Contributions to Discrete Mathematics

Volume 12, Number 1, Pages 143–156 ISSN 1715-0868

STAR SUPER EDGE-MAGIC DEFICIENCY OF GRAPHS

KM. KATHIRESAN AND S. SABARIMALAI MADHA

ABSTRACT. A graph G is called edge-magic if there is a bijective function $f: V(G) \cup E(G) \rightarrow \{1, 2, \ldots, |V(G)| + |E(G)|\}$ such that for every edge $xy \in E(G), f(x) + f(xy) + f(y) = c$ is a constant, called the valence of f. A graph G is said to be super edge-magic if $f(V(G)) = \{1, 2, \ldots, |V(G)|\}$. Let G be a graph with p vertices with $V(G) = \{v_1, v_2, \ldots, v_p\}$ and let S_m be the star with m leaves. If in G, every vertex v_i is identified to the center vertex of S_{m_i} , for some $m_i \ge 0, 1 \le i \le n$, where $S_0 = K_1$, then the graph obtained is denoted by $G_{(m_1, m_2, \ldots, m_p)}$. Let $M(G) = \{(m_1, m_2, \ldots, m_p) | G_{(m_1, m_2, \ldots, m_p)})$ is a super edge-magic graph $\}$. The star super edge-magic deficiency $S\mu^*(G)$ is defined as

$$S\mu^{*}(G) = \begin{cases} \min_{(m_{1},,m_{2},...,m_{p})}(m_{1}+m_{2}+\dots+m_{p}), & \text{if } M(G) \neq \emptyset, \\ +\infty, & \text{if } M(G) = \emptyset. \end{cases}$$

In this paper we determine the star super edge-magic deficiency of certain classes of graphs.

1. INTRODUCTION

In 1970, Kotzig and Rosa [12] introduced the concept of edge-magic labeling using a different name: magic valuations. Meanwhile, the super edgemagic labeling was introduced by Enomoto et al. [6]. In [12], Kotzig and Rosa proved that for every graph G there exists an edge-magic graph H such that $H \cong G \cup nK_1$ for some non-negative integer n. This fact motivates the emergence of the concept of the edge-magic deficiency of a graph.

The edge-magic deficiency $\mu(G)$ of a graph G is the minimum non-negative integer n such that $G \cup nK_1$ has an edge-magic labeling. Motivated by Kotzig and Rosa's concept of edge-magic deficiency, Figueroa-Centeno et al. [8] defined a similar concept for the super edge-magic labeling.

The super edge-magic deficiency $\mu_s(G)$ of a graph G is the minimum nonnegative integer n such that $G \cup nK_1$ has a super edge-magic labeling or $+\infty$ if there exists no such n. Figueroa-Centeno et al. [8] provided the exact values for the super edge-magic deficiencies of several classes of graphs, such as, cycles, some classes of forests and complete bipartite graphs $K_{m,n}$. Ahmad et al. [3] provided the exact values for super edge-magic deficiencies of graphs,

Received by the editors April 7, 2015, and in revised form November 24, 2016.

²⁰⁰⁰ Mathematics Subject Classification. 05C78.

Key words and phrases. star super edge-magic deficiency, super edge-magic injection.

(n, 1)- kite graphs, (n, 3)-kite graphs, $K_2 \cup C_n$ when $n \equiv 1 \pmod{4}$. They also provided the upper bound of the super edge-magic deficiency of $K_2 \cup C_n$ when $n \equiv 3 \pmod{4}$. Nadeem et al. [13] provided the upper bound for the super edge-magic deficiencies of kite graphs. Ahmad et al. [3] provided the upper bound for the super edge-magic deficiencies of ladder graphs. Acharya and Hegde introduced the concept of strongly indexable graph that is equivalent to the concept of super edge-magic graph [1]. For further details, see [10].

We observe some drawbacks of the super edge-magic deficiency of a graph.

- For several graphs, $\mu_s(G) = \infty$.
- To find $\mu_s(G)$, we construct a disconnected graph with large number of components (consisting of isolated vertices) having a super edgemagic labeling.
- The distribution of non-utilized numbers to the isolated vertices is very trivial.

Motivated by the concept of super edge-magic deficiency, we introduce a new deficiency for a graph without some of the above drawbacks, namely the star super edge-magic deficiency, $S\mu^*(G)$. We prove that $S\mu^*(G)$ is finite for several classes of graphs for which $\mu_s(G) = \infty$.

In this paper, we provide the exact values for the star super edge-magic deficiencies of several classes of graphs such as, cycles, nK_2 forests, nP_2 graphs, (n, 3)-kite graphs, and (n, 2)-kite graphs. We give an upper bound for the star super edge-magic deficiencies of kite graphs, ladder graphs, Mongolian tent graphs Mt_n when n is odd and triangular chain graphs TC_n when n is odd.

Figueroa-Centeno et al. [7] showed the following connection between the super edge-magic labeling and a special vertex labeling. This result characterizes super edge-magic graphs.

Lemma 1.1 ([7]). A (p,q) graph G is super edge-magic if and only if there exists a bijective function $f: V(G) \longrightarrow \{1, 2, ..., p\}$ such that the set $S = \{f(u) + f(v): uv \in E(G)\}$ consists of q consecutive integers. In such a case, f extends to a super edge-magic labeling of G with valence k = p + q + s, where $s = \min S$ and $S = \{k - (p + 1), k - (p + 2), ..., k - (p + q)\}$.

