ON THE ENUMERATION OF A CLASS OF TOROIDAL GRAPHS

DIPENDU MAITY AND ASHISH KUMAR UPADHYAY

Abstract

We present enumerations of a class of toroidal graphs which give rise to semiequivelar maps. There are eleven different types of semiequivelar maps on the torus: $\left\{3^{6}\right\},\left\{4^{4}\right\},\left\{6^{3}\right\},\left\{3^{3}, 4^{2}\right\},\left\{3^{2}, 4,3,4\right\}$, $\{3,6,3,6\},\left\{3^{4}, 6\right\},\left\{4,8^{2}\right\},\left\{3,12^{2}\right\},\{4,6,12\},\{3,4,6,4\}$. We know the classification of the maps of type $\left\{3^{6}\right\},\left\{4^{4}\right\},\left\{6^{3}\right\}$. In this article, we attempt to classify maps of type $\left\{3^{3}, 4^{2}\right\},\left\{3^{2}, 4,3,4\right\},\{3,6,3,6\},\left\{3^{4}, 6\right\}$, $\left\{4,8^{2}\right\},\left\{3,12^{2}\right\},\{4,6,12\},\{3,4,6,4\}$.

1. Introduction

A map M is an embedding of a graph G on a surface S such that the closure of components of $S \backslash G$, called the faces of M, are closed 2-cells, that is, each face is homeomorphic to a 2-disk. A map M is said to be a polyhedral map (see Brehm and Schulte [4]) if the intersection of any two distinct faces are either empty, a common vertex, or a common edge. An a-cycle C_{a} is a finite connected 2-regular graph with a vertices, and the face sequence of a vertex v in a map is a finite sequence ($a^{p}, b^{q}, \cdots, m^{r}$) of powers of positive integers $a, b, \cdots, m \geq 3$ and $p, q, \cdots, r \geq 1$ in cyclic order such that through the vertex v, p number of C_{a} 's, q number of C_{b} 's, \cdots, r number of C_{m} 's are incident. A map K is said to be semiequivelar if the face sequence of each vertex is same, see [8]. Two maps of fixed type on the torus are called isomorphic if there exists a homeomorphism of the torus which sends vertices to vertices, edges to edges, faces to faces, and preserves incidents. That is, if we consider two polyhedral complexes K_{1} and K_{2}, then an isomorphism is a map $f: K_{1} \rightarrow K_{2}$ such that $\left.f\right|_{V\left(K_{1}\right)}: V\left(K_{1}\right) \rightarrow V\left(K_{2}\right)$ is a bijection and $f(\sigma)$ is a cell in K_{2} if and only if σ is a cell in K_{1}. There are eleven types of semiequivelar maps on the torus: $\left\{3^{6}\right\},\left\{4^{4}\right\},\left\{6^{3}\right\},\left\{3^{3}, 4^{2}\right\}$, $\left\{3^{2}, 4,3,4\right\},\{3,6,3,6\},\left\{3^{4}, 6\right\},\left\{4,8^{2}\right\},\left\{3,12^{2}\right\},\{4,6,12\},\{3,4,6,4\}$.

In this article, we classify the remaining semiequivelar maps on the torus up to isomorphism, completing their classification. In this context, Altshuler [1] has shown construction and enumeration of maps of types $\left\{3^{6}\right\}$ and $\left\{6^{3}\right\}$. Kurth [5] has given an enumeration of semiequivelar maps of types

[^0]$\left\{3^{6}\right\},\left\{4^{4}\right\},\left\{6^{3}\right\}$. Negami [6] has studied uniqueness and faithfulness of embeddings for a class of toroidal graphs. Brehm and Kühnel [3] have presented a classification of semiequivelar maps of types $\left\{3^{6}\right\},\left\{4^{4}\right\},\left\{6^{3}\right\}$. Tiwari and Upadhyay [7] have classified semiequivelar maps of types $\left\{3^{3}, 4^{2}\right\}$, $\left\{3^{2}, 4,3,4\right\},\{3,6,3,6\},\left\{3^{4}, 6\right\},\left\{4,8^{2}\right\},\left\{3,12^{2}\right\},\{4,6,12\},\{3,4,6,4\}$ with up to twenty vertices. In this article, we devise a way of enumerating all semiequivelar maps of types $\left\{3^{3}, 4^{2}\right\},\left\{3^{2}, 4,3,4\right\},\{3,6,3,6\},\left\{3^{4}, 6\right\},\left\{4,8^{2}\right\}$, $\left\{3,12^{2}\right\},\{4,6,12\},\{3,4,6,4\}$ on the torus and explicitly determine the maps with a small number of vertices. Therefore, we have the following theorem.

Theorem 1.1. The semiequivelar maps with n vertices of types $\left\{3^{3}, 4^{2}\right\}$, $\left\{3^{2}, 4,3,4\right\},\{3,6,3,6\},\left\{3,12^{2}\right\},\left\{3^{4}, 6\right\},\{4,6,12\},\{3,4,6,4\},\left\{4,8^{2}\right\}$ can be classified up to isomorphism on the torus. In Tables 1-8, we have given nonisomorphic objects with few vertices.

More precisely, let $X=\left\{3^{3}, 4^{2}\right\},\left\{3^{2}, 4,3,4\right\},\{3,6,3,6\},\left\{3,12^{2}\right\},\left\{3^{4}, 6\right\}$, $\{4,6,12\},\{3,4,6,4\}$, or $\left\{4,8^{2}\right\}$ be a semiequivelar type on the torus. We present an algorithmic approach of calculating different maps for the type X for different numbers of vertices in the subsequent sections.

2. Definitions

We now define some operations on graphs. Let $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=$ (V_{2}, E_{2}) be two subgraphs of the same graph $G=(V, E)$. Then the union $G_{1} \cup G_{2}$ is a graph $G_{3}=\left(V_{3}, E_{3}\right)$ where $V_{3}=V_{1} \cup V_{2}$ and $E_{3}=E_{1} \cup E_{2}$. Similarly, the intersection $G_{1} \cap G_{2}$ is a graph $G_{4}=\left(V_{4}, E_{4}\right)$ where $V_{4}=$ $V_{1} \cap V_{2}$ and $E_{4}=E_{1} \cap E_{2}$. For more on graph theory see [2].

We denote a cycle $u_{1}-u_{2}-\cdots-u_{k}-u_{1}$ by $C\left(u_{1}, u_{2}, \cdots, u_{k}\right)$ and a path w_{1-} $w_{2}-\cdots-w_{x}$ by $P\left(w_{1}, w_{2}, \cdots, w_{x}\right)$. Let $Q_{1}=P\left(u_{1}, \cdots, u_{k}\right)$ be a path. We call a path $Q_{2}=P\left(v_{1}, \cdots, v_{r}\right)$ to be a path extended from Q_{1} if $V\left(Q_{1}\right) \subset$ $V\left(Q_{2}\right), E\left(Q_{1}\right) \subset E\left(Q_{2}\right)$, i.e., Q_{1} is a subpath of Q_{2}. We say that the Q_{2} is an extended path of the path Q_{1}.

We say that a cycle is contractible if it bounds a 2 -disk. If the cycle does not bound any 2 -disk on the torus then we say that the cycle is noncontractible.

3. Examples

Example 3.1. Let M be a semiequivelar map of type $\left\{3^{3}, 4^{2}\right\}$ with n vertices on the torus. The map M has a $T(r, s, k)$ representation (defined later in Section 4) for some $r, s, k \in \mathbb{N} \cup\{0\}$. Let the number of vertices $n=14$. By Lemma 4.9, $n=r s=14$ where $2 \mid s$. Hence, $s=2, r=7$, and $k=2,3,4$ by Lemma 4.9. $S o, T(r, s, k)=T(7,2,2), T(7,2,3)$, and $T(7,2,4)$, see Figure 1, 2, and 3, respectively. In $T(7,2,2), C_{1,1}=C\left(u_{1}, u_{2}, \cdots, u_{7}\right)$ is a cycle of type A_{1} (see the definition of type A_{1} in Section 4),

$$
C_{1,2}=C\left(u_{1}, u_{8}, u_{3}, u_{10}, u_{5}, u_{12}, u_{7}, u_{14}, u_{2}, u_{9}, u_{4}, u_{11}, u_{6}, u_{13}\right)
$$

and

$$
C_{1,3}=C\left(u_{1}, u_{8}, u_{4}, u_{11}, u_{7}, u_{14}, u_{3}, u_{10}, u_{6}, u_{13}, u_{2}, u_{9}, u_{5}, u_{12}\right)
$$

are two cycles of type A_{2} (see definition of type A_{2} in Section 4), and $C_{1,4}=$ $C\left(u_{3}, u_{10}, u_{5}, u_{4}\right)$ is a cycle of type A_{4} (see definition of type A_{4} in Section 4). In $T(7,2,4), C_{2,1}=C\left(v_{1}, v_{2}, \cdots, v_{7}\right)$ is of type A_{1},

$$
C_{2,2}=C\left(v_{1}, v_{8}, v_{5}, v_{12}, v_{2}, v_{9}, v_{6}, v_{13}, v_{3}, v_{10}, v_{7}, v_{14}, v_{4}, v_{11}\right)
$$

and

$$
C_{2,3}=C\left(v_{1}, v_{8}, v_{6}, v_{13}, v_{4}, v_{11}, v_{2}, v_{9}, v_{7}, v_{14}, v_{5}, v_{12}, v_{3}, v_{10}\right)
$$

are of type A_{2}, and $C_{2,4}=C\left(v_{5}, v_{12}, v_{3}, v_{4}\right)$ is of type A_{4}. In $T(7,2,3)$, $C_{3,1}=C\left(w_{1}, w_{2}, \cdots, w_{7}\right)$ is of type A_{1},

$$
C_{3,2}=C\left(w_{1}, w_{8}, w_{4}, w_{11}, w_{7}, w_{14}, w_{3}, w_{10}, w_{6}, w_{13}, w_{2}, w_{9}, w_{5}, w_{12}\right)
$$

and

$$
C_{3,3}=C\left(w_{1}, w_{8}, w_{5}, w_{12}, w_{2}, w_{9}, w_{6}, w_{13}, w_{3}, w_{10}, w_{7}, w_{14}, w_{4}, w_{11}\right)
$$

are of type A_{2}, and $C_{3,4}=C\left(w_{4}, w_{5}, w_{6}, w_{7}, w_{11}\right)$ is of type A_{4}.

Figure 1. $T(7,2,2): O_{1}$

Figure 2. $T(7,2,4): O_{2}$

Figure 3. $T(7,2,3): O_{3}$
In Section 4, by Lemma 4.8, the cycles of type A_{1} have the same length and the cycles of type A_{2} have at most two different lengths in M. So, $O_{3} \not \neq O_{1}$ since length $\left(C_{3,4}\right) \neq$ length $\left(C_{1,4}\right)$ and $O_{3} \not \neq O_{2}$ since length $\left(C_{3,4}\right) \neq$ length $\left(C_{2,4}\right)$. Thus, $O_{3} \neq O_{i}$ for $i=1,2$. Now, length $\left(C_{1,1}\right)=\operatorname{length}\left(C_{2,1}\right)$, $\left\{\operatorname{length}\left(C_{1,2}\right)\right.$, length $\left.\left(C_{1,3}\right)\right\}=\left\{\operatorname{length}\left(C_{2,2}\right)\right.$, length $\left.\left(C_{2,3}\right)\right\}$, and length $\left(C_{1,4}\right)$ $=\operatorname{length}\left(C_{2,4}\right)$. We cut $T(7,2,4)$ along the path $P\left(v_{5}, v_{12}, v_{3}\right)$ and identify
along the path $P\left(v_{1}, v_{8}, v_{5}\right)$. This gives the presentation of $T(7,2,4)$ in Figure 4. Figure 4 has a $T(7,2,2)$ representation. So, $O_{1} \cong O_{2}$ (see the proof of Lemma 4.10 for the isomorphism between O_{1} and O_{2}). Thus, $O_{1} \cong O_{2}$ and $O_{3} \not \neq O_{1}, O_{2}$. Therefore, there are two semiequivelar maps of type $\left\{3^{3}, 4^{2}\right\}$ with 14 vertices on the torus up to isomorphism.

Figure 4. $T(7,2,2): O_{2}$

Figure 5. $T(6,4,2)$

Example 3.2. Let M be a semiequivelar map of type $\left\{3^{2}, 4,3,4\right\}$ with 16 vertices on the torus. As above, by Lemma 5.5, there are three representations of M, namely, $T(8,2,4), T(4,4,0)$, and $T(4,4,2)$, see Figures 9, 6 , and 7, respectively. In $T(8,2,4), C_{1,1}=C\left(u_{1}, u_{2}, \cdots, u_{8}\right)$ and $C_{1,2}=$ $C\left(u_{1}, u_{9}, u_{5}, u_{13}\right)$ are two cycles of type B_{1} (see the definition of type B_{1} in Section 5). In $T(4,4,0), C_{2,1}=C\left(v_{1}, v_{2}, v_{3}, v_{4}\right)$ and $C_{2,2}=C\left(v_{1}, v_{5}, v_{9}, v_{13}\right)$ are two cycles of type B_{1}. In $T(4,4,2), C_{3,1}=C\left(w_{1}, w_{2}, w_{3}, w_{4}\right)$ and $C_{3,2}=C\left(w_{1}, w_{5}, w_{9}, w_{13}, w_{3}, w_{7}, w_{11}, w_{15}\right)$ are two cycles of type B_{1}. In Section 5, the cycles of type B_{1} have at most two different lengths. So, $O_{5} \neq$ O_{6} since $\left\{\right.$ length $\left(C_{1,1}\right)$, length $\left.\left(C_{1,2}\right)\right\} \neq\left\{\operatorname{length}\left(C_{2,1}\right)\right.$, length $\left.\left(C_{2,2}\right)\right\}$. Now, $\left\{\operatorname{length}\left(C_{1,1}\right)\right.$, length $\left.\left(C_{1,2}\right)\right\}=\left\{\right.$ length $\left(C_{3,1}\right)$, length $\left.\left(C_{3,2}\right)\right\}$. We identify boundaries of O_{7} and cut along the cycle $C_{3,2}=C\left(w_{1}, w_{5}, w_{9}, w_{13}, w_{3}, w_{7}\right.$, $\left.w_{11}, w_{15}\right)$ and next along $C_{3,1}$. Thus, we get a $T(8,2,4)$ representation in Figure 8. So, $O_{5} \cong O_{7}$ (see the proof of Lemma 5.6 for the isomorphism). Therefore, we have two maps of type $\left\{3^{2}, 4,3,4\right\}$ with 16 vertices on the torus up to isomorphism.

Figure 6. $T(4,4,0): O_{6} \quad$ Figure 7. $T(4,4,2): O_{7}$

Figure 9. $T(8,2,4): O_{5}$

Figure 10. $T(8,2,6)$

Figure 11. $T(7,4,3)$

Figure 12. R
4. Maps of type $\left\{3^{3}, 4^{2}\right\}$

Let M be a map of type $\left\{3^{3}, 4^{2}\right\}$ on the torus. Through each vertex in M there are three distinct types of paths as follows.

Definition. Let $P_{1}:=P\left(\cdots, u_{i-1}, u_{i}, u_{i+1}, \cdots\right)$ be a path in the edge graph of M. We say P_{1} is of type A_{1} if all the triangles incident with an inner (degree two in P_{1}) vertex u_{i} lie on one side and all quadrangles incident with u_{i} lie on the other side of the subpath $P^{\prime}=P\left(u_{i-1}, u_{i}, u_{i+1}\right)$ (as in Figure 13) at u_{i}. Since the link of vertex u_{i} is a cycle and the path P^{\prime} is a cord of cycle $l k\left(u_{i}\right)$, so, the path P^{\prime} divides the region into two parts. If u_{t} is a boundary vertex (degree one in P_{1}) of P_{1} then there is an extended path of P_{1} where u_{t} is an inner vertex.

Observe that a link of a vertex in M contains some vertices which are adjacent to the vertex. To identify the nonadjacent vertices in the link, we use bold letters. That is, if a description of a link, say $l k(w)$, contains any bold letter \boldsymbol{a} then it indicates that a is nonadjacent to w. For example, in $l k\left(u_{i}\right)$ vertices \boldsymbol{a} and \boldsymbol{c} are nonadjacent to u_{i}. In this article, we consider permutation of vertices in $l k\left(u_{i}\right)$ of a vertex u_{i} counterclockwise locally at u_{i}.
Definition. Let $P_{2}:=P\left(\cdots, v_{i-1}, v_{i}, v_{i+1}, \cdots\right)$ be a path in the edge graph of M for which v_{i}, v_{i+1} are two consecutive inner vertices of P_{2} or an extended path of P_{2}. We say P_{2} is of type A_{2} if $l k\left(v_{i}\right)=C\left(\boldsymbol{a}, v_{i-1}, \boldsymbol{b}, c, v_{i+1}, d\right.$, e) implies $l k\left(v_{i+1}\right)=C\left(\boldsymbol{a}_{0}, v_{i+2}, \boldsymbol{b}_{0}, d, v_{i}, c, p\right)$ and $l k\left(v_{i}\right)=C\left(\boldsymbol{x}, v_{i+1}, \boldsymbol{z}, l\right.$, $\left.v_{i-1}, k, m\right)$ implies $l k\left(v_{i+1}\right)=C\left(l, v_{i}, \boldsymbol{m}, x, v_{i+2}, g, z\right)$. At least one of the former two conditions must occur for each vertex.
Definition. Let $P_{3}:=P\left(\cdots, w_{i-1}, w_{i}, w_{i+1}, \cdots\right)$ be a path in the edge graph of M for which w_{i}, w_{i+1} are two inner vertices of P_{3} or an extended path of P_{3}. We say P_{3} is of type A_{3} if $l k\left(w_{i}\right)=C\left(\boldsymbol{a}, w_{i-1}, \boldsymbol{b}, c, d, w_{i+1}, e\right)$ im$\operatorname{plies} l k\left(w_{i+1}\right)=C\left(\boldsymbol{a}_{1}, w_{i+2}, \boldsymbol{b}_{1}, p, e, w_{i}, d\right)$ and $l k\left(w_{i}\right)=C\left(\boldsymbol{a}_{2}, w_{i+1}, \boldsymbol{b}_{2}, p, e\right.$, $\left.w_{i-1}, d\right)$ implies $l k\left(w_{i+1}\right)=C\left(\boldsymbol{p}, w_{i}, \boldsymbol{d}, a_{2}, z_{1}, w_{i+2}, b_{2}\right)$.

Let Q be a maximal path (path of maximal length) of type A_{t} for a fixed $t \in\{1,2,3\}$. We show that there is an edge e in M such that $Q \cup e$ is a cycle of type A_{t}.

Lemma 4.1. If $P\left(u_{1}, \cdots, u_{r}\right)$ is a maximal path of type A_{1}, A_{2}, or A_{3} in M then there is an edge $u_{r} u_{1}$ in M such that $C\left(u_{1}, u_{2}, \cdots, u_{r}\right)$ is a cycle.

Proof. Let $Q=P\left(u_{1}, \cdots, u_{r}\right)$ be of type A_{1} and $l k\left(u_{r}\right)=C(\boldsymbol{x}, y, \boldsymbol{z}, w, v, u$, $\left.u_{r-1}\right)$. If $w=u_{1}$ then $Q=C\left(u_{1}, u_{2}, \cdots, u_{r}\right)$ is a cycle. If $w \neq u_{1}$. Then either $w=u_{i}$ for some $2 \leq i \leq r$ or $w \neq u_{i}$ for all $2 \leq i \leq r$. Suppose $w=u_{i}$ for some $2 \leq i \leq r$. Observe that $L=P\left(u_{i-1}, u_{i}, u_{i+1}\right) \subset Q$ and $L^{\prime}=P\left(u_{r}, w, x\right)$ are two paths of type A_{1} through u_{i}. By Definition 4.1, through each vertex in M we have only one path of this particular type A_{1}. So, $L=L^{\prime}$. This implies that $u_{r}=u_{i-1}$ or $u_{r}=u_{i+1}$. This is a contraction since, by assumption, Q is a path and $u_{i} \neq u_{j}$ for all $i \neq j, 1 \leq i, j \leq r$. Therefore, $w \neq u_{i}$ for all $2 \leq i \leq r$. If $w \neq u_{i}$ for all $1 \leq i \leq r$ then by Definition 4.1, u_{r} is an inner vertex in the extended path of Q. Thus, we get a path, namely Q_{1}, which is extended from Q. Hence, length $(Q)<$

Figure 13. $l k\left(u_{i}\right)$

Figure 14. Cylinder

Figure 15. $T(r, 4, k)$

Figure 16.
length $\left(Q_{1}\right)$. This is a contradiction as Q is maximal. Therefore, $w=u_{1}$ and $Q \cup u_{r} u_{1}=C\left(u_{1}, u_{2}, \cdots, u_{r}\right)$ is a cycle.

