j ≤ r by Lemma 2.3. On the other hand, g is
an endomorphism and vmr+1

1 ∼ vmr
1 results in g(vmr+1

1 ) ∼ g(vmr
1 ). Conse-

quently just g(vmr
1 ) = vmr+1

1 or g(vmr
1 ) = vmr+3

1 can be accepted. Similarly,

g(vmr
n ) ⊆ {vmr+j

n , vmr
n−1} for odd j with 1 ≤ j ≤ r. We have vmr

n ∼ vmr
1

and so g(vmr
n ) ∼ g(vmr

1 ) = vmr+1
1 or g(vmr

n ) ∼ g(vmr
1 ) = vmr+3

1 . No ele-
ment is found for g(vmr

n ) and this is a contradiction. Thus, f is not regular.
Now, let r = 1 and let m ≥ 2. Define f(vm+1

i ) = vmi+1, f(v
m
i ) = vm−1

i+1 ,

and f(x) = x for x ̸= vm+1
i , vmi ; then we can see that f ∈ End(Hn(m, 1)).

Moreover f /∈ HEnd(Hn(m, 1)). Because f(vm+1
i ) ∼ f(vm+1

i+1 ), but

vm+1
i = f−1(f(vm+1

i )) ≁ f−1(f(vm+1
i+1 )) = vm+1

i+1 ,

so, Hn(m, 1) is not End-regular by Lemma 2.2. □

Corollary 2.11. The generalized Helm graph Hn(m, r) is End-regular if
and only if m = r = 1 and n is odd.

Proof. It follows from Theorems 2.8 and 2.10 directly. □

As we mentioned earlier in the first section, if the graphG is End-orthodox
or End-completely-regular, then G is End-regular. So, to check that when
Hn(m, r) is End-orthodox or End-completely-regular, we just need to con-
sider H2k+1.

Theorem 2.12. The graph H2k+1 is End-idempotent-closed for any positive
integer k.

Proof. Let k ≥ 2 and let f ∈ Idp(H2k+1). Also let f(ui) = uj for some i ̸= j.
We know f2(ui) = f(ui), so f(uj) = uj , which is a contradiction with the
definition of homomorphisms. Thus f(ui) = ui. In addition, if f ∈ Idp(H3),
then f(c) ̸= ui. Otherwise, since f is an idempotent f(ui) = ui, which
is again a contradiction with the definition of homomorphism. Hence if
f ∈ Idp(H2k+1), for any positive integer k, we have f(ui) = ui for all
i = 1, 2, . . . , 2k+ 1 and f(c) = c. So here each vertex images to itself. Thus
we have f(vi) ∈ {c, vi, ui+1, ui−1}. For each of cases of f(vi), it is not difficult
to check that (fog)2(vi) = fog(vi) for f, g ∈ Idp(H2k+1), for instance, we
check one case and left another one to the reader. Let f(vi) = ui+1, let
g(vi) = c, let fg2(vi) = fgfg(vi) = fgf(c) = fg(c) = f(c) = c, and let
fg(vi) = f(c) = c. Then fg2 = fg. Now fg ∈ Idp(H2k+1) for every
f, g ∈ Idp(H2k+1). □

Corollary 2.13. The graph Hn(m, r) is End-orthodox if and only if it is
End-regular.

Proof. It is a direct consequence of Corollary 2.11 and Theorem 2.12. □

We recall that a function f is called square injective if f2(a) = f2(b)
implies that f(a) = f(b). Now, we give the following result, which states a
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necessary and sufficient condition for the endomorphism f to be completely-
regular (see [18, p. 14 Theorem 1.4.7] for more details).

Theorem 2.14 (Wanichsombat [18]). Let G be a finite graph and let
f ∈ End(G). Then f is completely-regular if and only if for all a, b ∈ V (G),
f(a) ̸= f(b) implies f2(a) ̸= f2(b), that is, f is a square injective.

Theorem 2.15. The graph Hn(m, r) is not End-completely-regular for every
n ≥ 3, m ≥ 1, and r ≥ 1.

