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STAR SUPER EDGE-MAGIC DEFICIENCY OF GRAPHS

KM. KATHIRESAN AND S. SABARIMALAI MADHA

Abstract. A graph G is called edge-magic if there is a bijective func-
tion f : V (G) ∪ E(G)→ {1, 2, . . . , |V (G)|+ |E(G)|} such that for every
edge xy ∈ E(G), f(x) + f(xy) + f(y) = c is a constant, called the
valence of f. A graph G is said to be super edge-magic if f(V (G)) =
{1, 2, . . . , |V (G)|}. Let G be a graph with p vertices with V (G) = {v1, v2,
. . . , vp} and let Sm be the star with m leaves. If in G, every vertex vi is
identified to the center vertex of Smi , for some mi ≥ 0, 1 ≤ i ≤ n, where
S0 = K1, then the graph obtained is denoted by G(m1,m2,...,mp). Let
M(G) = {(m1,m2, . . . ,mp)|G(m1,m2,...,mp) is a super edge-magic graph
}. The star super edge-magic deficiency Sµ∗(G) is defined as

Sµ∗(G) =

{
min(m1,,m2,...,mp)(m1 +m2 + · · ·+mp), if M(G) 6= ∅,
+∞, if M(G) = ∅.

In this paper we determine the star super edge-magic deficiency of cer-
tain classes of graphs.

1. Introduction

In 1970, Kotzig and Rosa [12] introduced the concept of edge-magic la-
beling using a different name: magic valuations. Meanwhile, the super edge-
magic labeling was introduced by Enomoto et al. [6]. In [12], Kotzig and
Rosa proved that for every graph G there exists an edge-magic graph H such
that H ∼= G∪nK1 for some non-negative integer n. This fact motivates the
emergence of the concept of the edge-magic deficiency of a graph.

The edge-magic deficiency µ(G) of a graphG is the minimum non-negative
integer n such that G∪nK1 has an edge-magic labeling. Motivated by Kotzig
and Rosa’s concept of edge-magic deficiency, Figueroa-Centeno et al. [8] de-
fined a similar concept for the super edge-magic labeling.

The super edge-magic deficiency µs(G) of a graph G is the minimum non-
negative integer n such that G∪nK1 has a super edge-magic labeling or +∞
if there exists no such n. Figueroa-Centeno et al. [8] provided the exact val-
ues for the super edge-magic deficiencies of several classes of graphs, such as,
cycles, some classes of forests and complete bipartite graphs Km,n. Ahmad et
al. [3] provided the exact values for super edge-magic deficiencies of graphs,
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(n, 1)− kite graphs, (n, 3)−kite graphs, K2∪Cn when n ≡ 1 (mod 4) . They
also provided the upper bound of the super edge-magic deficiency of K2∪Cn

when n ≡ 3 (mod 4) . Nadeem et al. [13] provided the upper bound for the
super edge-magic deficiencies of kite graphs. Ahmad et al. [3] provided the
upper bound for the super edge-magic deficiencies of ladder graphs. Acharya
and Hegde introduced the concept of strongly indexable graph that is equiv-
alent to the concept of super edge-magic graph [1]. For further details, see
[10].

We observe some drawbacks of the super edge-magic deficiency of a graph.

• For several graphs, µs(G) =∞.
• To find µs(G), we construct a disconnected graph with large number

of components (consisting of isolated vertices) having a super edge-
magic labeling.
• The distribution of non-utilized numbers to the isolated vertices is

very trivial.

Motivated by the concept of super edge-magic deficiency, we introduce a
new deficiency for a graph without some of the above drawbacks, namely
the star super edge-magic deficiency, Sµ∗(G). We prove that Sµ∗(G) is finite
for several classes of graphs for which µs(G) =∞.

In this paper, we provide the exact values for the star super edge-magic
deficiencies of several classes of graphs such as, cycles, nK2 forests , nP2

graphs, (n, 3)-kite graphs, and (n, 2)-kite graphs. We give an upper bound
for the star super edge-magic deficiencies of kite graphs, ladder graphs, Mon-
golian tent graphs Mtn when n is odd and triangular chain graphs TCn when
n is odd.

Figueroa-Centeno et al. [7] showed the following connection between the
super edge-magic labeling and a special vertex labeling. This result charac-
terizes super edge-magic graphs.