2. Main Results

Definition 2.1. Let G be a graph with p vertices with vertex set $V(G) = \{v_1, v_2, \ldots, v_p\}$. In G, every vertex v_i is identified to the center vertex of S_{m_i} , for some $m_i \ge 0, 1 \le i \le n$, where $S_0 = K_1$; this graph is denoted by $G_{(m_1,m_2,m_p)}$. Let $M(G) = \{(m_1,m_2,\ldots,m_p) | G_{(m_1,m_2,\ldots,m_p)} \text{ is a super edge-magic graph }\}$. The star super edge-magic deficiency $S\mu^*(G)$ is defined as

144

$$S\mu^{*}(G) = \begin{cases} \min_{(m_{1}, m_{2}, \dots, m_{p})} (m_{1} + m_{2} + \dots + m_{p}), & \text{if } M(G) \neq \emptyset, \\ +\infty, & \text{if } M(G) = \emptyset. \end{cases}$$

Remark. If G is super edge-magic, then $S\mu^*(G) = 0$.

In the next theorem, we show the exact value for the star super edge-magic deficiency for the forest nK_2 .

Theorem 2.2. The star super edge-magic deficiency of the forest nK_2 is given by

$$S\mu^*(nK_2) = \begin{cases} 0, & \text{if } n \text{ is odd,} \\ 1, & \text{if } n \text{ is even.} \end{cases}$$

Proof. The vertex set and edge set of the forest nK_2 are $V(nK_2) = \{x_i: 1 \le i \le n\} \cup \{y_i: 1 \le i \le n\}$ and $E(nK_2) = \{x_iy_i: 1 \le i \le n\}$, respectively. Kotzig and Rosa [12] showed that the forest nK_2 is super edgemagic if and only if n is odd. Therefore, $S\mu^*(nK_2) = 0$ when n is odd and $S\mu^*(nK_2) \ge 1$ when n is even. When n is even, we define the graph $G = (nK_2)_{(m_x_1, m_{x_2}, \dots, m_{x_n}, m_{y_1}, m_{y_2}, \dots, m_{y_n})}$, where

$$m_i = \begin{cases} 1, & \text{if } i = y_{\frac{n}{2}+1}, \\ 0, & \text{otherwise.} \end{cases}$$

The vertex set and edge set of G are $V(G) = \{x_i : 1 \le i \le n\} \cup \{y_i : 1 \le i \le n\} \cup \{s\}$ and $E(G) = \{x_i y_i : 1 \le i \le n\} \cup \{y_{(n/2)+1}s\}$, respectively. Consider the vertex labeling $f : V(G) \to \{1, 2, \ldots, 2n+1\}$ such that

•
$$f(x_i) = i, \quad 1 \le i \le n,$$

• $f(y_i) = \begin{cases} \frac{3n}{2} + i + 1, & \text{if } 1 \le i \le \frac{n}{2}, \\ \frac{n}{2} + i, & \text{if } \frac{n}{2} + 1 \le i \le n, \end{cases}$
• $f(s) = \frac{3n+2}{2}.$

The set of all edge sums generated by the above formula forms a consecutive integer sequence $(3n+4)/2, (3n+6)/2, \ldots, (5n+4)/2$. Therefore, by Lemma 1.1, f can be extended to a super edge-magic labeling with valence (9n/2)+4 and consequently, $S\mu^*(nK_2) \leq 1$. Therefore, we conclude that $S\mu^*(nK_2) = 1$, when n is even.

In the next theorem, we show the exact value for the star super edge-magic deficiency of the forest nP_2 where P_2 is a path of length 2.

Theorem 2.3. The star super edge-magic deficiency of the forest nP_2 is given by

$$S\mu^*(nP_2) = \begin{cases} 0, & \text{if } n \text{ is odd,} \\ 1, & \text{if } n \text{ is even.} \end{cases}$$

Proof. The vertex set and edge set of nP_2 are $V(nP_2) = \{x_i: 1 \leq i \leq i \leq i \}$ $n \} \cup \{y_i : 1 \le i \le n\} \cup \{z_i : 1 \le i \le n\}, \text{ and } E(nP_2) = \{x_i y_i : 1 \le i \le n\}$ $n \} \cup \{y_i z_i : 1 \le i \le n\}$, respectively. Chen [5] proved that the graph nP_2 is super edge-magic if and only if n is odd. Therefore, $S\mu^*(nP_2) = 0$ when n is odd and $S^*(nP_2) \ge 1$ when n is even. When n is even, we define the graph $G = (nP_2)_{(m_{x_1}, m_{x_2}, \dots, m_{x_n}, m_{y_1}, m_{y_2}, \dots, m_{y_n}, m_{z_1}, m_{z_2}, \dots, m_{z_n})}$, where

$$m_i = \begin{cases} 1, & \text{if } i = y_{\frac{n}{2}+1}, \\ 0, & \text{otherwise.} \end{cases}$$

The vertex set and edge set of G are $V(G) = \{x_i : 1 \le i \le n\} \cup \{y_i : 1 \le i \le n\}$ $n \cup \{z_i : 1 \le i \le n\} \cup \{s\}$, and $E(G) = \{x_i y_i : 1 \le i \le n\} \cup \{y_i z_i : 1 \le i \le n\}$ $n\} \cup \{y_{\frac{n}{2}+1}s\}.$

Consider the vertex labeling $f: V(G) \to \{1, 2, \dots, 2n+1\}$ such that

- $f(x_i) = i, 1 \le i \le n$,
- $f(x_i) = i, 1 \le i \le n,$ $f(y_i) = \frac{5n}{2} + 1 + i, 1 \le i \le \frac{n}{2},$ $f(y_i) = \frac{3n}{2} + i, \frac{n}{2} + 1 \le i \le n,$ $f(z_i) = n + i, 1 \le i \le n,$ $f(s) = \frac{5n+2}{2}.$

The set of all edge sums generated by the above formula forms a consecutive integer sequence $(5n+4)/2, (5n+6)/2, \ldots, (9n+4)/2$. Therefore, by Lemma 1.1, f can be extended to a super edge-magic labeling with valence (15n +8)/2. This shows that $S\mu^*(nP_2) \leq 1$. Therefore, $S\mu^*(nP_2) = 1$.