Let $W=P\left(u_{1}, u_{2}, \cdots, u_{r}\right)$ be of type A_{2}. We follow a similar argument from [1, Theorem 1]. Let $l k\left(u_{r-1}\right)=\left(\boldsymbol{v}, u_{r}, \boldsymbol{z}, p, q, u_{r-2}, x\right)$ and $l k\left(u_{r}\right)=$
$\left(\boldsymbol{p}, u_{r-1}, \boldsymbol{x}, v, e, u_{r+1}, z\right)$. If $u_{r+1}=u_{1}$ then $C\left(u_{1}, u_{2}, \cdots, u_{r}\right)$ is a cycle. If $u_{r+1} \neq u_{1}$, then either $u_{r+1}=u_{i}$ for some $2 \leq i \leq r$ or $u_{r+1} \neq u_{i}$ for all $2 \leq i \leq r$. Suppose $u_{r+1}=u_{i}$ for some $2 \leq i \leq r$. Then $u_{r+1}=u_{i}$ defines a cycle $R=C\left(u_{i}, u_{i+1}, \cdots, u_{r}\right)$. Now by assumption, W is a path. That is, $u_{i} \neq u_{j}$ for all $1 \leq i, j \leq r$ and $i \neq j$. By Definition 4.2, through each vertex in M we have exactly two paths of type A_{2}. Hence, we have either $l k\left(u_{i}\right)=C\left(\boldsymbol{a}, u_{i-1}, \boldsymbol{b}, c, u_{i+1}, d, e\right)$ or $l k\left(u_{i}\right)=C\left(\boldsymbol{a}, u_{i-1}, \boldsymbol{b}, c, z, u_{i+1}, e\right)$. If $l k\left(u_{i}\right)=C\left(\boldsymbol{a}, u_{i-1}, \boldsymbol{b}, c, z, u_{i+1}, e\right)$ then $u_{i+1}=u_{r}$. However, $u_{i} \neq u_{j}$ for all $1 \leq i, j \leq r$ and $i \neq j$. Hence $l k\left(u_{i}\right)=C\left(\boldsymbol{a}, u_{i-1}, \boldsymbol{b}, c, u_{i+1}, d, e\right)$. Thus from the cycles $l k\left(u_{r}\right)$ and $l k\left(u_{i}\right), z=u_{i+1}, p=u_{i+2}, d=u_{r}$, and $u_{i} u_{i+1} u_{r}$ is a triangle (see Figure 16). Consider cycle R and faces incident to it. These faces

$$
\begin{aligned}
& u_{r-3} w_{i} w_{r-8}, u_{r-3} w_{r-8} u_{r-4},\left[u_{r-4}, w_{r-8}, w_{r-9}, u_{r-5}\right] \\
& u_{r-5} w_{r-9} w_{r-10}, u_{r-5} w_{r-10} u_{r-6}, \cdots \\
& w_{i+3} u_{i+7} u_{i+6}, w_{i+3} u_{i+6} w_{i+2},\left[w_{i+2}, u_{i+6}, u_{i+5}, w_{i+1}\right] \\
& w_{i+1} u_{i+5} u_{i+4}, w_{i+1} u_{i+4} w_{i}
\end{aligned}
$$

define a new cycle $R^{\prime}=C\left(w_{i}, w_{i+1}, \cdots, w_{r-9}, w_{r-8}\right)$ (see Figure 16). Observe that, R^{\prime} is the same type of cycle as R since the faces $\left[u_{r-2}, u_{r-3}, w_{i}\right.$, $\left.w_{i-1}\right]$ and $\left[u_{i+3}, u_{i+4}, w_{i}, w_{i-1}\right]$ have a common edge $w_{i-1} w_{i}$, and length $\left(R^{\prime}\right)$ $<$ length (R). Similarly, we consider cycle R^{\prime} and repeat the process as above. Thus, we get a sequence of cycles of the same type as R. However, in this sequence, the length of cycles is gradually decreasing. After a finite number of steps, the cycle of type R may no longer exist since the map is finite. Therefore, $u_{r+1} \neq u_{i}$ for all $2 \leq i \leq r$. By Definition $4.2, l k\left(u_{r}\right)=\left(\boldsymbol{z}, u_{r-1}, \boldsymbol{x}, v, u_{r+1}, w\right)$ implies $l k\left(u_{r+1}\right)=C\left(\boldsymbol{y}, u_{r}, \boldsymbol{x}, a, w, b, c\right)$ for some vertices b, w. Hence, we define a new path $L:=P\left(u_{1}, \cdots\right.$, $\left.u_{r}\right) \cup P\left(u_{r}, u_{r+1}\right)$ which is of type A_{2}. So, we have a path Q with length (Q) $>$ length (P). This gives a contradiction as P is maximal. Therefore, $u_{r+1}=u_{1}$, that is, $C\left(u_{1}, u_{2}, \cdots, u_{r}\right)$ is cycle of type A_{2}.

We use similar argument for the maximal path of type A_{3}. Similarly, we get an edge which defines a cycle of type A_{3}. This completes the proof.

Every maximal path of type A_{1}, A_{2} or A_{3} is a cycle. In this article, we use the terminology cycle in place of maximal path since maximal paths are also cycles.

Lemma 4.2. Let C_{1} and C_{2} be two cycles of type A_{t} for a fixed $t \in\{1,2,3\}$.
(a) If $t=1$ and $C_{1} \cap C_{2} \neq \emptyset$, then $C_{1}=C_{2}$.
(b) If $t=2$ or 3 and $E\left(C_{1}\right) \cap E\left(C_{2}\right) \neq \emptyset$ then $C_{1}=C_{2}$.

Proof. Let $C_{1}:=C\left(u_{1,1}, u_{1,2}, \cdots, u_{1, r}\right)$ and $C_{2}:=C\left(u_{2,1}, u_{2,2}, \cdots, u_{2, s}\right)$ be two cycles of type A_{1}. If $C_{1} \cap C_{2} \neq \emptyset$ then $V\left(C_{1} \cap C_{2}\right) \neq \emptyset$. Let $w \in$ $V\left(C_{1} \cap C_{2}\right)$. The cycles C_{1} and C_{2} are both well defined at the common vertex w. Let $l k(w)=C\left(\boldsymbol{w}_{1}, w_{2}, \boldsymbol{w}_{3}, w_{4}, w_{5}, w_{6}, w_{7}\right)$. By Definition 4.1, $w_{4}, w_{7} \in V\left(C_{1} \cap C_{2}\right)$. So, $P\left(w_{4}, w, w_{7}\right)$ is part of C_{t} for $t \in\{1,2\}$. Let
$w=u_{1, t_{1}}=u_{2, t_{2}}$. Then $w_{4}=u_{1, t_{1}-1}=u_{2, t_{2}-1}$ and $w_{7}=u_{1, t_{1}+1}=u_{2, t_{2}+1}$ for some $t_{1} \in\{1, \cdots, r\}$ and $t_{2} \in\{1, \cdots, s\}$. We can argue for w_{4} and w_{7} as we did for w to get two vertices, $u_{1, t_{1}-2}=u_{2, t_{2}-2}$ and $u_{1, t_{1}+2}=u_{2, t_{2}+2}$. This process stops after a finite number of steps as r and s both are finite. Let $r<s$. Then $u_{1,1}=u_{2, I+1}, u_{1,2}=u_{2, I+2}, \cdots, u_{1, r}=u_{2, I+r}$, and $u_{1,1}=u_{2, I+r+1}$ for some $I \in\{1, \cdots, s\}$. Hence $u_{1,1}=u_{2, I+1}=u_{2, I+r+1}$. This implies that $I+1=I+r+1$ and the cycle C_{2} contains a cycle of length r. This gives $r=s$. Hence $C_{1}=C_{2}$.

Let C_{1}, C_{2} be two cycles of type A_{2} and $E\left(C_{1}\right) \cap E\left(C_{2}\right) \neq \emptyset$. Let $u v \in$ $E\left(C_{1}\right) \cap E\left(C_{2}\right)$. We proceed with the vertex u of edge $u v$ in a similar manner to the one used for the cycles of type A_{1}. (We have also used this argument in Lemma 5.2.) Thus, we get $C_{1}=C_{2}$. Similarly we argue for the case of cycles of type A_{3} to show that $C_{1}=C_{2}$. This completes the proof.

Now, we show that the cycle of type A_{t} for each $t \in\{1,2,3\}$ is noncontractible.
Lemma 4.3. If a cycle C is of type A_{t} for some $t \in\{1,2,3\}$ in M then C is noncontractible.

Proof. Let C be a cycle of type A_{t} for a fixed $t \in\{1,2,3\}$ in M. We claim that the cycle C is noncontractible. Let the cycle C be of type A_{1}. Suppose C is contractible. Let D_{C} be a 2 -disk bounded by the cycle C. Let f_{0}, f_{1}, and f_{2} denote the number of vertices, edges, and faces of D_{C}, respectively. Let there be n internal vertices and m boundary vertices. So, $f_{0}=n+m$, $f_{1}=(5 n+3 m) / 2$, and $f_{2}=n+(n+m) / 2$ if quadrangles are incident with C, and $f_{0}=n+m, f_{1}=(5 n+4 m) / 2$ and $f_{2}=3 n / 2+m$ if triangles are incident with C in D_{C}. In both the cases, $f_{0}-f_{1}+f_{2}=0$. This is not possible since the Euler characteristic of the 2-disk D_{C} is 1 . Therefore, C is noncontractible.

We use a similar argument for the cycles of types A_{2} and A_{3}. Suppose a cycle W of type A_{2} is contractible. Let D_{W} be a 2 -disk which is bounded by the cycle W. As above, calculate f_{0}, f_{1}, and f_{2} to get $f_{0}-f_{1}+f_{2}=0$, a contradiction.

Finally, we again use a similar argument for cycles of type A_{3}. This completes the proof.

Let C be a cycle of type A_{t} for a fixed $t \in\{1,2,3\}$ in M. Let S be a set of faces which are incident at u for all $u \in V(C)$. The geometric carrier $|S|$ is a cylinder since C is noncontractible. Let $S_{C}:=|S|$. Observe that a cylinder (or an annulus) in M is a subcomplex of M with two boundary cycles. If the boundary cycles of a cylinder are same, it is a torus and we say that the cylinder has identical boundary components. Clearly, the S_{C} is a cylinder and has two boundary cycles. Let $\partial S_{C}=\left\{C_{1}, C_{2}\right\}$. Then length $(C)=$ length $\left(C_{1}\right)=$ length $\left(C_{2}\right)$ by Lemma 4.4.
Lemma 4.4. If C is a cycle of type A_{i} for a fixed $i \in\{1,2,3\}$ such that S_{C} is a cylinder and $\partial S_{C}=\left\{C_{1}, C_{2}\right\}$, then length $(C)=$ length $\left(C_{1}\right)=$ length $\left(C_{2}\right)$.

Proof. Let C be a cycle of type A_{1}. Let $F_{1}, F_{2}, \cdots, F_{r}$ be a sequence of faces in order which are incident with C and lie on one side of C. These faces $F_{1}, F_{2}, \cdots, F_{r}$ are also incident with C_{t} and lie on one side of C_{t} for a fixed $t \in\{1,2\}$. Without loss of generality we assume that $C_{t}=C_{1}$. Let $\widehat{F}_{1}, \widehat{F}_{2}, \cdots, \widehat{F}_{r}$ denote the sequence of faces incident with C that lie on the other side of C. Let \widehat{F}_{i} be a \widehat{d}_{i}-gon. Then, we get the sequence $T_{1}:=$ $\left\{\widehat{d}_{1}, \widehat{d}_{2}, \cdots, \widehat{d}_{r}\right\}$ of face-types corresponding to the sequence $\widehat{F}_{1}, \widehat{F}_{2}, \cdots, \widehat{F}_{r}$. Again, let $W_{1}, W_{2}, \cdots, W_{r}$ denote the sequence of faces incident with C_{1} that lie on the other side of C_{1}. Similarly, let $T_{2}:=\left\{d_{1}, d_{2}, \cdots, d_{r}\right\}$ for the d_{i}-gon $W_{i}, i=1,2, \cdots, r$. Since $F_{1}, F_{2}, \cdots, F_{r}$ is a sequence of faces that lie on one side of both C and C_{1}, there exists a j such that $\widehat{d_{1}}=d_{j}$, $\widehat{d}_{2}=d_{j+1}, \cdots, \widehat{d}_{k-j+1}=d_{k}, \widehat{d}_{k-j+2}=d_{1}, \cdots, \widehat{d}_{k}=d_{j-1}$. So, the cycle C_{1} is of type A_{1}. Similarly we argue as above for C_{2} and we get that the cycle C_{2} is of type A_{1}. For example in Figure 15, the cycle $C=C\left(x_{1}, \cdots, x_{r}\right)$, $\partial S_{C}=\left\{C_{1}\left(w_{1}, \cdots, w_{r}\right), C_{2}\left(z_{1}, \cdots, z_{r}\right)\right\}$, and C, C_{1}, and C_{2} are cycles of type A_{1}.

We repeat the above argument for the other two types A_{j} for $j \in\{2,3\}$ and get the similar results. So, the boundary cycles of S_{C} for a cycle C of type $A_{i}, i \in\{1,2,3\}$ are also of type A_{i}.

Suppose length $(C) \neq \operatorname{length}\left(C_{1}\right) \neq \operatorname{length}\left(C_{2}\right)$. Let $C:=C\left(u_{1}, u_{2}, \cdots\right.$, $\left.u_{r}\right), C_{1}:=C\left(v_{1}, v_{2}, \cdots, v_{s}\right)$, and $C_{2}:=C\left(w_{1}, w_{2}, \cdots w_{l}\right)$ denote three cycles of type A_{1}. The link $l k\left(u_{1}\right)$ contains the vertices v_{1} and w_{1}. Let $P\left(v_{1}, u_{1}, w_{1}\right)$ be a path of type either A_{2} or A_{3} through u_{1}. Without loss of generality, we assume $r<s$ and $r \neq l$ since $r \neq s \neq l$. Now, the path $P\left(v_{1}, u_{1}, w_{1}\right)$ is a shortest path between v_{1} and w_{1} via u_{1}. It follows that the path $P\left(v_{i}, u_{i}, w_{i}\right)$ is also a shortest path of type either A_{2} or A_{3} between v_{i} and w_{i} via u_{i}. Since by assumption $r<s$, the link $l k\left(u_{r}\right)$ contains the vertices v_{r}, v_{r+j} for $j>0$ and w_{r}. This gives that the link of u_{r} is different from the link of u_{r-1}. This is a contradiction as M is a semiequivelar map. Therefore, $r=s=l$, that is, length $(C)=\operatorname{length}\left(C_{1}\right)=\operatorname{length}\left(C_{2}\right)$.

We use a similar argument for the cycles of type A_{j} for $j \in\{2,3\}$. This completes the proof.

Let C_{1} and C_{2} be two cycles of the same type in a semiequivelar map M on the torus. We denote a cylinder by $S_{C_{1}, C_{2}}$ if the boundary components are C_{1} and C_{2}. We say that the cycle C_{1} is homologous to C_{2} if $S_{C_{1}, C_{2}}$ exists. In particular, if $C_{1}=C_{2}$ then consider $S_{C_{1}, C_{2}}=C_{1}=C_{2}$, hence C_{1} is homologous to C_{2}.

By the above lemma, the cycle C and the boundary cycles of S_{C} are homologous. Let $C_{1}, C_{2}, \cdots, C_{m}$ be a list of cycles which are homologous to C in M, Then the cycles have same length. That is:

Lemma 4.5. If $C_{1}, C_{2}, \cdots, C_{m}$ are homologous cycles of type A_{t} for a fixed $t \in\{1,2,3\}$ then length $\left(C_{i}\right)=$ length $\left(C_{j}\right)$ for $1 \leq i, j \leq m$.

Proof. Let C_{i} be a cycle of type A_{1}. Then we have a cylinder $S_{C_{i}}$. Let $C_{t_{1}}, C_{t_{2}}, \cdots, C_{t_{m}}$ denote a sequence of cycles $\left\{C_{1}, C_{2}, \cdots, C_{m}\right\}$ such that $\partial S_{C_{t_{j}}}=\left\{C_{t_{j-1}}, C_{t_{j+1}}\right\}$ for $2 \leq j \leq(m-1)$. By Lemma 4.4, length $\left(C_{t_{1}}\right)$ $=\operatorname{length}\left(C_{t_{j}}\right)$ for $j \in\{1,2, \cdots, m\}$. Thus, length $\left(C_{i}\right)=\operatorname{length}\left(C_{j}\right)$ for $1 \leq i, j \leq m$. We argue similarly for the cycles of type A_{j} for $j \in\{2,3\}$. This completes the proof.

A (r, s, k)-representation in M. Let $v \in V(M)$. By Lemma 4.1, there are three cycles of types A_{1}, A_{2}, A_{3} through v. Let L_{1}, L_{2}, L_{3} be three cycles through the vertex v where the cycle L_{i} is of type $A_{i}, i=1,2,3$. Let $L_{1}:=C\left(a_{1}, a_{2}, \cdots, a_{r}\right)$. We cut the map M along the cycle L_{1}. We get a cylinder which is bounded by an identical cycle L_{1}. We denote this cylinder by N_{1}. We call such a cycle a horizontal cycle if the cycle is L_{1} or homologous to L_{1}. Similarly, we say that a cycle is a vertical cycle if the cycle is L_{i} or homologous to L_{i} for $i \in\{2,3\}$. Observe that the horizontal and vertical cycles are noncontractible by Lemma 4.3. Again, we say that a path is a vertical path if the path is part of a vertical cycle. We consider N_{1} and make another cut in N_{1} starting through the vertex v along a path $Q \subset L_{3}$ until reaching L_{1} again for the first time where the starting adjacent face to the horizontal cycle L_{1}. (For example in Figure $15, v=v_{1}$.) Assume that along $P:=P\left(w_{1}\left(=a_{1}\right), w_{2}, \cdots, w_{m}\right) \subset L_{3}$ we took the second cut in N_{1}. Thus, we get a planar representation which is denoted by N_{2}.

Claim 4.6. The representation N_{2} is connected.
Proof. Observe that the N_{1} is connected as L_{1} is a noncontractible cycle. Suppose N_{2} is disconnected. This implies that there exists a 2 -disk, namely $D_{P_{1} \cup Q_{1}}$, which is bounded by a cycle $P_{1} \cup Q_{1}=P\left(u_{j}, \cdots, u_{i}\right) \cup P\left(a_{t} \cdots, a_{s}\right)$ where $P_{1} \subset L_{3}, Q_{1} \subset L_{1}, u_{i}=a_{t}$, and $u_{j}=a_{s}$. We consider faces which are incident with P_{1} and Q_{1} in $D_{P_{1} \cup Q_{1}}$. (In this article, \square denotes a quadrilateral face and \triangle denotes a triangular face.) Observe that if the quadrilateral faces are incident with Q_{1} and $\square_{i}, \triangle_{i, 1}, \triangle_{i, 2}, \square_{i+1}, \triangle_{i+1,1}, \triangle_{i+1,2}, \cdots, \triangle_{j-1,1}$, $\triangle_{j-1,2}, \square_{j}$ are incident with P_{1} in $D_{P_{1} \cup Q_{1}}$ then as in Lemma 4.3, we calculate the number of vertices f_{0}, edges f_{1}, and faces f_{2} of $D_{P_{1} \cup Q_{1}}$. So we get $f_{0}-f_{1}+f_{2}=0$. Similarly, if the triangular faces are incident with Q_{1} then also we calculate f_{0}, f_{1}, and f_{2} of $D_{P_{1} \cup Q_{1}}$. Similarly, we get $f_{0}-f_{1}+f_{2}=0$ which is a contradiction in both cases as $D_{P_{1} \cup Q_{1}}$ is 2-disk. Hence N_{2} is connected.

Observe that N_{2} is planer and bounded by L_{1} and Q. Let s denote the number of cycles which are homologous to L_{1} along P in N_{2}. (For example in Figure 15, we took a second cut along the path $P\left(v_{1}, w_{1}, x_{1}, z_{1}, v_{k+1}\right)$ which is part of L_{3} and $s=4$.) Now in N_{2}, length $\left(L_{1}\right)=r$ and number of horizontal cycles along P is s. We call N_{2} a (r, s)-representation.

Observe that N_{2} is bounded a by a cycle L_{1}, a path Q, a cycle L_{1}^{\prime} and a path Q^{\prime} where $L_{1}=L_{1}^{\prime}$ and $Q=Q^{\prime}$. We say that the cycle L_{1} is a lower
(base) horizontal cycle and L_{1}^{\prime} is an upper horizontal cycle in the (r, s) representation. Without loss of generality, we may assume that the incident faces of L_{1} are quadrangles. (For example in Figure $15, C\left(v_{1}, \cdots, v_{r}\right)$ is a lower horizontal cycle and $C\left(v_{k+1}, \cdots, v_{k}\right)$ is an upper horizontal cycle.) So, we get an identification of the vertical sides of N_{2} in the natural manner but the identification of the horizontal sides needs some shifting so that a vertex in the lower(base) side is identified with a vertex in the upper side. Let $L_{1}^{\prime}=$ $C\left(a_{k+1}\left(=w_{m}\right), \cdots, a_{k}\right)$, then a_{k+1} is the starting vertex in L_{1}^{\prime}. In the (r, s) representation, let $k=:$ length $\left(P\left(a_{1}, \cdots, a_{k+1}\right)\right)$ if $P\left(a_{1}, \cdots, a_{k+1}\right)$ is part of L_{1}. Thus, we get a new (r, s, k)-representation of the (r, s)-representation. We call the boundaries of the (r, s, k)-representation the cycles and paths along which we took the cuts to construct the (r, s, k)-representation of M. (For example in Figure 15, the vertex v_{k+1} is the starting vertex of the upper horizontal cycle $C\left(v_{k+1}, v_{k+2}, \cdots, v_{k}\right)$ and $k=\operatorname{length}\left(P\left(v_{1}, v_{2}, \cdots, v_{k+1}\right)\right)$.)

By the above construction, we see that every map of type $\left\{3^{3}, 4^{2}\right\}$ has a (r, s, k)-representation. We use $T(r, s, k)$ to represent a (r, s, k)-representation. Therefore, we have the following lemma.

Lemma 4.7. The map of type $\left\{3^{3}, 4^{2}\right\}$ on the torus has a $T(r, s, k)$ representation.