Proof. If m ≥ 2 or r ≥ 2, then Hn(m, r) is not End-regular and so is not
End-completely-regular as well. Moreover, Hn(1, 1) = Hn is not End-regular
for all even number n. Thus, we only need to consider the case H2k+1, where
k ≥ 1. For H2k+1, we define f ∈ End(Hn(m, r)) by the rules f(ui) = ui+1,
f(v1) = v2, and f(c) = f(vi) = c for i ̸= 1. We see that f(c) ̸= f(v1), but
f2(c) = f2(v1), and so H2k+1 is not End-completely-regular by Theorem
2.14. Hence Hn(m, r) is not End-completely-regular as required. □

One of the interesting topics in this area is to characterize all graphs
whose set of idempotent endomorphisms is a monoid. We recall that this
property is called End-idempotent-closed. Here, we state some theorems on
this property for the generalized Helm graph Hn(m, r).

Theorem 2.16. The Helm graph H2k is not End-idempotent-closed.

Proof. Suppose that f and g have the following rules:

f(x) =


u1, x = u2i+1,

u2, x = u2i, i ̸= k,

u2k, x = u2k, x = v3,

c, x = c, x = vi, i ̸= 3,

g(x) =


u3, x = u2i+1,

u2, x = u2i,

v3, x = v3,

c, x = c, x = vi, i ̸= 3.

We show that f and g are idempotent endomorphisms. Indeed u2i+1 ∼ u2i
results in f(u2i+1) = u1 ∼ f(u2i) ∈ {u2, u2k}. Also vi ∼ ui for i ̸= 3
results in f(vi) = c ∼ f(ui) ∈ {u1, u2, u2k} and f(v3) = u2k ∼ f(u3) = u1.
Eventually, c ∼ ui and f(c) = c ∼ f(ui) ∈ {u1, u2, u2k}. So, f is an
endomorphism. Also, f2(ui) = f(ui), f2(c) = f(c), and f2(vi) = f(vi);
then f ∈ Idp(H2k). Similarly it can be shown that g ∈ Idp(H2k). Now,

(fg)2(v3) = fgfg(v3) = fgf(v3) = fg(u2k) = f(u2) = u2

and fg(v3) = f(v3) = u2k. Since k > 1, we have fg /∈ Idp(H2k). Hence H2k

is not End-idempotent-closed. □

Theorem 2.17. If r ≥ 2, then Hn(m, r) is not End-idempotent-closed.

Proof. It is not difficult to see that f and g defined below are two idempotent
endomorphisms from Hn(m, r).
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f(x) =



vmr+1
1 , x = vmr+j

1 , j odd,

vmr+2
1 , x = vmr+j

1 , j even,

vmr−1
2 , x = vmr+j

2 , j odd,

vmr
2 , x = vmr+j

2 , j even,

x, otherwise,

g(x) =



vmr
2 , x = vmr+j

1 , j odd,

vmr+1
2 , x = vmr+j

1 , j even,

vmr+1
2 , x = vmr+j

2 , j odd,

vmr
2 , x = vmr+j

2 , j even,

x, otherwise.

Note that in the above endomorphisms, we assumed that j ≥ 1. Since

(gf)2(vmr+2
1 ) = gfg(f(vmr+2

1 ))

= gf(g(vmr+2
1 ))

= g(f(vmr+1
2 ))

= g(vmr−1
2 )

= vmr−1
2

and gf(vmr+2
1 ) = g(vmr+2

1 ) = vmr+1
2 , we see that (gf)2(vmr+2

1 ) ̸= gf(vmr+2
1 ).

So Hn(m, r) is not End-idempotent-closed for all r ≥ 2. □

In spite of the fact that we believe Hn(m, 1) is End-idempotent-closed for
all m ≥ 2, we are not yet able to prove it. So, let us state the following
conjecture.

Conjecture. Hn(m, r) is End-idempotent-closed if and only if r = 1 and
m ≥ 2 or r = m = 1 and n is odd.

3. End-regularity of the join of two generalized Helm graphs

In this section, we prove that the join of two generalized Helm graphs is
End-regular if and only if that is as the form Hm +Hn such that m and n
are odd. We start with the following three lemmas.

Lemma 3.1 (Li [9]). Let G and H be two graphs. If G+H is End-regular,
then both G and H are End-regular.

Lemma 3.2 (Hou and Luo [4]). Let G and H be two End-regular graphs. If
for every f ∈ End(G+H), we have f(G) ⊆ G and f(H) ⊆ H, then G+H
is End-regular.