Lemma 1.1 ([7]). A (p, q) graph G is super edge-magic if and only if there
exists a bijective function f : V (G) −→ {1, 2, . . . , p} such that the set S =
{f(u)+f(v) : uv ∈ E(G)} consists of q consecutive integers. In such a case,
f extends to a super edge-magic labeling of G with valence k = p + q + s,
where s = minS and S = {k − (p+ 1), k − (p+ 2), . . . , k − (p+ q)}.

2. Main Results

Definition 2.1. Let G be a graph with p vertices with vertex set V (G) =
{v1, v2, . . . , vp}. In G, every vertex vi is identified to the center vertex of
Smi, for some mi ≥ 0, 1 ≤ i ≤ n, where S0 = K1; this graph is denoted
by G(m1,m2,,mp). Let M(G) = {(m1,m2, ...,mp)|G(m1,m2,...,mp) is a super
edge-magic graph }. The star super edge-magic deficiency Sµ∗(G) is defined
as
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Sµ∗(G) =

{
min(m1,m2,...,mp)(m1 +m2 + · · ·+mp), if M(G) 6= ∅,
+∞, if M(G) = ∅.

Remark. If G is super edge-magic, then Sµ∗(G) = 0.

In the next theorem, we show the exact value for the star super edge-magic
deficiency for the forest nK2.

Theorem 2.2. The star super edge-magic deficiency of the forest nK2 is
given by

Sµ∗(nK2) =

{
0, if n is odd,

1, if n is even.

Proof. The vertex set and edge set of the forest nK2 are V (nK2) = {xi : 1 ≤
i ≤ n} ∪ {yi : 1 ≤ i ≤ n} and E(nK2) = {xiyi : 1 ≤ i ≤ n}, respec-
tively. Kotzig and Rosa [12] showed that the forest nK2 is super edge-
magic if and only if n is odd. Therefore, Sµ∗(nK2) = 0 when n is odd
and Sµ∗(nK2) ≥ 1 when n is even. When n is even, we define the graph
G = (nK2)(mx1 ,mx2 ,...,mxn ,my1 ,my2 ,...,myn )

, where

mi =

{
1, if i = yn

2
+1,

0, otherwise.

The vertex set and edge set of G are V (G) = {xi : 1 ≤ i ≤ n} ∪ {yi : 1 ≤ i ≤
n}∪{s} and E(G) = {xiyi : 1 ≤ i ≤ n}∪{y(n/2)+1s}, respectively. Consider
the vertex labeling f : V (G)→ {1, 2, . . . , 2n+ 1} such that

• f(xi) = i, 1 ≤ i ≤ n,

• f(yi) =

{
3n
2 + i+ 1, if 1 ≤ i ≤ n

2 ,
n
2 + i, if n

2 + 1 ≤ i ≤ n,
• f(s) = 3n+2

2 .

The set of all edge sums generated by the above formula forms a consecutive
integer sequence (3n+4)/2, (3n+6)/2, . . . , (5n+4)/2. Therefore, by Lemma
1.1, f can be extended to a super edge-magic labeling with valence (9n/2)+4
and consequently, Sµ∗(nK2) ≤ 1. Therefore, we conclude that Sµ∗(nK2) =
1, when n is even. �

In the next theorem, we show the exact value for the star super edge-magic
deficiency of the forest nP2 where P2 is a path of length 2.

Theorem 2.3. The star super edge-magic deficiency of the forest nP2 is
given by

Sµ∗(nP2) =

{
0, if n is odd,

1, if n is even.
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Proof. The vertex set and edge set of nP2 are V (nP2) = {xi : 1 ≤ i ≤
n} ∪ {yi : 1 ≤ i ≤ n} ∪ {zi : 1 ≤ i ≤ n}, and E(nP2) = {xiyi : 1 ≤ i ≤
n} ∪ {yizi : 1 ≤ i ≤ n}, respectively. Chen [5] proved that the graph nP2

is super edge-magic if and only if n is odd. Therefore, Sµ∗(nP2) = 0 when
n is odd and S∗(nP2) ≥ 1 when n is even. When n is even, we define the
graph G = (nP2)(mx1 ,mx2 ,...,mxn ,my1 ,my2 ,...,myn ,mz1 ,mz2 ,...,mzn )

, where

mi =

{
1, if i = yn

2
+1,

0, otherwise.

The vertex set and edge set of G are V (G) = {xi : 1 ≤ i ≤ n} ∪ {yi : 1 ≤ i ≤
n} ∪ {zi : 1 ≤ i ≤ n} ∪ {s}, and E(G) = {xiyi : 1 ≤ i ≤ n} ∪ {yizi : 1 ≤ i ≤
n} ∪ {yn

2
+1s}.