Let $T(r, s, k)$ be a representation of M. It has two identical upper and lower horizontal cycles of type A_{1}, namely, $C_{l h}:=C\left(u_{1}, u_{2}, \cdots, u_{r}\right)$ and $C_{u h}:=C\left(u_{k+1}, u_{k+2}, \cdots, u_{k}\right)$ in $T(r, s, k)$, respectively. (For example in Figure 11, $C_{l h}=C\left(v_{1}, v_{2}, \cdots, v_{7}\right)$ and $C_{u h}=C\left(v_{4}, v_{5}, \cdots, v_{3}\right)$.) We define a new cycle in $T(r, s, k)$ using $C_{l h}$ and $C_{u h}$. The vertex $u_{k+1} \in V\left(C_{l h}\right)$ is the starting vertex of $C_{u h}$ in $T(r, s, k)$. In $T(r, s, k)$, we define two paths $Q_{2}=$ $P\left(u_{k+1}, \cdots, u_{k_{1}}\right)$ of type A_{2} and $Q_{3}=P\left(u_{k+1}, \cdots, u_{k_{2}}\right)$ of type A_{3} through u_{k+1} in $T(r, s, k)$ where $u_{k_{1}}, u_{k_{2}} \in V\left(C_{u h}\right)$. Clearly, the paths Q_{2} and Q_{3} are not homologous to horizontal cycles, that is, these are not part of cycles of type A_{1}. We define two edge disjoint paths $Q_{2}^{\prime}=P\left(u_{k_{1}}, \cdots, u_{k+1}\right)$ and $Q_{3}^{\prime}=$ $P\left(u_{k_{2}}, \cdots, u_{k+1}\right)$ in $C_{u h}$ where $Q_{2}^{\prime} \cup Q_{3}^{\prime}:=P\left(u_{k_{1}}, \cdots, u_{k+1}, \cdots, u_{k_{2}}\right) \subset C_{u h}$ is a path in $T(r, s, k)$. Let $C_{4,1}:=Q_{2}^{\prime} \cup Q_{2}:=C\left(u_{k+1}, \cdots, u_{k_{1}}, \cdots, u_{k+1}\right)$ and $C_{4,2}:=Q_{3}^{\prime} \cup Q_{3}:=C\left(u_{k+1}, \cdots, u_{k_{2}}, \cdots, u_{k+1}\right)$. We define a new cycle C_{4} using lengths of $C_{4,1}$ and $C_{4,2}$ as follows:

$$
C_{4}:= \begin{cases}C_{4,1}, & \text { if length }\left(C_{4,1}\right) \leq \operatorname{length}\left(C_{4,2}\right) \tag{4.1}\\ C_{4,2}, & \text { if length }\left(C_{4,1}\right)>\operatorname{length}\left(C_{4,2}\right)\end{cases}
$$

It follows from the definition of C_{4} that length $\left(C_{4}\right):=\min \left\{\right.$ length $\left(Q_{2}^{\prime}\right)+$ length $\left(Q_{2}\right)$, length $\left(Q_{3}^{\prime}\right)+$ length $\left.\left(Q_{3}\right)\right\}=\min \{k+s,(r-(s / 2)-k)(\bmod r))+$ $s\}$. We say that the cycle C_{4} is of type A_{4} in $T(r, s, k)$. (In this section, we use $\left(r+\frac{s}{2}-k\right)$ in place of $(r+(s / 2)-k)(\bmod r)$.) (For example in Figure $11, C_{4,1}=Q_{2}^{\prime} \cup Q_{2}=P\left(v_{4}, v_{3}, v_{2}\right) \cup P\left(v_{2}, z_{5}, x_{5}, w_{4}, v_{4}\right)$ and $C_{4,2}=$ $Q_{3}^{\prime} \cup Q_{3}=P\left(v_{4}, v_{5}, v_{6}, v_{7}\right) \cup P\left(v_{7}, z_{4}, x_{4}, w_{4}, v_{4}\right)$.) We have cycles of four types A_{1}, A_{2}, A_{3}, and A_{4} in $T(r, s, k)$.

We show that the cycles of type A_{1} have same length and the cycles of type A_{2} have at most two different lengths in M.

Lemma 4.8. In M, the cycles of type A_{1} have unique length and the cycles of type A_{2} have at most two different lengths.

Proof. Let C_{1} be a cycle of type A_{1} in M. By the preceding argument of this section, the geometric carrier $S_{C_{1}}$ of the faces which are incident with C_{1} is a cylinder and $\partial S_{C_{1}}:=\left\{C_{2}, C_{0}\right\}$ where the cycle C_{2} is homologous to C_{1} and length $\left(C_{1}\right)=$ length $\left(C_{2}\right)$. Similarly, the $S_{C_{2}}$ is a cylinder and which is bounded by two homologous cycles C_{1} and another, say C_{3} of type A_{1}. Again, we consider the cycle C_{3} and continue with above process. In this process, let C_{i} denote a cycle at the i th step such that $\partial S_{C_{i}}=\left\{C_{i-1}, C_{i+1}\right\}$ and length $\left(C_{i-1}\right)=\operatorname{length}\left(C_{i}\right)=\operatorname{length}\left(C_{i+1}\right)$. Since M consists of finite number of vertices, it follows that this process stops after, say $t+1$ number of steps when the cycle C_{0} appears in this process. Thus, we get C_{1}, C_{2}, \cdots, C_{t} cycles of type A_{1} which are homologous to C_{1} and cover all the vertices of M as the vertices of $S_{C_{i}}$ are the vertices of $C_{i-1} \cup C_{i} \cup C_{i+1}$ for $1 \leq i \leq t$. It is clear from the definition that there is only one cycle of type A_{1} through each vertex in M. Therefore, the cycles $C_{1}, C_{2}, \cdots, C_{t}$ are the only cycles of type A_{1} in M. Since these cycles are homologous to each other, it follows that length $\left(C_{1}\right)=\operatorname{length}\left(C_{i}\right)$ for $i \in\{1, \cdots, t\}$ by Lemma 4.5. This implies that the cycles of type A_{1} have unique length in M.

Let L_{1}, L_{2}, L_{3} be three cycles through a vertex of types A_{1}, A_{2}, A_{3} respectively in M. We repeat the above process and consider L_{2} in place of C_{1}. Similarly, we get a sequence of cycles, namely, $R_{1}\left(=L_{2}\right), R_{2}, \cdots, R_{k}$ of type A_{2} which are homologous to each other. Since R_{i} and R_{j} are homologous to each other for $1 \leq i, j \leq k$, it follows that $l_{1}=\operatorname{length}\left(L_{2}\right)=\operatorname{length}\left(R_{i}\right)$ for $1 \leq i \leq k$ by Lemma 4.5. Again we consider the cycle L_{3} and repeat above argument. Let $l_{2}=\operatorname{length}\left(L_{3}\right)$. Since the cycles L_{2} and L_{3} are mirror images of each other, it follows that they define the same type of cycles. The map M contains the cycles of type A_{2} of lengths l_{1} and l_{2}. Therefore, the cycles of type A_{2} have at most two different lengths in M. This completes the proof.

We define admissible relations among r, s, k of $T(r, s, k)$ such that $T(r, s$, k) represents a map after identifying their boundaries.

Lemma 4.9. The maps of type $\left\{3^{3}, 4^{2}\right\}$ of the form $T(r, s, k)$ exist if and only if the following holds:
(i) $s \geq 2$ and s even,
(ii) $r s \geq 10$,
(iii) $2 \leq k \leq r-3$ if $s=2$ and $0 \leq k \leq r-1$ if $s \geq 4$.

Proof. Let $T(r, s, k)$ be a representation of M. In $T(r, s, k)$, the s denotes the number of horizontal cycles of type A_{1}. By the preceding argument of this section and Lemma 4.8, the cycles of type A_{1} are homologous to each
other and cover all the vertices of M with length r. So, the number of vertices n of M equals the length of the cycle of type A_{1} multiplied by the number of cycles of type $A_{1}=r s$.

Let C be a cycle of type A_{1}. By the definition of A_{1}, the triangles incident with C lie on one side and 4 -gons lie on the other side of C. If $s=1$ then $T(r, 1, k)$ contains one horizontal cycle, namely C. Since the incident faces of C are either triangles or 4 -gons, it implies that the faces of M are either only 3 -gons or 4 -gons. This is a contradiction as M consists of both types of faces. So, $s \geq 2$ for all r. If s is not an even integer and C is the base horizontal cycle in $T(r, s, k)$ then the incident faces of a vertex in C are all 3 -gons or 4 -gons after identification of the boundaries of $T(r, s, k)$. This is a contradiction as both 3 -gons and 4 -gons are incident at each vertex of M. So, s is even.

If $s=2$ and $r<5$ then the representation $T(4,2, k)$ has two horizontal cycles. If $C\left(u_{1}, u_{2}, u_{3}, u_{4}\right)$ and $C\left(u_{5}, u_{6}, u_{7}, u_{8}\right)$ are two horizontal cycles in $T(4,2, k)$ then the link $l k\left(u_{6}\right)$ is not a cycle. So, $r \neq 4$. Similarly one can see that $r \neq 1,2,3$. Thus, $r \geq 5$. If $s \geq 4$ and $r<3$ then one can see as in the above that some vertex has link which is not a cycle. By combining above all cases, $r \geq 3$ and $r s \geq 10$.

If $s=2$ and $k \in\{1, \cdots, r-1\} \backslash\{2, \cdots, r-3\}$ then we proceed as before and get some vertex whose link is not a cycle. Thus, $s=2$ implies $k \in\{2, \cdots, r-3\}$. Similarly we repeat the above argument for $s \geq 4$ and we get that $k \in\{1, \cdots, r-1\}$ if $s \geq 4$. This completes the proof.

Let M_{1} and M_{2} be two maps of type $\left\{3^{3}, 4^{2}\right\}$ with same number of vertices on the torus and $T_{i}:=T\left(r_{i}, s_{i}, k_{i}\right), i \in\{1,2\}$ denote M_{i}. If $a_{i, 1}$ equals the length of the cycle of type $A_{1}, a_{i, 2}$ equals the length of the cycle of type $A_{2}, a_{i, 3}$ equals the length of the cycle of type A_{3}, and $a_{i, 4}$ equals the length of the cycle of type A_{4} in T_{i} then we say that $T\left(r_{i}, s_{i}, k_{i}\right)$ has cycle-type $\left(a_{i, 1}, a_{i, 2}, a_{i, 3}, a_{i, 4}\right)$ if $a_{i, 2} \leq a_{i, 3}$ or $\left(a_{i, 1}, a_{i, 3}, a_{i, 2}, a_{i, 4}\right)$ if $a_{i, 3}<a_{i, 2}$. Now, we show the following isomorphism lemma.

Lemma 4.10. The map $M_{1} \cong M_{2}$ if and only if they have same cycle-type.
Proof. We first assume that the maps M_{1} and M_{2} have the same cycle-type. This gives $a_{1,1}=a_{2,1},\left\{a_{1,2}, a_{1,3}\right\}=\left\{a_{2,2}, a_{2,3}\right\}$, and $a_{1,4}=a_{2,4}$. The maps M_{i} for $i \in\{1,2\}$ have a $T_{i}=T\left(r_{i}, s_{i}, k_{i}\right)$ representation.

Claim $T_{1} \cong T_{2}$.
First, T_{1} has s_{1} horizontal cycles of type A_{1}, namely,

$$
\begin{aligned}
C(1,0) & :=C\left(u_{0,0}, u_{0,1}, \cdots, u_{0, r_{1}-1}\right) \\
C(1,1) & :=C\left(u_{1,0}, u_{1,1}, \cdots, u_{1, r_{1}-1}\right) \\
& \vdots \\
C\left(1, s_{1}-1\right) & :=C\left(u_{s_{1}-1,0}, u_{s_{1}-1,1}, \cdots, u_{s_{1}-1, r_{1}-1}\right)
\end{aligned}
$$

in order. Similarly, T_{2} has s_{2} horizontal cycles of type A_{1}, namely,

$$
\begin{aligned}
C(2,0) & :=C\left(v_{0,0}, v_{0,1}, \cdots, v_{0, r_{2}-1}\right) \\
C(2,1) & :=C\left(v_{1,0}, v_{1,1}, \cdots, v_{1, r_{2}-1}, v_{1,0}\right) \\
& \vdots \\
C\left(2, s_{2}-1\right) & :=C\left(v_{s_{2}-1,0}, v_{s_{2}-1,1}, \cdots, v_{s_{2}-1, r_{2}-1}\right)
\end{aligned}
$$

in order. Now we have the following cases.
Case 1: $\left(r_{1}, s_{1}, k_{1}\right)=\left(r_{2}, s_{2}, k_{2}\right)$.
In this case, $r_{1}=r_{2}, s_{1}=s_{2}, k_{1}=k_{2}$. Define a map $f_{1}: V\left(T\left(r_{1}, s_{1}\right.\right.$, $\left.\left.k_{1}\right)\right) \rightarrow V\left(T\left(r_{2}, s_{2}, k_{2}\right)\right)$ such that $f_{1}\left(u_{t, i}\right)=v_{t, i}$ for $0 \leq t \leq s-1$ and $0 \leq i \leq r-1$. Observe that

$$
l k\left(u_{t, i}\right)=C\left(\boldsymbol{u}_{t-1, i-1}, u_{t-1, i}, \boldsymbol{u}_{t-1, i+1}, u_{t, i+1}, u_{t+1, i+1}, u_{t+1, i}, u_{t, i-1}\right)
$$

is the link of the vertex $u_{t, i}$ in $T\left(r_{i}, s_{i}, k_{i}\right)$. By $f_{1}, f_{1}\left(l k\left(u_{t, i}\right)\right)=C\left(f_{1}\right.$ $\left(\boldsymbol{u}_{t-1, i-1}\right), f_{1}\left(u_{t-1, i}\right), f_{1}\left(\boldsymbol{u}_{t-1, i+1}\right), f_{1}\left(u_{t, i+1}\right), f_{1}\left(u_{t+1, i+1}\right), f_{1}\left(u_{t+1, i}\right), f_{1}$ $\left.\left(u_{t, i-1}\right)\right)=C\left(\boldsymbol{v}_{t-1, i-1}, v_{t-1, i}, \boldsymbol{v}_{t-1, i+1}, v_{t, i+1}, v_{t+1, i+1}, v_{t+1, i}, v_{t, i-1}\right)$. So, $f_{1}\left(l k\left(u_{t, i}\right)\right)=l k\left(v_{t, i}\right)$. This implies that the map f_{1} sends vertices to vertices, edges to edges, faces to faces and also, preserves incidents. Therefore, the map f_{1} defines an isomorphism map between $T\left(r_{1}, s_{1}, k_{1}\right)$ and $T\left(r_{2}, s_{2}, k_{2}\right)$. Thus, $T_{1} \cong T_{2}$ by f_{1}.
Case 2: $r_{1} \neq r_{2}$.
In this case, length $\left(C_{1,1}\right) \neq$ length $\left(C_{2,1}\right)$. This implies that $a_{1,1} \neq a_{2,1}$, a contradiction since $a_{1,1}=a_{2,1}$. So, $r_{1}=r_{2}$.
Case 3: $s_{1} \neq s_{2}$.
In this case, $n_{1}=r_{1} s_{1} \neq r_{1} s_{2}=n_{2}$ as $r_{1}=r_{2}$ by Case 2. This is a contradiction since $n_{1}=n_{2}$. So, $s_{1}=s_{2}$.
Case 4: $k_{1} \neq k_{2}$.
By assumption, $a_{1,4}=a_{2,4}$, length $\left(C_{1,4}\right)=$ length $\left(C_{2,4}\right)$. This implies that $\min \left\{k_{1}+s_{1}, r_{1}+s_{1} / 2-k_{1}\right\}=\min \left\{k_{2}+s_{2}, r_{2}+\left(s_{2} / 2\right)-k_{2}\right\}$. It follows that $k_{1}+s_{1} \neq k_{2}+s_{2}$ since $k_{1} \neq k_{2}$ and $s_{1}=s_{2}$. This gives us $k_{1}+s_{1}=r_{2}+\left(s_{2} / 2\right)-k_{2}=r_{1}+\left(s_{1} / 2\right)-k_{2}$ as $r_{1}=r_{2}$ and $s_{1}=s_{2}$. That is, $k_{2}=r_{1}-k_{1}+\left(s_{1} / 2\right)-s_{1}=r_{1}-k_{1}-\left(s_{1} / 2\right)$. In this case, identify T_{2} along vertical identical boundary $P\left(v_{0,0}, v_{1,0}, \cdots, v_{s_{2}-1,0}, v_{0, k_{1}}\right)$ of T_{2} and then cut along the path $Q=P\left(v_{0,0}, v_{1,0}, v_{2,1}, \cdots, v_{s_{2}-1,\left(s_{2} / 2\right)-1}, v_{0,\left(s_{2} / 2\right)+k_{2}}\right)$. Observe that the path Q is of type A_{2} and through the vertex $v_{0,0}$. So, we get a new (r, s, k)-representation of M_{2} and we denote it by R. This process defines the map $f_{2}: V\left(T\left(r_{2}, s_{2}, k_{2}\right)\right) \rightarrow V(R)$ such that $f_{2}\left(v_{t, i}\right)=v_{t,\left(r_{2}-i+[t / 2]\right)\left(\bmod r_{2}\right)}$ for $0 \leq t \leq s_{2}-1$ and $0 \leq i \leq r_{2}-1$. In R, the base horizontal cycle is $C^{\prime}(2,0):=C\left(v_{0,0}, v_{0, r_{2}-1}, \cdots, v_{0,1}\right)$ and the upper horizontal cycle is $\left.C\left(v_{0, k_{2}+\left(s_{2} / 2\right.}\right), v_{0, k_{2}+\left(s_{2} / 2\right)-1}, \cdots, v_{0, k_{2}+\left(s_{2} / 2\right)+1}\right)$ where the length of the path $P\left(v_{0,0}, v_{0, r_{2}-1}, \cdots, v_{0, k_{2}+s_{2} / 2}\right)$ in $C^{\prime}(2,0)$ is $r_{2}-\left(s_{2} / 2\right)-k_{2}$. In this process, we are not changing the length of the horizontal cycles or number of horizontal cycles which are homologous to the cycle $C^{\prime}(2,0)$. So, we get $R=T\left(r_{2}, s_{2}, r_{2}-k_{2}-\left(s_{2} / 2\right)\right)$. Now
$r_{2}-k_{2}-\left(s_{2} / 2\right)=r_{2}-\left(r_{1}-k_{1}-\left(s_{1} / 2\right)\right)-\left(s_{2} / 2\right)=k_{1}$ since $r_{1}=r_{2}, s_{1}=s_{2}$ and $k_{2}=r_{1}-k_{1}-\left(s_{1} / 2\right)$. Thus, by $f_{1}, T\left(r_{2}, s_{2}, r_{2}-k_{2}-\left(s_{2} / 2\right)\right) \cong$ $T\left(r_{1}, s_{1}, k_{1}\right)$. So, $T_{1} \cong T_{2}$.
By Cases $1-4$, the claim follows. Therefore, by $f_{1}, M_{1} \cong M_{2}$. Conversely, let $M_{1} \cong M_{2}$. Then there is an isomorphism $f: V\left(M_{1}\right) \rightarrow V\left(M_{2}\right)$. Let $C_{1, j}$ be a cycle of type A_{j} for $j=1,2,3,4$ in M_{1}. By f, consider $C_{2, j}:=$ $f\left(C_{1, j}\right)$ for $j=1,2,3,4$. So, length $\left(C_{1, j}\right)=\operatorname{length}\left(f\left(C_{1, j}\right)\right)=\operatorname{length}\left(C_{2, j}\right)$ for $j=1,2,3,4$ since f is an isomorphism. Hence, M_{1} and M_{2} have the same cycle-type.

Thus, we state the following corollary.
Corollary 4.11. The following holds:
(i) $T\left(r_{1}, s_{1}, k_{1}\right) \not \not T T\left(r_{2}, s_{2}, k_{2}\right)$ for all $r_{1} \neq r_{2}$,
(ii) $T\left(r_{1}, s_{1}, k_{1}\right) \not \not 二 T\left(r_{2}, s_{2}, k_{2}\right)$ for all $s_{1} \neq s_{2}$,
(iii) $T\left(r_{1}, s_{1}, k_{1}\right) \not \not T T\left(r_{1}, s_{1}, k_{2}\right)$ if $s_{1}=2$, and $k_{2} \in\left\{2,3, \cdots, r_{1}-3\right\} \backslash$ $\left\{k_{1}, r_{1}-k_{1}-1\right\}$,
(iv) $T\left(r_{1}, s_{1}, k_{1}\right) \not \not T T\left(r_{1}, s_{1}, k_{2}\right)$ if $s_{1} \geq 4$ and $k_{2} \in\left\{0,1, \cdots, r_{1}-1\right\} \backslash$ $\left\{k_{1}, r_{1}-k_{1}-s_{1} / 2\right\}$,
(v) $T\left(r_{1}, s_{1}, k_{1}\right) \cong T\left(r_{1}, s_{1}, r_{1}-k_{1}-1\right)$ if $s_{1}=2$ and $r_{1} \geq 5$,
(vi) $T\left(r_{1}, s_{1}, k_{1}\right) \cong T\left(r_{1}, s_{1}, r_{1}-s_{1} / 2-k_{1}\right)$ if $s_{1} \geq 4$ and $r_{1} \geq 3$.

Proof.
(i) If $r_{1} \neq r_{2}$ then it follows that $a_{1,1} \neq a_{2,1}$. This implies that $T\left(r_{1}, s_{1}\right.$, $\left.k_{1}\right) \not \not 二 T\left(r_{2}, s_{2}, k_{2}\right)$ by Lemma 4.10. So, $T\left(r_{1}, s_{1}, k_{1}\right) \not \not T T\left(r_{2}, s_{2}, k_{2}\right)$ for all $r_{1} \neq r_{2}$.
(ii) Again, $s_{1} \neq s_{2}$ implies $r_{1} \neq r_{2}$ since $r_{1} s_{1}=r_{2} s_{2}$. This implies that $T\left(r_{1}, s_{1}, k_{1}\right) \not \neq T\left(r_{2}, s_{2}, k_{2}\right)$ for all $s_{1} \neq s_{2}$.
(iii) If $k_{1} \neq k_{2}, r_{1}=r_{2}$ and $s_{1}=s_{2}$ then by the argument in the proof of Lemma 4.10, $T\left(r_{1}, s_{1}, k_{1}\right) \cong T\left(r_{1}, s_{1}, k_{2}\right)$ if and only if $k_{2}=r_{1}-k_{1}-$ $s_{1} / 2$. So, $T\left(r_{1}, s_{1}, k_{1}\right) \cong T\left(r_{1}, s_{1}, k_{2}\right)$ if $s_{1}=2$ and $k_{2} \neq r_{1}-k_{1}-1$. Thus, $T\left(r_{1}, s_{1}, k_{1}\right) \not \not T T\left(r_{1}, s_{1}, k_{2}\right)$ if $s_{1}=2$ and $k_{2} \in\left\{2,3, \cdots, r_{1}-\right.$ $3\} \backslash\left\{k_{1}, r_{1}-k_{1}-1\right\}$.
(iv) From the argument in (iii), $T\left(r_{1}, 2, k_{1}\right) \cong T\left(r_{1}, 2, r_{1}-k_{1}-1\right)$ if $r_{1} \geq 5$ (by Lemma 4.9).
(v) Again, $T\left(r_{1}, s_{1}, k_{1}\right) \cong T\left(r_{1}, s_{1}, k_{2}\right)$ if $s_{1} \geq 4$ and $k_{2} \neq r_{1}-s_{1} / 2-k_{1}$. So, $T\left(r_{1}, s_{1}, k_{1}\right) \not \not T T\left(r_{1}, s_{1}, k_{2}\right)$ if $s_{1} \geq 4$ and $k_{2} \in\left\{0,1, \cdots, r_{1}-1\right\} \backslash$ $\left\{k_{1}, r_{1}-k_{1}-s_{1} / 2\right\}$, and $T\left(r_{1}, s_{1}, k_{1}\right) \cong T\left(r_{1}, s_{1}, r_{1}-s_{1} / 2-k_{1}\right)$ if $s_{1} \geq 4$ and $r_{1} \geq 3$ (by Lemma 4.9).