Recall that the join of n graphs G1, G2, . . ., Gn, denoted by G1 + G2 +
· · ·+Gn, is a graph with

V (G1 +G2 + · · ·+Gn) = V (G1) ∪ V (G2) ∪ · · · ∪ V (Gn)
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and

E(G1 +G2 + · · ·+Gn) =E(G1) ∪ E(G2) ∪ · · · ∪ E(Gn)

∪ {{x, y}|x ∈ V (Gi), y ∈ V (Gj)}
(where i ̸= j). Now, we have the following lemma for End-regularity join
n-split graphs.

Lemma 3.3 (Hou, Feng, and Gu [3]). Let Gi, i = {1, 2, . . . , n}, be split
graphs and let each Gi have a complete subgraph Ki and an independent set
Si. Then G1 +G2 + · · ·+Gn is End-regular if and only if

(i) Gi is End-regular for every 1 ≤ i ≤ n,
(ii) qi−di = qj−dj for every i and j, where qi = |V (Ki)|, di = degGi

(xi),
and xi ∈ Si,

(iii) V (Ki) ̸= NGi(x) ∪NGi(x
′) for every i and every x, x′ ∈ Si.

Now, we investigate the End-regularity of the join of two generalized Helm
graphs. The following lemma will be used in the proof of the main theorem
of this section.

Lemma 3.4. Let m,n ≥ 5 be odd and let f ∈ End(Hn + Hm), where Hn

and Hm be Helm graphs with vertices {c, u1, u2, . . . , un, v1, v2, . . . , vn} and
{c′, u′1, u′2, . . . , u′m, v′1, v

′
2, . . . , v

′
m} (as in the definition of Helm graphs), re-

spectively. Then

(i) f(Cn) = Cn and f(C ′
m) = C ′

m or f(Cn) = C ′
m and f(C ′

m) = Cn,
(ii) f(c) = c and f(c′) = c′ or f(c) = c′ and f(c′) = c.

Proof. (i) If f(Hn) ⊆ Hn, then f(Cn) = Cn by Lemma 2.7, and since Cm ∼
Cn and f(Cn) ∼ f(Cm), we have f(Cm) = Cm. Similarly, if f(Hn) ⊆ Hm,
then f(Cn) = C ′

m and f(C ′
m) = Cn. Assume that f(Hn) ⊈ Hn, that

f(Hn) ⊈ Hm, that f(Cn) ̸= Cn, and that f(Cn) ̸= Cm. We know that
f(Cn) is a cycle and that |f(Cn)| ≥ 5. So f(Cn) has a path of length 5, and
since c ∼ Cn, there is one vertex that is adjacent to all of vertices of this
path. All vertices of f(Cm) are adjacent to all vertices f(Cn); so we should
find another path with the above property. If vi, v

′
i ∈ f(Cn), then there

is no path with the said features in f(Cm). So vi, v
′
i /∈ f(Cn). Let f(Cn)

contain at least two vertices in each of Hn and Hm. Then again there are
no two paths with the said features such that they are adjacent together.
Suppose that |f(Cn)| ≥ 4 in Hn and that |f(Cn)| = 1 in Hm. Without loss
of generality, we can assume the following assumptions. For i ≥ 1,

{ui, ui+1, ui+2, ui+3, c
′} ⊆ f(Cn)

and
{u′i, u′i+1, u

′
i+2, u

′
i+3, c} ⊆ f(Cm)

such that c and c′ are adjacent to f(Cn) and f(Cm), respectively. Since
f(vi+4) ∼ f(ui+4) = c′, f(vi+4) ∼ f(u′i+4) = c, and f(vi+4) ∼ f(ui+3) = ui+3,
there is no vertex for f(vi+4) and this is a contradiction. Hence f(Cn) = Cn

or f(Cn) = C ′
m. By the same method as above, we can show that
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f(C ′
m) = C ′

m or f(C ′
m) = Cn. If f(Cn) = Cn, since f(Cm) ∼ f(Cn), then

f(Cm) = Cm. Similarly, if f(Cn) = Cm, then f(Cm) = Cn, as required.
(ii) We know that c and c′ are the only vertices that are adjacent to all

of vertices Cn and C ′
m. On the other hand, f(c) is adjacent to Cn and

C ′
m. So by part (i), we have f(c) = c or f(c) = c′. Similarly f(c′) = c′ or

f(c′) = c. □

Theorem 3.5. The join of two generalized Helm graphs is End-regular if
and only if both of them are End-regular.