Consider the vertex labeling f : V (G)→ {1, 2, . . . , 2n+ 1} such that

• f(xi) = i, 1 ≤ i ≤ n,
• f(yi) = 5n

2 + 1 + i, 1 ≤ i ≤ n
2 ,

• f(yi) = 3n
2 + i, n2 + 1 ≤ i ≤ n,

• f(zi) = n+ i, 1 ≤ i ≤ n,
• f(s) = 5n+2

2 .

The set of all edge sums generated by the above formula forms a consecutive
integer sequence (5n+4)/2, (5n+6)/2, . . . , (9n+4)/2. Therefore, by Lemma
1.1, f can be extended to a super edge-magic labeling with valence (15n +
8)/2. This shows that Sµ∗(nP2) ≤ 1. Therefore, Sµ∗(nP2) = 1. �

In the next theorem, we find the exact value for the star super edge-magic
deficiency of the disconnected graph, K2 ∪ Cn .

Theorem 2.4. The star super edge-magic deficiency of the disconnected
graph K2 ∪ Cn is given by

Sµ∗(K2 ∪ Cn) =

{
0, if n is even,

1, if n is odd.

Proof. Let G = K2 ∪ Cn. The vertex set and edge set of G are V (G) =
{vi : 1 ≤ i ≤ n} ∪ {u,w} and E(G) = {vivi+1 : 1 ≤ i ≤ n− 1} ∪ {vnv1, uw}.
Kim and Park [11] proved that K2 ∪Cn is super edge-magic if and only if n
is even. Hence Sµ∗(G) = 0 for n even and Sµ∗(G) ≥ 1 for n odd. When n
is odd, define G∗ = (G)(mv1 ,mv2 ,...,mvn ,mu,mw), where

mi =

{
1, if i = vn−2,

0, otherwise.

The vertex set and edge set of G∗ are V (G∗) = {vi : 1 ≤ i ≤ n}∪{u,w}∪{s}
and E(G∗) = {vivi+1 : 1 ≤ i ≤ n− 1} ∪ {vnv1, uw} ∪ {vn−2s}. We label the
vertices of G∗ in the following manner,

• f(u) = n+1
2 , f(w) = n+ 3,
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• f(xi) =


i+1
2 , if i is odd and i ≤ n− 2,

n+3
2 , if i = n,

n+3+i
2 , if i is even.

• f(s) = n+ 2.

The set of all edge sums generated by the above formula forms a set of
n+1 consecutive integers (n+ 5)/2, (n+ 7)/2, . . . , (3n+ 7)/2. Therefore, by
Lemma 1.1, f can be extended to a super edge-magic labeling with valence
(5n+ 15)/2. This shows that Sµ∗(G) ≤ 1. Therefore, Sµ∗(G) = 1. �

In the next theorem, we determine the exact value for the star super
edge-magic deficiency of Cn .

Theorem 2.5. The star super edge-magic deficiency of the cycle Cn is given
by

Sµ∗(Cn) =

{
0, if n is odd,

2, if n is even.

Proof. The vertex set and edge set of Cn are V (Cn) = {xi : 1 ≤ i ≤ n}
and E(Cn) = {xixi+1 : 1 ≤ i ≤ n − 1} ∪ {xnx1}, respectively. Enomoto et
al. [6] proved that Cn is super edge-magic if and only if n is odd. Hence
Sµ∗(Cn) = 0 if n is odd and Sµ∗(Cn) ≥ 1 if n is even. Thus, assume that n
is even.
Case 1 : : n ≡ 0 (mod 4).

Now we define the graph G ≡ (Cn)(mx1 ,mx2 ,...,mxn )
, where

mi =


1, if i = x1,

1, if i = xn
2
+2,

0, otherwise.

The vertex set and edge set of G are V (G) = {xi : 1 ≤ i ≤ n} ∪ {s1, s2}
and E(G) = {xixi+1 : 1 ≤ i ≤ n − 1} ∪ {xnx1, x1s1} ∪ {x(n/2)+2s2},
respectively. We label the vertices of G in the following manner,

• f(xi) =


n
2 , if i = 1,
i−1
2 , if i is odd and i > 1,

n+i
2 , if i is even and 1 ≤ i ≤ n

2 ,
n+i+2

2 , if i is even and n
2 + 1 ≤ i ≤ n,

• f(s1) = n+ 2,
• f(s2) = 3(n4 − 1) + 4.

