Contributions to Discrete Mathematics

Volume 17, Number 1, Pages 38–55 ISSN 1715-0868

THE ENDOMORPHISMS MONOIDS OF HELM GRAPH AND ITS GENERALIZATION

A. RAJABI, A. ERFANIAN, AND A. AZIMI

ABSTRACT. Let G be a graph. Then G is said to be End-regular if the set of all endomorphisms of G forms a regular monoid. In this paper, we discuss the End-regularity of Helm graphs and our generalization. We also prove that the generalized Helm graph is End-orthodox if and only if it is End-regular. Moreover, we investigate the End-regularity of the join of two generalized Helm graphs.

1. INTRODUCTION

There are many relations between graph theory and algebraic structures. For instance, the notion of End-regular graphs relates to both the semi-group theory of algebra and graph theory.

The motivation of this paper comes from an open problem, posed by Knauer and Wilkeit (see [12]), which states which graphs are End-regular. It is very hard to determine and characterize all End-regular graphs, so most researchers deal with some types of well-known graphs like End-regular bipartite, End-orthodox bipartite graphs (see [19, 1] for more details) and End-regular split graphs as considered in [10].

For nonbipartite and nonsplit graphs, there are some researches on Endregularity, for instance, End-regularity complement of a path [5], Endregularity of *n*-prism graphs [17], unicyclic graphs [11], generalized bicycle graphs [15], and also End-regularity of book graphs [13, 16]. Pipattanajinda, Knauer, and Arworn [14] defined a generalized wheel graph and obtained some conditions that imply a generalized wheel graph be End-regular.

Let us remind some basic definitions, which are necessary. An element x of a semi-group S is said to be *regular* if there exists an element $y \in S$ such that xyx = x. Also the element y is called a *pseudo-inverse* of x. A regular element x of the semi-group S is called *completely regular* if xy = yx for some pseudo-inverse y of x. A semi-group S is *regular* (*completely regular*)

This work is licensed under a Creative Commons "Attribution-NoDerivatives 4.0 International" license.

Received by the editors August 18, 2017, and in revised form May 10, 2021.

Key words and phrases. Helm graph, endomorphism, End-regular, End-orthodox, generalized Helm graph, endospectrum, endotype.

if every element of S is regular (completely regular). An element e of semigroup S is said to be *idempotent* if $e^2 = e$. If the set of all idempotents of a semi-group S is a subsemi-group of S, then S is called *idempotent-closed*. A semi-group S is called *orthodox* if S is regular and idempotent-closed.

In this paper, G stands as a finite simple graph (with no loops and multiple edges). The vertex set and edge set of graph G are denoted by V(G) and E(G), respectively. If u and v are two vertices such that u adjacent to v, then we denote it shortly by $u \sim v$ and say that v is a *neighbor* of u. The number of neighbors of the vertex u is called the *degree* of u, denoted by deg(u). The set of all neighbors of vertex u in the graph G is denoted by $N_G(u)$. The graph G is *complete* if all of its vertices are adjacent. The complete graph of order n is shown by K_n . A subset K of vertices of the graph G is called a *clique* if the induced subgraph over K is a complete graph. A subset S of V(G) is called an *independent set* if there is no edge between any two vertices in S.

Moreover, the graph G is said to be *split* if we can partition V(G) into two subsets K and S such that the induced subgraph over K is a clique and the induced subgraph over S is an independent set. A *path* is a finite sequence of edges that joins a sequence of distinct vertices. A path of length r is denoted by P_r . A cycle C_n can be obtained from a path P_n in which the first and the last vertices coincide.

If a path P_r attaches to a vertex u, then it is called a *pendant* path of length r. It is clear that if r = 1, then a pendant edge (or pendant vertex) appears.

The *join* of two graphs G and H, shown by G + H, is a graph with vertex set $V(G + H) = V(G) \cup V(H)$ and edge set

$$E(G + H) = E(G) \cup E(H) \cup \{(u, v), u \in V(G), v \in V(H)\}.$$

Note that in the above definition, we suppose that the vertex sets of G and H are disjoint. The wheel graph W_n is $C_n + K_1$.

Let G and H be two graphs. Then a map f from G to H is a homomorphism if $u \sim v$ implies that $f(u) \sim f(v)$. The set of all homomorphisms from G to H is denoted by $\operatorname{Hom}(G, H)$. Moreover f is an isomorphism if f is a bijective homomorphism and its set inverse f^{-1} is a homomorphism. A homomorphism from G to itself is called an *endomorphism*. The set of all endomorphisms of G is denoted by $\operatorname{End}(G)$. We know that $\operatorname{End}(G)$ is a semigroup. Also an isomorphism of G onto itself is called an *automorphism*, and the set of all automorphisms of a graph G is denoted by $\operatorname{Aut}(G)$. A graph G is *rigid* if $\operatorname{End}(G) = 1$, and G is *unretractive* if $\operatorname{Aut}(G) = \operatorname{End}(G)$. It is important to note that since our graphs are finite, injective endomorphisms are automorphisms.

A graph G is called End-regular (End-orthodox, End-completely-regular, End-idempotent-closed) if the semi-group End(G) is regular (orthodox, completely-regular, idempotent-closed).

Let $f \in \text{Hom}(G, H)$. For $u, v \in V(G)$, let $\{f(u), f(v)\} \in E(H)$. We set $U = f^{-1}(f(u))$ and $V = f^{-1}(f(v))$. Then f is a half-strong homomorphism if there exists at least one edge between U and V. If for each $u \in U$, there exists at least one element $v \in V$ such that $u \sim v$ or for each $v \in V$, there exists at least one element $u \in U$ such that $u \sim v$, then f is called a *locally strong homomorphism*. We call f is a quasi-strong homomorphism if there exists $u' \in U$ such that for any $v \in V$, we have $u' \sim v$ and there exists $v' \in V$ such that for any $u \in U$, we have $u \sim v'$. Also f is a strong homomorphism if all elements of U and V are adjacent. The set of all half-strong endomorphisms of G, strong endomorphisms of G is denoted by HEnd(G) (LEnd(G), QEnd(G), SEnd(G)). Also the set of idempotent endomorphisms of a graph G is shown by Idp(G).

Let $f \in End(G)$. Then we denote I_f as the endomorphic image of Gunder f that is a subgraph of G with $V(I_f) = f(V(G))$ and $f(a) \sim f(b)$ if and only if there exist $c \in f^{-1}(f(a))$ and $d \in f^{-1}(f(b))$ such that $c \sim d$ in G. Finally, for fixed $f \in End(G)$, we define a relation ρ_f by $(a,b) \in \rho_f$ if and only if f(a) = f(b) for every $a, b \in V(G)$. One can see that ρ_f is an equivalence relation and for every $a \in V(G)$, the related equivalence class of a is denoted by $[a]_{\rho_f}$.

Helm graphs are known graphs, which are not bipartite or split. The paper is organized as follows. In section 2, we discuss when these graphs are End-regular. We also define a generalization of Helm graphs and determine when these generalized Helm graphs are End-regular, End-orthodox, and completely-regular. Moreover, in section 3, we prove that the join of two End-regular generalized Helm graphs is End-regular. In the last section, we attempt to compute the endotype and endospectrum of Helm graphs.

2. End-regularity of generalized Helm Graphs

Now, we recall the following theorem from [8], which determines sufficient and necessary conditions for an endomorphism $f \in \text{End}(G)$ to be a regular.