Proof. If the join of two generalized Helm graphs is End-regular, then each of
them must be End-regular by Lemma 3.1. Now considering the notation of
Lemma 3.4, suppose that Hn(m1, r1) and Hm(m′

1, r
′
1) are two End-regular

generalized Helm graphs. Thus Hn(m1, r1) = Hn and Hm(m′
1, r

′
1) = Hm

such that m and n are odd numbers by Corollary 2.11. Let

f ∈ End(Hn +Hm).

Then we consider the following cases:
Case 1: m ̸= n and m,n ̸= 3.

Without loss of generality, let n < m. So Cn cannot image to Cm and
f(Cn) ̸= C ′

m. Then f(Cn) = Cn and f(C ′
m) = C ′

m by Lemma 3.4. Now,
if f(c) = c, then f(c′) = c′, f(Hn) ⊆ Hn, and f(Hm) ⊆ Hm. So, Hn+Hm

is End-regular by Lemma 3.2. If f(c) = c′, then f(c′) = c, and, for each
i, we have f(vi) = c′ and f(v′i) = c. We define g ∈ Idp(Hn +Hm) by the
rules g(vi) = c, g(v′i) = c′, and if x ̸= vi, v

′
i, then g(x) = x. Then it is

easy to check that If = Ig and ρf = ρg, which implies that f is regular
by Lemma 2.1.

Case 2: m ̸= n and one of them is 3.
Let n = 3. Clearly n < m and f(Cn) ̸= C ′

m. If f(Cn) = Cn, then
similar to case 1, the result follows. Now, let f(Cn) ̸= Cn. We define
g, h ∈ Idpt(Hn +Hm) as follows:

g(x) =



vi, x = vi, vi ∈ Im f,

c, x = vi, vi /∈ Im f,

v′i, x = v′i, v
′
i ∈ Im f,

c′, x = v′i, v
′
i /∈ Im f,

x, x ̸= vi, v
′
i,

h(x) =



uj , x = vi, f(vi) = f(uj),

c, x = vi, f(vi) = c,

u′j , x = v′i, f(v
′
i) = f(u′j),

c′, x = v′i, f(v
′
i) = c′,

x, otherwise.

We can see that If = Ig and ρf = ρh, and consequently f is regular by
Lemma 2.1.

Case 3: m = n = 3.
We know that H3 is a split graph. If we check three conditions of Lemma
3.3, then get that H3 +H3 is End-regular.

Case 4: m = n ̸= 3, f(Cn) = Cn, and f(c) = c.
In this case, f(C ′

m) = C ′
m and f(c′) = c′, so f(Hn) ⊆ Hn and

f(Hm) ⊆ Hm. Then Hn +Hm is End-regular by Lemma 3.2.
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Case 5: m = n ̸= 3, f(Cn) = Cn, and f(c) = c′.
We know that f(C ′

m) = C ′
m, f(c′) = c, f(vi) = c′, and f(v′i) = c for

every i. Define g ∈ Idp(Hn +Hm) by the rules g(vi) = c, g(v′i) = c′, and
g(x) = x for x ̸= vi, v

′
i. Therefore, If = Ig and ρf = ρg. So by Lemma

2.1, f is regular.
Case 6: m = n ̸= 3, f(Cn) = C ′

m, and f(c) = c.
It is very similar to the proof of case 5.

Case 7: m = n ̸= 3, f(Cn) = C ′
m, and f(c) = c′.

In this case, f(C ′
m) = Cn and f(c′) = c. We define g ∈ Idp(Hn +Hm)

by the rules g(x) = c if x = vi and vi /∈ Im(f), g(x) = c′ if x = v′i and
v′i /∈ Im(f), and g(x) = x if x ̸= vi, v

′
i. We see that If = Ig. Now see the

following endomorphism:

h(x) =



x, x ∈ Cn, x ∈ Cm, x = c and x = c′,

uj , x = vi and f(vi) = f(uj),

u′j , x = v′i and f(v′i) = f(u′j),

c, x = vi and f(vi) = c′,

c′, x = v′i and f(v′i) = c,

vi, x = vi, f(vi) ̸= f(uj), and f(vi) ̸= c′,

v′i, x = v′i, f(v
′
i) ̸= f(u′j), and f(vi) ̸= c.