The set of all edge sums generated by the above formula forms a con-
secutive integer sequence (n+ 4)/2, (n+ 6)/2, . . . , (3n+ 6)/2. Therefore,
by Lemma 1.1, f can be extended to a super edge-magic labeling with
valence (5n+12)/2 and consequently, Sµ∗(Cn) ≤ 2 when n ≡ 0 (mod 4) .

Case 2 : n ≡ 2 (mod 4).
See Figure 1 for the labeling of (C6)(1,0,1,0,0,0).
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Figure 1. Labeling of (C6)(1,0,1,0,0,0)

Now consider n > 6. Define the graphG ≡ (Cn)((mx1 ,mx2 ,...,mxn )
, where

mi =

{
1, if i = xn−8

2
, xn−2

2
,

0, otherwise.

The vertex set and edge set of G are V (G) = {xi : 1 ≤ i ≤ n} ∪ {s1, s2}
and E(G) = {xixi+1 : 1 ≤ i ≤ n} ∪ {xnx1, x(n−8)/2s1} ∪ {x(n−2)/2s2},
respectively. Consider the following labeling f of G.

• f(xi) =


i+1
2 , if i is odd and 1 ≤ i ≤ n,

n+2+i
2 , if i is even and 1 ≤ i ≤ n−4

2 ,
n+6+i

2 , if i is even and n−4
2 + 1 ≤ i ≤ n− 1,

n+2
2 , if i = n.

• f(s1) = 3(n−2
4 − 1) + 6,

• f(s2) = 3(n−2
4 − 1) + 5.

The set of all edge sums generated by the above formula forms a con-
secutive integer sequence (n+ 4)/2, (n+ 6)/2, . . . , (3n+ 6)/2. Therefore,
by Lemma 1.1, f can be extended to a super edge-magic labeling with
valence (5n+12)/2 and consequently, Sµ∗(Cn) ≤ 2 when n ≡ 2 (mod 4).
In both the cases Sµ∗(Cn) ≤ 2. Kim and Park [11], proved that (n, 1)-
kite is super edge-magic if and only if n is odd. That is (Cn)(1,0,0,..,0) is
not super edge-magic if n is even. Therefore, Sµ∗(Cn) = 2, for n even.

�

In the next theorem, we prove an upper bound for the star super edge-
magic deficiency of Fan graphs.

Theorem 2.6. The star super edge-magic deficiency of the fan graph Fn is
given by

Sµ∗(Fn) ≤

{
n−1
2 , if n is odd,

n−2
2 , if n is even.



STAR SUPER EDGE-MAGIC DEFICIENCY OF GRAPHS 149

Proof. The vertex set and edge set of Fn are V (Fn) = {xi : 1 ≤ i ≤ n}∪{c},
and E(Fn) = {xixi+1 : 1 ≤ i ≤ n− 1} ∪ {cxi : 1 ≤ i ≤ n}, respectively.
Case 1 : n is odd.

We define the graph G = (Fn)(mx1 ,mx2 ,...,mxn ,mc), where

mi =

{
n−1
2 , if i = c,

0, otherwise.

The vertex set and edge set of G are V (G) = {xi : 1 ≤ i ≤ n} ∪ {c} ∪
{si : 1 ≤ i ≤ (n− 1)/2}. E(G) = {xixi+1 : 1 ≤ i ≤ n− 1} ∪ {cxi : 1 ≤ i ≤
n} ∪ {csi : 1 ≤ i ≤ n−1

2 }, respectively. We label the vertices of G in the
following manner,

• f(xi) =

{
i+1
2 , if i is odd,

n+i+1
2 , if i is even,

• f(c) = 3n+1
2 ,

• f(si) = n+ i, 1 ≤ i ≤ n−1
2 .

The set of all edge sums generated by the above formula forms a set
of consecutive integers {(n+ 5)/2, (n+ 7)/2, . . . , (6n)/2}. Therefore, by
Lemma 1.1, f can be extended to a super edge-magic labeling with va-
lence (9n+ 3)/2. This shows that Sµ∗(Fn) ≤ (n− 1)/2.

Case 2 : n is even.
We define the graph G ∼= (Fn)(m1,m2,...,mn,mc), where

mi =

{
n−2
2 , if i = c,

0, otherwise.