In the next theorem, we find the exact value for the star super edge-magic deficiency of the disconnected graph, $K_2 \cup C_n$.

Theorem 2.4. The star super edge-magic deficiency of the disconnected graph $K_2 \cup C_n$ is given by

$$S\mu^*(K_2 \cup C_n) = \begin{cases} 0, & \text{if } n \text{ is even,} \\ 1, & \text{if } n \text{ is odd.} \end{cases}$$

Proof. Let $G = K_2 \cup C_n$. The vertex set and edge set of G are V(G) = $\{v_i: 1 \le i \le n\} \cup \{u, w\}$ and $E(G) = \{v_i v_{i+1}: 1 \le i \le n-1\} \cup \{v_n v_1, uw\}.$ Kim and Park [11] proved that $K_2 \cup C_n$ is super edge-magic if and only if n is even. Hence $S\mu^*(G) = 0$ for n even and $S\mu^*(G) \ge 1$ for n odd. When n is odd, define $G^* = (G)_{(m_{v_1}, m_{v_2}, ..., m_{v_n}, m_u, m_w)}$, where

$$m_i = \begin{cases} 1, & \text{if } i = v_{n-2}, \\ 0, & \text{otherwise.} \end{cases}$$

The vertex set and edge set of G^* are $V(G^*) = \{v_i \colon 1 \le i \le n\} \cup \{u, w\} \cup \{s\}$ and $E(G^*) = \{v_i v_{i+1} : 1 \le i \le n-1\} \cup \{v_n v_1, uw\} \cup \{v_{n-2}s\}$. We label the vertices of G^* in the following manner,

• $f(u) = \frac{n+1}{2}, f(w) = n+3,$

•
$$f(x_i) = \begin{cases} \frac{i+1}{2}, & \text{if } i \text{ is odd and } i \le n-2, \\ \frac{n+3}{2}, & \text{if } i = n, \\ \frac{n+3+i}{2}, & \text{if } i \text{ is even.} \end{cases}$$

• $f(s) = n+2.$

The set of all edge sums generated by the above formula forms a set of n+1 consecutive integers $(n+5)/2, (n+7)/2, \ldots, (3n+7)/2$. Therefore, by Lemma 1.1, f can be extended to a super edge-magic labeling with valence (5n+15)/2. This shows that $S\mu^*(G) \leq 1$. Therefore, $S\mu^*(G) = 1$.

In the next theorem, we determine the exact value for the star super edge-magic deficiency of C_n .

Theorem 2.5. The star super edge-magic deficiency of the cycle C_n is given by

$$S\mu^*(C_n) = \begin{cases} 0, & \text{if } n \text{ is odd,} \\ 2, & \text{if } n \text{ is even.} \end{cases}$$

Proof. The vertex set and edge set of C_n are $V(C_n) = \{x_i: 1 \leq i \leq n\}$ and $E(C_n) = \{x_ix_{i+1}: 1 \leq i \leq n-1\} \cup \{x_nx_1\}$, respectively. Enomoto et al. [6] proved that C_n is super edge-magic if and only if n is odd. Hence $S\mu^*(C_n) = 0$ if n is odd and $S\mu^*(C_n) \geq 1$ if n is even. Thus, assume that nis even.

Case 1: : $n \equiv 0 \pmod{4}$.

Now we define the graph $G \equiv (C_n)_{(m_{x_1}, m_{x_2}, \dots, m_{x_n})}$, where

$$m_i = \begin{cases} 1, & \text{if } i = x_1, \\ 1, & \text{if } i = x_{\frac{n}{2}+2}, \\ 0, & \text{otherwise.} \end{cases}$$

The vertex set and edge set of G are $V(G) = \{x_i: 1 \le i \le n\} \cup \{s_1, s_2\}$ and $E(G) = \{x_i x_{i+1}: 1 \le i \le n-1\} \cup \{x_n x_1, x_1 s_1\} \cup \{x_{(n/2)+2} s_2\}$, respectively. We label the vertices of G in the following manner,

•
$$f(x_i) = \begin{cases} \frac{n}{2}, & \text{if } i = 1, \\ \frac{i-1}{2}, & \text{if } i \text{ is odd and } i > 1, \\ \frac{n+i}{2}, & \text{if } i \text{ is even and } 1 \le i \le \frac{n}{2}, \\ \frac{n+i+2}{2}, & \text{if } i \text{ is even and } \frac{n}{2} + 1 \le i \le n, \end{cases}$$

•
$$f(s_1) = n + 2, \\ \bullet f(s_2) = 3(\frac{n}{4} - 1) + 4.$$

The set of all edge sums generated by the above formula forms a consecutive integer sequence $(n+4)/2, (n+6)/2, \ldots, (3n+6)/2$. Therefore, by Lemma 1.1, f can be extended to a super edge-magic labeling with valence (5n+12)/2 and consequently, $S\mu^*(C_n) \leq 2$ when $n \equiv 0 \pmod{4}$. *Case* 2: $n \equiv 2 \pmod{4}$.

See Figure 1 for the labeling of $(C_6)_{(1,0,1,0,0,0)}$.

FIGURE 1. Labeling of $(C_6)_{(1,0,1,0,0,0)}$

Now consider n > 6. Define the graph $G \equiv (C_n)_{((m_{x_1}, m_{x_2}, \dots, m_{x_n}))}$, where

$$m_i = \begin{cases} 1, & \text{if } i = x_{\frac{n-8}{2}}, x_{\frac{n-2}{2}}, \\ 0, & \text{otherwise.} \end{cases}$$

The vertex set and edge set of G are $V(G) = \{x_i \colon 1 \leq i \leq n\} \cup \{s_1, s_2\}$ and $E(G) = \{x_i x_{i+1} \colon 1 \leq i \leq n\} \cup \{x_n x_1, x_{(n-8)/2} s_1\} \cup \{x_{(n-2)/2} s_2\},$ respectively. Consider the following labeling f of G.