Theorem 2.1 (Li [8]). Let G be a graph and let $f \in \text{End}(G)$. Then f is regular if and only if there exist idempotents $g, h \in \text{End}(G)$ such that $I_g = I_f$ and $\rho_h = \rho_f$.

The following two lemmas from [10, 11] study regular endomorphisms.

Lemma 2.2 (Li and Chen [10]). Let G be a graph and let $f \in \text{End}(G)$. If f is regular, then $f \in \text{HEnd}(G)$.

Lemma 2.3 (Ma, Wong, and Zhou [11]). Let f be a regular endomorphism of a graph G with a pseudo-inverse g. Then $g(x) \in f^{-1}(x)$ for any $x \in f(V(G))$.

The following theorem states a sufficient and necessary condition for the End-regularity of split graphs.

Theorem 2.4 (Li and Chen [10]). Let G be a connected split graph with $V = K \cup S$ and |K| = n. Then G is End-regular if and only if there exists $r \in \{1, 2, ..., n\}$ such that $\deg(x) = r$ for any $x \in S$, or there exists a vertex $a \in S$ with $\deg(a) = n$ and there exists $r \in \{1, 2, ..., n-1\}$ such that $\deg(x) = r$ for any $x \in S - \{a\}$ if $S - \{a\} \neq \emptyset$.

Now, we are going to investigate the End-regularity of Helm graphs.

We recall that the *wheel* graph W_n consisting of a cycle on n vertices such as u_1, u_2, \ldots, u_n and a vertex such as c that is adjacent to each of u_1, u_2, \ldots, u_n .

Definition 2.5. The Helm graph H_n is a graph obtained from the wheel graph W_n by adjoining pendant vertices v_1, v_2, \ldots, v_n , respectively. Examples of Helm graphs are presented in Figs. 1 and 2 for n = 3 and n = 4, respectively.

We recall that the *chromatic number* of a graph G, denoted by $\chi(G)$, is the smallest number of colors needed to color the vertices of G such that no two adjacent vertices share the same color. Note that if there is a homomorphism from a graph G to a graph H, then $\chi(G) \leq \chi(H)$.

We use the fact that odd cycles are unretractive (see [7, Corollary 7.2.2]). This amounts to the fact there is no retraction from an odd cycle onto a proper subset. This fact is due to the result that odd cycles are 3-chromatic while proper subsets are 2-colorable. Similarly, the chromatic number of the wheel graph W_n for odd n is 4 and the chromatic number of proper subsets is at most 3. Hence the wheel graph is unretractive, too. We use that fact in the next lemma. To determine the End-regularity of H_n , we state the following two lemmas.

Lemma 2.6. Let $f \in End(H_n)$, where n is an odd number and $n \ge 5$. Then f(c) = c and $f(u_i) \in V(C_n)$ for every $u_i \in C_n$.

Proof. Suppose that $f(c) = v_i$. This case is impossible. Indeed, each triangle containing c must be sent on a triangle containing v_i , but there is no such triangle. Suppose that $f(c) = u_i$. There are n triangles containing c and two triangles containing u_i , since n > 3. Thus the wheel graph W_n is sent on a proper subset of itself. This is impossible, indeed, since n is odd, the chromatic number of C_n is 3. Hence the chromatic number of the wheel

graph W_n is 4 and the chromatic number of proper subsets is at most 3. Hence f(c) = c. Next, since v_j is a pendant vertex, no u_i can be sent on v_j . Finally, since f(c) = c and u_i is joined to c, u_i cannot be sent on c. Hence $f(V(C_n)) \subseteq V(C_n)$ as claimed.

One can observe that the condition $n \geq 5$ in the above lemma is necessary. Because, if we consider the case when n = 3, then it is possible to define the endomorphism $f \in \text{End}(H_3)$ such that $f(u_1) = u_2$, $f(u_2) = f(v_1) = f(v_3) = c$, $f(u_3) = f(v_2) = u_1$, and $f(c) = u_3$, which does not hold the property of Lemma 2.6.

As a consequence of Lemma 2.6, we can state the following lemma, which proves that the image of odd cycle C_{2k+1} in H_{2k+1} under every endomorphism is again the odd cycle C_{2k+1} .

It is not difficult to see that we can give other proofs for Lemma 2.6 directly and without the use of coloring arguments from graph theory.

Lemma 2.7. If $k \ge 2$ and $f \in End(H_{2k+1})$, then $f(C_{2k+1}) = C_{2k+1}$.

Proof. It follows from the property that C_{2n+1} is unretractive.

Now, we have enough tools to investigate the End-regularity of Helm graphs.

Theorem 2.8. The Helm graph H_n is End-regular if and only if n is an odd number.

Proof. Suppose that n = 2k, for $k \ge 2$. Then we define the map f by the following rule:

$$f(x) = \begin{cases} c, & x = c, v_1, \\ u_3, & x = v_2, \\ u_2, & x = v_{2i-1}, i \neq 1, x = u_{2i}, \\ u_1, & x = v_{2i}, i \neq 1, x = u_{2i-1}. \end{cases}$$

It is easy to check that $f \in \text{End}(H_{2k})$, but $f \notin \text{HEnd}(H_{2k})$. As in the above definition, $f(v_2)$ is adjacent to $f(v_1)$, but there exists no vertex in $f^{-1}(f(v_1))$ such that it is adjacent to a vertex in $f^{-1}(f(v_2))$. Thus H_{2k} is not End-regular, by Lemma 2.2.

Assume that n = 2k + 1 for $k \ge 1$. If k = 1, then it is easy to see that H_3 is a split graph made of the clique $K = \{u_1, u_2, u_3, c\}$ and the independent set $S = \{v_1, v_2, v_3\}$. Since deg(x) = 1 for all $x \in S$, then H_3 is End-regular by Theorem 2.4. Now, suppose that $k \ge 2$; then $n = 2k + 1 \ge 5$. Let $f \in \text{End}(H_{2k+1})$; then we define endomorphisms g and h as follows:

43

$$g(x) = \begin{cases} x, & x = u_i, x = c, \\ x, & x = v_i, v_i \in \operatorname{Im} f, \\ c, & x = v_i, v_i \notin \operatorname{Im} f, \end{cases} \quad h(x) = \begin{cases} x, & x = u_i, x = c, \\ u_j, & x = v_i, f(v_i) = f(u_j), \\ c, & x = v_i, f(v_i) = c, \\ v_i, & x = v_i, f(v_i) \neq f(u_j), c. \end{cases}$$

It is clear that g and h are idempotent endomorphisms in H_{2k+1} and $I_f = I_g$ is a wheel graph W_n maybe with some pendant vertices. We show that $\rho_f = \rho_h$. Let f(x) = f(y), where $x, y \in V(H_{2k+1})$. Since $f(C_{2k+1}) = C_{2k+1}$ by Lemma 2.7, there are the following two cases:

CASE 1: x = c and $y = v_i$ for some $i \in \{1, 2, ..., 2k + 1\}$.

In this case, we have $h(x) = c = h(v_i) = h(y)$.

CASE 2: $x = u_j$ and $y = v_i$ for some $i, j \in \{1, 2, ..., 2k + 1\}, i \neq j$. We have $h(x) = h(u_j) = u_j = h(v_i) = h(y)$.