The vertex set and edge set of G are V (G) = {xi : 1 ≤ i ≤ n} ∪ {c} ∪
{si : 1 ≤ i ≤ n−2

2 }, E(G) = {xixi+1 : 1 ≤ i ≤ n − 1} ∪ {cxi : 1 ≤ i ≤
n} ∪ {csi : 1 ≤ i ≤ n−2

2 }, respectively. We label the vertices of G in the
following manner,

• f(xi) =

{
i+1
2 , if i is odd,

n+i
2 , if i is even,

• f(c) = 3n
2 ,

• f(si) = n+ i, 1 ≤ i ≤ n−2
2 .

The set of all edge sums generated by the above formula forms a con-
secutive integer sequence (n+ 4)/2, (n+ 6)/2, . . . , (6n− 2)/2. Therefore,
by Lemma 1.1, f can be extended to a super edge-magic labeling with
valence 9n/2. This shows that Sµ∗(Fn) ≤ (n− 2)/2.

�

Open Problem. Verify whether equality holds in the above inequality.

The following theorem gives an upper bound for the star super edge-magic
deficiency of Wheel graph.
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Theorem 2.7. For n odd, the star super edge-magic deficiency of the Wheel
graph Wn is given by Sµ∗(Wn) ≤ (n− 1)/2.

Proof. The vertex set and edge set of Wn are V (Wn) = {xi : 1 ≤ i ≤ n}∪{c},
E(Wn) = {xixi+1 : 1 ≤ i ≤ n− 1} ∪ {cxi : 1 ≤ i ≤ n} ∪ {xnx1}, respectively.
Define the graph G ∼= (Wn)(mx1 ,mx2 ,...,mxn ,mc), where

mi =

{
n−1
2 , if i = c,

0, otherwise.

The vertex set and edge set of G are V (G) = {xi : 1 ≤ i ≤ n}∪{c}∪{si : 1 ≤
i ≤ (n− 1)/2}, E(G) = {xixi+1 : 1 ≤ i ≤ n− 1} ∪ {cxi : 1 ≤ i ≤ n}
∪ {csi : 1 ≤ i ≤ (n− 1)/2} ∪ {xnx1} respectively. We label the vertices of G
in the following manner,

• f(xi) =

{
i+1
2 , if i is odd,

n+i+1
2 , if i is even,

• f(c) = 3n+1
2 ,

• f(si) = n+ i.

The set of all edge sums generated by the above formula forms a consecutive
integer sequence (n + 3)/2, (n + 5)/2, . . . , 6n/2. Therefore, by Lemma 1.1,
f can be extended to a super edge-magic labeling with valence (9n + 3)/2.
This shows that Sµ∗(Wn) ≤ (n− 1)/2 if n is odd. �

In the next theorem, we show an upper bound for the super edge-magic
deficiency of (n, t)−kite graph for odd n and for even t.

Theorem 2.8. Let G be the (n, t)-kite graph. If n is odd and t is even, then
Sµ∗(G) ≤ t/2.

Proof. Case 1 : G = (3, t)-kite, t is even.
The vertex set and edge set of G is V (G) = {vi : 1 ≤ i ≤ 3}∪{ui : 1 ≤

i ≤ t} and E(G) = {vivi+1 : 1 ≤ i ≤ 2} ∪ {v3v1, v1ut} ∪ {uiui+1 : 1 ≤ i ≤
t− 1} respectively. Define G∗ = (G)(mv1 ,mv2 ,mv3 ,mu1 ,mu2 ,...,mut )

, where

mi =

{
t
2 , if i = v1,

0, otherwise.

Let v1s1, v1s2, v1st/2 be the edges of the star attached at v1. The labeling
of G∗ is

• f(ui) =

{
i+1
2 , if i is odd,

t+i+2
2 , if i is even,

• f(vi) =


t+i+1

2 , if i = 1,

t+ 2, if i = 2,

t+ 3, if i = 3,

• f(si) = t+ 3 + i, 1 ≤ i ≤ t
2 .
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The set of all edge sums generated by the above formula forms a con-
secutive integer sequence (t+ 6)/2, (t+ 8)/2, . . . , (4t+ 10)/2. Therefore,
by Lemma 1.1, f can be extended to a super edge-magic labeling with
valence (7t+ 18)/2. This shows that Sµ∗((3, t)-kite) ≤ t/2.

