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THE COPNUMBER FOR LEXICOGRAPHIC PRODUCTS

AND SUMS OF GRAPHS

BERND S. W. SCHRÖDER

Abstract. For the lexicographic product G • H of two graphs G and
H so that G is connected, we prove that if the copnumber c(G) of G
is greater than or equal to 2, then c(G • H) = c(G). Moreover, if
c(G) = c(H) = 1, then c(G • H) = 1. If c(G) = 1, G has more than
one vertex, and c(H) ≥ 2, then c(G • H) = 2. We also provide the
copnumber for general lexicographic sums.

The game of cops and robbers on a graph, conceived originally in [4] and
recently described comprehensively in [2], is played according to the follow-
ing rules: Vertices v1, . . . , vn in a graph are chosen as the initial positions
for cops C1, . . . , Cn. A vertex w is then chosen for a robber R. At the
start, as well as throughout the game, multiple cops can occupy the same
vertex. The cops’ objective is to catch the robber by placing a cop on the
same vertex with the robber. The robber’s objective is to prevent this from
happening. Both sides know the position of all cops and of the robber at
all times. Each side alternately takes turns, starting with the cop. A cop
move consists of each of the cops either staying at their current vertex or
moving to an adjacent vertex. In a robber move, the robber either stays at
their current vertex or moves to an adjacent vertex. The smallest number of
cops needed to capture the robber in a given graph G is called the graph’s
copnumber c(G). A graph with c(G) = 1 is called cop-win.

It is customary to label the vertex at which the cop Ck is located and
the vertex at which the robber R is located by Ck and R respectively which
we will use throughout the paper. Moreover, since neither the cops nor the
robber can leave the component in which each of them started the game,
the game is typically assumed to be played on a connected graph. Trivially,
because the robber is placed after the cops are placed, the copnumber of a
disconnected graph is the sum of the copnumbers of its components. See
[2, Section 4.2] for a survey of the copnumbers for several types of products
for graphs. Aside from results on the cartesian product and the strong
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product in [2, p. 85], it is stated that the question when one cop has a
winning strategy is “wide open” and little is known about the copnumber in
general for other products. One such product is the lexicographic product,
for which we state the copnumber in Theorem 2.7. Lexicographic products
can be viewed as special cases of lexicographic sums (see Definition 1.1).
Theorems 1.4 and 2.6 provide the copnumber for lexicographic sums.

1. Cops and Robbers in Lexicographic Sums

Lexicographic products can be viewed as special instances of lexicographic
sums as follows.

Definition 1.1. Let Ht = (Vt, Et) be a family of pairwise disjoint nonempty
graphs indexed by the set T . Let G = (T, F ) be a graph whose vertices are
the elements of T . Define the graph

∑
t∈T Ht to be the graph with vertex

set V =
⋃

t∈T Vt and edge set E, where, for v1 ∈ Vt1 and v2 ∈ Vt2, we have
{v1, v2} ∈ E if and only if

(1) t1 6= t2 and {t1, t2} ∈ F , or
(2) t1 = t2 and {v1, v2} ∈ Et1.

The graph
∑

t∈T Ht is called the lexicographic sum of the graphs Ht =
(Vt, Et) over the index graph G = (T, F ). The index function i : V → T
maps each v ∈ V to the unique index t =: i(v) so that v ∈ Vt.

From the perspective of lexicographic sums, the lexicographic product
G•H of the graphs G and H is the lexicographic sum of graphs Ht that are
isomorphic to H over the index graph G = (T, F ). Throughout this paper,
we consider lexicographic sums

∑
t∈T Ht of the graphs Ht = (Vt, Et) over

the index graph G = (T, F ).
Note that a lexicographic sum is connected if and only if the index graph

is connected. Hence, we will ultimately need to also consider disconnected
subgraphs Ht. On the positive side, the special structure of lexicographic
sums allows for a cop in the same subgraph Ht as the robber to limit the
robber’s moves to Ht (see Lemma 1.2). This observation assures that most
of the game can be played in a structure that is isomorphic to the index
graph G (see Theorem 1.4).

Lemma 1.2. If at any stage of the game there is a cop C and robber R
so that we have i(C) = i(R), then keeping the cop C in the vertex set
Vi(C) = Vi(R), with instructions to capture R if R moves to a vertex adjacent
to C, then this forces the robber to also stay in Vi(C) = Vi(R).