•
$$f(x_i) = \begin{cases} \frac{i+1}{2}, & \text{if } i \text{ is odd and } 1 \le i \le n, \\ \frac{n+2+i}{2}, & \text{if } i \text{ is even and } 1 \le i \le \frac{n-4}{2}, \\ \frac{n+6+i}{2}, & \text{if } i \text{ is even and } \frac{n-4}{2} + 1 \le i \le n-1, \\ \frac{n+2}{2}, & \text{if } i = n. \end{cases}$$

•
$$f(s_1) = 3(\frac{n-2}{4} - 1) + 6, \\ \bullet \ f(s_2) = 3(\frac{n-2}{4} - 1) + 5. \end{cases}$$

The set of all edge sums generated by the above formula forms a consecutive integer sequence $(n+4)/2, (n+6)/2, \ldots, (3n+6)/2$. Therefore, by Lemma 1.1, f can be extended to a super edge-magic labeling with valence (5n+12)/2 and consequently, $S\mu^*(C_n) \leq 2$ when $n \equiv 2 \pmod{4}$. In both the cases $S\mu^*(C_n) \leq 2$. Kim and Park [11], proved that (n, 1)kite is super edge-magic if and only if n is odd. That is $(C_n)_{(1,0,0,\ldots,0)}$ is not super edge-magic if n is even. Therefore, $S\mu^*(C_n) = 2$, for n even.

In the next theorem, we prove an upper bound for the star super edgemagic deficiency of Fan graphs.

Theorem 2.6. The star super edge-magic deficiency of the fan graph F_n is given by

$$S\mu^*(F_n) \leq \begin{cases} \frac{n-1}{2}, & \text{if } n \text{ is odd,} \\ \frac{n-2}{2}, & \text{if } n \text{ is even.} \end{cases}$$

Proof. The vertex set and edge set of F_n are $V(F_n) = \{x_i : 1 \le i \le n\} \cup \{c\}$, and $E(F_n) = \{x_i x_{i+1} : 1 \le i \le n-1\} \cup \{cx_i : 1 \le i \le n\}$, respectively. *Case 1*: *n* is odd.

We define the graph $G = (F_n)_{(m_{x_1}, m_{x_2}, \dots, m_{x_n}, m_c)}$, where

$$m_i = \begin{cases} \frac{n-1}{2}, & \text{if } i = c, \\ 0, & \text{otherwise.} \end{cases}$$

The vertex set and edge set of G are $V(G) = \{x_i: 1 \le i \le n\} \cup \{c\} \cup \{s_i: 1 \le i \le (n-1)/2\}$. $E(G) = \{x_ix_{i+1}: 1 \le i \le n-1\} \cup \{cx_i: 1 \le i \le n\} \cup \{cs_i: 1 \le i \le \frac{n-1}{2}\}$, respectively. We label the vertices of G in the following manner,

•
$$f(x_i) = \begin{cases} \frac{i+1}{2}, & \text{if } i \text{ is odd,} \\ \frac{n+i+1}{2}, & \text{if } i \text{ is even,} \end{cases}$$

• $f(c) = \frac{3n+1}{2},$
• $f(s_i) = n+i, 1 \le i \le \frac{n-1}{2}.$

The set of all edge sums generated by the above formula forms a set of consecutive integers $\{(n+5)/2, (n+7)/2, \ldots, (6n)/2\}$. Therefore, by Lemma 1.1, f can be extended to a super edge-magic labeling with valence (9n+3)/2. This shows that $S\mu^*(F_n) \leq (n-1)/2$.

Case 2:
$$n$$
 is even.

We define the graph $G \cong (F_n)_{(m_1, m_2, \dots, m_n, m_c)}$, where

$$m_i = \begin{cases} \frac{n-2}{2}, & \text{if } i = c, \\ 0, & \text{otherwise} \end{cases}$$

The vertex set and edge set of G are $V(G) = \{x_i : 1 \le i \le n\} \cup \{c\} \cup \{s_i : 1 \le i \le \frac{n-2}{2}\}, E(G) = \{x_i x_{i+1} : 1 \le i \le n-1\} \cup \{cx_i : 1 \le i \le n\} \cup \{cs_i : 1 \le i \le \frac{n-2}{2}\}$, respectively. We label the vertices of G in the following manner,

•
$$f(x_i) = \begin{cases} \frac{i+1}{2}, & \text{if } i \text{ is odd,} \\ \frac{n+i}{2}, & \text{if } i \text{ is even,} \end{cases}$$

• $f(c) = \frac{3n}{2},$
• $f(s_i) = n+i, 1 \le i \le \frac{n-2}{2}.$

The set of all edge sums generated by the above formula forms a consecutive integer sequence $(n+4)/2, (n+6)/2, \ldots, (6n-2)/2$. Therefore, by Lemma 1.1, f can be extended to a super edge-magic labeling with valence 9n/2. This shows that $S\mu^*(F_n) \leq (n-2)/2$.

Open Problem. Verify whether equality holds in the above inequality.

The following theorem gives an upper bound for the star super edge-magic deficiency of Wheel graph.

Theorem 2.7. For n odd, the star super edge-magic deficiency of the Wheel graph W_n is given by $S\mu^*(W_n) \leq (n-1)/2$.