Thus h(x) = h(y) in both cases and it implies that $\rho_f \subseteq \rho_h$. According to the definition, h(x) = h(y) entails that $x = v_i$ and $y = v_j$ for some $i \neq j$. If h(x) = h(y) = c, then f(x) = f(y) = c or if $h(x) = h(y) = u_k$, then $f(x) = f(u_k) = f(y)$; thus $\rho_f = \rho_h$ and $\operatorname{End}(H_{2k+1})$ is regular for all $k \geq 2$ by Theorem 2.1.

In 2016, Indriati et al. [6] defined a type of generalized Helm graph. Now, we are going to give another generalization of Helm graphs, which is also a generalization of [6]. Before we define that, let us recall that the *Cartesian* product $G\Box H$ of the graphs G and H is a graph such that the vertex set of $G\Box H$ is the Cartesian product $V(G) \times V(H)$; and two vertices (x, y) and (x', y') are adjacent in $G\Box H$ if and only if either x = x' and y is adjacent to y' in H, or y = y' and x is adjacent to x' in G. Also, a *G*-layer G_x $(x \in V(H))$ of the Cartesian product $G\Box H$ is the subgraph induced by the set of vertices $\{(u, x) : u \in V(G)\}$. An H-layer is defined analogously (see [2, p. 40]).

Definition 2.9. Let $n \ge 3$, let $m \ge 1$, and let $r \ge 1$. Consider the Cartesian product $C_n \Box P_{(m+1)r}$ that joins a vertex c to every vertex of C_n -layer C_{n_1} and removes edges between all of vertices of C_n -layer C_{n_x} for $x \ne kr$ and 1 < k < m. This graph is called a generalized Helm graph and denoted by $H_n(m,r)$. In other words, $H_n(m,r)$ is m cycles of length n such that each vertex of each cycle joins to the corresponding vertex of the later cycle with a path of length r, also a pendant path P_r joins to each vertex of the last cycle, and a vertex such as c joins to vertices of the first cycle with $n P_r s$.

As an example of a generalized Helm graph, $H_5(3, 2)$ is shown in Fig. 3. We observe that the generalized Helm graph $H_n(1, 1)$ coincides with the ordinary Helm graph H_n . With the above definition, we determine the vertices of the generalized Helm graph precisely by the following method.

Let $n \geq 3$, let $m \geq 1$, let $r \geq 1$, and let $1 \leq j \leq m$. We denote C_n^j as a cycle of length n for every 1 < j < m, and G_j as a graph isomorphic to a cycle C_n^j whose each vertex has a pendant path of length r, and G_0 denotes

a graph with a vertex c, in which it has n pendant paths of length r. We label vertices of G_0 and G_j as follows:

$$V(G_0) = \{c, v_1^1, v_1^2, \dots, v_1^r, v_2^1, v_2^2, \dots, v_2^r, \dots, v_n^1, v_n^2, \dots, v_n^r\}$$

such that for each i, v_i^1 is adjacent to c and $v_i^1 \sim v_i^2 \sim v_i^3 \sim \cdots \sim v_i^r$.

$$V(C_n^j) = \{v_1^{jr}, v_2^{jr}, v_3^{jr}, \dots, v_n^{jr}\}$$

such that $v_i^{jr} \sim v_{i+1}^{jr}$, and indices are in module n.

$$V(G_j) = V(C_n^j) \cup \{v_i^{(j-1)r+1}, v_i^{(j-1)r+2}, \dots, v_i^{(j-1)r+r}\}$$

such that $v_i^{(j-1)r+l} \sim v_i^{(j-1)r+l+1}$ for every $0 \le l \le r-1$.

So,
$$V(H_n(m,r)) = \bigcup_{i=0}^m V(G_i)$$
 and $E(H_n(m,r)) = \bigcup_{i=1}^m E(G_i)$.

Proof. Suppose that $r \geq 2$. It is not difficult to see that the following endomorphism is in $End(H_n)$:

$$f(x) = \begin{cases} v_{i+1}^j, & x = v_i^j, 1 \le j \le mr \text{ and } 1 \le i \le n-1, \\ v_1^j, & x = v_n^j, \text{ and } 1 \le j \le mr, \\ v_1^{mr}, & x = v_1^{mr+1}, \\ v_1^{mr+1}, & x = v_1^{mr+2}, \\ v_i^{mr}, & x = v_i^{mr+j}, j \text{ is odd } 1 \le j \le r \text{ and } x \ne v_1^{mr+1}, \\ v_i^{mr-1}, & x = v_i^{mr+j}, j \text{ is even, } 2 \le j \le r \text{ and } x \ne v_1^{mr+2} \end{cases}$$

Let f be regular. Then there exists a pseudo-inverse g such that fgf = f. So $g(v_1^{mr+1}) = v_1^{mr+2}$ by Lemma 2.3. Also, $g(v_1^{mr}) \subseteq \{v_1^{mr+j}, v_n^{mr}\}$ such that j is odd and $1 \leq j \leq r$ by Lemma 2.3. On the other hand, g is an endomorphism and $v_1^{mr+1} \sim v_1^{mr}$ results in $g(v_1^{mr+1}) \sim g(v_1^{mr})$. Consequently just $g(v_1^{mr}) = v_1^{mr+1}$ or $g(v_1^{mr}) = v_1^{mr+3}$ can be accepted. Similarly, $g(v_n^{mr}) \subseteq \{v_n^{mr+j}, v_{n-1}^{mr}\}$ for odd j with $1 \leq j \leq r$. We have $v_n^{mr} \sim v_1^{mr}$ and so $g(v_n^{mr}) \sim g(v_1^{mr}) = v_1^{mr+1}$ or $g(v_n^{mr}) \sim g(v_1^{mr}) = v_1^{mr+3}$. No element is found for $g(v_n^{mr})$ and this is a contradiction. Thus, f is not regular. Now, let r = 1 and let $m \geq 2$. Define $f(v_i^{m+1}) = v_{i+1}^m$, $f(v_i^m) = v_{i+1}^{m-1}$, and f(x) = x for $x \neq v_i^{m+1}, v_i^m$; then we can see that $f \in \text{End}(H_n(m, 1))$. Moreover $f \notin \text{HEnd}(H_n(m, 1))$. Because $f(v_i^{m+1}) \sim f(v_{i+1}^{m+1})$, but

$$v_i^{m+1} = f^{-1}(f(v_i^{m+1})) \not \sim f^{-1}(f(v_{i+1}^{m+1})) = v_{i+1}^{m+1},$$

so, $H_n(m, 1)$ is not End-regular by Lemma 2.2.

Corollary 2.11. The generalized Helm graph $H_n(m,r)$ is End-regular if and only if m = r = 1 and n is odd.

Proof. It follows from Theorems 2.8 and 2.10 directly.

As we mentioned earlier in the first section, if the graph G is End-orthodox or End-completely-regular, then G is End-regular. So, to check that when $H_n(m,r)$ is End-orthodox or End-completely-regular, we just need to consider H_{2k+1} .

Theorem 2.12. The graph H_{2k+1} is End-idempotent-closed for any positive integer k.