Case 2 : G = (n, t)-kite, n > 3 and t is even.
The vertex set and edge set of (n, t)-kite are V (G) = {vi : 1 ≤ i ≤

n} ∪ {ui : 1 ≤ i ≤ t}, E(G) = {vivi+1 : 1 ≤ i ≤ n − 1} ∪ {vnv1, v1ut} ∪
{uiui+1 : 1 ≤ i ≤ t− 1}, respectively. Now, we define

G∗ = ((n, t)-kite)(mv1 ,mv2 ,...,mvn ,mu1 ,mu2 ,...,mut)
)

where

mi =

{
t
2 , if i = vn−2,

0, otherwise.

The vertex set and edge set of G∗ are V (G∗) = {vi : 1 ≤ i ≤ n}∪{ui : 1 ≤
i ≤ t}∪{si : 1 ≤ i ≤ t

2}, E(G∗) = {vivi+1 : 1 ≤ i ≤ n− 1}∪{vn−2si : 1 ≤
i ≤ t

2} ∪ {vnv1, v1ut} ∪ {uiui+1 : 1 ≤ i ≤ t − 1}, respectively. We label
the vertices of G∗ in the following manner,

• f(vi) =


t+i+1

2 , if i is odd and 1 ≤ i ≤ n− 1,
n+2t+i+1

2 , if i is even,
n+2t+1

2 , if i = n,

• f(ui) =

{
i+1
2 , if i is odd,

n+t+i−1
2 , if i is even,

• f(si) = n+ t+ i, 1 ≤ i ≤ t
2 .

The set of all edge sums generated by the above formula forms a consec-
utive integer sequence (n + t + 3)/2, (n + t + 5)/2, . . . , (3n + 4t + 1)/2.
Therefore, by Lemma 1.1, f can be extended to a super edge-magic label-
ing with valence (5n+ 7t+ 3)/2. This shows that Sµ∗((n, t)-kite) ≤ t/2.

�

Corollary 2.9. The star super edge-magic deficiency of the (n, 2)-kite is

Sµ∗((n, 2)-kite) =

{
0, if n is even,

1, if n is odd.

Proof. The (n, 2)-kite is not super edge-magic if and only if n is even [14].
Hence Sµ∗((n, 2)-kite) = 0 if n is even and Sµ∗((n, 2)-kite) ≥ 1 if n is
odd. Thus assume that n is even. By Theorem 2.9, Sµ∗((n, 2)-kite) ≤ 1.
Therefore, Sµ∗((n, 2)-kite) = 1. �

In the next theorem we find the exact value for the star super edge-magic
deficiency of the (n, 3)-kite.
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Theorem 2.10. The star super edge-magic deficiency of the (n, 3)-kite is
given by

Sµ∗((n, 3)-kite) =

{
0, if n is odd,

1, if n is even.

Proof. The vertex set and edge set of the (n, 3)-kite are V ((n, 3)-kite) =
{vi : 1 ≤ i ≤ n} ∪ {ui : 1 ≤ i ≤ 3}, E((n, 3)-kite) = {vivi+1 : 1 ≤ i ≤
n− 1}∪ {vnv1, v1u3}∪ {uiui+1 : 1 ≤ i ≤ 2}, respectively. Kim and Park [11]
proved that the (n, 3)-kite is super edge-magic if and only if n is odd. Hence
Sµ∗((n, 3)-kite) = 0 if n is odd and Sµ∗((n, 3)-kite) ≥ 1 if n is even. Thus
assume that n is even.
Case 1 : n ≡ 0 (mod 4).

We define G = ((n, 3)-kite)(mv1 ,mv2 ,...,mvn ,mu1 ,mu2 ,mu3 )
where

mi =

{
1, if i = vn−2

2
,

0, otherwise.

The vertex set and edge set of G are V (G) = {vi : 1 ≤ i ≤ n} ∪ {ui : 1 ≤
i ≤ 3} ∪ {s1}, E(G) = {vivi+1 : 1 ≤ i ≤ n − 1} ∪ {v(n−2)/2s1} ∪
{vnv1, v1u3} ∪ {uiui+1 : 1 ≤ i ≤ 2}, respectively. We label the vertices of
G in the following manner,

• f(vi) =


i
2 + 3, if 1 ≤ i ≤ n− 1 and i is even,
n+7+i

2 , if 1 ≤ i ≤ n
2 and i is odd,

n+9+i
2 , if n

2 + 1 ≤ i ≤ n− 1 and i is odd,

3, if i = n,

• f(ui) =

{
i+1
2 , if i = 1, 3,

n
2 + 3, if i = 2,

• f(s1) = 3n+16
4 .