We calculate all possible $T(r, s, k)$ representations on n vertices by Lemma 4.9. Then, we calculate lengths of the cycles of type A_{i} for $i \in\{1,2,3,4\}$. Next, we classify all $T(r, s, k)$ representation by Lemma 4.10 up to isomorphism. So, by the Lemmas 4.9, 4.10, maps of type $\left\{3^{3}, 4^{2}\right\}$ can be classified up to isomorphism. We repeat this same argument in the Sections $5,6,7$, $8,9,10,11$. We have done the above calculations for vertices up to $n \leq 22$.

Table 1. Maps of type $\left\{3^{3}, 4^{2}\right\}$

n	Equivalence classes	Length of cycles	$i(n)$
10	$\mathrm{~T}(5,2,2)$	$(5,\{10,10\}, 4)$	$1(10)$
12	$\mathrm{~T}(6,2,2), \mathrm{T}(6,2,3)$	$(6,\{6,4\}, 4)$	$3(12)$
	$\mathrm{T}(3,4,0), \mathrm{T}(3,4,1)$	$(3,\{4,12\}, 4)$	
	$\mathrm{T}(3,4,2)$	$(3,\{12,12\}, 6)$	
14	$\mathrm{~T}(7,2,2), \mathrm{T}(7,2,4)$	$(7,\{14,14\}, 4)$	$2(14)$
	$\mathrm{T}(7,2,3)$	$(7,\{14,14\}, 5)$	
16	$\mathrm{~T}(8,2,2), \mathrm{T}(8,2,5)$	$(8,\{8,16\}, 4)$	$5(16)$
	$\mathrm{T}(8,2,3), \mathrm{T}(8,2,4)$	$(8,\{16,4\}, 5)$	
	$\mathrm{T}(4,4,0), \mathrm{T}(4,4,2)$	$(4,\{4,8\}, 4)$	
	$\mathrm{T}(4,4,1)$	$(4,\{16,16\}, 5)$	
	$\mathrm{T}(4,4,3)$	$(4,\{16,16\}, 7)$	
18	$\mathrm{~T}(9,2,2), \mathrm{T}(9,2,6)$	$(9,\{18,6\}, 4)$	$5(18)$
	$\mathrm{T}(9,2,3), \mathrm{T}(9,2,5)$	$(9,\{6,18\}, 5)$	
	$\mathrm{T}(9,2,4)$	$(9,\{18,18\}, 6)$	
	$\mathrm{T}(3,6,0)$	$(3,\{6,6\}, 6)$	
20	$\mathrm{~T}(3,6,1), \mathrm{T}(3,6,2)$	$(3,\{18,18\}, 7)$	
	$\mathrm{T}(10,2,2), \mathrm{T}(10,2,7)$	$(10,\{10,20\}, 4)$	$6(20)$
	$\mathrm{T}(10,2,4), \mathrm{T}(10,2,6)$	$(10,\{20,10\}, 5)$	
	$\mathrm{T}(5,4,0), \mathrm{T}(5,4,3)$	$(10,\{10,4\}, 6)$	
	$\mathrm{T}(5,4,1), \mathrm{T}(5,4,2)$	$(5,\{4,20\}, 4)$	
	$\mathrm{T}(5,4,4)$	$(5,\{20,20\}, 5)$	
22	$\mathrm{~T}(11,2,2), \mathrm{T}(11,2,8)$	$(11,\{22,20\}, 8)$	
	$\mathrm{T}(11,2,3), \mathrm{T}(11,2,7)$	$(11,\{22,22\}, 4)$	$4(22)$
	$\mathrm{T}(11,2,4), \mathrm{T}(11,2,6)$	$(11,\{22,22\}, 6)$	
	$\mathrm{T}(11,2,5)$	$(11,\{22,22\}, 7)$	

We list the resulting objects in the form of their (r, s, k)-representation in Table 1. In Table 1, we use n to denote the number of vertices of a map. We put $T\left(r_{1}, s_{1}, k_{1}\right)$ and $T\left(r_{2}, s_{2}, k_{2}\right)$ in a single equivalence class if $T\left(r_{1}, s_{1}, k_{1}\right)$ and $T\left(r_{2}, s_{2}, k_{2}\right)$ are isomorphic. We write $\left(a_{1},\left\{a_{2}, a_{3}\right\}, a_{4}\right)$ to denote a permutation of lengths of cycles where $a_{j}=\operatorname{length}\left(C_{1, j}\right)$ for $j \in\{1,2,3,4\}$ and $\left\{a_{2}, a_{3}\right\}$ denotes a set of lengths of the cycles $C_{1,2}$ and $C_{1,3}$ of type A_{2}. We also use $i(n)$ where i denotes the number of nonisomorphic objects of type $\left\{3^{3}, 4^{2}\right\}$ on n vertices up to isomorphism. This notation is also used in Tables 2, 3, 4, 5, 6, 7, 8 .

5. Maps of type $\left\{3^{2}, 4,3,4\right\}$

Let M be a map of type $\left\{3^{2}, 4,3,4\right\}$ on the torus. Through each vertex in M there is a path as follows.
Definition. Let $P\left(\cdots, u_{i-1}, u_{i}, u_{i+1}, \cdots\right)$ be a path in the edge graph of M. We say the path P is of type B_{1} if
(i) $l k\left(u_{i}\right)=C\left(\boldsymbol{a}, u_{i+1}, b, c, \boldsymbol{d}, u_{i-1}, e\right)$ implies $l k\left(u_{i-1}\right)=C\left(\boldsymbol{f}, g, e, u_{i}, \boldsymbol{c}\right.$, $\left.d, u_{i-2}\right)$ and $l k\left(u_{i+1}\right)=C\left(e, a, k, u_{i+2}, l, b, u_{i}\right)$;
(ii) $l k\left(u_{i}\right)=C\left(\boldsymbol{e}, h, k, u_{i+1}, l, b, u_{i-1}\right)$ implies $l k\left(u_{i-1}\right)=C\left(\boldsymbol{h}, u_{i}, b, c, \boldsymbol{d}\right.$, $\left.u_{i-2}, e\right)$ and $l k\left(u_{i+1}\right)=C\left(s, u_{i+2}, t, l, \boldsymbol{b}, u_{i}, k\right)$.
In Figure $17, \operatorname{lk}\left(u_{i}\right)=C\left(\boldsymbol{a}, b, c, u_{i+1}, \boldsymbol{f}, e, u_{i-1}\right)$ and the path $P\left(u_{i-1}, u_{i}\right.$, $\left.u_{i+1}\right)$ is part of a path of type B_{1}. Let P be a maximal path of type B_{1}. Then by the following lemma, P defines a cycle.

Figure 20.

Figure 19. $T(r, 4,2 k)$

Lemma 5.1. If P is a maximal path of type B_{1} in M then there exists an edge e such that $P \cup e$ is a cycle.

Proof. Let $P\left(u_{1}, u_{2}, \cdots, u_{r}\right)$ be a maximal path of type B_{1} and $l k\left(u_{r}\right)=$ $C\left(u_{r-1}, \boldsymbol{a}, b, c, d, \boldsymbol{f}, e\right)$. If $d=u_{1}$ then $C\left(u_{1}, u_{2}, \cdots, u_{r}\right)$ is a cycle. Suppose $d \neq u_{1}$ and $d=u_{i}$ for some $2 \leq i \leq r$. Then it defines a cycle $L=$ $C\left(u_{i}, u_{i+1}, \cdots, u_{r}\right)$. By a similar argument to the one used in Lemma 4.1 and by Definition 5.1, either $f=u_{i+1}, d=u_{i}$, and $c=u_{i-1}$ or $c=u_{i+1}$, $d=u_{i}$, and $f=u_{i-1}$. In both the cases, by considering faces incident with the cycle, we get a new cycle $C\left(w_{i}, w_{i+1}, \cdots, w_{r-2}\right)$ (see Figure 20) of the same type as L with lesser length. By induction, it is impossible similarly as
in Lemma 4.1. Therefore, $d \neq u_{i}$ for $2 \leq i \leq r$. So, we get a path Q which is extended from P with length $(P)<\operatorname{length}(Q)$. This is a contradiction as P is maximal. Therefore, $d=u_{1}$ and the path P defines the cycle $C\left(u_{1}, u_{2}\right.$, \cdots, u_{r}). So, every maximal path of type B_{1} is a cycle.

In Figure 19, the path $P\left(v_{1}, v_{2}, \cdots, v_{r}\right)$ is of type B_{1} and the cycle $C\left(u_{1}, u_{2}, \cdots, u_{r}\right)$ is of type B_{1}. Let C_{1} and C_{2} be two cycles of type B_{1}. We claim that

Lemma 5.2. If C_{1} and C_{2} are two cycles of type B_{1} and $E\left(C_{1}\right) \cap E\left(C_{2}\right) \neq \emptyset$ then $C_{1}=C_{2}$.

Proof. Let $C_{1}:=C\left(u_{1,1}, u_{1,2}, \cdots, u_{1, r}\right), C_{2}:=C\left(u_{2,1}, u_{2,2}, \cdots, u_{2, s}\right)$, and $E\left(C_{1}\right) \cap E\left(C_{2}\right) \neq \emptyset$. Then there is an edge $e \in E\left(C_{1} \cap C_{2}\right)$. Let $e=y x$. The cycles C_{1}, C_{2} are both well defined at the vertices y and x. Let $l k(x)=C(\boldsymbol{a}$, $b, c, w, \boldsymbol{d}, e, y)$. By Definition 5.1, $w \in V\left(C_{1} \cap C_{2}\right)$. So, the path $P(y, x, w)$ is a part of both C_{1} and C_{2}. This implies that $y=u_{1, t_{1}-1}=u_{2, t_{2}-1}$, $x=u_{1, t_{1}}=u_{2, t_{2}}$, and $w=u_{1, t_{1}+1}=u_{2, t_{2}+1}$ for some $t_{1} \in\{1, \cdots, r\}$ and $t_{2} \in\{1, \cdots, s\}$. We argue similarly for the edge $x w$ as we did for the edge e and we continue with the above process stopping after r steps. Let $t_{2}>t_{1}$ and $t_{2}-t_{1}=m$ for some m. By this process we get $u_{1,1}=u_{2, m+1}$, $u_{1,2}=u_{2, m+2}, \cdots, u_{1, r}=u_{2, m+r}$, and $u_{1,1}=u_{2, m+r+1}$. This implies that $m+1=m+r+1$ and $r=s$ since $u_{1, m+r+1}=u_{2, m+1}$ and C_{2} is a cycle. Hence, $C_{1}=C_{2}$. Again, let $l k(x)=C(\boldsymbol{a}, b, c, w, \boldsymbol{d}, y, e)$. By Definition 5.1, $b \in V\left(C_{1} \cap C_{2}\right)$. We repeat above argument and get $C_{1}=C_{2}$. Therefore, by combining above two cases, $E\left(C_{1}\right) \cap E\left(C_{2}\right) \neq \emptyset$ implies $C_{1}=C_{2}$. This completes the proof.

Let C be a cycle of type B_{1}. Similarly we argue as in Lemma 4.3 for the cycles of type B_{1} and so, the cycle C is noncontractible. Let $S:=\{F \in$ $F(M) \mid V(C) \cap V(F) \neq \emptyset\}$. The cylinder $S_{C}=|S|$ has two boundary cycles which are either disjoint or identical by Lemma 5.3.

Lemma 5.3. Let C be a cycle of type $B_{1}, \partial S_{C}=\left\{C_{1}, C_{2}\right\}$. If $C_{1} \cap C_{2} \neq \emptyset$ then $C_{1}=C_{2}$.

Proof. The cycle C is of type B_{1} and $\partial S_{C}=\left\{C_{1}, C_{2}\right\}$. We argue similarly as in Lemma 4.1 for the cycle C and the cylinder S_{C}. So, the cycles C, C_{1}, and C_{2} are of the same type B_{1}. Let $C_{1} \cap C_{2} \neq \emptyset$ and $u \in V\left(C_{1} \cap C_{2}\right)$. Suppose $C_{1} \cap C_{2}$ does not contain any edge which is incident at u. By Definition 5.1, the number of incident edges that lie on one side of the cycle C_{i} is two and on the other side is one at each vertex of C_{i}. Let d_{i} denote the number of incident edges which are incident at u and does not belong to $E\left(C_{i}\right)$. Then $d_{1}+d_{2}=3$. The vertex $u \in V\left(C_{1}\right)$ and $u \in V\left(C_{2}\right)$. Since $C_{1} \cap C_{2}$ does not contain any edge at u, the cycles C_{1} and C_{2} both contain two different edges which are incident at the vertex u. This implies that degree $(u) \geq\left(d_{1}+d_{2}+4\right)=7$. This is a contradiction as the degree of u is five. Therefore, $C_{1} \cap C_{2}$ contains an edge at the vertex u. This implies that
$C_{1}=C_{2}$ by Lemma 5.2. Again, if $C_{1} \cap C_{2}$ contains an edge then by Lemma $5.2, C_{1}=C_{2}$. Therefore, boundary cycles of a cylinder are either identical or disjoint.

We show that the cycles of type B_{1} have at most two different lengths in the next Lemma 5.4.
Lemma 5.4. In M, the cycles of type B_{1} have at most two different lengths.
Proof. We proceed as in the case of Lemma 5.3. There are two cycles of type B_{1} through each vertex of M (by the definition of cycle of type B_{1}). Let $u \in V(M)$. Let C_{1} and C_{1}^{\prime} denote two cycles through a vertex u. Consider the cylinder $S_{C_{1}}$ which is defined by the cycle C_{1}. Let $\partial S_{C_{1}}=\left\{C_{2}, C_{0}\right\}$. The cycles C_{1}, C_{2}, and C_{0} are homologous to each other and length $\left(C_{1}\right)$ $=$ length $\left(C_{2}\right)=$ length $\left(C_{0}\right)$ by a similar argument of Lemma 4.5. Again, we proceed with the above argument for the cycle C_{2} in place of C_{1} and continue. In this process, let C_{i} denote a cycle at i th step where $\partial S_{C_{i}}=$ $\left\{C_{i+1}, C_{i-1}\right\}$ and length $\left(C_{i-1}\right)=\operatorname{length}\left(C_{i}\right)=\operatorname{length}\left(C_{i+1}\right)$. Let $k+1$ be the number of steps until process stops and the cycle C_{1} appears. Thus, the cycles C_{i}, C_{j} are homologous for every $1 \leq i, j \leq k$ where $\cup_{i=1}^{k} V\left(C_{i}\right)=$ $V(M)$ and $l_{1}=\operatorname{length}\left(C_{1}\right)=\operatorname{length}\left(C_{i}\right)$ for all $1 \leq i \leq k$. Again, we proceed with the above process for C_{1}^{\prime} in place of C_{1}. Similarly, we get a sequence of homologous cycles, namely, $C_{1}^{\prime}, C_{2}^{\prime}, \cdots, C_{k_{1}}^{\prime}$ such that $\cup_{i=1}^{k_{1}} V\left(C_{i}^{\prime}\right)=V(M)$ and $l_{2}=\operatorname{length}\left(C_{i}^{\prime}\right)$ for all $1 \leq i \leq k_{1}$. So, M contains cycles of type B_{1} of at most two different lengths l_{1} and l_{2}. This completes the proof of the lemma.

As in Section 4, observe that every map of type $\left\{3^{2}, 4,3,4\right\}$ on the torus has a $T(r, s, k)$ representation for some r, s, k. We define admissible relations among r, s, k of $T(r, s, k)$ such that $T(r, s, k)$ represents a map after identifying their boundaries in next lemma. We omit the proof of next lemma as its argument is similar to the one used in Lemma 4.9.
Lemma 5.5. Maps of type $\left\{3^{2}, 4,3,4\right\}$ of the form $T(r, s, k)$ exist if and only if the following holds:
(i) $s \geq 2, s$ is even,
(ii) $2 \mid r$,
(iii) $r s \geq 16$,
(iv)

$$
\begin{cases}k \in\{2 t+4: 0 \leq t \leq(r-8) / 2\} & \text { if } s=2, \\ k \in\{2 t: 0 \leq t<r / 2\} & \text { if } s \geq 4 .\end{cases}
$$

Let $T_{i}=T\left(r_{i}, s_{i}, k_{i}\right), i \in\{1,2\}$ denote M_{i} of type $\left\{3^{2}, 4,3,4\right\}$ on the torus with n_{i} vertices and $n_{1}=n_{2}$. Let $C_{i, 1}$ and $C_{i, 2}$ be two nonhomologous cycles of type B_{1} in M_{i} for $i=1,2$ and $a_{i, j}=\operatorname{length}\left(C_{i, j}\right)$.

Lemma 5.6. The map $M_{1} \cong M_{2}$ if and only if $\left(a_{1,1}, a_{1,2}\right)=\left(a_{2, t_{1}}, a_{2, t_{2}}\right)$ for $t_{1} \neq t_{2} \in\{1,2\}$.

Proof. We first assume that $\left(a_{1,1}, a_{1,2}\right)=\left(a_{2, t_{1}}, a_{2, t_{2}}\right)$ where $t_{1}, t_{2} \in\{1,2\}$ and $t_{1} \neq t_{2}$. This implies that $\left\{a_{1,1}, a_{1,2}\right\}=\left\{a_{2,1}, a_{2,2}\right\}$.

Claim. $T_{1} \cong T_{2}$.
From the definition of a $\left(r_{i}, s_{i}, k_{i}\right)$-representation, T_{1} has s_{1} horizontal cycles of type B_{1} :

$$
\begin{aligned}
C(1,0) & :=C\left(u_{0,0}, u_{0,1}, \cdots, u_{0, r_{1}-1}\right), \\
C(1,1) & :=C\left(u_{1,0}, u_{1,1}, \cdots, u_{1, r_{1}-1}\right), \\
& \vdots \\
C\left(1, s_{1}-1\right) & :=C\left(u_{s_{1}-1,0}, u_{s_{1}-1,1}, \cdots, u_{s_{1}-1, r_{1}-1}\right),
\end{aligned}
$$

and T_{2} has s_{2} horizontal cycles of type B_{1} :

$$
\begin{aligned}
C(2,0) & :=C\left(v_{0,0}, v_{0,1}, \cdots, v_{0, r_{2}-1}\right) \\
C(2,1) & :=C\left(v_{1,0}, v_{1,1}, \cdots, v_{1, r_{2}-1}, v_{1,0}\right) \\
& \vdots \\
C\left(2, s_{2}-1\right) & :=C\left(v_{s_{2}-1,0}, v_{s_{2}-1,1}, \cdots, v_{s_{2}-1, r_{2}-1}\right) .
\end{aligned}
$$

Case 1: $\left(r_{1}, s_{1}, k_{1}\right)=\left(r_{2}, s_{2}, k_{2}\right)$ (i.e., $\left.r_{1}=r_{2}, s_{1}=s_{2}, k_{1}=k_{2}\right)$.
Similar to the proof of the Lemma 4.10, we define an isomorphism $f_{1}: V\left(T\left(r_{1}, s_{1}, k_{1}\right)\right) \rightarrow V\left(T\left(r_{2}, s_{2}, k_{2}\right)\right)$ such that $f\left(u_{t, i}\right)=v_{t, i}$ for $0 \leq$ $t \leq s_{1}-1$ and $0 \leq i \leq r_{1}-1$. So, $T_{1} \cong T_{2}$ by f_{1}.
Case 2: $r_{1}=r_{2}, s_{1}=s_{2}, k_{1} \neq k_{2}$.
Since $r_{1}=r_{2}$, it implies that the vertical cycles in T_{1} and T_{2} have same length.

We define a cycle in T_{1} as in equation (1) of Section 4 . Let $C_{l h}$ denote the base horizontal cycle and $C_{u h}$ denote the upper horizontal cycle in T_{2}. Let Q be a path through $u_{k_{1}+1}$ of type B_{1} and not homologous to $C_{l h}$. Let Q^{\prime} and $Q^{\prime \prime}$ denote two edge disjoint paths in $C_{u h}$ such that $C_{u h}=Q^{\prime} \cup Q^{\prime \prime}$. Hence as in equation (1), we define a new cycle $C_{3}(1)$ using the above paths in T_{1} of minimum length. Similarly, there is a cycle $C_{3}(2)$ as $C_{3}(1)$ in T_{2}. Since $\left\{a_{1,1}, a_{1,2}\right\}=\left\{a_{2,1}, a_{2,2}\right\}$ and $r_{1}=r_{2}$, it follows that length $\left(C_{3}(1)\right)=$ length $\left(C_{3}(2)\right)$.