The proof of Lemma 1.2 is immediate.

Definition 1.3. Let G = (V,E) be a graph. A function r : V → V is
called a retraction if and only if r is idempotent and {v, w} ∈ E implies
r(v) = r(w) or {r(v), r(w)} ∈ E. For a retraction r, the induced subgraph
G[r[V ]] is also called a retract of G.
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By [1] or [2, Theorem 1.9], the copnumber of a retract is less than or equal
to that of the original graph.

Theorem 1.4. For c(G) > 1, we have that c
(∑

t∈T Ht

)
= c(G). For

c(G) = 1 and G having at least two vertices, we have that c
(∑

t∈T Ht

)
≤ 2.

Proof. Let S = (V,E) =
∑

t∈T Ht. For every t ∈ T , pick a vertex vt ∈ Vt.
Then the function r from V to U = {vt : t ∈ T} that maps each v ∈ Vt to
vt is a retraction from S to the induced subgraph S[U ], which is isomorphic
to G = (T, F ) via i|U . Hence c(S) ≥ c(G) (see [1] or [2, Theorem 1.9]).

To prove c(S) ≤ c(G) (or c(S) ≤ 2 if c(G) = 1), use max{c(G), 2} cops
to chase the robber’s “shadow” r(R) in G until there is a cop C so that
i(C) = i(R). By Lemma 1.2, the robber cannot leave Vi(R). In either of the
cases, one additional cop C ′ is available to move to some Ht with t adjacent
to i(R) to capture the robber in the next round. �

2. Dismantlable Lexicographic Sums

By Theorem 1.4, the case of a cop-win index graph is the only remaining
case in a complete characterization of the copnumber for lexicographic sums.
For cop-win index graphs with at least two vertices, the copnumber of a
lexicographic sum is either 1 or 2 by Theorem 1.4. From [4] we know that
a graph is cop-win if and only if it is dismantlable (see Definition 2.2).
We can then compute the copnumbers of all lexicographic sums if we can
characterize dismantlable lexicographic sums. This is done in Theorem 2.6.

Definition 2.1 (See [2, p. 11]). For a vertex v in a graph G = (V,E), define
N [v] = {x ∈ V : x = v or x ∼ v}. When we specifically need to indicate the
graph in which we consider the vertices and the adjacency relation, we also
write NG[v] for N [v]. The vertex v is called a corner if and only if there is
a vertex u so that N [v] ⊆ N [u]. A corner is called isolated if and only if it
is not adjacent to another corner.

Definition 2.2. Let C = (V,E) be a graph and let W ⊆ V . Then we say
that C is dismantlable to the induced subgraph D = C[W ] if and only if
there is an enumeration v1, . . . , vm of the vertices in V \W so that every
vi is a corner in C[V \ {v1, . . . , vi−1}]. A graph that is dismantlable to the
graph K1 is also called dismantlable.

The enumeration of the vertices is also called a dismantling sequence.
Note that dismantling sequences from a graph C to a graph D, and then from
D to another graph B, can be concatenated to obtain a dismantling sequence
from C to B.

Lemma 2.3 shows that dismantlable subgraphs Ht are not a barrier to
the dismantlability of a lexicographic sum because these subgraphs can be
dismantled first. Therefore, after Lemma 2.3 we concentrate on nondisman-
tlable subgraphs Ht.
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Lemma 2.3. Let v ∈ T . If Hv is dismantlable to the graph D, then
∑

t∈T Ht

is dismantlable to a graph
∑

t∈T H ′t, where, for t 6= v, we have that Ht = H ′t
and, for t = v, we have that H ′v is the graph D.

Proof. In a lexicographic sum
∑

t∈T Ht, a corner in a subgraph Ht0 is also
a corner in

∑
t∈T Ht.

Hence, a dismantling sequence from Hv to D is also a dismantling se-
quence that starts with

∑
t∈T Ht and that ends with

∑
t∈T H ′t. �

Lemma 2.4 (c.f. [3, Lemma 5]). Every retract of a dismantlable finite graph
is dismantlable.