The set of all edge sums generated by the above formula forms a consec-
utive integer sequence (n+8)/2, (n+10)/2, . . . , (3n+14)/2. Therefore, f
can be extended to a super edge-magic labeling with valence (5n+24)/2.
This shows that Sµ∗((n, 3)-kite) = 1.

Case 2 : n ≡ 2 (mod 4).
The labeling of ((6, 3)-kite)(0,0,0,0,0,1) is given in Figure 2. Now consider

(n, 3)-kite, n > 6. We define

G = ((n, 3)-kite)(mv1 ,mv2 ,...,mvn ,mu1 ,mu2 ,mu3 )

where

mi =

{
1, if i = vn−8

2
,

0, otherwise.

The vertex set and edge set of G are V (G) = {vi : 1 ≤ i ≤ n} ∪ {ui : 1 ≤
i ≤ 3} ∪ {s1}, E(G) = {vivi+1 : 1 ≤ i ≤ n − 1} ∪ {v(n−8)/2s1} ∪
{vnv1, v1u3} ∪ {uiui+1 : 1 ≤ i ≤ 2} respectively.
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Figure 2. Labeling of ((6, 3)-kite)(0,0,0,0,0,1)

We label the vertices of G in the following manner,

• f(vi) =



n+i+9
2 , if 1 ≤ i ≤ n

2 − 1 and i is odd,
n+i+11

2 , if n
2 ≤ i ≤

n
2 + 1 and i is odd,

i+5
2 , if n

2 + 2 ≤ i ≤ n− 1 and i is odd,
i+4
2 , if 1 ≤ i ≤ n

2 + 1 and i is even,
n+10+i

2 , if n
2 + 2 ≤ i ≤ n− 1and i is even,

n+8
2 , if i = n,

• f(ui) =

{
i+1
2 , if i = 1, 3,

n
2 + 3, if i = 2,

• f(s1) = 3n+18
4 .

The set of all edge sums generated by the above formula forms a con-
secutive integers {(n+ 8)/2, (n+ 10)/2, . . . , (3n+ 14)/2}. Therefore, by
Lemma 1.1, f can be extended to a super edge-magic labeling with va-
lence (5n+ 24)/2. This shows that Sµ∗((n, 3)-kite) = 1.

�

In the next theorem we show that Sµ∗(Ln) ≤ 1.

Theorem 2.11. For n even, the star super edge-magic deficiency of the
ladder graph Ln is Sµ∗(Ln) ≤ 1.

Proof. The vertex set and edge set of Ln are V (Ln) = {vi, ui : 1 ≤ i ≤ n} and
E(Ln) = {uiui+1, vivi+1 : 1 ≤ i ≤ n − 1} ∪ {viui : 1 ≤ i ≤ n}, respectively.
Now we define G = (Ln)(mv1 ,mv2 ,...,mvn ,mu1 ,mu2 ,...,mun )

where

mi =

{
1, if i = u2,

0, otherwise.
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The vertex set and edge set of G are V (G) = {vi, ui : 1 ≤ i ≤ n} ∪ {s1}
and E(G) = {uiui+1, vivi+1 : 1 ≤ i ≤ n − 1} ∪ {viui : 1 ≤ i ≤ n} ∪ {u2s1},
respectively. We label the vertices of G in the following manner,

• f(vi) =


i, if 1 ≤ i ≤ n

2 and i is odd,
4i−n
2 , if n

2 + 1 ≤ i ≤ n and i is odd,
4i+n+2

2 , if 1 ≤ i ≤ n
2 and i is even,

n+ 1 + i, if n
2 + 1 ≤ i ≤ n and i is even,

• f(ui) =


i, if 1 ≤ i ≤ n

2 and i is even,
4i−n
2 , if n

2 + 1 ≤ i ≤ n and i is even,
4i+n+2

2 , if 1 ≤ i ≤ n
2 and i is odd,

n+ 1 + i, if n
2 + 1 ≤ i ≤ n and i is odd,

• f(s1) = n+2
2 .

The set of all edge sums generated by the above formula forms a set of
consecutive integers {(n + 6)/2, (n + 8)/2, . . . , (7n + 2)/2}. Therefore, by
Lemma 1.1, f can be extended to a super edge-magic labeling with valence
(11n+ 6)/2. This shows that Sµ∗(Ln) ≤ 1, when n is even. �

Open Problem. Prove that the same bound holds when n is odd.