Proof. Let $k \geq 2$ and let $f \in \operatorname{Idp}(H_{2k+1})$. Also let $f(u_i) = u_j$ for some $i \neq j$. We know $f^2(u_i) = f(u_i)$, so $f(u_j) = u_j$, which is a contradiction with the definition of homomorphisms. Thus $f(u_i) = u_i$. In addition, if $f \in \operatorname{Idp}(H_3)$, then $f(c) \neq u_i$. Otherwise, since f is an idempotent $f(u_i) = u_i$, which is again a contradiction with the definition of homomorphism. Hence if $f \in \operatorname{Idp}(H_{2k+1})$, for any positive integer k, we have $f(u_i) = u_i$ for all $i = 1, 2, \ldots, 2k + 1$ and f(c) = c. So here each vertex images to itself. Thus we have $f(v_i) \in \{c, v_i, u_{i+1}, u_{i-1}\}$. For each of cases of $f(v_i)$, it is not difficult to check that $(fog)^2(v_i) = fog(v_i)$ for $f, g \in \operatorname{Idp}(H_{2k+1})$, for instance, we check one case and left another one to the reader. Let $f(v_i) = u_{i+1}$, let $g(v_i) = c$, let $fg^2(v_i) = fgfg(v_i) = fgf(c) = fg(c) = f(c) = c$, and let $fg(v_i) = f(c) = c$. Then $fg^2 = fg$. Now $fg \in \operatorname{Idp}(H_{2k+1})$ for every $f, g \in \operatorname{Idp}(H_{2k+1})$.

Corollary 2.13. The graph $H_n(m,r)$ is End-orthodox if and only if it is End-regular.

Proof. It is a direct consequence of Corollary 2.11 and Theorem 2.12. \Box

We recall that a function f is called *square injective* if $f^2(a) = f^2(b)$ implies that f(a) = f(b). Now, we give the following result, which states a

necessary and sufficient condition for the endomorphism f to be completelyregular (see [18, p. 14 Theorem 1.4.7] for more details).

Theorem 2.14 (Wanichsombat [18]). Let G be a finite graph and let $f \in \text{End}(G)$. Then f is completely-regular if and only if for all $a, b \in V(G)$, $f(a) \neq f(b)$ implies $f^2(a) \neq f^2(b)$, that is, f is a square injective.

Theorem 2.15. The graph $H_n(m, r)$ is not End-completely-regular for every $n \ge 3$, $m \ge 1$, and $r \ge 1$.

Proof. If $m \geq 2$ or $r \geq 2$, then $H_n(m, r)$ is not End-regular and so is not End-completely-regular as well. Moreover, $H_n(1, 1) = H_n$ is not End-regular for all even number n. Thus, we only need to consider the case H_{2k+1} , where $k \geq 1$. For H_{2k+1} , we define $f \in \text{End}(H_n(m, r))$ by the rules $f(u_i) = u_{i+1}$, $f(v_1) = v_2$, and $f(c) = f(v_i) = c$ for $i \neq 1$. We see that $f(c) \neq f(v_1)$, but $f^2(c) = f^2(v_1)$, and so H_{2k+1} is not End-completely-regular by Theorem 2.14. Hence $H_n(m, r)$ is not End-completely-regular as required. \Box

One of the interesting topics in this area is to characterize all graphs whose set of idempotent endomorphisms is a monoid. We recall that this property is called *End-idempotent-closed*. Here, we state some theorems on this property for the generalized Helm graph $H_n(m, r)$.

Theorem 2.16. The Helm graph H_{2k} is not End-idempotent-closed.

Proof. Suppose that f and g have the following rules:

$$f(x) = \begin{cases} u_1, & x = u_{2i+1}, \\ u_2, & x = u_{2i}, i \neq k, \\ u_{2k}, & x = u_{2k}, x = v_3, \\ c, & x = c, x = v_i, i \neq 3, \end{cases} \quad g(x) = \begin{cases} u_3, & x = u_{2i+1}, \\ u_2, & x = u_{2i}, \\ v_3, & x = u_{2i}, \\ v_3, & x = v_3, \\ c, & x = c, x = v_i, i \neq 3. \end{cases}$$

We show that f and g are idempotent endomorphisms. Indeed $u_{2i+1} \sim u_{2i}$ results in $f(u_{2i+1}) = u_1 \sim f(u_{2i}) \in \{u_2, u_{2k}\}$. Also $v_i \sim u_i$ for $i \neq 3$ results in $f(v_i) = c \sim f(u_i) \in \{u_1, u_2, u_{2k}\}$ and $f(v_3) = u_{2k} \sim f(u_3) = u_1$. Eventually, $c \sim u_i$ and $f(c) = c \sim f(u_i) \in \{u_1, u_2, u_{2k}\}$. So, f is an endomorphism. Also, $f^2(u_i) = f(u_i)$, $f^2(c) = f(c)$, and $f^2(v_i) = f(v_i)$; then $f \in \mathrm{Idp}(H_{2k})$. Similarly it can be shown that $g \in \mathrm{Idp}(H_{2k})$. Now,

$$(fg)^2(v_3) = fgfg(v_3) = fgf(v_3) = fg(u_{2k}) = f(u_2) = u_2$$

and $fg(v_3) = f(v_3) = u_{2k}$. Since k > 1, we have $fg \notin Idp(H_{2k})$. Hence H_{2k} is not End-idempotent-closed.

Theorem 2.17. If $r \ge 2$, then $H_n(m, r)$ is not End-idempotent-closed.

Proof. It is not difficult to see that f and g defined below are two idempotent endomorphisms from $H_n(m, r)$.

47

$$f(x) = \begin{cases} v_1^{mr+1}, & x = v_1^{mr+j}, j \text{ odd,} \\ v_1^{mr+2}, & x = v_1^{mr+j}, j \text{ even,} \\ v_2^{mr-1}, & x = v_2^{mr+j}, j \text{ odd,} \\ v_2^{mr}, & x = v_2^{mr+j}, j \text{ odd,} \\ x, & \text{otherwise,} \end{cases}$$
$$g(x) = \begin{cases} v_2^{mr}, & x = v_1^{mr+j}, j \text{ odd,} \\ v_2^{mr+1}, & x = v_1^{mr+j}, j \text{ even,} \\ v_2^{mr+1}, & x = v_2^{mr+j}, j \text{ odd,} \\ v_2^{mr}, & x = v_2^{mr+j}, j \text{ odd,} \\ v_2^{mr}, & x = v_2^{mr+j}, j \text{ even,} \\ x, & \text{otherwise.} \end{cases}$$

Note that in the above endomorphisms, we assumed that $j \ge 1$. Since

$$\begin{split} (gf)^2(v_1^{mr+2}) &= gfg(f(v_1^{mr+2})) \\ &= gf(g(v_1^{mr+2})) \\ &= g(f(v_2^{mr+1})) \\ &= g(v_2^{mr-1}) \\ &= v_2^{mr-1} \end{split}$$

and $gf(v_1^{mr+2}) = g(v_1^{mr+2}) = v_2^{mr+1}$, we see that $(gf)^2(v_1^{mr+2}) \neq gf(v_1^{mr+2})$. So $H_n(m,r)$ is not End-idempotent-closed for all $r \ge 2$.

In spite of the fact that we believe $H_n(m, 1)$ is End-idempotent-closed for all $m \geq 2$, we are not yet able to prove it. So, let us state the following conjecture.

Conjecture. $H_n(m,r)$ is End-idempotent-closed if and only if r = 1 and $m \ge 2$ or r = m = 1 and n is odd.

3. End-regularity of the join of two generalized Helm graphs

In this section, we prove that the join of two generalized Helm graphs is End-regular if and only if that is as the form $H_m + H_n$ such that m and nare odd. We start with the following three lemmas.