Since length $\left(C_{3}(1)\right)=$ length $\left(C_{3}(2)\right)$, this implies that $\min \left\{s_{1}+k_{1}, r_{1}+\right.$ $\left.s_{1}-k_{1}\right\}=\min \left\{s_{2}+k_{2}, r_{2}+s_{2}-k_{2}\right\}$. It follows that $r_{1}+s_{1}-k_{1}=s_{2}+k_{2}$ since $k_{1} \neq k_{2}$. So, $k_{2}=r_{1}-k_{1}$ as $s_{1}=s_{2}$. We proceed similarly to Lemma 4.10. In this process, identify $T\left(r_{2}, s_{2}, k_{2}\right)$ along the vertical boundary and cut along a path $Q:=P\left(v_{0, i}, v_{1, i}, \cdots, v_{s_{2}-1, i}, v_{0, i+k_{2}}\right)$ for some even $0 \leq i \leq r_{1}-1$. Thus, we get a new representation R of M_{2} with a map $f_{2}: V\left(T\left(r_{2}, s_{2}, k_{2}\right)\right) \rightarrow V(R)$ such that $f_{2}\left(v_{t, i^{\prime}}\right)=$ $v_{t,\left(i+r_{2}-i^{\prime}\right)\left(\bmod r_{2}\right)}$ for $0 \leq t \leq s_{2}-1$ and $0 \leq i^{\prime} \leq r_{2}-1$. Clearly, f_{2}
maps the cycle $C(2, t):=C\left(v_{t, 0}, v_{t, 1}, \cdots, v_{t, r_{2}-1}\right)$ to the cycle $C^{\prime}(2, t):=$ $C\left(v_{t, i}, v_{t, i-1}, \cdots, v_{t, r_{2}-1}, v_{t, 0}, v_{t, 1}, \cdots, v_{t, i+1}\right)$. Since the path

$$
Q_{1}:=P\left(v_{0, i}, v_{0, i-1}, \cdots, v_{0, i+k_{2}}\right) \subset C^{\prime}(2,0):=C\left(v_{0, i}, v_{0, i-1}, \cdots, v_{0, i+1}\right)
$$

and length $\left(Q_{1}\right)=i+r_{2}-k_{2}-i=r_{2}-k_{2}$, it follows that R has s_{2} number of horizontal cycles of length r_{2} and the cycle of type B_{2} has length $r_{2}-k_{2}$ as length $\left(Q_{1}\right)=r_{2}-k_{2}$. Observe that the R is not of type $T(r, s, k)$ for some r, s, k because the sequence of the incident faces in R of the base horizontal cycle $C^{\prime}=C\left(v_{0, i}, v_{0, i-1}, \cdots, v_{0, r_{2}-1}, v_{0,0}, v_{0,1}, \cdots, v_{0, i+1}\right)$ starts with triangular faces. (For example, R in Figure 12 does not follow the definition of a (r, s, k)-representation since the sequence

$$
\begin{aligned}
& v_{1} v_{2} w_{1}, w_{1} w_{2} v_{2},\left[v_{2}, v_{3}, w_{3}, w_{2}\right], v_{3} v_{4} w_{3}, v_{4} w_{3} w_{4} \\
& \quad\left[v_{4}, v_{5}, w_{5}, w_{4}\right], v_{5} v_{6} w_{4}, v_{6} w_{5} w_{6},\left[v_{1}, v_{6}, w_{6}, w_{1}\right]
\end{aligned}
$$

starts with the triangular faces $v_{1} v_{2} w_{1}, w_{1} w_{2} v_{2}$.) In this case, if $C^{\prime}(2,0)$, $C^{\prime}(2,1), \cdots, C^{\prime}\left(2, s_{2}-1\right)$ denotes a sequence of horizontal cycles in R, then we identify R along $C\left(v_{0, i}, v_{0, i-1}, \cdots, v_{0, i+1}\right)$ and cut along $C\left(v_{1, i}, v_{1, i-1}, v_{1, i-2}, \cdots, v_{1, i+2}, v_{1, i+1}\right)$. Thus, we get a new representation of M_{2}, say R^{\prime} where $C^{\prime}(2,1):=C\left(v_{1, i}, v_{1, i-1}, \cdots, v_{1, i+1}\right)$ denotes the base horizontal cycle in R^{\prime}. In this process,

$$
\begin{aligned}
C^{\prime}(2,1) \rightarrow C^{\prime}(2,0), C^{\prime}(2,2) \rightarrow C^{\prime}(2,1), C^{\prime}(2,3) & \rightarrow C^{\prime}(2,2), \cdots \\
C^{\prime}\left(2, s_{2}-1\right) \rightarrow C^{\prime}\left(2, s_{2}-2\right), C^{\prime}(2,0) & \rightarrow C^{\prime}\left(2, s_{2}-1\right)
\end{aligned}
$$

This process defines a map $f_{3}: R \rightarrow R^{\prime}$ such that $f_{3}\left(C^{\prime}(2, t)\right)=C^{\prime}(2, t-$ $\left.1\left(\bmod s_{2}\right)\right)$ for $0 \leq t \leq s_{2}-1$. Now observe that $C^{\prime}(2,1), C^{\prime}(2,2), C^{\prime}(2$, $3), \cdots, C^{\prime}\left(2, s_{2}-1\right), C^{\prime}(2,0)$ denotes the sequence of horizontal cycles in R^{\prime}. (Figure 5 is a $R^{\prime}=T(6,4,2)$ representation which is defined from R in Figure 12. In Figure 12, we cut R along the cycle $C\left(v_{1}, v_{2}, \cdots, v_{6}\right)$ and identify along $C\left(w_{1}, w_{2}, \cdots, w_{6}\right)$. Hence, we get a representation R^{\prime} in Figure 5.) In the above process, we are redefining R to a desired representation R^{\prime}. The length of the horizontal cycles of type B_{1} remain unchanged as we are only changing the order of the horizontal cycles. So, R^{\prime} has a well defined $T\left(r_{2}, s_{2}, r_{2}-k_{2}\right)$ representation. Thus, $T\left(r_{2}, s_{2}, r_{2}-\right.$ $\left.k_{2}\right)=T\left(r_{1}, s_{1}, k_{1}\right)$ since $r_{1}=r_{2}, s_{1}=s_{2}, k_{2}=r_{1}-k_{1}$. So, M_{2} has a $T\left(r_{1}, s_{1}, k_{1}\right)$ representation. Therefore, by $f_{1}, T_{1} \cong T_{2}$.
Case 3: $r_{1} \neq r_{2}$.
This case implies that $a_{1,1} \neq a_{2,1}$. By assumption $\left\{a_{1,1}, a_{1,2}\right\}=$ $\left\{a_{2,1}, a_{2,2}\right\}$, we get that $a_{1,1}=a_{2,2}$. We identify boundaries of $T\left(r_{2}, s_{2}, k_{2}\right)$ and cut along the hole cycle $C(2,2)$ in place of $C(2,1)$. Then take another cut along $C(2,1)$ until we reaching $C(2,2)$ again for the first time. Hence, we get $r_{1}=$ length $(C(1,1))=$ length $(C(2,2))=r_{2}$. Thus, $r_{1} s_{1}=r_{2} s_{2}$ implies that $s_{1}=s_{2}$. Since $r_{1}=r_{2}$ and $s_{1}=s_{2}$, this implies that we are in Case 2. Similarly to Case 2 , we define maps f_{1}, f_{2}, and f_{3}. Thus, by f_{1}, f_{2}, and $f_{3}, T_{1} \cong T_{2}$.
Case 4: $s_{1} \neq s_{2}$.

Table 2. Maps of type $\left\{3^{2}, 4,3,4\right\}$

n	Equivalence classes	Length of cycles	$i(n)$
16	$\mathrm{~T}(8,2,4), \mathrm{T}(4,4,2)$	$(8,4)$	$2(16)$
	$\mathrm{T}(4,4,0)$	$(4,4)$	
20	$\mathrm{~T}(10,2,4), \mathrm{T}(10,2,6)$	$(10,10)$	$1(20)$
24	$\mathrm{~T}(12,2,4), \mathrm{T}(12,2,8)$,	$(12,6)$	$3(24)$
	$\mathrm{T}(6,4,2), \mathrm{T}(6,4,4)$	$(4,12)$	
	$\mathrm{T}(12,2,6), \mathrm{T}(4,6,2)$	$(4,6)$	
28	$\mathrm{~T}(6,4,0), \mathrm{T}(4,6,0)$	$(14,14)$	$1(28)$
	$\mathrm{T}(14,2,4), \mathrm{T}(14,2,10)$		
32	$\mathrm{~T}(16,2,4), \mathrm{T}(14,2,8)$	$\mathrm{T}(16,2,12)$,	$(16,8)$
	$\mathrm{T}(8,4,2), \mathrm{T}(8,4,6)$	$5(32)$	
	$\mathrm{T}(16,2,6) \mathrm{T}(16,2,10)$	$(16,16)$	
	$\mathrm{T}(16,2,8), \mathrm{T}(4,8,2)$	$(4,16)$	
	$\mathrm{T}(8,4,4)$	$(8,8)$	
	$\mathrm{T}(8,4,0), \mathrm{T}(4,8,0)$	$(4,8)$	

This case implies that $n_{1}=r_{1} s_{1} \neq r_{2} s_{2}=n_{2}$ if $r_{1}=r_{2}$. This is a contradiction as $n_{1}=n_{2}$. If $r_{1} \neq r_{2}$ then we are in Case 3. By combining Case 2 and 3, we get an isomorphism f_{1} if $s_{1} \neq s_{2}$. Again, let $k_{1} \neq k_{2}$. Here, we have the following cases. If $r_{1} \neq r_{2}$ then we are in Case 3. Similarly, if $s_{1} \neq s_{2}$ then we are in Case 4. If $r_{1}=r_{2}, s_{1}=s_{2}$ and $k_{1} \neq k_{2}$ then we are in Case 2. Thus, $\left(a_{1,1}, a_{1,2}\right)=\left(a_{2, t_{1}}, a_{2, t_{2}}\right)$ where $t_{1}, t_{2} \in\{1,2\}$ defines $T_{1} \cong T_{2}$.
By Cases $1,2,3$, and 4 , the claim follows. Thus, by $f_{1}, M_{1} \cong M_{2}$.
Conversely, let $M_{1} \cong M_{2}$. Similarly to Lemma 4.10, let $f: V\left(M_{1}\right) \rightarrow$ $V\left(M_{2}\right)$ such that $C_{2, j}:=f\left(C_{1, j}\right)$ for $j \in\{1,2\}$. So, $\left\{a_{1,1}, a_{1,2}\right\}=\left\{a_{2,1}, a_{2,2}\right\}$. Thus, this implies that $\left(a_{1,1}, a_{1,2}\right)=\left(a_{2, t_{1}}, a_{2, t_{2}}\right)$ where $t_{1} \neq t_{2} \in\{1,2\}$.

As in Section 4, by Lemmas 5.5 and 5.6, the maps of type $\left\{3^{2}, 4,3,4\right\}$ can be classified up to isomorphism. We have done calculation for the vertices up to 32 and listed the obtained objects in the form of their $T(r, s, k)$ representation in Table 2.

6. Maps of type $\{3,6,3,6\}$

Let M be a semiequivelar map of type $\{3,6,3,6\}$ on the torus. We define a path in M as follows. Through each vertex in M there are two paths of type X_{1} as shown in Figure 20.
Definition. Let $Q_{1}:=P\left(\cdots, u_{i-1}, u_{i}, u_{i+1}, \cdots\right)$ be a path in the edge graph of M. Let $A(v)$ denote a set of incident edges through v in M. We say the path Q_{1} of type X_{1} if $A\left(u_{i}\right) \backslash E\left(Q_{1}\right)$ is a set of two edges where one edge lies on one side and remaining one lies on the other side of $P\left(u_{i-1}, u_{i}, u_{i+1}\right)$.

For example in Figure 20, $P\left(u_{i-1}, u_{i}, u_{i+1}\right)$ and $P\left(b, u_{i}, g\right)$ are two paths through u_{i} and both are part of paths of type X_{1}. Let $P\left(u_{1}, \cdots, u_{r}\right)$ be a maximal path of type X_{1} in M. Now consider a vertex $u_{r}, l k\left(u_{r}\right)$ and argue similarly as in Lemma 4.1. We get an edge $u_{1} u_{r}$ such that $P \cup\left\{u_{1} u_{r}\right\}$ is a cycle of type X_{1}. Thus, there are two cycles of type X_{1} through a vertex. Let $L_{1}(v)$ and $L_{2}(v)$ be two cycles of type X_{1} through a vertex v.

Figure 20. $l k\left(u_{i}\right)$

We proceed with a similar argument from Section 4 and get a connected $T(r, s, k)$ representation of M. In this process, we cut M along the cycles $L_{1}(v)$ and $L_{2}(v)$ where we take second cut along the cycle L_{2} and the starting adjacent face to the base horizontal cycle L_{1} is a 3-gon. Thus, every map M has a $T(r, s, k)$ representation. Figure 10 is an example of $T(8,2,6)$ representation of a map with 24 vertices on the torus.

Now, we show that map of type $\{3,6,3,6\}$ contains three cycles of type X_{1} up to homologous.

Lemma 6.1. The map M contains at most three cycles of type X_{1} of different lengths.

Proof. Let $\triangle(u, v, w)$ be a 3 -gon in M. Then $\triangle(u, v, w)$ has three edges $e_{1}=u v, e_{2}=v w$, and $e_{3}=u w$. By the definition of a cycle of type X_{1}, M contains at least three cycles, say C_{1}, C_{2}, and C_{3} where C_{i} contains edge e_{i} for $i \in\{1,2,3\}$ and C_{i} does not contain e_{j} for $j \neq i$. Since C_{i} does not contain e_{j} for $j \neq i$, cycles are not identical. Again, since the cycles are not identical and $V\left(C_{i}\right) \cap C\left(C_{j}\right)$ is a vertex of \triangle for $i \neq j$, the cycles are not homologous. (In Figure 10, $v_{1} v_{2} v_{1,2,16,9}$ denotes a face, and the cycles which are of type X_{1} and contains the edges $v_{1} v_{2}, v_{1} v_{1,2,16,9}$ and $v_{1,2,16,9} v_{2}$ are namely, $L_{1}=C\left(v_{1}, v_{2}, \cdots, v_{8}\right), L_{2}=C\left(v_{1}, v_{1,2,16,9}, v_{9}, v_{9,10,6,7}, \cdots, v_{11,12,8,1}\right)$, and $L_{3}=C\left(v_{2}, v_{1,2,16,9}, v_{16}, v_{15,16,4,5}, \cdots, v_{13,14,2,3}\right)$, respectively. The cycles L_{1}, L_{2}, and L_{3} in Figure 10 are not homologous to each other.) Let \triangle_{1} be a 3 -gon in $T(r, s, k)$ and $\triangle \neq \triangle_{1}$. Observe that there is a cycle of type X_{1} through an edge \triangle_{1} and homologous to C_{i} for some i. That is, there is a cylinder which is bounded by two cycles of type X_{1} and containing edges of \triangle and \triangle_{1}; this is true for any 3 -gon in $T(r, s, k)$. We proceed as in the case of Lemma 4.5 and thus, the homologous cycles of type X_{1} have the same length. Thus, there are three different cycles C_{1}, C_{2}, C_{3} of type X_{1} up to homologous in M. So, the map M contains at most three cycles of type X_{1} of different lengths. (In Figure 10, consider the face $v_{11} v_{12} v_{11,12,8,1}$ and the cycles of type X_{1} which contain the edges $v_{11} v_{12}, v_{11} v_{11,12,8,1}$, and $v_{12} v_{11,12,8,1}$ are $L_{1}^{\prime}=C\left(v_{9}, v_{10}, \cdots, v_{16}\right), L_{2}^{\prime}=C\left(v_{11}, v_{11,12,8,1}, v_{1}, v_{1,2,16,9}, \cdots, v_{3,4,10,11}\right)$,
and $L_{3}^{\prime}=C\left(v_{12}, v_{11,12,8,1}, v_{8}, v_{7,8,14,15}, \cdots, v_{5,6,12,13}\right)$, respectively. The cycles which contain the edges $v_{1} v_{2}$ and $v_{11} v_{12}$ are L_{1} and L_{1}^{\prime}, respectively, and the cycles L_{1} and L_{1}^{\prime} are homologous. The cycles which contain $v_{1} v_{1,2,16,9}$ and $v_{11} v_{11,12,8,1}$ are L_{2} and L_{2}^{\prime} respectively and $C_{2}=C_{2}^{\prime}$. Also, the cycles which contain $v_{2} v_{1,2,16,9}$ and $v_{12} v_{11,12,8,1}$ are L_{3} and L_{3}^{\prime}, respectively, and $L_{3}=L_{3}^{\prime}$.)

We define admissible relations among r, s, k of $T(r, s, k)$ in the next lemma. In this lemma we omit some cases since similar cases are discussed in the previous sections.

Lemma 6.2. The maps of type $\{3,6,3,6\}$ of the form $T(r, s, k)$ exist if and only if the following holds:
(i) $s \geq 1$,
(ii) $2 \mid r$,
(iii) there are $3 r s / 2 \geq 21$ vertices of $T(r, s, k)$,
(iv)

$$
r \geq \begin{cases}14 & \text { if } s=1 \\ 8 & \text { if } s=2 \\ 6 & \text { if } s \geq 3\end{cases}
$$

(v)

$$
\begin{cases}k \in\left\{2 t+6: 0 \leq t \leq \frac{r-10}{2}\right\} \backslash\left\{2\left(\frac{r-10}{4}\right)+6\right\} & \text { if } s=1 \\ k \in\left\{2 t+6: 0 \leq t \leq \frac{r-8}{2}\right\} & \text { if } s=2 \\ k \in\left\{2 t: 0 \leq t<\frac{r}{2}\right\} & \text { if } s \geq 3\end{cases}
$$

Proof. Let

$$
\begin{aligned}
& C_{0}\left(u_{0,0}, u_{0,1}, \cdots, u_{0, r-1}\right) \\
& C_{1}\left(u_{1,0}, u_{1,1}, \cdots, u_{1, r-1}\right) \\
& \quad \vdots \\
& C_{s-1}\left(u_{s-1,0}, u_{s-1,1}, \cdots, u_{s-1, r-1}\right)
\end{aligned}
$$

be horizontal cycles of type X_{1} in $T(r, s, k)$. By the definition of $T(r, s, k)$, $T(r, s, k)$ contains s horizontal cycles of type X_{1}. Observe that the number of adjacent vertices which lie on one side of a horizontal cycle and do not belong to any horizontal cycles is $r / 2$. So, the total number of vertices in $T(r, s, k)$ is $(r+r / 2) s$. This implies that $n=(r+r / 2) s=3 r s / 2$.

By Euler's formula, the number of 6-gons in $T(r, s, k)$ is $2 n / 6$ and it is an integer. This implies that $6 \mid 2 n$. Hence $3 \mid 3 r s / 2$ as $n=3 r s / 2$. Thus, $2 \mid r$ if $s=1$. Again, if $s \geq 2$ and $2 \nmid r$, the link $l k\left(u_{1}\right)$ is not of type $\{3,6,3,6\}$, which is a contradiction. Therefore, $2 \mid r$ for all $s \geq 1$.

Let $s=1$. If $r<14$ then $r \in\{2,4,6,8,10,12\}$ and there is a vertex in $T(r, s, k)$ whose link is not a cycle. So, $r \geq 14$ if $s=1$. Similarly, we get that $r \geq 8$ if $s=2$ and $r \geq 6$ if $s \geq 3$. So, $3 r s / 2 \geq 21$.

$$
\begin{aligned}
& \text { If } s=1 \text { and } \\
& k \in\{t: 0 \leq t \leq r-1\} \backslash\left(\left\{2 t+6: 0 \leq t \leq \frac{r-10}{2}\right\} \backslash\left\{2 \frac{r-10}{4}+6\right\}\right)
\end{aligned}
$$

then similar to the above we get some vertex whose link is not a cycle. We repeat the same argument as above for other two cases when $s=2$ and $s \geq 3$.

Lemma 6.3. Let $M_{i}, i=1,2$, be maps of type $\{3,6,3,6\}$ on n_{i} vertices and $n_{1}=n_{2}$. Let $C_{i, j}, j=1,2,3$, denote cycles which are of type X_{1} and nonhomologous in $T_{i}=T\left(r_{i}, s_{i}, k_{i}\right)$. Let $a_{i, j}=\operatorname{length}\left(C_{i, j}\right)$ for $i=1,2$ and $j=1,2,3$. Then $M_{1} \cong M_{2}$ if and only if $\left(a_{1,1}, a_{1,2}, a_{1,3}\right)=\left(a_{2, t_{1}}, a_{2, t_{2}}, a_{2, t_{3}}\right)$ for $t_{1} \neq t_{2} \neq t_{3} \in\{1,2,3\}$.