Proof. Let D be a dismantlable graph and let B be a retract of D. Then
for the copnumber of B, we obtain c(B) ≤ c(D) = 1, that is, c(B) = 1.
However, this means B is dismantlable. �

Lemma 2.5. Let C = (V,E) be a graph and let v ∈ V be a corner in C.
Then C is dismantlable if and only if the induced subgraph C[V \ {v}] is
dismantlable.

Proof. In the forward direction, the function that maps a corner v to a vertex
u so that N [v] ⊆ N [u] while leaving all other vertices fixed is a retraction.
By Lemma 2.4, the induced subgraph C[V \ {v}] is dismantlable. In the
other direction, attach v at the beginning of a dismantling sequence for the
induced subgraph C[V \ {v}]. �

Theorem 2.6. Let G = (T, F ) be a dismantlable graph. Then
∑

t∈T Ht

is dismantlable if and only if |T | = 1 and H1 is dismantlable or |T | >
1 and there is a dismantling sequence t1, . . . , tn of G so that, for each
ti, there is a ti+k so that Hti+k

is dismantlable and NG[T\{t1,...,ti−1}][ti] ⊆
NG[T\{t1,...,ti−1}][ti+k].

Proof. First note that, by Lemmas 2.3 and 2.5, it is sufficient to prove the
case in which all dismantlable Htj have exactly one vertex. By the same
Lemmas we can assume without loss of generality that none of the non-
dismantlable graphs Ht have a corner.

Beginning with the reverse direction, to dismantle
∑

t∈T Ht, we first re-
move the vertices in Vt1 , then those in Vt2 , and so on. At each step, the
vertices v ∈ Vti are so that N∑

t∈T\{t1,...,ti−1}
Ht

[v] ⊆ N∑
t∈T\{t1,...,ti−1}

Ht
[w],

where w is the only vertex in the vertex set Vti+k
from the hypothesis. Hence

the order in which the vertices in the individual Vti are removed does not
matter.

In the forward direction, the proof is by induction on |T |. Note that the
base case |T | = 1 is trivial. For the induction step |T | − 1 → |T |, let v1
be the first vertex in a dismantling sequence of

∑
t∈T Ht and let t1 = i(v1).

Recall that, by our initial assumption, no subgraph Ht has a corner.
In case |Ht1 | = 1, there is a w 6∈ Vt1 with N [v1] ⊆ N [w]. With u = i(w) 6=

t1, we have NG[t1] ⊆ NG[u]. Moreover, if Hu was not dismantlable, then
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N [v1] would contain vertices of Hu that are not adjacent to w, which cannot
be. Hence, |Hu| = 1.

In case |Ht1 | > 1, the subgraph Ht1 is not dismantlable and has no corners.
In particular, v1 is not a corner in Ht1 . Therefore, there is a w 6∈ Vt1 with
N [v1] ⊆ N [w]. With u = i(w) 6= t1, we have NG[t1] ⊆ NG[u]. Moreover, if
Hu was not dismantlable, then N [v1] would contain vertices of Hu that are
not adjacent to w, which cannot be. Hence, |Hu| = 1.

In either case, t1 is a corner in G and there is a u ∈ T \ {t1} so that
|Hu| = 1 and NG[t1] ⊆ NG[u]. Therefore, all vertices v of Ht1 are corners so
that, with w being the unique element of Hu, we have N [v] ⊆ N [w].

Remove from
∑

t∈T Ht all vertices of Ht1 in any order. Because these
vertices are corners, by Lemma 2.5, the lexicographic sum

∑
t∈T\{t1}Ht is

dismantlable. The result now follows from the induction hypothesis and
from the fact that NG[t1] ⊆ NG[u] and |Hu| = 1. �

Theorem 2.7. Let G and H be graphs and let G be connected. If c(G) ≥ 2,
then c(G •H) = c(G). If c(G) = c(H) = 1, then c(G •H) = 1. If c(G) = 1,
|T | ≥ 2 and c(H) ≥ 2, then c(G •H) = 2. If |T | = 1, then c(G •H) = c(H).

Proof. The claim for c(G) ≥ 2 follows from Theorem 1.4. For c(G) = c(H) =
1, by Theorem 2.6 we have that c(G •H) = 1. For c(G) = 1, |T | ≥ 2 and
c(H) ≥ 2, Theorem 2.6 implies c(G •H) = 2. Finally, the claim for |T | = 1
is trivial because, in this case, G •H is isomorphic to H. �
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