Lemma 3.1 (Li [9]). Let G and H be two graphs. If G + H is End-regular, then both G and H are End-regular.

Lemma 3.2 (Hou and Luo [4]). Let G and H be two End-regular graphs. If for every $f \in \text{End}(G + H)$, we have $f(G) \subseteq G$ and $f(H) \subseteq H$, then G + His End-regular.

Recall that the join of n graphs G_1, G_2, \ldots, G_n , denoted by $G_1 + G_2 + \cdots + G_n$, is a graph with

$$V(G_1 + G_2 + \dots + G_n) = V(G_1) \cup V(G_2) \cup \dots \cup V(G_n)$$

and

$$E(G_1 + G_2 + \dots + G_n) = E(G_1) \cup E(G_2) \cup \dots \cup E(G_n)$$
$$\cup \{\{x, y\} | x \in V(G_i), y \in V(G_j)\}$$

(where $i \neq j$). Now, we have the following lemma for End-regularity join *n*-split graphs.

Lemma 3.3 (Hou, Feng, and Gu [3]). Let G_i , $i = \{1, 2, ..., n\}$, be split graphs and let each G_i have a complete subgraph K_i and an independent set S_i . Then $G_1 + G_2 + \cdots + G_n$ is End-regular if and only if

- (i) G_i is End-regular for every $1 \le i \le n$,
- (ii) $q_i d_i = q_j d_j$ for every *i* and *j*, where $q_i = |V(K_i)|$, $d_i = \deg_{G_i}(x_i)$, and $x_i \in S_i$,
- (iii) $V(K_i) \neq N_{G_i}(x) \cup N_{G_i}(x')$ for every *i* and every $x, x' \in S_i$.

Now, we investigate the End-regularity of the join of two generalized Helm graphs. The following lemma will be used in the proof of the main theorem of this section.

Lemma 3.4. Let $m, n \geq 5$ be odd and let $f \in \text{End}(H_n + H_m)$, where H_n and H_m be Helm graphs with vertices $\{c, u_1, u_2, \ldots, u_n, v_1, v_2, \ldots, v_n\}$ and $\{c', u'_1, u'_2, \ldots, u'_m, v'_1, v'_2, \ldots, v'_m\}$ (as in the definition of Helm graphs), respectively. Then

(i)
$$f(C_n) = C_n$$
 and $f(C'_m) = C'_m$ or $f(C_n) = C'_m$ and $f(C'_m) = C_n$,
(ii) $f(c) = c$ and $f(c') = c'$ or $f(c) = c'$ and $f(c') = c$.

Proof. (i) If $f(H_n) \subseteq H_n$, then $f(C_n) = C_n$ by Lemma 2.7, and since $C_m \sim C_n$ and $f(C_n) \sim f(C_m)$, we have $f(C_m) = C_m$. Similarly, if $f(H_n) \subseteq H_m$, then $f(C_n) = C'_m$ and $f(C'_m) = C_n$. Assume that $f(H_n) \notin H_n$, that $f(H_n) \notin H_m$, that $f(C_n) \neq C_n$, and that $f(C_n) \neq C_m$. We know that $f(C_n)$ is a cycle and that $|f(C_n)| \geq 5$. So $f(C_n)$ has a path of length 5, and since $c \sim C_n$, there is one vertex that is adjacent to all of vertices of this path. All vertices of $f(C_m)$ are adjacent to all vertices $f(C_n)$; so we should find another path with the above property. If $v_i, v'_i \in f(C_n)$, then there is no path with the said features in $f(C_m)$. So $v_i, v'_i \notin f(C_n)$. Let $f(C_n)$ contain at least two vertices in each of H_n and H_m . Then again there are no two paths with the said features such that they are adjacent together. Suppose that $|f(C_n)| \geq 4$ in H_n and that $|f(C_n)| = 1$ in H_m . Without loss of generality, we can assume the following assumptions. For $i \geq 1$,

$$\{u_i, u_{i+1}, u_{i+2}, u_{i+3}, c'\} \subseteq f(C_n)$$

and

$$\{u'_{i}, u'_{i+1}, u'_{i+2}, u'_{i+3}, c\} \subseteq f(C_m)$$

such that c and c' are adjacent to $f(C_n)$ and $f(C_m)$, respectively. Since $f(v_{i+4}) \sim f(u_{i+4}) = c'$, $f(v_{i+4}) \sim f(u'_{i+4}) = c$, and $f(v_{i+4}) \sim f(u_{i+3}) = u_{i+3}$, there is no vertex for $f(v_{i+4})$ and this is a contradiction. Hence $f(C_n) = C_n$ or $f(C_n) = C'_m$. By the same method as above, we can show that

 $f(C'_m) = C'_m$ or $f(C'_m) = C_n$. If $f(C_n) = C_n$, since $f(C_m) \sim f(C_n)$, then $f(C_m) = C_m$. Similarly, if $f(C_n) = C_m$, then $f(C_m) = C_n$, as required.

(*ii*) We know that c and c' are the only vertices that are adjacent to all of vertices C_n and C'_m . On the other hand, f(c) is adjacent to C_n and C'_m . So by part (*i*), we have f(c) = c or f(c) = c'. Similarly f(c') = c' or f(c') = c.

Theorem 3.5. The join of two generalized Helm graphs is End-regular if and only if both of them are End-regular.

Proof. If the join of two generalized Helm graphs is End-regular, then each of them must be End-regular by Lemma 3.1. Now considering the notation of Lemma 3.4, suppose that $H_n(m_1, r_1)$ and $H_m(m'_1, r'_1)$ are two End-regular generalized Helm graphs. Thus $H_n(m_1, r_1) = H_n$ and $H_m(m'_1, r'_1) = H_m$ such that m and n are odd numbers by Corollary 2.11. Let

$$f \in \operatorname{End}(H_n + H_m).$$

Then we consider the following cases:

CASE 1: $m \neq n$ and $m, n \neq 3$.

Without loss of generality, let n < m. So C_n cannot image to C_m and $f(C_n) \neq C'_m$. Then $f(C_n) = C_n$ and $f(C'_m) = C'_m$ by Lemma 3.4. Now, if f(c) = c, then f(c') = c', $f(H_n) \subseteq H_n$, and $f(H_m) \subseteq H_m$. So, $H_n + H_m$ is End-regular by Lemma 3.2. If f(c) = c', then f(c') = c, and, for each i, we have $f(v_i) = c'$ and $f(v'_i) = c$. We define $g \in \text{Idp}(H_n + H_m)$ by the rules $g(v_i) = c$, $g(v'_i) = c'$, and if $x \neq v_i, v'_i$, then g(x) = x. Then it is easy to check that $I_f = I_g$ and $\rho_f = \rho_g$, which implies that f is regular by Lemma 2.1.

CASE 2: $m \neq n$ and one of them is 3.