Proof. We first assume that $\left(a_{1,1}, a_{1,2}, a_{1,3}\right)=\left(a_{2, t_{1}}, a_{2, t_{2}}, a_{2, t_{3}}\right)$ where $t_{i} \in$ $\{1,2,3\}$ and $t_{i} \neq t_{j}$. This implies that $\left\{a_{1,1}, a_{1,2}, a_{1,3}\right\}=\left\{a_{2,1}, a_{2,2}, a_{2,3}\right\}$.
Claim. $T_{1} \cong T_{2}$.
Case 1: $\left(r_{1}, s_{1}, k_{1}\right)=\left(r_{2}, s_{2}, k_{2}\right)$.
In this case, $T\left(r_{1}, s_{1}, k_{1}\right)=T\left(r_{2}, s_{2}, k_{2}\right)=T(r, s, k)$. Let

$$
\begin{aligned}
C(1,0) & :=C\left(u_{0,0}, u_{0,1}, \cdots, u_{0, r-1}\right), \\
C(1,1) & :=C\left(u_{1,0}, u_{1,1}, \cdots u_{1, r-1}\right), \\
& \vdots \\
C(1, s) & :=C\left(u_{s, 0}, u_{s, 1}, \cdots, u_{s, r-1}\right\}
\end{aligned}
$$

denote a sequence of horizontal cycles of type X_{1} in T_{1}. Let $G_{1}(t, t+1):=$ $\left\{w_{t, 0}, w_{t, 1}, \cdots, w_{t, r-2 / 2}\right)$ be a set of vertices such that $w_{t, i}$ is adjacent to both $u_{t, 2 i}$ and $u_{t+1,2 i}$ in T_{1} and does not belong to both $C(1, t)$ and $C(1, t+1)$ for $0 \leq t \leq s$. (For example in Figure 10, $G_{1}(0,1)=$ $\left\{v_{1,2,16,9}, v_{3,4,10,11}, v_{5,6,12,13}, v_{7,8,14,15}\right\}$ where

$$
\left.x_{0,0}=v_{1,2,16,9}, x_{0,1}=v_{3,4,10,11}, x_{0,2}=v_{5,6,12,13}, x_{0,3}=v_{7,8,14,15}\right)
$$

Similarly, let

$$
\begin{aligned}
C(2,0) & :=C\left(v_{0,0}, v_{0,1}, \cdots, v_{0, r-1}\right), \\
C(2,1) & :=C\left(v_{1,0}, v_{1,1}, \cdots v_{1, r-1}\right), \\
& \vdots \\
C(2, s) & :=C\left(v_{s, 0}, v_{s, 1}, \cdots v_{s, r-1}\right)
\end{aligned}
$$

denote a sequence of horizontal cycles of type X_{1} in T_{2} and let $G_{2}(t, t+$ 1) $:=\left\{x_{t, 0}, x_{t, 1}, \cdots, x_{t, r-2 / 2}\right\}$ be a set of vertices such that the vertex $x_{t, i}$ is adjacent to both $v_{t, 2 i}$ and $v_{t+1,2 i}$ in T_{2} for $0 \leq t \leq s$. Now define an isomorphism $f: V\left(T\left(r_{1}, s_{1}, k_{1}\right)\right) \rightarrow V\left(T\left(r_{2}, s_{2}, k_{2}\right)\right)$ such that $f\left(u_{t, i}\right)=v_{t, i}$ for all $0 \leq i \leq r-1,0 \leq t \leq s-1$ and $f\left(w_{t, i}\right)=x_{t, i}$ for the vertices of $G_{1}(t, t+1)$ and $G_{2}(t, t+1)$ for all $0 \leq t \leq s-1$. By f,

Table 3. Maps of type $\{3,6,3,6\}$

n	Equivalence classes	Length of cycles	$i(n)$
21	$\mathrm{~T}(14,1,6), \mathrm{T}(14,1,10)$	$(14,14,14)$	$1(21)$
24	$\mathrm{~T}(16,1,6), \mathrm{T}(16,1,12)$	$(16,16,8)$	$2(24)$
	$\mathrm{T}(8,2,6)$		
	$\mathrm{T}(16,1,8), \mathrm{T}(16,1,10)$	$(16,16,4)$	$2(27)$
27	$\mathrm{~T}(18,1,6), \mathrm{T}(18,1,8)$	$(18,18,6)$	
	$\mathrm{T}(18,1,12), \mathrm{T}(18,1,14)$		$2(30)$
	$\mathrm{T}(6,3,2), \mathrm{T}(6,3,4)$	$(6,6,6)$	
30	$\mathrm{~T}(20,1,6), \mathrm{T}(20,1,8)$	$(20,20,10)$	
	$\mathrm{T}(20,1,14), \mathrm{T}(20,1,16)$		
	$\mathrm{T}(10,2,2), \mathrm{T}(10,2,6)$		
	$\mathrm{T}(20,1,10), \mathrm{T}(20,1,12)$	$(20,4,10)$	
	$\mathrm{T}(10,2,0), \mathrm{T}(10,2,4)$		

the link $l k\left(u_{t, i}\right)$ maps to the link $l k\left(v_{t, i}\right)$ and $l k\left(w_{t, i}\right)$ maps to $l k\left(x_{t, i}\right)$, therefore $T_{1} \cong T_{2}$.
Case 2: $\left(r_{1}, s_{1}, k_{1}\right) \neq\left(r_{2}, s_{2}, k_{2}\right)$.
If $r_{1} \neq r_{2}$, we identify boundaries of $T\left(r_{2}, s_{2}, k_{2}\right)$ and cut M_{2} along cycle of length r_{1} then make another cut along a cycle of type X_{1} to get a (r, s, k)-representation. Thus we get a new $T\left(r_{2}^{\prime}, s_{2}^{\prime}, k_{2}^{\prime}\right)$ representation of M_{2}. This implies that $r_{1}=r_{2}^{\prime}$ and $s_{1}=s_{2}^{\prime}$ as $n_{1}=3 r_{1} s_{1} / 2=3 r_{2}^{\prime} s_{2}^{\prime} / 2=$ n_{2}. By this process, we get a new representation $T\left(r_{1}, s_{1}, k_{3}^{\prime}\right)$ of M_{2}. If $k_{1}=k_{3}^{\prime}$ then $M_{1} \cong M_{2}$ by f in Case 1. If $k_{1} \neq k_{3}^{\prime}$, similar to Lemma 5.6, we make a cut along a path which is homologous to the vertical boundary path and identify along the boundary path. Thus, we get an another representation $T\left(r_{1}, s_{1}, k_{3}^{\prime \prime}\right)$ of M_{2} and $k_{1}=k_{3}^{\prime \prime}$. So, the M_{2} has a $T\left(r_{1}, s_{1}, k_{1}\right)$ representation since $k_{1}=k_{3}^{\prime \prime}$. Therefore, there exists f and $T_{1} \cong T_{2}$ by f.
This completes the Claim and by $f, M_{1} \cong M_{2}$.
Conversely, let $M_{1} \cong M_{2}$. We proceed as in the converse part of Lemma 5.6 and we get $\left\{a_{1,1}, a_{1,2}, a_{1,3}\right\}=\left\{a_{2,1}, a_{2,2}, a_{2,3}\right\}$. That is, $\left(a_{1,1}, a_{1,2}, a_{1,3}\right)$ $=\left(a_{2, t_{1}}, a_{2, t_{2}}, a_{2, t_{3}}\right)$ for $t_{1} \neq t_{2} \neq t_{3} \in\{1,2,3\}$.

As in Section 4, by Lemmas 6.2 and 6.3, the maps of type $\{3,6,3,6\}$ can be classified up to isomorphism on different number of vertices. We have done the calculation for vertices up to 30 . We have listed the obtained objects in the form of their $T(r, s, k)$ representation in Table 3.

7. Maps of type $\left\{3,12^{2}\right\}$

Let M be a semiequivelar map of type $\left\{3,12^{2}\right\}$ on the torus. We define a fixed type of path G_{1} in the edge graph of M as shown in Figure 21. Let
$Q(i):=P\left(u_{i}, u_{i+1}, u_{i+2}, u_{i+3}, u_{i+4}\right)$ be a path in M where

$$
\begin{gathered}
l k\left(u_{i}\right)=C\left(u_{i-1}, \mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}, \mathbf{e}, \mathbf{f}, \mathbf{g}, \mathbf{g}^{\prime}, \boldsymbol{u}_{i+2},\right. \\
\\
\left.\quad u_{i+1}, u, \boldsymbol{t}, \boldsymbol{v}, \boldsymbol{w}, \boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}, \mathbf{a}^{\prime}, \mathbf{u}_{i-3}, \mathbf{u}_{i-2}\right) \\
l k\left(u_{i+1}\right)= \\
C\left(u_{i}, \boldsymbol{u}_{i-1}, \boldsymbol{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}, \mathbf{e}, \mathbf{f}, \mathbf{g}, \mathbf{g}^{\prime}, u_{i+2},\right. \\
\\
\left.\quad \boldsymbol{u}_{i+3}, \boldsymbol{u}_{i+4}, \mathbf{o}^{\prime}, \boldsymbol{o}, \mathbf{p}, \mathbf{q}, \boldsymbol{r}, \mathbf{s}, \mathbf{t}, u\right) \\
l k\left(u_{i+2}\right)= \\
C\left(u_{i+1}, \boldsymbol{u}_{i}, \boldsymbol{u}_{i-1}, \mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}, \mathbf{e}, \mathbf{f}, \mathbf{g}, g^{\prime},\right. \\
\\
\left.\quad u_{i+3}, \boldsymbol{u}_{i+4}, \mathbf{o}^{\prime}, \boldsymbol{o}, \mathbf{p}, \mathbf{q}, \mathbf{r}, \mathbf{s}, \mathbf{t}, \mathbf{u}\right) \\
l k\left(u_{i+3}\right)= \\
C\left(u_{i+2}, g^{\prime}, \mathbf{g}, \boldsymbol{h}, \mathbf{i}, \mathbf{j}, \mathbf{k}, \mathbf{l}, \mathbf{m}, \mathbf{n},\right. \\
\\
\left.\quad \boldsymbol{u}_{i+6}, \boldsymbol{u}_{i+5}, u_{i+4}, \mathbf{o}^{\prime}, \boldsymbol{o}, \mathbf{p}, \mathbf{q}, \mathbf{r}, \mathbf{s}, \mathbf{t}, \mathbf{u} \boldsymbol{u}_{i+1}\right), \\
l k\left(u_{i+4}\right)= \\
C\left(u_{i+3}, \mathbf{g}^{\prime}, \boldsymbol{g}, \mathbf{h}, \mathbf{i}, \mathbf{j}, \mathbf{k}, \mathbf{l}, \mathbf{m}, \mathbf{n},\right. \\
\\
\\
\left.\boldsymbol{u}_{i+6}, u_{i+5}, o^{\prime}, \mathbf{o}, \boldsymbol{p}, \mathbf{q}, \mathbf{r}, \mathbf{s}, \mathbf{t}, \mathbf{u}, \boldsymbol{u}_{i+1}, \boldsymbol{u}_{i+2}\right) .
\end{gathered}
$$

Definition. Let $R_{1}:=P\left(\cdots, v_{i-1}, v_{i}, v_{i+1}, \cdots\right)$ be a path in the edge graph of M. We say R_{1} is of type G_{1} if $L_{1}:=P\left(v_{t}, v_{t+1}, v_{t+2}, v_{t+3}, v_{t+4}\right)$ is a subpath of R_{1} or L_{1} is part of an extended path of R_{1}, then either $L_{1} \mapsto Q(i)$ by $v_{j} \mapsto u_{j}, L_{1} \mapsto Q(i+1)$ by $v_{j} \mapsto u_{j+1}, L_{1} \mapsto Q(i+2)$ by $v_{j} \mapsto u_{j+2}$, or $L_{1} \mapsto Q(i+3)$ by $v_{j} \mapsto u_{j+3}$ for $j \in\{t, t+1, t+2, t+3, t+4\}$.
Definition. Let $R_{2}:=P\left(\cdots, x_{i-1}, x_{i}, x_{i+1}, \cdots\right)$ be a path in the edge graph of M. We say R_{2} is of type G_{1}^{\prime} if $L_{2}:=P\left(x_{t}, x_{t+1}, x_{t+2}, x_{t+3}, x_{t+4}\right)$ is a subpath of R_{2} or L_{2} is part of the extended path of R_{2}, then either $L_{2} \mapsto Q(i)$ by $x_{j} \mapsto u_{2 t+4-j}, L_{2} \mapsto Q(i+1)$ by $x_{j} \mapsto u_{2 t+4-j}, L_{2} \mapsto Q(i+2)$ by $x_{j} \mapsto$ $u_{2 t+4-j}$, or $L_{1} \mapsto Q(i+3)$ by $v_{j} \mapsto u_{2 t+4-j}$ for $j \in\{t, t+1, t+2, t+3, t+4\}$.

Figure 21. Cycle of type G_{1}
We use a similar argument from Lemma 4.1 for the path of types G_{1} and G_{1}^{\prime} hence every maximal path of types G_{1} and G_{1}^{\prime} is a cycle and noncontractible (by a similar argument from Lemma 4.3). Observe that the cycles of type G_{1} and G_{1}^{\prime} are mirror images of each other. Hence these types define the same type of cycle. (A similar argument is provided in detail in Section 8 for the type $\left\{3^{4}, 6\right\}$.) Clearly, there are two cycles of type G_{1} through each vertex of M. Let $u v w$ be a 3 -gon in M. Let $L_{1}(u, u w)$,
$L_{2}(w, w v)$, and $L_{3}(v, v u)$ denote three cycles through u, w, and v, respectively, where $L_{1}(u, u w)$ contains the edge $u w, L_{2}(w, w v)$ contains the edge $w v$, and $L_{3}(v, v u)$ contains the edge $v u$. We repeat a similar argument from Section 4 and define a $T(r, s, k)$ representation of the map M for some r, s, k. In the process, we take the first cut along $L_{1}(u, u w)$, and then the second cut along $L_{2}(w, w v)$ where the starting adjacent face to the horizontal base cycle $L_{1}(u, u w)$ is a 12 -gon. Let length $\left(L_{1}(u, u w)\right)=r, s$ denote the number of homologous cycles of $L_{1}(u, u w)$ of type G_{1}, and k denote the distance of the starting vertex of upper horizontal cycle from the starting vertex w in $L_{1}(u, u w)$. By this process, we get a $T(r, s, k)$ representation of M. Now, we proceed with the process from Section 6 for the map of type $\left\{3,12^{2}\right\}$. We show that a map of type $\left\{3,12^{2}\right\}$ contains at most three nonhomologous cycles of type G_{1} of different lengths.

Lemma 7.1. The map M contains at most three cycles of type G_{1} of different lengths.

Proof. We proceed as in the case of Lemma 6.1 for the map of type $\left\{3,12^{2}\right\}$. Consider the map of type $\left\{3,12^{2}\right\}$ in place of $\{3,6,3,6\}$, a cycle of type G_{1} in place of X_{1}, and the 3 -gon in the proof from Lemma 6.1. Thus, we get three nonhomologous cycles of type G_{1} of different lengths.

We define admissible relations among r, s, k of $T(r, s, k)$ in M.
Lemma 7.2. The maps of type $\left\{3,12^{2}\right\}$ of the form $T(r, s, k)$ exist if and only if the following holds:
(i) $s \geq 1$,
(ii) $4 \mid r$,
(iii) there are $3 r s / 2 \geq 36$ vertices of $T(r, s, k)$,
(iv)

$$
r \geq \begin{cases}24 & \text { if } s=1 \\ 16 & \text { if } s=2 \\ 12 & \text { if } s \geq 3\end{cases}
$$

(v)

$$
\begin{cases}k \in\left\{4 t+9: 0 \leq t \leq \frac{r-20}{4}\right\} \backslash\left\{4\left(\frac{r}{8}-3\right)+9\right\} & \text { if } s=1 \\ k \in\left\{4 t+5: 0 \leq t \leq \frac{r-16}{4}\right\} & \text { if } s=2 \\ k \in\left\{4 t+1: 0 \leq t \leq \frac{r-4}{4}\right\} & \text { if } s \geq 3\end{cases}
$$

Proof. We proceed as in the proof of Lemma 6.2. We consider a map of type $\left\{3,12^{2}\right\}$ in place of $\{3,6,3,6\}$ and different values of r, s, k. Thus, we get all the cases.

Lemma 7.3. Let $T_{i}=T\left(r_{i}, s_{i}, k_{i}\right)$ be representations of $M_{i}, i=1,2$, on the same number of vertices. Similar to Section 6, let $b_{i, j}=\operatorname{length}\left(L_{i, j}\right)$, $j=1,2,3$, then $M_{1} \cong M_{2}$ if and only if $\left(b_{1,1}, b_{1,2}, b_{1,3}\right)=\left(b_{2, t_{1}}, b_{2, t_{2}}, b_{2, t_{3}}\right)$ for $t_{1} \neq t_{2} \neq t_{3} \in\{1,2,3\}$.

Table 4. Maps of type $\left\{3,12^{2}\right\}$

n	Equivalence classes	Length of cycles	$i(n)$
36	$\mathrm{~T}(24,1,13)$	$(24,12,8)$	$1(36)$
42	$\mathrm{~T}(28,1,9), \mathrm{T}(28,1,13)$	$(28,28,28)$	$1(42)$
	$\mathrm{T}(28,1,17)$		
48	$\mathrm{~T}(32,1,9), \mathrm{T}(32,1,21)$	$(32,32,16)$	$2(48)$
	$\mathrm{T}(16,2,5)$	$(32,32,8)$	
	$\mathrm{T}(32,1,17)$		

As in Section 4, by Lemmas 7.2 and 7.3, maps of type $\left\{3,12^{2}\right\}$ can be classified up to isomorphism on different number of vertices. We have done the calculation for vertices up to 48 . We have listed the obtained objects in the form of their $T(r, s, k)$ representation in Table 4.
8. Maps of type $\left\{3^{4}, 6\right\}$

Let M be a semiequivelar map of type $\left\{3^{4}, 6\right\}$ on the torus. Let $Q(i):=$ $P\left(w_{i}, w_{i+1}, w_{i+2}, w_{i+3}\right)$ be a path in M, where

$$
\begin{aligned}
l k\left(w_{i}\right) & =C\left(w_{i-1}, x_{2}, w_{i+1}, \boldsymbol{w}_{i+2}, \boldsymbol{x}_{3}, \boldsymbol{x}_{4}, x_{5}, x_{6}\right), \\
l k\left(w_{i+1}\right) & =C\left(w_{i}, x_{2}, x_{7}, x_{8}, w_{i+2}, \boldsymbol{x}_{3}, \boldsymbol{x}_{4}, \boldsymbol{x}_{5}\right), \\
l k\left(w_{i+2}\right) & =C\left(w_{i+1}, x_{8}, x_{9}, w_{i+3}, x_{3}, \boldsymbol{x}_{4}, \boldsymbol{x}_{5}, \boldsymbol{w}_{i},\right) \\
l k\left(w_{i+3}\right) & =C\left(w_{i+2}, x_{9}, w_{i+4}, \boldsymbol{w}_{i+5}, \boldsymbol{x}_{10}, \boldsymbol{x}_{11}, x_{12}, x_{3}\right) .
\end{aligned}
$$

We define two fixed types of paths Y_{1} and Y_{1}^{\prime} in the edge graph of M.
Definition. Let $R_{1}:=P\left(\cdots, v_{i-1}, v_{i}, v_{i+1}, \cdots\right)$ be a path in the edge graph of M. We say R_{1} is of type Y_{1} if $L_{1}:=P\left(u_{t}, u_{t+1}, u_{t+2}, u_{t+3}\right)$ is a subpath of R_{1} or L_{1} is in the extended path of R_{1}, then $L_{1} \mapsto Q(i)$ by $u_{j} \mapsto w_{j}$, $L_{1} \mapsto Q(i+1)$ by $u_{j} \mapsto w_{j+1}$, or $L_{1} \mapsto Q(i+2)$ by $u_{j} \mapsto w_{j+2}$ for $j \in\{t$, $t+1, t+2, t+3\}$.
Definition. Let $R_{2}:=P\left(\cdots, x_{i-1}, x_{i}, x_{i+1}, \cdots\right)$ be a path in the edge graph of M. We say R_{2} of type Y_{1}^{\prime} if $L_{2}:=P\left(x_{t}, x_{t+1}, x_{t+2}, x_{t+3}\right)$ is a subpath of R_{2} or L_{2} is in the extended path of R_{2}, then $L_{2} \mapsto Q(i)$ by $x_{j} \mapsto w_{2 t+3-j}$, $L_{2} \mapsto Q(i+1)$ by $x_{j} \mapsto w_{2 t+3-j}$, or $L_{2} \mapsto Q(i+2)$ by $x_{j} \mapsto w_{2 t+3-j}$ for $j \in\{t, t+1, t+2, t+3\}$.

Let P be a maximal path of type Y_{1} or Y_{1}^{\prime}. By a similar argument from Lemma 4.1, the path P defines a cycle of type Y_{1} or Y_{1}^{\prime}, that is, there is an edge e in M such that $P \cup\{e\}$ is a cycle of type Y_{1} or Y_{1}^{\prime}. We show that the cycles of type Y_{1} and Y_{1}^{\prime} define same type of cycle. Let $C_{1}:=C\left(u_{1}, u_{2}, \cdots, u_{r}\right)$ of type Y_{1} and $C_{2}\left(v_{1}, v_{2}, \cdots, v_{r}\right)$ of type Y_{1}^{\prime} be two cycles of length r. Let $P_{1}:=P\left(u_{i-1}, u_{i}, u_{i+1}\right)$ be a subpath of C_{1} where the adjacent 6 -gon lies on one side and all 3 -gons lie on the other side of P_{1} at the vertex u_{i}. Similarly, let $P_{2}:=P\left(v_{j-1}, v_{j}, v_{j+1}\right)$ be a subpath of C_{2} where the adjacent 6 -gon lies on one side and all 3 -gons lie on the other side of P_{2} at the vertex v_{j}. Define a map $f: V\left(C_{1}\right) \rightarrow V\left(C_{2}\right)$ by $f\left(u_{i}\right)=v_{j}$, $f\left(u_{i+1}\right)=v_{j-1}, f\left(u_{i+2}\right)=v_{j-2}, \cdots, f\left(u_{i-1}\right)=v_{j+1}$. Let $P\left(u_{t}, \cdots, u_{k}\right)$ be
a subpath of C_{1}. Then $P\left(u_{t}, \cdots, u_{k}\right)$ and $P\left(f\left(u_{t}\right), \cdots, f\left(u_{k}\right)\right)$ divides the link of the vertices u_{i} and $f\left(u_{i}\right)$ for $t \leq i \leq k$ into the same ratio. This is true for every subpath of C_{1}. Therefore, cycles C_{1} and C_{2} are of type Y_{1}, and hence, $Y_{1}=Y_{1}^{\prime}$.

Let M be a map and C be a cycle of type Y_{1} in M. By a similar argument from Lemma 4.3, C is noncontractible. As in Section 4, we get that the cycles of type Y_{1} which are homologous to C have the same length by a similar argument from Lemma 4.5. There are three cycles of type Y_{1} through each vertex of M. Let $v \in V(M)$ and $L_{1}(v), L_{2}(v), L_{3}(v)$ be three cycles of type Y_{1} through the vertex v. We repeat a similar construction of the (r, s, k) representation of a map as in Section 4 for M. In this process, we take the first cut along $L_{1}(v)$ and the second cut along $L_{2}(v)$ where the starting adjacent face to the horizontal base cycle L_{1} is a 3-gon. This gives a $T(r, s, k)$ representation of the $\operatorname{map} M$. Thus, $T(r, s, k)$ exists for every M.