Proof. The vertex set and edge set of W_n are $V(W_n) = \{x_i : 1 \le i \le n\} \cup \{c\}, E(W_n) = \{x_i x_{i+1} : 1 \le i \le n-1\} \cup \{cx_i : 1 \le i \le n\} \cup \{x_n x_1\}$, respectively. Define the graph $G \cong (W_n)_{(m_{x_1}, m_{x_2}, \dots, m_{x_n}, m_c)}$, where

$$m_i = \begin{cases} \frac{n-1}{2}, & \text{if } i = c, \\ 0, & \text{otherwise.} \end{cases}$$

The vertex set and edge set of G are $V(G) = \{x_i : 1 \le i \le n\} \cup \{c\} \cup \{s_i : 1 \le i \le (n-1)/2\}$, $E(G) = \{x_i x_{i+1} : 1 \le i \le n-1\} \cup \{cx_i : 1 \le i \le n\}$ $\cup \{cs_i : 1 \le i \le (n-1)/2\} \cup \{x_n x_1\}$ respectively. We label the vertices of G in the following manner,

•
$$f(x_i) = \begin{cases} \frac{i+1}{2}, & \text{if } i \text{ is odd,} \\ \frac{n+i+1}{2}, & \text{if } i \text{ is even,} \end{cases}$$

• $f(c) = \frac{3n+1}{2},$
• $f(s_i) = n+i.$

The set of all edge sums generated by the above formula forms a consecutive integer sequence $(n+3)/2, (n+5)/2, \ldots, 6n/2$. Therefore, by Lemma 1.1, f can be extended to a super edge-magic labeling with valence (9n+3)/2. This shows that $S\mu^*(W_n) \leq (n-1)/2$ if n is odd.

In the next theorem, we show an upper bound for the super edge-magic deficiency of (n, t)-kite graph for odd n and for even t.

Theorem 2.8. Let G be the (n, t)-kite graph. If n is odd and t is even, then $S\mu^*(G) \leq t/2$.

Proof. Case 1: G = (3, t)-kite, t is even.

The vertex set and edge set of G is $V(G) = \{v_i : 1 \le i \le 3\} \cup \{u_i : 1 \le i \le t\}$ and $E(G) = \{v_i v_{i+1} : 1 \le i \le 2\} \cup \{v_3 v_1, v_1 u_t\} \cup \{u_i u_{i+1} : 1 \le i \le t-1\}$ respectively. Define $G^* = (G)_{(m_{v_1}, m_{v_2}, m_{v_3}, m_{u_1}, m_{u_2}, \dots, m_{u_t})}$, where

$$m_i = \begin{cases} \frac{t}{2}, & \text{if } i = v_1, \\ 0, & \text{otherwise.} \end{cases}$$

Let $v_1s_1, v_1s_2, v_1s_{t/2}$ be the edges of the star attached at v_1 . The labeling of G^* is

•
$$f(u_i) = \begin{cases} \frac{i+1}{2}, & \text{if } i \text{ is odd,} \\ \frac{t+i+2}{2}, & \text{if } i \text{ is even,} \end{cases}$$

• $f(v_i) = \begin{cases} \frac{t+i+1}{2}, & \text{if } i = 1, \\ t+2, & \text{if } i = 2, \\ t+3, & \text{if } i = 3, \end{cases}$
• $f(s_i) = t+3+i, \quad 1 \le i \le \frac{t}{2}.$

150

The set of all edge sums generated by the above formula forms a consecutive integer sequence $(t+6)/2, (t+8)/2, \ldots, (4t+10)/2$. Therefore, by Lemma 1.1, f can be extended to a super edge-magic labeling with valence (7t+18)/2. This shows that $S\mu^*((3,t)-\text{kite}) \leq t/2$. Case 2: G = (n,t)-kite, n > 3 and t is even.

The vertex set and edge set of (n, t)-kite are $V(G) = \{v_i : 1 \le i \le n\} \cup \{u_i : 1 \le i \le t\}, E(G) = \{v_i v_{i+1} : 1 \le i \le n-1\} \cup \{v_n v_1, v_1 u_t\} \cup \{u_i u_{i+1} : 1 \le i \le t-1\}$, respectively. Now, we define

$$G^* = ((n, t)-\text{kite})_{(m_{v_1}, m_{v_2}, \dots, m_{v_n}, m_{u_1}, m_{u_2}, \dots, m_{u_t})}$$

where

$$m_i = \begin{cases} \frac{t}{2}, & \text{if } i = v_{n-2}, \\ 0, & \text{otherwise.} \end{cases}$$

The vertex set and edge set of G^* are $V(G^*) = \{v_i: 1 \le i \le n\} \cup \{u_i: 1 \le i \le t\} \cup \{s_i: 1 \le i \le \frac{t}{2}\}, E(G^*) = \{v_iv_{i+1}: 1 \le i \le n-1\} \cup \{v_{n-2}s_i: 1 \le i \le \frac{t}{2}\} \cup \{v_nv_1, v_1u_t\} \cup \{u_iu_{i+1}: 1 \le i \le t-1\}$, respectively. We label the vertices of G^* in the following manner,

•
$$f(v_i) = \begin{cases} \frac{t+i+1}{2}, & \text{if } i \text{ is odd and } 1 \le i \le n-1, \\ \frac{n+2t+i+1}{2}, & \text{if } i \text{ is even}, \\ \frac{n+2t+1}{2}, & \text{if } i = n, \end{cases}$$

• $f(u_i) = \begin{cases} \frac{i+1}{2}, & \text{if } i \text{ is odd}, \\ \frac{n+t+i-1}{2}, & \text{if } i \text{ is even}, \end{cases}$
• $f(s_i) = n+t+i, \quad 1 \le i \le \frac{t}{2}.$

The set of all edge sums generated by the above formula forms a consecutive integer sequence (n + t + 3)/2, (n + t + 5)/2, ..., (3n + 4t + 1)/2. Therefore, by Lemma 1.1, f can be extended to a super edge-magic labeling with valence (5n + 7t + 3)/2. This shows that $S\mu^*((n, t)-\text{kite}) \leq t/2$.