Let n = 3. Clearly n < m and $f(C_n) \neq C'_m$. If $f(C_n) = C_n$, then similar to case 1, the result follows. Now, let $f(C_n) \neq C_n$. We define $g, h \in \text{Idpt}(H_n + H_m)$ as follows:

$$g(x) = \begin{cases} v_i, & x = v_i, v_i \in \mathrm{Im} f, \\ c, & x = v_i, v_i \notin \mathrm{Im} f, \\ v'_i, & x = v'_i, v'_i \in \mathrm{Im} f, \\ c', & x = v'_i, v'_i \notin \mathrm{Im} f, \\ x, & x \neq v_i, v'_i, \end{cases} \qquad h(x) = \begin{cases} u_j, & x = v_i, f(v_i) = f(u_j), \\ c', & x = v'_i, f(v'_i) = c, \\ u'_j, & x = v'_i, f(v'_i) = f(u'_j), \\ c', & x = v'_i, f(v'_i) = c', \\ x, & \text{otherwise.} \end{cases}$$

We can see that $I_f = I_g$ and $\rho_f = \rho_h$, and consequently f is regular by Lemma 2.1.

CASE 3: m = n = 3.

We know that H_3 is a split graph. If we check three conditions of Lemma 3.3, then get that $H_3 + H_3$ is End-regular.

CASE 4: $m = n \neq 3$, $f(C_n) = C_n$, and f(c) = c. In this case, $f(C'_m) = C'_m$ and f(c') = c', so $f(H_n) \subseteq H_n$ and $f(H_m) \subseteq H_m$. Then $H_n + H_m$ is End-regular by Lemma 3.2. CASE 5: $m = n \neq 3$, $f(C_n) = C_n$, and f(c) = c'. We know that $f(C'_m) = C'_m$, f(c') = c, $f(v_i) = c'$, and $f(v'_i) = c$ for every *i*. Define $g \in \text{Idp}(H_n + H_m)$ by the rules $g(v_i) = c$, $g(v'_i) = c'$, and g(x) = x for $x \neq v_i, v'_i$. Therefore, $I_f = I_g$ and $\rho_f = \rho_g$. So by Lemma 2.1, *f* is regular.

- CASE 6: $m = n \neq 3$, $f(C_n) = C'_m$, and f(c) = c. It is very similar to the proof of case 5.
- CASE 7: $m = n \neq 3$, $f(C_n) = C'_m$, and f(c) = c'.

In this case, $f(C'_m) = C_n$ and f(c') = c. We define $g \in \text{Idp}(H_n + H_m)$ by the rules g(x) = c if $x = v_i$ and $v_i \notin \text{Im}(f)$, g(x) = c' if $x = v'_i$ and $v'_i \notin \text{Im}(f)$, and g(x) = x if $x \neq v_i, v'_i$. We see that $I_f = I_g$. Now see the following endomorphism:

$$h(x) = \begin{cases} x, & x \in C_n, x \in C_m, x = c \text{ and } x = c', \\ u_j, & x = v_i \text{ and } f(v_i) = f(u_j), \\ u'_j, & x = v'_i \text{ and } f(v'_i) = f(u'_j), \\ c, & x = v_i \text{ and } f(v_i) = c', \\ c', & x = v'_i \text{ and } f(v'_i) = c, \\ v_i, & x = v_i, f(v_i) \neq f(u_j), \text{ and } f(v_i) \neq c', \\ v'_i, & x = v'_i, f(v'_i) \neq f(u'_j), \text{ and } f(v_i) \neq c. \end{cases}$$

It is not difficult to check that $h \in \text{Idp}(H_n + H_m)$ and $\rho_f = \rho_h$, so f is regular by Lemma 2.1.

The following theorem gives a necessary and sufficient condition on the orthodoxy join of two graphs.

Theorem 3.6 (Hou and Luo [4]). Let G_1 and G_2 be two graphs. Then $G_1 + G_2$ is End-orthodox if and only if $G_1 + G_2$ is End-regular and both of G_1 and G_2 are End-orthodox.

Corollary 3.7. The join of two generalized Helm graphs is End-orthodox if and only if that is as the form $H_{2k+1} + H_{2k'+1}$.

Proof. This is a consequent of Corollary 2.13 and Theorems 3.5 and 3.6. \Box

4. Endospectrum of Helm graphs

First, we observe that the following sequence occurs for every graph G:

End $G \supseteq$ HEnd $G \supseteq$ LEnd $G \supseteq$ QEnd $G \supseteq$ SEnd $G \supseteq$ Aut G.

Recall that the *endospectrum* of G (endomorphism spectrum of G) is the following 6-tuples:

 $\operatorname{Endospec}(G) = (|\operatorname{End} G|, |\operatorname{HEnd} G|, |\operatorname{LEnd} G|, |\operatorname{QEnd} G|, |\operatorname{SEnd} G|, |\operatorname{Aut} G|).$

51

We may also associate the 5-tuple $(s_1, s_2, s_3, s_3, s_4, s_5)$ to the Endospec(G) with the rule that $s_i \in \{0, 1\}$ for $1 \le i \le 5$, where

$$s_i = \begin{cases} 0, & i\text{-entry} = i + 1\text{-entry in Endospec}(G), \\ 1, & i\text{-entry} \neq i + 1\text{-entry in Endospec}(G). \end{cases}$$

For instance, $s_1 = 1$ means that $|\operatorname{End}(G)| \neq |\operatorname{HEnd}(G)|$, $s_2 = 0$ means that $|\operatorname{HEnd}(G)| = |\operatorname{LEnd}(G)|$, and so on. We call the integer $\sum_{i=1}^{5} s_i 2^{i-1}$ the endotype or endomorphism type of G and denote it by $\operatorname{Endotype}(G)$. The endotype is a number between 0 and 31. There are no graphs of endotypes 1 and 17. A rigid graph is a graph with $|\operatorname{End}(G)| = 1$. The endotype of this graph is 0 (see [7] for more details). One of the interesting problems is to determine the endotype and endospectrum of a graph. Although finding these values for any graph is not only easy but sometimes impossible, they are computed for some graphs. For instance, for trees, it was obtained in [7].

Now, we may ask the same problem for the generalized Helm graphs.

Problem 4.1. What are the endotype and endospectrum of the generalized Helm graphs?

We attempt to determine the endotype and endospectrum of Helm graph H_n , for both cases when n is even or odd. We have been successful to find it when n is odd, but for even n, we determined the endotype and we were able to compute only three entries of $Endospec(H_{2k})$ and the remaining three entries are left unknown.

Theorem 4.2. If k is a positive integer, then

$$|\operatorname{LEnd}(H_{2k+1})| = |\operatorname{Aut}(H_{2k+1})| = 2(2k+1).$$

Proof. First, we suppose $k \geq 2$ and show that every local strong endomorphism H_{2k+1} is an automorphism in H_{2k+1} . Let $f \in \text{LEnd}(H_{2k+1})$; then by Lemma 2.7, it is enough to prove that $f(v_i) \neq c$ and $f(v_i) \neq u_j$ for all $i, j \in \{1, 2, \ldots, 2k + 1\}$. We recall that $f^{-1}(u_i)$ is a singleton set for each $i \in \{1, 2, \ldots, 2k + 1\}$, by Lemma 2.7. Without loss of generality, we show that $f(v_1) \neq c$ and that $f(v_1) \neq u_j$ for each $j \in \{1, 2, \ldots, 2k + 1\}$. On the contrary, let $f(v_1) = c$ and put $f^{-1}(u_m) = \{u_2\}$. Then $f(v_1) \sim f(u_2)$, but v_1 is not adjacent to any vertex in $f^{-1}(u_m)$, a contradiction. Thus $f(v_1) \neq c$. Let $f(v_1) = u_j$ for some $j \in \{1, 2, \ldots, 2k + 1\}$. We know that $u_{j+1} \sim f(v_1) = u_j \sim u_{j-1}$, but $f^{-1}(u_{j+1}) \neq \{u_1\}$ or $f^{-1}(u_{j-1}) \neq \{u_1\}$. This contradicts with that f is a local strong endomorphism of H_{2k+1} . Hence $f(v_1) \neq u_j$ for each $j \in \{1, 2, \ldots, 2k + 1\}$.