Now, we show that map M of type $\left\{3^{4}, 6\right\}$ contains at most three nonhomologous cycles of type Y_{1} of different lengths in Lemma 8.1.

Lemma 8.1. The map M contains at most three nonhomologous cycles of type Y_{1} of different lengths.

Proof. Let $v \in V(M)$ and $T(r, s, k)$ denote a (r, s, k)-representation of M. We have three cycles, namely, C_{1}, C_{2} and C_{3} through v in M of type Y_{1}. The cycles C_{1}, C_{2}, and C_{3} are not identical as C_{i} divides the link $l k(v)$ into a different ratio. Also, the cycles are not disjoint as $v \in V\left(C_{i}\right) \cap V\left(C_{j}\right)$ for $i \neq j$ and $i, j \in\{1,2,3\}$. Hence C_{1}, C_{2}, and C_{3} are not homologous to each other. Let $w \in V(M)$ and $v \neq w$. Consider cycles of type Y_{1} at w in $T(r, s, k)$ and denoted by $C_{1}^{\prime}, C_{2}^{\prime}$, and C_{3}^{\prime}. Now, by the definition of cycle of type Y_{1} and considering the cylinder, C_{i} and C_{j}^{\prime} are homologous for some $i, j \in\{1,2,3\}$ as we have seen from Lemma 6.1. This holds for any vertex of M. Therefore, M contains at most three nonhomologous cycles of type Y_{1}. We proceed as in the proof of Lemma 4.5 to show that the homologous cycles of type Y_{1} have the same length. Thus, the map M contains at most three nonhomologous cycles of type Y_{1} of different lengths.

We define admissible relations among r, s, k of $T(r, s, k)$ such that representation $T(r, s, k)$ gives a map of type $\left\{3^{4}, 6\right\}$ after identifying their boundaries.

Lemma 8.2. The maps of type $\left\{3^{4}, 6\right\}$ of the form $T(r, s, k)$ exist if and only if the following holds:
(i) $s \geq 2$ even,
(ii) $3 \mid r$,
(iii) there are $r s \geq 18$ vertices of $T(r, s, k)$,
(iv)

$$
r \geq \begin{cases}9 & \text { if } s=2 \\ 6 & \text { if } s \geq 4\end{cases}
$$

(v)

$$
\begin{cases}k \in\left\{3 t+5: 0 \leq t \leq \frac{r-9}{3}\right\} & \text { if } s=2, \\ k \in\left\{2+3 t: 0 \leq t \leq \frac{r-3}{3}\right\} & \text { if } s \geq 4\end{cases}
$$

Proof. Let $T(r, s, k)$ be a representation of M. It has s disjoint horizontal cycles of type Y_{1} of length r by the definition of a (r, s, k)-representation. These cycles cover all the vertices of M. So, $n=r s$. By Euler's formula, $n-5 n / 2+4 n / 3+n / 6=0$. Hence the number of 6 -gons in M is $n / 6$ and is an integer. This implies that $6 \mid n$. That is, $6 \mid r s$ as $n=r s$. So, $3 \mid r$ for $s=2$. Let $s \geq 3$. If s is an odd integer then $T(r, s, k)$ contains an odd number of horizontal cycles of type Y_{1}. Consider a vertex v of base horizontal cycle which is belongs to only triangles which is a contradiction. Therefore, $2 \mid s$. Similarly, for $3 \mid r$, we get a vertex whose link does not follow the type $\left\{3^{4}, 6\right\}$. So, $n=r s$ where $6|n, 2| s$ and $3 \mid r$.

For $r \geq 9$, we proceed with a similar argument to the proof of Lemma 4.9. We also proceed as in the proof of Lemma 4.9 to show $r \geq 6$ and $3 \mid r$ and the other remaining cases. This completes the proof.

Table 5. Maps of type $\left\{3^{4}, 6\right\}$

n	Equivalence classes	Length of cycles	$i(n)$
18	$\mathrm{~T}(9,2,5)$	$(9,9,9)$	$1(18)$
24	$\mathrm{~T}(12,2,5), \mathrm{T}(12,2,8)$	$(12,6,12)$	$2(24)$
	$\mathrm{T}(6,4,2)$	$(6,6,6)$	
30	$\mathrm{~T}(15,2,5), \mathrm{T}(15,2,8)$	$(15,15,15)$	$1(30)$
$\mathrm{T}(15,2,11)$			$(18,9,18)$
36	$\mathrm{~T}(18,2,5), \mathrm{T}(18,2,14)$	$2(36)$	
	$\mathrm{T}(18,2,8), \mathrm{T}(18,2,11)$	$(18,6,9)$	
	$\mathrm{T}(9,4,5), \mathrm{T}(9,4,8)$		
42	$\mathrm{~T}(6,6,2), \mathrm{T}(6,6,5)$		$1(42)$
	$\mathrm{T}(21,2,5), \mathrm{T}(21,2,8)$	$(21,21,21)$	
	$\mathrm{T}(21,2,11), \mathrm{T}(21,2,14)$		$\mathrm{T}(21,2,17)$

Lemma 8.3. Let M_{1} and M_{2} be two maps of type $\left\{3^{4}, 6\right\}$ on the same number of vertices. Let $a_{i, j}=$ length $\left(C_{i, j}\right)$ where $C_{i, k}$ for $i=1,2,3$ denote three nonhomologous cycles of type Y_{1} in $T\left(r_{i}, s_{i}, k_{i}\right)$ of M_{i}. Then $M_{1} \cong M_{2}$ if and only if $\left(a_{1,1}, a_{1,2}, a_{1,3}\right)=\left(a_{2, t_{1}}, a_{2, t_{2}}, a_{2, t_{3}}\right)$ for $t_{1} \neq t_{2} \neq t_{3} \in\{1,2,3\}$.

Proof. Let $T\left(r_{i}, s_{i}, k_{i}\right)$ be a representation of M_{i}. If $r=r_{1}, s=s_{1}$, and $k=k_{1}$, then consider the horizontal cycles in $T\left(r_{i}, s_{i}, k_{i}\right)$ of type Y_{1}. Proceed a similar argument from Lemma 4.10. We get a map which defines an isomorphism between $T\left(r_{1}, s_{1}, k_{1}\right)$ and $T\left(r_{2}, s_{2}, k_{2}\right)$. Hence $M_{1} \cong M_{2}$. Again, if $(r, s, k) \neq\left(r_{1}, s_{1}, k_{1}\right)$ then proceed with a similar argument to the proof of the Lemma 5.6. The converse of the lemma follows from a similar argument from the converse of Lemma 4.10. This completes the proof.

As in Section 4, by Lemmas 8.2 and 8.3, the maps of type $\left\{3^{4}, 6\right\}$ can be classified up to isomorphism on different number of vertices. We have done the calculation for vertices up to 42 . We have listed the obtained objects in the form of their $T(r, s, k)$ representation in Table 5.

9. Maps of type $\{4,6,12\}$

Let M be a semiequivelar map of type $\{4,6,12\}$ on the torus. We define a fixed type of path H_{1} in the edge graph of M. Let $Q(i):=$ $P\left(u_{i}, u_{i+1}, u_{i+2}, u_{i+3}, u_{i+4}, u_{i+5}, u_{i+6}\right)$ be a path in M where

$$
\begin{aligned}
l k\left(u_{i}\right) & =C\left(u_{i-1}, \mathbf{b}, \mathbf{c}, \boldsymbol{u}_{i+2}, u_{i+1} \mathbf{p}, q, \mathbf{r}, \mathbf{s}, \mathbf{t}, \mathbf{u}, \mathbf{v}, \boldsymbol{u}_{i-5}, \boldsymbol{u}_{i-4}, \boldsymbol{u}_{i-3}, \boldsymbol{u}_{i-2}\right) \\
l k\left(u_{i+1}\right) & =C\left(u_{i}, \boldsymbol{u}_{i-1} \mathbf{b}, \mathbf{c}, u_{i+2}, \boldsymbol{u}_{i+3}, \boldsymbol{u}_{i+4}, \boldsymbol{u}_{i+5}, \boldsymbol{u}_{i+6}, \mathbf{k}, \mathbf{l}, \mathbf{m}, \mathbf{n}, \mathbf{o}, p, \mathbf{q}\right) \\
l k\left(u_{i+2}\right) & =C\left(u_{i+1}, \boldsymbol{u}_{i}, \boldsymbol{u}_{i-1} \mathbf{b}, c, \mathbf{d}, u_{i+3}, \boldsymbol{u}_{i+4}, \boldsymbol{u}_{i+5}, \boldsymbol{u}_{i+6}, \mathbf{k}, \mathbf{l}, \mathbf{m}, \mathbf{n}, \mathbf{o}, \mathbf{p}\right) \\
l k\left(u_{i+3}\right) & =C\left(u_{i+2}, \boldsymbol{c}, d, \mathbf{e}, \mathbf{f}, \mathbf{g}, u_{i+4} \boldsymbol{u}_{i+5} \boldsymbol{u}_{i+6}, \mathbf{k}, \mathbf{l}, \mathbf{m}, \mathbf{n}, \mathbf{o}, \mathbf{p}, \boldsymbol{u}_{i+1}\right) \\
l k\left(u_{i+4}\right) & =C\left(u_{i+3}, \boldsymbol{d}, \mathbf{e}, \mathbf{f}, g, \mathbf{h}, u_{i+5} \boldsymbol{u}_{i+6}, \mathbf{k}, \mathbf{l}, \mathbf{m}, \mathbf{n}, \mathbf{o}, \mathbf{p}, \boldsymbol{u}_{i+1}, \boldsymbol{u}_{i+2}\right) \\
l k\left(u_{i+5}\right) & =C\left(u_{i+4}, \boldsymbol{g}, h, \mathbf{i}, \boldsymbol{u}_{i+8}, \boldsymbol{u}_{i+7}, u_{i+6}, \mathbf{k}, \mathbf{l}, \mathbf{m}, \mathbf{n}, \mathbf{o}, \mathbf{p}, \boldsymbol{u}_{i+1}, \boldsymbol{u}_{i+2}, \boldsymbol{u}_{i+3}\right) \\
l k\left(u_{i+6}\right) & =C\left(u_{i+5}, \boldsymbol{h}, i, \boldsymbol{u}_{i+8}, u_{i+7}, \mathbf{j}, k, \mathbf{l}, \mathbf{m}, \mathbf{n}, \mathbf{o}, \mathbf{p}, \boldsymbol{u}_{i+1}, \boldsymbol{u}_{i+2}, \boldsymbol{u}_{i+3}, u_{i+4}\right)
\end{aligned}
$$

Definition. Let $P_{1}:=P\left(\ldots, v_{i-1}, v_{i}, v_{i+1}, \ldots\right)$ be a path in the edge graph of M. We say P_{1} is of type H_{1} if $L_{1}:=P\left(v_{t}, v_{t+1}, v_{t+2}, v_{t+3}, v_{t+4}, v_{t+5}, v_{t+6}\right)$ is a subpath of P_{1} or L_{1} lies in the extended path of P_{1}, then either $L_{1} \mapsto Q(i)$ by $v_{j} \mapsto u_{j}, L_{1} \mapsto Q(i+1)$ by $v_{j} \mapsto u_{j+1}, L_{1} \mapsto Q(i+2)$ by $v_{j} \mapsto u_{j+2}$, $L_{1} \mapsto Q(i+3)$ by $v_{j} \mapsto u_{j+3}, L_{1} \mapsto Q(i+4)$ by $v_{j} \mapsto u_{j+4}$, or $L_{1} \mapsto Q(i+5)$ by $v_{j} \mapsto u_{j+5}$ for $j \in\{t, t+1, t+2, t+3, t+4, t+5, t+6\}$.
Definition. Let $P_{2}:=P\left(\ldots, x_{i-1}, x_{i}, x_{i+1}, \ldots\right)$ be a path in the edge graph of M. We say P_{2} is of type H_{1}^{\prime} if $L_{2}:=P\left(x_{t}, x_{t+1}, x_{t+2}, x_{t+3}, x_{t+4}, x_{t+5}\right.$, x_{t+6}) is a subpath of P_{2} or K_{2} lies in the extended path of P_{2}, then either $L_{2} \mapsto Q(i)$ by $x_{j} \mapsto u_{2 t+6-j}, L_{2} \mapsto Q(i+1)$ by $x_{j} \mapsto u_{2 t+6-j}, L_{2} \mapsto Q(i+2)$ by $x_{j} \mapsto u_{2 t+6-j}, L_{1} \mapsto Q(i+3)$ by $v_{j} \mapsto u_{2 t+6-j}, L_{1} \mapsto Q(i+4)$ by $v_{j} \mapsto u_{2 t+6-j}$, or $L_{1} \mapsto Q(i+5)$ by $v_{j} \mapsto u_{2 t+6-j}$ for $j \in\{t, t+1, t+2, t+$ $3, t+4, t+5, t+6\}$.

Let P be a maximal path of type H_{1} or H_{1}^{\prime} in M. By a similar argument from Lemma 4.1, the map M contains an edge e which defines a cycle $P \cup\{e\}$ of type H_{1} or H_{1}^{\prime}. The cycle $C:=P \cup\{e\}$ is a noncontractible cycle (by a similar argument from Lemma 4.3). Observe that the cycles of types H_{1} and H_{1}^{\prime} are mirror images of each other. It follows that they define the same type of cycles as in Section 8. Hence we consider only cycles of type H_{1}. Let $C_{1}, C_{2}, \cdots, C_{m}$ be a sequence of homologous cycles of type H_{1} in M. We use a similar argument from Lemma 4.5 and get that length $\left(C_{i}\right)$ $=\operatorname{length}\left(C_{j}\right)$ for $1 \leq i, j \leq m$. By Definition 9.1, there are three cycles of type H_{1} through each vertex of M. Let $v \in V(M)$ and $L_{1}(v), L_{2}(v), L_{3}(v)$ denote three cycles through v. Define a $T(r, s, k)$ representation of M by a similar construction given in Section 4. In this process, we first cut M
along L_{1} and then take a second cut along the cycle L_{3} where the starting adjacent face to the base horizontal cycle L_{1} is a 6 -gon. So, every map M has a $T(r, s, k)$ representation. In Lemma 9.1, we show that the map of type $\{4,6,12\}$ contains at most three nonhomologous cycles of type H_{1} of different lengths.

Lemma 9.1. The map M contains at most three nonhomologous cycles of type H_{1} of different lengths.

Proof. We proceed as in the proof of Lemma 8.1. Consider the map $\{4,6,12\}$ in place of $\left\{3^{4}, 6\right\}$ and a cycle of type H_{1} in place of Y_{1}. Let $u \in V(M)$ and $T(r, s, k)$ denote a (r, s, k)-representation of M. Let L_{1}, L_{2}, and L_{3} denote three cycles of type H_{1} through u in M. They are not identical as L_{i} divides the link $l k(u)$ into different ratios. Also, cycles are not disjoint as $u \in V\left(L_{i}\right) \cap V\left(L_{j}\right)$ for $i \neq j$. Therefore, cycles are not homologous to each other. Again, let $v \in V(M), u \neq v$ and consider cycles of type H_{1} at v in $T(r, s, k)$. Let $L_{1}^{\prime}, L_{2}^{\prime}$, and L_{3}^{\prime} denote three cycles through v of type H_{1}. Then, by the definition of a cycle of type H_{1} and considering cylinder, L_{i} and L_{j}^{\prime} are homologous for some $i, j \in\{1,2,3\}$. This holds for any vertex v of M. Thus, M contains at most three nonhomologous cycles of type H_{1}. We proceed as in the proof of Lemma 4.5 to show that the homologous cycles of type H_{1} have the same length. This completes the proof.

We define admissible relations among r, s, k of $T(r, s, k)$ such that the representation $T(r, s, k)$ gives a map of type $\{4,6,12\}$ after identifying their boundaries.

Lemma 9.2. Maps of type $\{4,6,12\}$ of the form $T(r, s, k)$ exist if and only if the following holds:
(i) $s \geq 2$ even,
(ii) $6 \mid r$,
(iii) there are $r s \geq 36$ vertices of $T(r, s, k)$,
(iv)

$$
r \geq \begin{cases}18 & \text { if } s=2 \\ 12 & \text { if } s \geq 4\end{cases}
$$

(v)

$$
\begin{cases}k \in\left\{6 t+9: 0 \leq t \leq \frac{r-18}{6}\right\} & \text { if } s=2, \\ k \in\left\{6 t+3: 0 \leq t \leq \frac{r-6}{6}\right\} & \text { if } s \geq 4 .\end{cases}
$$

Proof. We proceed as in the case of proof of the Lemma 8.2. We prove this lemma by considering link of some vertices in $T(r, s, k)$. We consider a map of type $\{4,6,12\}$ in place of type $\left\{3^{4}, 6\right\}$ and different values of r, s, and k in the proof of Lemma 8.2. Thus, we get all possible ranges of r, s and k of $T(r, s, k)$. This completes the proof.

Table 6. Maps of type $\{4,6,12\}$

n	Equivalence classes	Length of cycles	$i(n)$
36	$\mathrm{~T}(18,2,9)$	$(18,18,18)$	$1(36)$
48	$\mathrm{~T}(24,2,9), \mathrm{T}(12,4,9)$	$(24,12,24)$	$2(48)$
	$\mathrm{T}(24,2,15)$		
60	$\mathrm{~T}(30,2,9), \mathrm{T}(30,2,15)$	$(30,30,30)$	$1(60)$
	$\mathrm{T}(30,2,21)$		

Lemma 9.3. Let M_{1} and M_{2} be two maps of type $\{4,6,12\}$ on the same number of vertices. Let $T\left(r_{i}, s_{i}, k_{i}\right)$ denote a $\left(r_{i}, s_{i}, k_{i}\right)$-representation of M_{i}. Similar to Sections 4 and 5, by Lemma 9.1, let $b_{i, j}=\operatorname{length}\left(L_{i, j}\right)$ where $L_{i, j}$, $j=1,2,3$ denotes nonhomologous cycles of type H_{1} in $T\left(r_{i}, s_{i}, k_{i}\right)$. Then $M_{1} \cong M_{2}$ if and only if $\left(b_{1,1}, b_{1,2}, b_{1,3}\right)=\left(b_{2, t_{1}}, b_{2, t_{2}}, b_{2, t_{3}}\right)$ for $t_{1} \neq t_{2} \neq t_{3} \in$ $\{1,2,3\}$.

Proof. We proceed as in the proof of Lemma 8.3. Let $r=r_{1}, s=s_{1}$, and $k=k_{1}$. Consider horizontal cycles in $T\left(r_{i}, s_{i}, k_{i}\right)$ of type H_{1}. We proceed with a similar argument from Lemma 4.10. We get $M_{1} \cong M_{2}$. If $(r, s, k) \neq\left(r_{1}, s_{1}, k_{1}\right)$ then we proceed as in the proof of Lemmas 5.6 and 6.3. The converse follows a similar argument from the converse of Lemma 4.10. This completes the proof.

As in Section 4, by Lemmas 9.2 and 9.3, the maps of type $\{4,6,12\}$ can be classified on different number of vertices. We have done the calculation for vertices up to 60 . We have listed the obtained objects in the form of their $T(r, s, k)$ representation in Table 6.

10. Maps of type $\{3,4,6,4\}$

Let M be a semiequivelar map of type $\{3,4,6,4\}$ on the torus. We define a path W_{1} in the edge graph of M on the torus. Let $Q(i):=$ $P\left(u_{i}, u_{i+1}, u_{i+2}, u_{i+3}\right)$ be a path in M, where

$$
\begin{aligned}
l k\left(u_{i}\right) & =C\left(u_{i-1}, \mathbf{a}, b, u_{i+1}, \mathbf{i}, j, \mathbf{k}, \mathbf{l}, \boldsymbol{u}_{i-2}\right) \\
l k\left(u_{i+1}\right) & =C\left(u_{i}, b, \mathbf{c}, u_{i+2}, \boldsymbol{u}_{i+3}, \mathbf{g}, \mathbf{h}, i, \mathbf{j}\right) \\
l k\left(u_{i+2}\right) & =C\left(u_{i+1}, \mathbf{b}, c, d, \boldsymbol{e}, u_{i+3}, \mathbf{g}, \mathbf{h}, \mathbf{i}\right) \\
l k\left(u_{i+3}\right) & =C\left(u_{i+2}, \mathbf{d}, e, u_{i+4}, \boldsymbol{f}, g, \mathbf{h}, \mathbf{i}, \boldsymbol{u}_{i+1}\right)
\end{aligned}
$$

Definition. Let $P_{1}:=P\left(\ldots, v_{i-1}, v_{i}, v_{i+1}, \ldots\right)$ be a path in the edge graph of M. We say P_{1} is of type W_{1} if $L_{1}:=P\left(v_{t}, v_{t+1}, v_{t+2}, v_{t+3}\right)$ is a subpath of P_{1} or L_{1} is in a path containing P_{1}. In this case, either $L_{1} \mapsto Q(i)$ by $v_{j} \mapsto u_{j}, L_{1} \mapsto Q(i+1)$ by $v_{j} \mapsto u_{j+1}$, or $L_{1} \mapsto Q(i+2)$ by $v_{j} \mapsto u_{j+2}$ for $j \in\{t, t+1, t+2, t+3\}$.
Definition. Let $P_{2}:=P\left(\ldots, x_{i-1}, x_{i}, x_{i+1}, \ldots\right)$ be a path in the edge graph of M. We say P_{2} of type W_{1}^{\prime} if $L_{2}:=P\left(x_{t}, x_{t+1}, x_{t+2}, x_{t+3}\right)$ is a subpath of P_{2} or L_{2} is in a path containing P_{2}. In this case, either $L_{2} \mapsto Q(i)$
by $x_{j} \mapsto u_{2 t+3-j}, L_{2} \mapsto Q(i+1)$ by $x_{j} \mapsto u_{2 t+3-j}$, or $L_{2} \mapsto Q(i+2)$ by $x_{j} \mapsto u_{2 t+3-j}$ for $j \in\{t, t+1, t+2, t+3\}$.