It is not difficult to check that h ∈ Idp(Hn +Hm) and ρf = ρh, so f is
regular by Lemma 2.1.

□

The following theorem gives a necessary and sufficient condition on the
orthodoxy join of two graphs.

Theorem 3.6 (Hou and Luo [4]). Let G1 and G2 be two graphs. Then
G1 +G2 is End-orthodox if and only if G1 +G2 is End-regular and both of
G1 and G2 are End-orthodox.

Corollary 3.7. The join of two generalized Helm graphs is End-orthodox if
and only if that is as the form H2k+1 +H2k′+1.

Proof. This is a consequent of Corollary 2.13 and Theorems 3.5 and 3.6. □

4. Endospectrum of Helm graphs

First, we observe that the following sequence occurs for every graph G:

EndG ⊇ HEndG ⊇ LEndG ⊇ QEndG ⊇ SEndG ⊇ AutG.

Recall that the endospectrum of G (endomorphism spectrum of G) is the
following 6-tuples:

Endospec(G) = (|EndG|, |HEndG|, |LEndG|,
|QEndG|, |SEndG|, |AutG|).
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We may also associate the 5-tuple (s1, s2, s3, s3, s4, s5) to the Endospec(G)
with the rule that si ∈ {0, 1} for 1 ≤ i ≤ 5, where

si =

{
0, i-entry = i+ 1-entry in Endospec(G),

1, i-entry ̸= i+ 1-entry in Endospec(G).

For instance, s1 = 1 means that |End(G)| ≠ |HEnd(G)|, s2 = 0 means that

|HEnd(G)| = |LEnd(G)|, and so on. We call the integer
∑5

i=1 si2
i−1 the

endotype or endomorphism type of G and denote it by Endotype(G). The
endotype is a number between 0 and 31. There are no graphs of endotypes
1 and 17. A rigid graph is a graph with |End(G)| = 1. The endotype of
this graph is 0 (see [7] for more details). One of the interesting problems is
to determine the endotype and endospectrum of a graph. Although finding
these values for any graph is not only easy but sometimes impossible, they
are computed for some graphs. For instance, for trees, it was obtained in
[7].

Now, we may ask the same problem for the generalized Helm graphs.

Problem 4.1. What are the endotype and endospectrum of the generalized
Helm graphs?

We attempt to determine the endotype and endospectrum of Helm graph
Hn, for both cases when n is even or odd. We have been successful to find
it when n is odd, but for even n, we determined the endotype and we were
able to compute only three entries of Endospec(H2k) and the remaining
three entries are left unknown.

Theorem 4.2. If k is a positive integer, then

|LEnd(H2k+1)| = |Aut(H2k+1)| = 2(2k + 1).

Proof. First, we suppose k ≥ 2 and show that every local strong endomor-
phism H2k+1 is an automorphism in H2k+1. Let f ∈ LEnd(H2k+1); then
by Lemma 2.7, it is enough to prove that f(vi) ̸= c and f(vi) ̸= uj for all
i, j ∈ {1, 2, . . . , 2k + 1}. We recall that f−1(ui) is a singleton set for each
i ∈ {1, 2, . . . , 2k + 1}, by Lemma 2.7. Without loss of generality, we show
that f(v1) ̸= c and that f(v1) ̸= uj for each j ∈ {1, 2, . . . , 2k + 1}. On
the contrary, let f(v1) = c and put f−1(um) = {u2}. Then f(v1) ∼ f(u2),
but v1 is not adjacent to any vertex in f−1(um), a contradiction. Thus
f(v1) ̸= c. Let f(v1) = uj for some j ∈ {1, 2, . . . , 2k + 1}. We know
that uj+1 ∼ f(v1) = uj ∼ uj−1, but f

−1(uj+1) ̸= {u1} or f−1(uj−1) ̸= {u1}.
This contradicts with that f is a local strong endomorphism ofH2k+1. Hence
f(v1) ̸= uj for each j ∈ {1, 2, . . . , 2k + 1}.