Now, we compute the order of Aut (H_{2k+1}) . Let $f \in Aut(H_{2k+1})$. Then for $f(u_1)$ and $f(u_2)$, we have 2k + 1 and 2 choices, respectively. By Lemma 2.7 for $f(u_i)$, $i \in \{3, 4, \ldots, 2k + 1\}$, we have just one choice. Since f(c) = cand f is an automorphism for all $j = 1, 2, \ldots, 2k + 1$, we have $v_j \in \text{Im } f$. Hence for all v_i , there is only one choice and consequently

$$|\operatorname{Aut}(H_{2k+1})| = 2(2k+1).$$

For k = 1 and $f \in \text{LEnd}(H_3)$, it is enough to show that $f(C_{2k+1}) = C_{2k+1}$. Then by the same proof as in above, $\text{LEnd}(H_3) = \text{Aut}(H_3)$ and the result follows. We claim that f(c) = c. On the contrary, let $f(c) = u_j$ for some $j \in \{1, 2, 3\}$. Thus $f(u_k) = c$ for some $k \in \{1, 2, 3\}$. Hence, $f(v_k) = u_m$ for some $m \in \{1, 2, 3\}$, also $f^{-1}(u_m) = \{v_k, u_l\}$ and $f^{-1}(u_j) = \{c\}$. This is a contradiction since f is a local strong endomorphism. \Box

The following lemma from [7] will help us to prove the next theorem.

Lemma 4.3. Let G be a graph such that $N(x) \subsetneq N(x')$ for some $x, x' \in G$, with $\{x, x'\} \notin E(G)$. Then $\operatorname{HEnd}(G) \neq \operatorname{LEnd}(G)$.

Theorem 4.4. For all positive integers n, we have $\operatorname{HEnd}(H_n) \neq \operatorname{LEnd}(H_n)$.

Proof. Put $x = v_1$ and x' = c in Lemma 4.3 and the proof follows.

Theorem 4.5. For every k, we have

$$|\operatorname{HEnd}(H_{2k+1})| = |\operatorname{End}(H_{2k+1})| = 2^{4k+3}(2k+1).$$

Proof. It is clear that $\operatorname{HEnd}(H_{2k+1}) = \operatorname{End}(H_{2k+1})$, by Theorem 2.8 and Lemma 2.2. To prove the order, assume that $f \in \operatorname{End}(H_{2k+1})$. Then $f(u_1)$ and $f(u_2)$ have 2k + 1 and 2 choices, respectively. For $f(u_i)$ when

 $i \in \{3, 4, \ldots, 2k+1\}$ and f(c), there is only one choice by Lemma 2.7. So, $|f(C_{2k+1} \cup \{c\})| = 2(2k+1)$. If $f(u_j) = u_k$ for some $j \in \{1, 2, \ldots, 2k+1\}$, then $f(v_j)$ can be one of four vertices u_{k+1}, u_{k-1}, c , and v_k . Thus for every j, we have four possibilities for $f(v_j)$ and it implies that

End
$$(H_{2k+1})$$
| = 2(2k + 1)4^{2k+1} = 2^{4k+3}(2k + 1).

Corollary 4.6. For all positive integers $k \ge 2$, we have $Endospec(H_{2k+1})$ is equal to

$$\left(2^{4k+3}(2k+1), 2^{4k+3}(2k+1), 2(2k+1), 2(2k+1), 2(2k+1), 2(2k+1), 2(2k+1)\right)$$

and Endotype (H_{2k+1}) is 2.

Proof. It is deduced from Theorems 4.2 and 4.5.

Theorem 4.7. It follows that $Endospec(H_3) = (2^3 \times 3^5, 2^3 \times 3^5, 24, 24, 24, 24).$

Proof. Since H_3 is End-regular, so $|\operatorname{End}(H_3)| = |\operatorname{HEnd}(H_3)|$ by Lemma 2.2. If $f \in \operatorname{End}(G)$, then $f(u_i) \in \{c, u_1, u_2, u_3\}$. So there exists 4 choices for $f(u_1)$. Since $W_3 \cong K_4$, for $f(u_2)$, $f(u_3)$ and f(c) there exist 3, 2 and 1 choice respectively. For every $1 \le i \le 3$, $f(v_i) \in W_3 - \{f(u_i)\}$. So

$$|\operatorname{HEnd}(H_3)| = |\operatorname{End}(H_3)| = 4 \times 3 \times 2 \times 1 \times 3 \times 3 \times 1 = 2^3 \times 3^4.$$

Now, we claim that $|\operatorname{LEnd}(H_3)| = |\operatorname{Aut}(H_3)| = 24$. Let $f \in \operatorname{LEnd}(H_3)$, it is enough to show that $f(C_{2k+1}) = C_{2k+1}$. Then by the same proof as in Theorem 4.2, $\operatorname{LEnd}(H_3) = \operatorname{Aut}(H_3)$ and the result follows. We claim that f(c) = c. On the contrary, let $f(c) = u_j$ for some $j \in \{1, 2, 3\}$. Thus $f(u_k) = c$ for some $k \in \{1, 2, 3\}$. Hence, $f(v_k) = u_m$ for some $m \in \{1, 2, 3\}$, also $f^{-1}(u_m) = \{v_k, u_l\}$ and $f^{-1}(u_j) = \{c\}$. This is a contradiction since f is a local strong endomorphism. Now, for the computation of automorphisms of H_3 , similarly as for endomorphisms of H_3 , there exist 4 choices for $V(W_3)$, but for every $f(v_i)$ is just one choice, therefore

$$|\operatorname{LEnd}(H_3)| = |\operatorname{Aut}(H_3)| = 4 \times 3 \times 2 \times 1 \times 1 \times 1 \times 1 = 24.$$

Corollary 4.8. It follows that $Endotype(H_3) = 2$.

Proof. It is a consequent of Theorem 4.7.

Now, we state the following theorem.

Theorem 4.9. It follows that $|\operatorname{QEnd}(H_{2k})| = |\operatorname{Aut}(H_{2k})| = 4k$.

Proof. Let $f \in \text{QEnd}(H_{2k})$ and let $x, y \in V(H_{2k})$. If $x \sim y$, then $f(x) \neq f(y)$. Otherwise, we consider the following four cases: CASE 1: $x = v_i$ and $y = v_j$, $i \neq j$.

Without loss of generality, suppose that $f(v_i) = f(v_j)$ for some $i, j \in \{1, 2, ..., 2k\}$. We know that $\{f(u_i), f(v_i)\} \in E(H_{2k})$ and that $v_i, v_j \in f^{-1}(f(v_i))$. Therefore there exists one member in $f^{-1}(f(u_i))$ that is adjacent to v_i and v_j , but this is impossible, since v_i and v_j do not have a common neighbor. Thus $f(x) \neq f(y)$.

CASE 2: $x = v_i$ and y = c.