Corollary 2.9. The star super edge-magic deficiency of the (n, 2)-kite is

$$S\mu^*((n,2)\text{-kite}) = \begin{cases} 0, & \text{if } n \text{ is even,} \\ 1, & \text{if } n \text{ is odd.} \end{cases}$$

Proof. The (n, 2)-kite is not super edge-magic if and only if n is even [14]. Hence $S\mu^*((n, 2)$ -kite) = 0 if n is even and $S\mu^*((n, 2)$ -kite) ≥ 1 if n is odd. Thus assume that n is even. By Theorem 2.9, $S\mu^*((n, 2)$ -kite) ≤ 1 . Therefore, $S\mu^*((n, 2)$ -kite) = 1.

In the next theorem we find the exact value for the star super edge-magic deficiency of the (n, 3)-kite.

Theorem 2.10. The star super edge-magic deficiency of the (n,3)-kite is given by

$$S\mu^*((n,3)\text{-kite}) = \begin{cases} 0, & \text{if } n \text{ is odd,} \\ 1, & \text{if } n \text{ is even.} \end{cases}$$

Proof. The vertex set and edge set of the (n,3)-kite are V((n,3)-kite) = $\{v_i: 1 \leq i \leq n\} \cup \{u_i: 1 \leq i \leq 3\}, E((n,3)$ -kite) = $\{v_iv_{i+1}: 1 \leq i \leq n-1\} \cup \{v_nv_1, v_1u_3\} \cup \{u_iu_{i+1}: 1 \leq i \leq 2\}$, respectively. Kim and Park [11] proved that the (n,3)-kite is super edge-magic if and only if n is odd. Hence $S\mu^*((n,3)$ -kite) = 0 if n is odd and $S\mu^*((n,3)$ -kite) ≥ 1 if n is even. Thus assume that n is even.

Case 1: $n \equiv 0 \pmod{4}$.

We define $G = ((n, 3)-\text{kite})_{(m_{v_1}, m_{v_2}, \dots, m_{v_n}, m_{u_1}, m_{u_2}, m_{u_2})}$ where

$$m_i = \begin{cases} 1, & \text{if } i = v_{\frac{n-2}{2}}, \\ 0, & \text{otherwise.} \end{cases}$$

The vertex set and edge set of G are $V(G) = \{v_i: 1 \le i \le n\} \cup \{u_i: 1 \le i \le 3\} \cup \{s_1\}, E(G) = \{v_iv_{i+1}: 1 \le i \le n-1\} \cup \{v_{(n-2)/2}s_1\} \cup \{v_nv_1, v_1u_3\} \cup \{u_iu_{i+1}: 1 \le i \le 2\}$, respectively. We label the vertices of G in the following manner,

•
$$f(v_i) = \begin{cases} \frac{i}{2} + 3, & \text{if } 1 \le i \le n - 1 \text{ and } i \text{ is even,} \\ \frac{n + 7 + i}{2}, & \text{if } 1 \le i \le \frac{n}{2} \text{ and } i \text{ is odd,} \\ \frac{n + 9 + i}{2}, & \text{if } \frac{n}{2} + 1 \le i \le n - 1 \text{ and } i \text{ is odd,} \\ 3, & \text{if } i = n, \end{cases}$$

•
$$f(u_i) = \begin{cases} \frac{i + 1}{2}, & \text{if } i = 1, 3, \\ \frac{n}{2} + 3, & \text{if } i = 2, \end{cases}$$

•
$$f(s_1) = \frac{3n + 16}{4}.$$

The set of all edge sums generated by the above formula forms a consecutive integer sequence $(n+8)/2, (n+10)/2, \ldots, (3n+14)/2$. Therefore, f can be extended to a super edge-magic labeling with valence (5n+24)/2. This shows that $S\mu^*((n,3)$ -kite) = 1.

Case 2: $n \equiv 2 \pmod{4}$.

The labeling of ((6, 3)-kite)_{(0,0,0,0,1)} is given in Figure 2. Now consider (n, 3)-kite, n > 6. We define

$$G = ((n, 3)-\text{kite})_{(m_{v_1}, m_{v_2}, \dots, m_{v_n}, m_{u_1}, m_{u_2}, m_{u_3})}$$

where

$$m_i = \begin{cases} 1, & \text{if } i = v_{\frac{n-8}{2}}, \\ 0, & \text{otherwise.} \end{cases}$$

The vertex set and edge set of G are $V(G) = \{v_i : 1 \le i \le n\} \cup \{u_i : 1 \le i \le 3\} \cup \{s_1\}, E(G) = \{v_i v_{i+1} : 1 \le i \le n-1\} \cup \{v_{(n-8)/2} s_1\} \cup \{v_n v_1, v_1 u_3\} \cup \{u_i u_{i+1} : 1 \le i \le 2\}$ respectively.

152

FIGURE 2. Labeling of ((6,3)-kite)_{(0,0,0,0,1)}

We label the vertices of G in the following manner,

$$\bullet \ f(v_i) = \begin{cases} \frac{n+i+9}{2}, & \text{if } 1 \le i \le \frac{n}{2} - 1 \text{ and } i \text{ is odd,} \\ \frac{n+i+11}{2}, & \text{if } \frac{n}{2} \le i \le \frac{n}{2} + 1 \text{ and } i \text{ is odd,} \\ \frac{i+5}{2}, & \text{if } \frac{n}{2} + 2 \le i \le n-1 \text{ and } i \text{ is odd,} \\ \frac{i+4}{2}, & \text{if } 1 \le i \le \frac{n}{2} + 1 \text{ and } i \text{ is even,} \\ \frac{n+10+i}{2}, & \text{if } \frac{n}{2} + 2 \le i \le n-1 \text{ and } i \text{ is even,} \\ \frac{n+8}{2}, & \text{if } i = n, \end{cases}$$
$$\bullet \ f(u_i) = \begin{cases} \frac{i+1}{2}, & \text{if } i = 1, 3, \\ \frac{n}{2} + 3, & \text{if } i = 2, \end{cases}$$
$$\bullet \ f(s_1) = \frac{3n+18}{4}. \end{cases}$$

The set of all edge sums generated by the above formula forms a consecutive integers $\{(n+8)/2, (n+10)/2, \ldots, (3n+14)/2\}$. Therefore, by Lemma 1.1, f can be extended to a super edge-magic labeling with valence (5n+24)/2. This shows that $S\mu^*((n,3)-\text{kite}) = 1$.