Now, we compute the order of Aut(H2k+1). Let f ∈ Aut(H2k+1). Then
for f(u1) and f(u2), we have 2k+ 1 and 2 choices, respectively. By Lemma
2.7 for f(ui), i ∈ {3, 4, . . . , 2k + 1}, we have just one choice. Since f(c) = c
and f is an automorphism for all j = 1, 2, . . . , 2k + 1, we have vj ∈ Im f .
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Hence for all vj , there is only one choice and consequently

|Aut(H2k+1)| = 2(2k + 1).

For k = 1 and f ∈ LEnd(H3), it is enough to show that f(C2k+1) = C2k+1.
Then by the same proof as in above, LEnd(H3) = Aut(H3) and the result
follows. We claim that f(c) = c. On the contrary, let f(c) = uj for some
j ∈ {1, 2, 3}. Thus f(uk) = c for some k ∈ {1, 2, 3}. Hence, f(vk) = um for
some m ∈ {1, 2, 3}, also f−1(um) = {vk, ul} and f−1(uj) = {c}. This is a
contradiction since f is a local strong endomorphism. □

The following lemma from [7] will help us to prove the next theorem.

Lemma 4.3. Let G be a graph such that N(x) ⫋ N(x′) for some x, x′ ∈ G,
with {x, x′} /∈ E(G). Then HEnd(G) ̸= LEnd(G).

Theorem 4.4. For all positive integers n, we have HEnd(Hn) ̸= LEnd(Hn).

Proof. Put x = v1 and x′ = c in Lemma 4.3 and the proof follows. □

Theorem 4.5. For every k, we have

|HEnd(H2k+1)| = |End(H2k+1)| = 24k+3(2k + 1).

Proof. It is clear that HEnd(H2k+1) = End(H2k+1), by Theorem 2.8 and
Lemma 2.2. To prove the order, assume that f ∈ End(H2k+1). Then f(u1)
and f(u2) have 2k + 1 and 2 choices, respectively. For f(ui) when
i ∈ {3, 4, . . . , 2k + 1} and f(c), there is only one choice by Lemma 2.7. So,
|f(C2k+1 ∪ {c})| = 2(2k + 1). If f(uj) = uk for some j ∈ {1, 2, . . . , 2k + 1},
then f(vj) can be one of four vertices uk+1,uk−1, c, and vk. Thus for every
j, we have four possibilities for f(vj) and it implies that

|End(H2k+1)| = 2(2k + 1)42k+1 = 24k+3(2k + 1).

□

Corollary 4.6. For all positive integers k ≥ 2, we have Endospec(H2k+1)
is equal to(

24k+3(2k + 1), 24k+3(2k + 1), 2(2k + 1), 2(2k + 1), 2(2k + 1), 2(2k + 1)
)

and Endotype(H2k+1) is 2.

Proof. It is deduced from Theorems 4.2 and 4.5. □

Theorem 4.7. It follows that Endospec(H3) = (23×35, 23×35, 24, 24, 24, 24).

Proof. Since H3 is End-regular, so |End(H3)| = |HEnd(H3)| by Lemma
2.2. If f ∈ End(G), then f(ui) ∈ {c, u1, u2, u3}. So there exists 4 choices
for f(u1). Since W3

∼= K4, for f(u2), f(u3) and f(c) there exist 3, 2 and 1
choice respectively. For every 1 ≤ i ≤ 3, f(vi) ∈ W3 − {f(ui)}. So

|HEnd(H3)| = |End(H3)| = 4× 3× 2× 1× 3× 3× 1 = 23 × 34.

.
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Now, we claim that |LEnd(H3)| = |Aut(H3)| = 24. Let f ∈ LEnd(H3),
it is enough to show that f(C2k+1) = C2k+1. Then by the same proof as
in Theorem 4.2, LEnd(H3) = Aut(H3) and the result follows. We claim
that f(c) = c. On the contrary, let f(c) = uj for some j ∈ {1, 2, 3}. Thus
f(uk) = c for some k ∈ {1, 2, 3}. Hence, f(vk) = um for some m ∈ {1, 2, 3},
also f−1(um) = {vk, ul} and f−1(uj) = {c}. This is a contradiction since f is
a local strong endomorphism. Now, for the computation of automorphisms
of H3, similarly as for endomorphisms of H3, there exist 4 choices for V (W3),
but for every f(vi) is just one choice, therefore

|LEnd(H3)| = |Aut(H3)| = 4× 3× 2× 1× 1× 1× 1 = 24.