The following theorem gives an upper bound for the star super edge-magic
deficiency of the Mongolian tent graph.

Theorem 2.12. The star super edge-magic deficiency of the Mongolian tent
graph Mtn, for n odd, is bounded by Sµ∗(Mtn) ≤ (n− 3)/2.

Proof. The vertex set and edge set of Mtn are V (Mtn) = {vi, ui : 1 ≤ i ≤
n} ∪ {u} and E(Mtn) = {vivi+1, uiui+1 : 1 ≤ i ≤ n − 1} ∪ {uui, uivi : 1 ≤
i ≤ n}, respectively. Let n be any odd non-negative integer. According to
Lemma 1.1, it is sufficient to prove that there is a vertex labeling with the
property that the edge sums under this labeling are consecutive integers.
Define G = (Mtn)(mu1 ,mu2 ,...,mun ,mv1 ,mv2 ,...,mvn ,mu), where

mi =

{
n−3
2 , if i = u,

0, otherwise.

The vertex set and edge set ofG is V (G) = {vi, ui : 1 ≤ i ≤ n}∪{u}∪{si : 1 ≤
i ≤ (n− 3)/2}. and E(G) = {uiui+1, vivi+1 : 1 ≤ i ≤ n− 1}∪{viui, uui : 1 ≤
i ≤ n} ∪ {usi : 1 ≤ i ≤ (n − 3)/2}, respectively. We label the vertices of G
in the following manner,

• f(vi) =

{
i+1
2 , if 1 ≤ i ≤ n and i is odd,

n+i+1
2 , if 1 ≤ i ≤ n and i is even,

• f(ui) =

{
3n+i
2 , if 1 ≤ i ≤ n and i is odd,

2n+i
2 , if 1 ≤ i ≤ n and i is even,

• f(u) = 5n−1
2 .
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The vertices si under the labeling f are labeled by f(si) = 2n + i, for1 ≤
i ≤ (n − 3)/2. The edge sums form a consecutive integer sequence (n +
5)/2, (n+7)/2, . . . , (10n−4)/2.Therefore, by Lemma 1.1, f can be extended
to a super edge-magic labeling with valence (15n − 3)/2. This shows that
Sµ∗(Mtn) ≤ (n− 3)/2. �

Open Problem. Prove that the above upper bound is (n − 2)/2 when n is
even.

The following theorem gives an upper bound for the star super edge-magic
deficiency of the triangular chain graph.

Theorem 2.13. For n odd, the star super edge-magic deficiency of the
triangular chain graph, TCn, is Sµ∗(TCn) ≤ bn/2c.

Proof. The vertex set and edge set of TCn are V (TCn) = {vi : 1 ≤ i ≤ 2n}∪
{ui : 1 ≤ i ≤ n}, E(TCn) = {vivi+1 : 1 ≤ i ≤ 2n − 1} ∪ {uiv2i−1, uiv2i : 1 ≤
i ≤ n}, respectively. We define G = (TCn)(mu1 ,mu2 ,...,mun ,mv1 ,mv2 ,...,mv2n )

,
where,

mi =

{
bn2 c, if i = un,

0, otherwise.

The vertex set and edge set of G are V (G) = {vi : 1 ≤ i ≤ 2n} ∪ {ui : 1 ≤
i ≤ n} ∪ {si : 1 ≤ i ≤ bn/2c} and E(G) = {vivi+1 : 1 ≤ i ≤ 2n − 1} ∪
{uiv2i−1, uiv2i : 1 ≤ i ≤ n} ∪ {unsi : 1 ≤ i ≤ bn/2c} respectively. We label
the vertices of G in the following manner,

• f(v2i−1) = i and f(v2i) = n+ i, for 1 ≤ i ≤ n,

• f(ui) =

{
3n+ i, if 1 ≤ i ≤ bn2 c,
2n+ i, if bn2 + 1c ≤ i ≤ n.

The vertices si are labeled by f(si) = 2n+ i, for 1 ≤ i ≤ bn/2c. The set of
all edge sums generated by the above formula forms a consecutive integer
sequence (2n+4)/2, (2n+6)/2, . . . , (11n−1)/2. Therefore, by Lemma 1.1, f
can be extended to a super edge-magic labeling with valence 8n+1+2bn/2c.
Hence G admits a super edge-magic labeling. This shows that Sµ∗(TCn) ≤
bn/2c. �
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