In the next theorem we show that $S\mu^*(L_n) \leq 1$.

Theorem 2.11. For n even, the star super edge-magic deficiency of the ladder graph L_n is $S\mu^*(L_n) \leq 1$.

Proof. The vertex set and edge set of L_n are $V(L_n) = \{v_i, u_i : 1 \le i \le n\}$ and $E(L_n) = \{u_i u_{i+1}, v_i v_{i+1} : 1 \le i \le n-1\} \cup \{v_i u_i : 1 \le i \le n\}$, respectively. Now we define $G = (L_n)_{(m_{v_1}, m_{v_2}, \dots, m_{v_n}, m_{u_1}, m_{u_2}, \dots, m_{u_n})}$ where

$$m_i = \begin{cases} 1, & \text{if } i = u_2, \\ 0, & \text{otherwise} \end{cases}$$

The vertex set and edge set of G are $V(G) = \{v_i, u_i : 1 \le i \le n\} \cup \{s_1\}$ and $E(G) = \{u_i u_{i+1}, v_i v_{i+1} : 1 \le i \le n-1\} \cup \{v_i u_i : 1 \le i \le n\} \cup \{u_2 s_1\}$, respectively. We label the vertices of G in the following manner,

•
$$f(v_i) = \begin{cases} i, & \text{if } 1 \le i \le \frac{n}{2} \text{ and } i \text{ is odd,} \\ \frac{4i-n}{2}, & \text{if } \frac{n}{2}+1 \le i \le n \text{ and } i \text{ is odd,} \\ \frac{4i+n+2}{2}, & \text{if } 1 \le i \le \frac{n}{2} \text{ and } i \text{ is even,} \\ n+1+i, & \text{if } \frac{n}{2}+1 \le i \le n \text{ and } i \text{ is even,} \end{cases}$$
•
$$f(u_i) = \begin{cases} i, & \text{if } 1 \le i \le \frac{n}{2} \text{ and } i \text{ is even,} \\ \frac{4i-n}{2}, & \text{if } \frac{n}{2}+1 \le i \le n \text{ and } i \text{ is even,} \\ \frac{4i+n+2}{2}, & \text{if } 1 \le i \le \frac{n}{2} \text{ and } i \text{ is even,} \end{cases}$$
•
$$f(u_i) = \begin{cases} i, & \text{if } 1 \le i \le \frac{n}{2} \text{ and } i \text{ is even,} \\ \frac{4i+n+2}{2}, & \text{if } 1 \le i \le n \text{ and } i \text{ is odd,} \\ n+1+i, & \text{if } \frac{n}{2}+1 \le i \le n \text{ and } i \text{ is odd,} \end{cases}$$
•
$$f(s_1) = \frac{n+2}{2}.$$

The set of all edge sums generated by the above formula forms a set of consecutive integers $\{(n+6)/2, (n+8)/2, \ldots, (7n+2)/2\}$. Therefore, by Lemma 1.1, f can be extended to a super edge-magic labeling with valence (11n+6)/2. This shows that $S\mu^*(L_n) \leq 1$, when n is even.

Open Problem. Prove that the same bound holds when n is odd.

The following theorem gives an upper bound for the star super edge-magic deficiency of the Mongolian tent graph.

Theorem 2.12. The star super edge-magic deficiency of the Mongolian tent graph Mt_n , for n odd, is bounded by $S\mu^*(Mt_n) \leq (n-3)/2$.

Proof. The vertex set and edge set of Mt_n are $V(Mt_n) = \{v_i, u_i : 1 \le i \le n\} \cup \{u\}$ and $E(Mt_n) = \{v_iv_{i+1}, u_iu_{i+1} : 1 \le i \le n-1\} \cup \{uu_i, u_iv_i : 1 \le i \le n\}$, respectively. Let n be any odd non-negative integer. According to Lemma 1.1, it is sufficient to prove that there is a vertex labeling with the property that the edge sums under this labeling are consecutive integers. Define $G = (Mt_n)_{(m_{u_1}, m_{u_2}, \dots, m_{u_n}, m_{v_1}, m_{v_2}, \dots, m_{v_n}, m_u)}$, where

$$m_i = \begin{cases} \frac{n-3}{2}, & \text{if } i = u, \\ 0, & \text{otherwise.} \end{cases}$$

The vertex set and edge set of G is $V(G) = \{v_i, u_i : 1 \le i \le n\} \cup \{u\} \cup \{s_i : 1 \le i \le (n-3)/2\}$. and $E(G) = \{u_i u_{i+1}, v_i v_{i+1} : 1 \le i \le n-1\} \cup \{v_i u_i, uu_i : 1 \le i \le n\} \cup \{us_i : 1 \le i \le (n-3)/2\}$, respectively. We label the vertices of G in the following manner,

• $f(v_i) = \begin{cases} \frac{i+1}{2}, & \text{if } 1 \le i \le n \text{ and } i \text{ is odd,} \\ \frac{n+i+1}{2}, & \text{if } 1 \le i \le n \text{ and } i \text{ is even,} \end{cases}$ • $f(u_i) = \begin{cases} \frac{3n+i}{2}, & \text{if } 1 \le i \le n \text{ and } i \text{ is odd,} \\ \frac{2n+i}{2}, & \text{if } 1 \le i \le n \text{ and } i \text{ is even,} \end{cases}$ • $f(u) = \frac{5n-1}{2}.$ The vertices s_i under the labeling f are labeled by $f(s_i) = 2n + i$, for $1 \le i \le (n-3)/2$. The edge sums form a consecutive integer sequence $(n + 5)/2, (n+7)/2, \ldots, (10n-4)/2$. Therefore, by Lemma 1.1, f can be extended to a super edge-magic labeling with valence (15n-3)/2. This shows that $S\mu^*(Mt_n) \le (n-3)/2$.