Let $f(v_i) = f(c)$; then we know $f(c) \sim f(u_{i+1})$. Since $f \in \text{QEnd}(H_{2k})$, there exists one vertex in $f^{-1}(f(u_{i+1}))$ that is adjacent to both of c and v_i . On the other hand, the only common neighbor of c and v_i is u_i , which means $f(u_i) = f(u_{i+1})$, a contradiction. So $f(x) \neq f(y)$.

CASE 3: $x = u_i$ and $y = u_j$, $i \neq j$.

If |i-j| = 1, then $u_i \sim u_j$ and $f(u_i) \neq f(u_j)$. Let |i-j| = 2 and let $f(u_i) = f(u_j)$. Then common neighbors of u_i and u_j are c and u_{i+1} . We know that $\{f(u_i), f(v_i)\} \in E(H_{2k})$ and that $\{f(u_i), f(v_j)\} \in E(H_{2k})$. Since $f \in \text{QEnd}(H_{2k})$, thus $f^{-1}(f(v_i))$ and $f^{-1}(f(v_j))$ have at least one common neighbor of u_i and u_j . By case 2, $c \notin f^{-1}(f(v_i))$ and $c \notin f^{-1}(f(v_j))$. So, $u_{i+1} \in f^{-1}(f(v_i))$ and $u_{i+1} \in f^{-1}(f(v_j))$. Then

$$f(v_i) = f(u_{i+1}) = f(v_j),$$

a contradiction to case 1. Therefore $f(u_i) \neq f(u_j)$. Let $|i-j| \ge 3$ and let $f(u_i) = f(u_j)$. Since $\{f(u_i), f(v_i)\} \in E(H_{2k})$, there exists one vertex in $f^{-1}(f(v_i))$ that is a common neighbor of u_i and u_j . On the other hand, c is only a common neighbor of u_i and u_j , that is, $f(v_i) = f(c)$, which is a contradiction to case 2. Therefore $f(x) \neq f(y)$.

CASE 4: $x = u_i$ and $y = v_j$, $i \neq j$.

Let $f(u_i) = f(v_j)$. We know that $\{f(u_i), f(c)\} \in E(H_{2k})$ and that $f \in \text{QEnd}(H_{2k})$. Thus $Y = f^{-1}(f(c))$ has a common neighbor of u_i and v_j . If $j \neq i+1$ and $j \neq i-1$, then u_i and v_j have no common neighbor. Then without loss of generality, suppose that j = i+1. Then $u_i \in Y$, which means $f(c) = f(u_i)$, a contradiction. Therefore $f(x) \neq f(y)$.

Now, we compute the order of $\operatorname{Aut}(H_{2k})$. If $f \in \operatorname{Aut}(H_{2k})$, then clearly $f(C_{2k}) = C_{2k}$ and $\operatorname{Im}(f) = H_{2k}$. So we have 2k choices for $f(u_1)$, two choices for $f(u_2)$, and one choice for other vertices. So, we have 4k automorphisms from H_{2k} .

Theorem 4.10. It follows that $Endotype(H_{2k}) = 7$.

Proof. By the given endomorphism in Theorem 2.8, $\operatorname{End}(H_{2k}) \neq \operatorname{HEnd}(H_{2k})$, and by Theorem 4.4, we have $\operatorname{HEnd}(H_{2k}) \neq \operatorname{LEnd}(H_{2k})$. Now, we define the following endomorphism:

$$g(x) = \begin{cases} u_3, & x = u_i \text{ and } i \text{ is odd,} \\ u_4, & x = u_i \text{ and } i \text{ is even,} \\ v_3, & x = v_i \text{ and } i \text{ is odd,} \\ v_4, & x = v_i \text{ and } i \text{ is even,} \\ c, & x = c. \end{cases}$$

We see that $g \in \text{LEnd}(H_{2k})$, but $g \notin \text{QEnd}(H_{2k})$. Thus, $\text{LEnd}(H_{2k}) \neq \text{QEnd}(H_{2k})$, and Theorem 4.9 implies $\text{QEnd}(H_{2k}) = \text{Aut}(H_{2k})$. \Box

References

- 1. S. Fan, On end-regular graphs, Discrete Math., 159 (1996), 95–102.
- 2. R. Hammack, W. Imrich and S. Klavzar, *Hand Book of Product Graphs*, CRC Press, (2011)
- H. Hou, A. Feng and R. Gu, *End-regularity of the join of n split graphs*, Journal of Applied Sciences, Engineering and Technology, 5 (2013), 1583–1588.
- H. Hou and Y. Luo, Graphs whose endomorphism monoids are regular, Discrete Math., 308(17) (2008), 3888–3896.
- 5. H. Hou, Y. Luo and Z. Cheng, The endomorphism monoid of $\overline{P_n}$, European J. Combin., **29**(5) (2008), 1173–1185.
- D. Indriati, Widodo, I. E. Wijayanti, K. A. Sugeng, M. Baca and F. A. Semanicova, The total vertex irregularity strength of generalized Helm graphs and prisms with outer pendant edges, Australas. J. Combin, 65 (2016), 14–26.
- 7. U. Knauer, Algebraic Graph Theory, Morphisms, Monoids and Matrices, de Gruyter Studies in Mathematics, **41**, Berlin, 2011.
- W. Li, A regular endomorphism of a graph and its inverse, Mathematika, 41(1) (1994), 189–198.
- 9. _____, Graphs with regular monoid, Discrete Math., 265(1-3) (2003), 105–118.
- W. Li and J. Chen, Endomorphism-regularity of split graphs, European J. Combin., 22(2) (2001), 207–216.
- X. Ma, D. Wong and J. Zhou, Unicyclic graphs with regular endomorphism monoids, Discrete Math. Algorithms Appl., 8(2) (2016), 11pp.

- 12. L. Marki, Problems raised at the problem session of the colloquium on semi-groups in Szeged, semi-group Forum, **37** (1988), 367–373.
- N. Pipattanajinda and S. Arworn, Endo-regularity of cycle book graphs, Tahi J. Math., 8(4) (2010), 99–104.
- N. Pipattanajinda, U. Knauer and S. Arworn, Endo-regularity of generalized wheel graphs, Chamchuri J. Math., 3 (2011), 45–57.
- 15. A. Rajabi, A. Erfanian and A. Azimi, *End-regularity of generalized bicycle graph*, AKCE, International Journal of Graphs and Combinatorics, **17** (2020), 841–849.
- 16. J. Thomkeaw and S. Arworn, Endomorphism monoid of C_{2n+1} book graphs, Thai J. Math, 7(2) (2009), 319–327.
- 17. W. Wang and H. Hou, *The Endomorphism monoid of N-prism*, Int. Math. Forum, **6**(49-52) (2011), 2461–2471.
- 18. A. Wanichsombat, Algebraic structure of endomorphism monoids of finite graphs, Thesis(Ph. D.)-Oldenburg University, 2010.
- 19. E. Wilkeit, Graphs with a regular endomorphism monoid, Arch. Math., **66**(4) (1996), 344–352.

Department of Pure Mathematics, Ferdowsi University of Mashhad, Mashhad, Iran.

E-mail address: az.ra.ma20@gmail.com

Department of Mathematics and Center of Excellence in Analysis on Algebraic Structures, Ferdowsi University of Mashhad, Mashhad, Iran. E-mail address: erfanian@um.ac.ir

DEPARTMENT OF PURE MATHEMATICS, FERDOWSI UNIVERSITY OF MASHHAD, MASHHAD, IRAN. *E-mail address*: ali.azimi61@gmail.com