We consider only cycles of type W_{1} as W_{1} and W_{1}^{\prime} define same type of cycle (by a similar argument from Section 8). Repeat a similar argument from Section 9 and define a $T(r, s, k)$ representation. In this process, we consider a path of type W_{1} in place of H_{1}. By Definition 10.1, there are three cycles through each vertex of M. Let $v \in V(M)$ and L_{1}, L_{2}, and L_{3} be three cycles through v. We first cut along L_{1} and then take a second cut along L_{3} where the starting adjacent face to base horizontal cycle L_{1} is a 4-gon. So, every map has a $T(r, s, k)$ representation. In Lemma 10.1, we show that a map of type $\{3,4,6,4\}$ contains at most three nonhomologous cycles of type W_{1} of different lengths.

Lemma 10.1. The map M contains at most three nonhomologous cycles of type W_{1} of different lengths.
Proof. As above, proceed with a similar argument from Lemma 8.1. Consider a map of type $\{3,4,6,4\}$ in place of $\left\{3^{4}, 6\right\}$ and a cycle of type W_{1} in place of Y_{1}. Let $w_{1} \neq w_{2}$ be two vertices of M. Let J_{1}, J_{2}, J_{3} denote three cycles through w_{1} and $J_{1}^{\prime}, J_{2}^{\prime}, J_{3}^{\prime}$ denote three cycles through w_{2}. Then by the definition of a cycle of type W_{1}, we get a cylinder which is bounded by J_{i} and J_{j}^{\prime}. That is, J_{i} and J_{j}^{\prime} are homologous for some $i, j \in\{1,2,3\}$. This holds for an arbitrary vertex of M. We proceed as in the case of proof of Lemma 4.5 to show that the homologous cycles of type W_{1} have the same length. Thus, the map M contains at most three nonhomologous cycles of type W_{1} of different lengths. This completes the proof.

We define admissible relations among r, s, k of $T(r, s, k)$ such that representation $T(r, s, k)$ gives a map of type $\{3,4,6,4\}$ after identifying their boundaries.

Lemma 10.2. The maps of type $\{3,4,6,4\}$ of the form $T(r, s, k)$ exist if and only if the following holds:
(i) $s \geq 2$ even,
(ii) $3 \mid r$,
(iii) there are $r s \geq 18$ vertices of $T(r, s, k)$,
(iv)

$$
r \geq \begin{cases}9 & \text { if } s=2 \\ 6 & \text { if } s \geq 4\end{cases}
$$

(vi)

$$
\left\{\begin{array}{l}
k \in\left\{3 t+4: 0 \leq t \leq \frac{r-9}{3}\right\} \text { if } s=2 \\
k \in\left\{3 t+1: 0 \leq t \leq \frac{r-3}{3}\right\} \text { if } s \geq 4
\end{array}\right.
$$

Proof. We follow a similar argument from the proof of Lemma 8.2. We prove this lemma by considering a link of some vertices in $T(r, s, k)$ and by showing that the link of those vertices are not a cycle if we consider the

Table 7. Maps of type $\{3,4,6,4\}$

n	Equivalence classes	Length of cycles	$i(n)$
18	$\mathrm{~T}(9,2,4)$	$(9,9,9)$	$1(18)$
24	$\mathrm{~T}(12,2,4), \mathrm{T}(12,2,7), \mathrm{T}(6,4,4)$	$(12,6,12)$	$2(24)$
	$\mathrm{T}(6,4,1)$	$(6,6,6)$	
30	$\mathrm{~T}(15,2,4), \mathrm{T}(15,2,7), \mathrm{T}(15,2,10)$	$(15,15,15)$	$1(30)$
36	$\mathrm{~T}(18,2,4), \mathrm{T}(18,2,13), \mathrm{T}(9,4,7)$	$(18,9,18)$	$2(36)$
	$\mathrm{T}(18,2,7), \mathrm{T}(18,2,10), \mathrm{T}(9,4,1)$	$(18,9,6)$	
$\mathrm{T}(9,4,4), \mathrm{T}(6,6,4), \mathrm{T}(6,6,1)$		$1(42)$	
42	$\mathrm{~T}(21,2,4), \mathrm{T}(21,2,7), \mathrm{T}(21,2,10)$	$(21,21,21)$	
48	$\mathrm{~T}(24,2,4), \mathrm{T}(24,2,7), \mathrm{T}(24,2,16)$	$(24,24,12)$	$3(48)$
	$\mathrm{T}(24,2,19), \mathrm{T}(12,4,4) \mathrm{T}(12,4,10)$		
	$\mathrm{T}(24,2,10), \mathrm{T}(24,2,13), \mathrm{T}(6,8,4)$	$(24,24,6)$	
	$\mathrm{T}(12,4,1), \mathrm{T}(12,4,7), \mathrm{T}(6,8,1)$	$(12,12,6)$	
54	$\mathrm{~T}(27,2,4), \mathrm{T}(27,2,13), \mathrm{T}(27,2,22)$	$(27,27,27)$	$3(54)$
	$\mathrm{T}(27,2,7), \mathrm{T}(27,2,10) \mathrm{T}(27,2,16)$	$(27,27,9)$	
	$\mathrm{T}(27,2,19), \mathrm{T}(9,6,4), \mathrm{T}(9,6,7)$	$(9,9,9)$	

values of r, s, and k outside the given range in Lemma 10.2. Consider a map of type $\{3,4,6,4\}$ in place of type $\left\{3^{4}, 6\right\}$ and different ranges of r, s, and k in the proof of Lemma 8.2. Thus, we get all the cases of this lemma. This completes the proof.

Lemma 10.3. Let M_{i}, for $i=1,2$, be maps of type $\{3,4,6,4\}$ on the same number of vertices and $T_{i}=T\left(r_{i}, s_{i}, k_{i}\right)$ be $\left(r_{i}, s_{i}, k_{i}\right)$-representations of M_{i}. (By Lemma 10.1, there are at most three nonhomologous cycles of different lengths in T_{i}.) Let $c_{i, j}=\operatorname{length}\left(N_{i, j}\right)$ where $N_{i, j}, j=1,2,3$ denote nonhomologous cycles of type W_{1} in T_{i}. Then the map $M_{1} \cong M_{2}$ if and only if $\left(c_{1,1}, c_{1,2}, c_{1,3}\right)=\left(c_{2, t_{1}}, c_{2, t_{2}}, c_{2, t_{3}}\right)$ for $t_{1} \neq t_{2} \neq t_{3} \in\{1,2,3\}$.

Proof. We proceed as in the proof of Lemma 8.3. Let $r=r_{1}, s=s_{1}$, and $k=k_{1}$. We consider horizontal cycles of $T\left(r_{i}, s_{i}, k_{i}\right)$ of type W_{1}. Proceed with a similar argument from Lemma 4.10. Thus, we get $M_{1} \cong M_{2}$. Again, if $(r, s, k) \neq\left(r_{1}, s_{1}, k_{1}\right)$ then we proceed as in the proof of Lemma 5.6 and Lemma 6.3. The converse follows from a similar argument from the converse of Lemma 4.10. This completes the proof.

As in Section 4, by Lemmas 10.2 and 10.3, the maps of type $\{3,4,6,4\}$ can be classified on different number of vertices. We have done calculation for up to 54 vertices. We have listed the obtained objects in the form of their $T(r, s, k)$ representation in Table 7.

11. Maps of type $\left\{4,8^{2}\right\}$

Let M be a semiequivelar map of type $\left\{4,8^{2}\right\}$ on the torus. We define a fixed type of path Z_{1} in M. Let $Q(i):=P\left(u_{i}, u_{i+1}, u_{i+2}, u_{i+3}, u_{i+4}\right)$ be a
path in M, where

$$
\begin{aligned}
l k\left(u_{i}\right) & =C\left(u_{i-1}, \mathbf{f}, \mathbf{g}, \mathbf{h}, \mathbf{i}, \boldsymbol{u}_{i+2}, u_{i+1}, \text { s, }, \boldsymbol{b}, \boldsymbol{c}, \boldsymbol{d}, \boldsymbol{u}_{i-3}, \boldsymbol{u}_{i-2}\right), \\
l k\left(u_{i+1}\right) & =C\left(u_{i}, \boldsymbol{u}_{i-1}, \boldsymbol{f}, \mathbf{g}, \mathbf{h}, \mathbf{i}, u_{i+2}, \boldsymbol{u}_{i+3}, \boldsymbol{u}_{i+4}, \mathbf{p}, \boldsymbol{q}, \mathbf{r}, s, \boldsymbol{a}\right), \\
l k\left(u_{i+2}\right) & =C\left(u_{i+1}, \boldsymbol{u}_{i}, \boldsymbol{u}_{i-1}, \mathbf{f}, \mathbf{g}, \mathbf{h}, i, \mathbf{j}, u_{i+3}, \boldsymbol{u}_{i+4}, \mathbf{p}, \boldsymbol{q}, \mathbf{r}, \mathbf{s}\right), \\
l k\left(u_{i+3}\right) & =C\left(u_{i+2}, \mathbf{i}, j, \boldsymbol{k}, \mathbf{l}, \mathbf{m}, \boldsymbol{u}_{i+6}, \boldsymbol{u}_{i+5}, u_{i+4}, \mathbf{p}, \boldsymbol{q}, \mathbf{r}, \mathbf{s}, \boldsymbol{u}_{i+1}\right), \\
l k\left(u_{i+4}\right) & =C\left(u_{i+3}, \mathbf{j}, \boldsymbol{k}, \mathbf{l}, \mathbf{m}, \boldsymbol{u}_{i+6}, u_{i+5}, \mathbf{o}, p, \boldsymbol{q}, \mathbf{r}, \mathbf{s}, \boldsymbol{u}_{i+1}, \boldsymbol{u}_{i+2}\right) .
\end{aligned}
$$

Definition. Let $R_{1}:=P\left(\ldots, v_{i-1}, v_{i}, v_{i+1}, \ldots\right)$ be a path in the edge graph of M. We say R_{1} of type Z_{1} if $L_{1}:=P\left(v_{t}, v_{t+1}, v_{t+2}, v_{t+3}, v_{t+4}\right)$ is a subpath of R_{1} or L_{1} is in the extended path of R_{1}. Then either $L_{1} \mapsto Q(i)$ by $v_{j} \mapsto u_{j}$, $L_{1} \mapsto Q(i+1)$ by $v_{j} \mapsto u_{j+1}, L_{1} \mapsto Q(i+2)$ by $v_{j} \mapsto u_{j+2}$, or $L_{1} \mapsto Q(i+3)$ by $v_{j} \mapsto u_{j+3}$ for $j \in\{t, t+1, t+2, t+3, t+4\}$.
Definition. Let $R_{2}:=P\left(\ldots, x_{i-1}, x_{i}, x_{i+1}, \ldots\right)$ be a path in the edge graph of M. We say R_{2} of type Z_{1}^{\prime} if $L_{2}:=P\left(x_{t}, x_{t+1}, x_{t+2}, x_{t+3}, x_{t+4}\right)$ is a subpath of R_{2} or L_{2} is in the extended path of R_{2}. Then either $L_{2} \mapsto Q(i)$ by $x_{j} \mapsto$ $u_{2 t+4-j}, L_{2} \mapsto Q(i+1)$ by $x_{j} \mapsto u_{2 t+4-j}, L_{2} \mapsto Q(i+2)$ by $x_{j} \mapsto u_{2 t+4-j}$, or $L_{1} \mapsto Q(i+3)$ by $v_{j} \mapsto u_{2 t+4-j}$ for $j \in\{t, t+1, t+2, t+3, t+4\}$.

As in Section 8, we consider a path of type Z_{1} as Z_{1} and Z_{1}^{\prime} define the same type of path (by a similar argument from Section 8). Let P be a maximal path of type Z_{1}. We use a similar argument from Lemma 4.1 for P. We get an edge e in M such that $P \cup e$ is a cycle of type Z_{1}. Therefore, every maximal path of type Z_{1} is a cycle. Let $C=P \cup e$. The cycle C is of type Z_{1} and noncontractible (by a similar argument from Lemma 4.3). Let $C_{1}, C_{2}, \cdots, C_{t}$ be a sequence of homologous cycles of type Z_{1}. Then we proceed with a similar argument from Lemma 4.5. Thus, length $\left(C_{i}\right)=$ length $\left(C_{j}\right)$ for $1 \leq i, j \leq t$. By Definition 11.1, there are two cycles of type Z_{1} through each vertex of M. Let $v \in V(M)$ and $L_{1}(v), L_{2}(v)$ be two cycles through v. We repeat a similar construction of the (r, s, k)-representation from Section 4 for M. So, we get a $T(r, s, k)$ representation of M. In this process, we take the first cut along L_{1} and then the second cut along L_{2} where the starting adjacent face to the base horizontal cycle L_{1} is a 4 -gon. By this construction, every map of type $\left\{4,8^{2}\right\}$ on the torus has a $T(r, s, k)$ representation.

We have two cycles of type Z_{1} through each vertex of M. Therefore, by Lemma 11.1, map M contains at most two nonhomologous cycles of type Z_{1} of different lengths.

Lemma 11.1. The map M contains at most two nonhomologous cycles of type Z_{1} of different lengths.

Proof. Let v be a vertex in M. By the definition of a cycle of type Z_{1}, we have two cycles, namely, C_{1} and C_{2} through v. We proceed as in the proof of Lemma 8.1. We get that the map M contains at most two nonhomologous cycles of type Z_{1} of different lengths.

Table 8. Maps of type $\left\{4,8^{2}\right\}$

n	Equivalence classes	Length of cycles	$i(n)$
20	$\mathrm{~T}(20,1,6), \mathrm{T}(20,1,14)$	$(20,20)$	$1(20)$
24	$\mathrm{~T}(24,1,6), \mathrm{T}(24,1,18)$	$(24,8)$	$2(24)$
	$\mathrm{T}(8,3,2), \mathrm{T}(8,3,6)$		
	$\mathrm{T}(24,1,14), \mathrm{T}(24,1,10)$	$(24,24)$	

We claim in the Lemma 11.2 that map of type $\left\{4,8^{2}\right\}$ does not contain a cycle of type Z_{1} which has length four. We use this result to classify the maps of type $\left\{4,8^{2}\right\}$ on the torus.

Lemma 11.2. The representation $T(r, s, k)$ does not contain a cycle of type Z_{1} of length four.

Proof. Suppose $T(r, s, k)$ has a cycle C of length four of type Z_{1}. Let $C_{F_{8}}$ denote a boundary cycle of an 8 -gon F_{8}. By the definition of a cycle of type Z_{1}, if $C \cap C_{F_{8}} \neq \emptyset$ then $C \cap C_{F_{8}}$ is a path of length three. Let $C \cap C_{F_{8}}=P\left(u_{1}, u_{2}, u_{3}, u_{4}\right)$. If C is a cycle of length four then $u_{1}=u_{4}$ which is a contradiction as u_{1} and u_{4} are in $C_{F_{8}}$, and $C_{F_{8}}$ is a cycle without a chord. Again, by the definition of cycle of type Z_{1}, C must intersect an 8 -gon. Thus, length $(C)>4$. So, a map M of type $\left\{4,8^{2}\right\}$ does not contain a cycle C of type Z_{1} of length four. This completes the proof.

We define admissible relations among r, s, k of $T(r, s, k)$.
Lemma 11.3. The maps of type $\left\{4,8^{2}\right\}$ of the form $T(r, s, k)$ exist if and only if the following holds:
(i) $4 \mid r$,
(ii) $s \geq 1$,
(iii) there are rs ≥ 20 vertices of $T(r, s, k)$,
(iv)

$$
r \geq \begin{cases}20 & \text { if } s=1 \\ 16 \quad \text { if } s=2 \\ 8 & \text { if } s \geq 3\end{cases}
$$

(v)

$$
\begin{cases}k \in\left\{4 t+6: 0 \leq t \leq \frac{r-12}{4}\right\} & \text { if } s=1 \\ k \in\left\{4 t+7: 0 \leq t \leq \frac{r-16}{4}\right\} & \text { if } s=2 \\ k \in\left\{4 t-1(\bmod r): 0 \leq t \leq \frac{r-4}{4}\right\} & \text { if } s \geq 3\end{cases}
$$

Proof. We proceed as in the proof of Lemma 8.2 and use Lemma 11.2 to prove this lemma. Consider the link of some vertices in $T(r, s, k)$, a map of type $\left\{4,8^{2}\right\}$ in place of type $\left\{3^{4}, 6\right\}$, and different values of r, s, and k in the proof of Lemma 8.2. So, we get all possible ranges of r, s, and k of $T(r, s, k)$. This completes the proof.

Lemma 11.4. Let M_{i}, for $i=1,2$, be maps of type $\left\{4,8^{2}\right\}$ on the same number of vertices and $T_{i}=T\left(r_{i}, s_{i}, k_{i}\right)$ be a representation of M_{i}. (By Lemma 11.1, there are at most two nonhomologous cycles of different lengths in T_{i}.) Let $a_{i, j}=\operatorname{length}\left(C_{i, j}\right)$ where $C_{i, j}, j=1,2$ denotes nonhomologous cycles of type Z_{1} in T_{i}. Then $M_{1} \cong M_{2}$ if and only if $\left(a_{1,1}, a_{1,2}\right)=\left(a_{2, t_{1}}, a_{2, t_{2}}\right)$ for $t_{1} \neq t_{2} \in\{1,2\}$.

Proof. We proceed as in the proof of Lemma 8.3. Let $r=r_{1}, s=s_{1}$, and $k=k_{1}$. Consider horizontal cycles in $T\left(r_{i}, s_{i}, k_{i}\right)$ of type Z_{1}. Proceed with a similar argument from Lemma 4.10. So, we get $M_{1} \cong M_{2}$. Again, if $(r, s, k) \neq\left(r_{1}, s_{1}, k_{1}\right)$ then we proceed as in the proof of Lemmas 5.6 and 6.3. The converse follows from a similar argument from the converse of Lemma 4.10.

As in Section 4, by Lemmas 11.3, 11.4, the maps of type $\left\{4,8^{2}\right\}$ can be classified up to isomorphism on different number of vertices. We have done the calculation for up to 24 vertices. We have listed the obtained objects in the form of their $T(r, s, k)$ representation in Table 8.

12. Semiequivelar maps

Proof of Theorem 1.1. The proof of the Theorem 1.1 follows from the Sections $4,5,6,7,8,9,10$, and 11 . Let M be a map on n vertices of type $\left\{3^{3}, 4^{2}\right\}$ on the torus. We consider all admissible $T(r, s, k)$ representations of M by Lemma 4.9. We calculate the length of the cycles of types A_{1}, A_{2}, A_{3}, and A_{4}. We classify them by Lemma 4.10. In Table 1, we have classified up them to 22 vertices. Similarly, we consider maps of types $\left\{3^{2}, 4,3,4\right\}$, $\{3,6,3,6\},\left\{3,12^{2}\right\},\left\{3^{4}, 6\right\},\{4,6,12\},\{3,4,6,4\}$, and $\left\{4,8^{2}\right\}$ on the torus. That is, we consider cycles of type B_{1} in maps of type $\left\{3^{2}, 4,3,4\right\}$ and classify them by Lemma 5.6. Table 2 contains the classified maps up to 32 vertices. Consider cycles of type X_{1} in maps of type $\{3,6,3,6\}$ and classify them by Lemma 6.3. Table 3 contains the maps up to 30 vertices. Consider cycles of type G_{1} in maps of type $\left\{3,12^{2}\right\}$ and classify them by Lemma 7.3 . Table 4 contains the maps up to 48 vertices. Consider cycles of type Y_{1} in maps of type $\left\{3^{4}, 6\right\}$ and classify by Lemma 8.3. Table 5 contains the maps up to 42 vertices. Consider cycles of type H_{1} in maps of type $\{4,6,12\}$ and classify by Lemma 9.3. Table 6 contains the maps up to 60 vertices. Consider cycles of type W_{1} in maps of type $\{3,4,6,4\}$ and classify them by Lemma 10.3. Table 7 contains the classified maps up to 54 vertices. Consider cycles of type Z_{1} in maps of type $\left\{4,8^{2}\right\}$ and classify them by Lemma 11.4. Table 8 contains the maps up to 24 vertices. This completes the proof.

Acknowledgement

The authors are grateful to the anonymous referee whose comments led to a substantial improvement in the paper. The work of the second author is partially supported by SERB, DST grant No. SR/S4/MS:717/10.

References

1. A. Altshuler, Construction and enumeration of regular maps on the torus, Discrete Math. 4 (1973), 201-217.
2. J. A. Bondy and U. S. R. Murthy, Graph theory, Graduate Texts in Mathematics, vol. 244, Springer, 2008.
3. U. Brehm and W. Kühnel, Equivelar maps on the torus, European J. Combin. 29 (2008), 1843-1861.
4. U. Brehm and E. Schulte, Handbook of discrete and computational geometry, ch. Polyhedral maps, pp. 345-358, CRC Press, NY, 1997.
5. W. Kurth, Enumeration of platonic maps on the torus, Discrete Math. 61 (1986), 71-83.
6. S. Negami, Uniqueness and faithfulness of embedding of toroidal graphs, Discrete Math. 44 (1983), 161-180.
7. A. K. Tiwari and A. K. Upadhyay, An enumeration of semi-equivelar maps on torus and klein bottle, to appear.
8. A. K. Upadhyay, A. K. Tiwari, and D. Maity, Semi-equivelar maps, Beitr. Algebra Geom. 55 (2014), 229-242.

Department of Mathematics, Indian Institute of Technology Patna, Bihta, 801 103, India
E-mail address: dipendumaity@gmail.com
Department of Mathematics, Indian Institute of Technology Patna, Bihta, 801 103, India
E-mail address: upadhyay@iitp.ac.in

[^0]: Received by the editors February 21, 2015, and in revised form May 29, 2017.
 2000 Mathematics Subject Classification. 52B70, 05C30, 05C38.
 Key words and phrases. Toroidal Graphs, Semiequivelar Maps, Cycles.