□

Corollary 4.8. It follows that Endotype(H3) = 2.

Proof. It is a consequent of Theorem 4.7. □

Now, we state the following theorem.

Theorem 4.9. It follows that |QEnd(H2k)| = |Aut(H2k)| = 4k.

Proof. Let f ∈ QEnd(H2k) and let x, y ∈ V (H2k). If x ∼ y, then f(x) ̸= f(y).
Otherwise, we consider the following four cases:
Case 1: x = vi and y = vj , i ̸= j.

Without loss of generality, suppose that f(vi) = f(vj) for some
i, j ∈ {1, 2, . . . , 2k}. We know that {f(ui), f(vi)} ∈ E(H2k) and that
vi, vj ∈ f−1(f(vi)). Therefore there exists one member in f−1(f(ui))
that is adjacent to vi and vj , but this is impossible, since vi and vj do
not have a common neighbor. Thus f(x) ̸= f(y).

Case 2: x = vi and y = c.
Let f(vi) = f(c); then we know f(c) ∼ f(ui+1). Since f ∈ QEnd(H2k),
there exists one vertex in f−1(f(ui+1)) that is adjacent to both of c and
vi. On the other hand, the only common neighbor of c and vi is ui, which
means f(ui) = f(ui+1), a contradiction. So f(x) ̸= f(y).

Case 3: x = ui and y = uj , i ̸= j.
If |i − j| = 1, then ui ∼ uj and f(ui) ̸= f(uj). Let |i − j| = 2 and let
f(ui) = f(uj). Then common neighbors of ui and uj are c and ui+1.
We know that {f(ui), f(vi)} ∈ E(H2k) and that {f(ui), f(vj)} ∈ E(H2k).
Since f ∈ QEnd(H2k), thus f−1(f(vi)) and f−1(f(vj)) have at least
one common neighbor of ui and uj . By case 2, c /∈ f−1(f(vi)) and
c /∈ f−1(f(vj)). So, ui+1 ∈ f−1(f(vi)) and ui+1 ∈ f−1(f(vj)). Then

f(vi) = f(ui+1) = f(vj),

a contradiction to case 1. Therefore f(ui) ̸= f(uj). Let |i−j| ⩾ 3 and let
f(ui) = f(uj). Since {f(ui), f(vi)} ∈ E(H2k), there exists one vertex in
f−1(f(vi)) that is a common neighbor of ui and uj . On the other hand,
c is only a common neighbor of ui and uj , that is, f(vi) = f(c), which is
a contradiction to case 2. Therefore f(x) ̸= f(y).
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Case 4: x = ui and y = vj , i ̸= j.
Let f(ui) = f(vj). We know that {f(ui), f(c)} ∈ E(H2k) and that
f ∈ QEnd(H2k). Thus Y = f−1(f(c)) has a common neighbor of ui and
vj . If j ̸= i+ 1 and j ̸= i− 1, then ui and vj have no common neighbor.
Then without loss of generality, suppose that j = i + 1. Then ui ∈ Y ,
which means f(c) = f(ui), a contradiction. Therefore f(x) ̸= f(y).
Now, we compute the order of Aut(H2k). If f ∈ Aut(H2k), then clearly

f(C2k) = C2k and Im(f) = H2k. So we have 2k choices for f(u1), two choices
for f(u2), and one choice for other vertices. So, we have 4k automorphisms
from H2k. □

Theorem 4.10. It follows that Endotype(H2k) = 7.

Proof. By the given endomorphism in Theorem 2.8, End(H2k) ̸= HEnd(H2k),
and by Theorem 4.4, we have HEnd(H2k) ̸= LEnd(H2k). Now, we define
the following endomorphism:

g(x) =



u3, x = ui and i is odd,

u4, x = ui and i is even,

v3, x = vi and i is odd,

v4, x = vi and i is even,

c, x = c.

We see that g ∈ LEnd(H2k), but g /∈ QEnd(H2k). Thus, LEnd(H2k) ̸=
QEnd(H2k), and Theorem 4.9 implies QEnd(H2k) = Aut(H2k). □
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