Open Problem. Prove that the above upper bound is (n-2)/2 when n is even.

The following theorem gives an upper bound for the star super edge-magic deficiency of the triangular chain graph.

Theorem 2.13. For n odd, the star super edge-magic deficiency of the triangular chain graph, TC_n , is $S\mu^*(TC_n) \leq \lfloor n/2 \rfloor$.

Proof. The vertex set and edge set of TC_n are $V(TC_n) = \{v_i : 1 \le i \le 2n\} \cup \{u_i : 1 \le i \le n\}, E(TC_n) = \{v_i v_{i+1} : 1 \le i \le 2n-1\} \cup \{u_i v_{2i-1}, u_i v_{2i} : 1 \le i \le n\}$, respectively. We define $G = (TC_n)_{(m_{u_1}, m_{u_2}, \dots, m_{u_n}, m_{v_1}, m_{v_2}, \dots, m_{v_{2n}})}$, where,

$$m_i = \begin{cases} \lfloor \frac{n}{2} \rfloor, & \text{if } i = u_n, \\ 0, & \text{otherwise.} \end{cases}$$

The vertex set and edge set of G are $V(G) = \{v_i: 1 \le i \le 2n\} \cup \{u_i: 1 \le i \le n\} \cup \{s_i: 1 \le i \le \lfloor n/2 \rfloor\}$ and $E(G) = \{v_i v_{i+1}: 1 \le i \le 2n-1\} \cup \{u_i v_{2i-1}, u_i v_{2i}: 1 \le i \le n\} \cup \{u_n s_i: 1 \le i \le \lfloor n/2 \rfloor\}$ respectively. We label the vertices of G in the following manner,

• $f(v_{2i-1}) = i$ and $f(v_{2i}) = n + i$, for $1 \le i \le n$, • $f(u_i) = \begin{cases} 3n+i, & \text{if } 1 \le i \le \lfloor \frac{n}{2} \rfloor, \\ 2n+i, & \text{if } \lfloor \frac{n}{2} + 1 \rfloor \le i \le n. \end{cases}$

The vertices s_i are labeled by $f(s_i) = 2n + i$, for $1 \le i \le \lfloor n/2 \rfloor$. The set of all edge sums generated by the above formula forms a consecutive integer sequence $(2n+4)/2, (2n+6)/2, \ldots, (11n-1)/2$. Therefore, by Lemma 1.1, fcan be extended to a super edge-magic labeling with valence $8n+1+2\lfloor n/2 \rfloor$. Hence G admits a super edge-magic labeling. This shows that $S\mu^*(TC_n) \le \lfloor n/2 \rfloor$. \Box

Acknowledgement

We thank the referee for his/her helpful comments.

References

- B.D. Acharya and S.M. Hegde, Strongly indexable graphs, Discrete Mathematics 93 (1991), 123–129.
- A. Ahmad, I. Javaid, and M.F. Nadeem, Further results on super edge-magic deficiency of unicyclic graphs, Ars Combin. 99 (2011), 129–138.
- 3. A. Ahmad, I. Javaid, M.F. Nadeem, and R. Hasni, On the super edge-magic deficiency of some families related to ladder graphs, Australas. J. Combin. 51 (2011), 201–208.

- 4. A. Ahmad and F.A. Muntaner-Batle, On super edge-magic deficiency of unicyclic graphs, Preprint.
- Z. Chen, On super edge-magic graphs, J. Combin. Math. Combin. Comput. 38 (2001), 55–64.
- H. Enomoto, A. Lladó, T. Nakamigawa, and G. Ringel, Super edge-magic graphs, SUT J. Math. 34 (1998), 105–109.
- R.M. Figueroa-centeno, R. Ichishima, and F.A. Muntaner-Batle, The place of super edge-magic labeling among other classes of labeling, Discrete Math. 231 (2001), 153– 168.
- 8. _____, On the super edge-magic deficiency of graphs, Electron. Notes Discrete Math. 11 (2002).
- 9. _____, On the super edge-magic deficiency of graphs, Ars Combin. 78 (2006), 33-45.
- J.A. Gallian, A dynamic survey of graph labeling, Electron. J. Combine. 16 (2009), #DS6.
- S.R. Kim and J.Y. Park, On super edge-magic graphs, Ars Combin. 81 (2006), 113– 127.
- A. Kotzig and A. Rosa, Magic valuations of finite graphs, Canad. Math. Bull. 13 (1970), 451–460.
- 13. M.F. Nadeem and M.K. Siddiqui, New results on super edge-magic deficiency of kite graphs, To appear in AKCE.
- 14. W.D. Wallis, Magic graphs, Birkhauser, Boston, 2001.

CENTRE FOR RESEARCH AND POST GRADUATE STUDIES IN MATHEMATICS AYYA NADAR JANAKI AMMAL COLLEGE SIVAKASI,TAMIL NADU,INDIA *E-mail address*: kathir2esan@yahoo.com

Centre for Research and Post Graduate Studies in Mathematics Ayya Nadar Janaki Ammal College Sivakasi, Tamil Nadu, India *E-mail address*: sabarimala591@gmail.com