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A COMPLETE SOLUTION TO THE SPECTRUM
PROBLEM FOR GRAPHS WITH SIX VERTICES AND UP
TO NINE EDGES

EMRE KOLOTOGLU

ABSTRACT. Let G be a graph. A G-design of order n is a decomposition
of the complete graph K, into disjoint copies of G. The existence prob-
lem of graph designs has been completely solved for all graphs with up to
five vertices, and all graphs with six vertices and up to seven edges; and
almost completely solved for all graphs with six vertices and eight edges
leaving two cases of order 32 unsettled. Up to isomorphism there are 20
graphs with six vertices and nine edges (and no isolated vertex). The
spectrum problem has been solved completely for 11 of these graphs,
and partially for 2 of these graphs. In this article, the two missing
graph designs for the six-vertex eight-edge graphs are constructed, and
a complete solution to the spectrum problem for the six-vertex nine-edge
graphs is given; completing the spectrum problem for all graphs with
six vertices and up to nine edges.

1. INTRODUCTION

Let G = {G1,G2,...,G;} be a set of (finite, simple, undirected) graphs,
and K, denote a complete graph with n vertices (or points). A G-design
of order n is a pair (X, B), where X is the vertex set of K,, and B is
a set of subgraphs of K,, called blocks, such that each block is isomor-
phic to some G; € G and the edges of the blocks partition the edge set
of K,,. When G = {G}, then a G-design is simply denoted as a G-design.
When G = {Kj,, Ki,, ..., K, }, then a G-design of order n is a pairwise
balanced design with block sizes in {ki,ko,...,k:}, and is denoted as a
PBD(TL, {]{?1, ]432, ey kt})

Let K = Ky, n,,..n,. denote the complete multipartite graph with the
vertex set X = [J_; X;, where X; are the parts of the multipartition,
and ’X1| = nNny. Let g == {Gl,GQ,...,Gt}, Y = {Xz : 1 < ) < ’I“}7
T = [n1,n2,...,n,] (a multiset), and B be a set of subgraphs of K, called
blocks, each isomorphic to some graph in G, whose edges partition the edge
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set of K. Then the triple (X,Y, B) is called a G-group divisible design (or
G-GDD for short) of type T. Usually the type is denoted by exponential
form, for example, the type ¢)"g5? ... g4 denotes u; occurences of g; in T
for 1 <14 < s. The parts of size greater than one in the multipartition of K
are called holes of the GDD. Obviously, a G-design of order n is a G-GDD
of type 1" (with no holes). When G = {K},, Kj,, ..., Kj, }, then a G-GDD
is simply denoted as a {k1, k2, ..., ki }-GDD. Moreover, if ¢t = 1, it is simply
denoted as a k1-GDD. A k-GDD of type n* is called a transversal design,
and is denoted by TD(k,n).

There are three obvious necessary conditions for the existence of a G-
design. If a G-design of order n exists, thenn = 1 orn > |V(G)|, n(n—1) =0
(mod 2|E(G)|), and n — 1 =0 (mod d), where V(G) and E(G) denote the
set of vertices and edges of GG respectively, and d is the g.c.d. of the degrees
of all vertices in G.

The spectrum for a graph G is the set of positive integers n such that
there exists a G-design of order n. Numerous articles have been written on
the existence of G-designs. The results known by 2008 on the spectrum of
graphs may be found in [4, 7]. For the latest results, see [6]. The results
given in [4] show that the spectrum problem has been completely solved
for all graphs with up to four vertices; and almost completely solved for all
graphs with five vertices, and graphs with six vertices and up to eight edges.
For graphs with five vertices, and graphs with six vertices and up to seven
edges, the results in [4] have left some possible exceptions. These exceptions
have since been dealt with in [24, 19, 13].

For graphs with six vertices and eight edges, Kang et al. [17] have given
an almost complete solution leaving the case of order 32 for two of these
graphs unsettled. These two graphs (Hj2 and His with the notation of [4])
are shown in Figure 1. These two missing graph designs of order 32 are
constructed in the Appendix (see Examples A.1 and A.2), completing the
spectrum problem for the six-vertex eight-edge graphs.

FiGURE 1. Two graphs with six vertices and eight edges

Up to isomorphism there are 20 graphs with six vertices and nine edges,
excluding those with isolated vertices (see [16]). These graphs are shown in
Figure 2.
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FIGURE 2. All graphs with six vertices and nine edges (and
no isolated vertex)

The spectrum problem has been completely solved for Gy in [22], for G
in [15], for G3 in [8], and for G in [3]. The graphs G1, Ga, ..., G9 has been
considered in [18], and it has been claimed that the spectrum problem for
these graphs has been completely solved, obtaining the following result.

Theorem 1.1 ([22, 15, 8, 3, 18]). Let 1 <1i < 10. There exists a G;-design
of order n if and only if n =1,9 (mod 18) when i =1, n=1 (mod 9) and
n# 10 wheni=2,n=1 (mod 9) wheni=3,n=0,1 (mod 9) andn # 9
when i € {4,5,6,8,9,10}, and n =0,1 (mod 9) when i = 7.

Although this result is correct, G;-designs of order 18 have not been con-
structed for ¢ € {8,9} in [18]. These two designs, which are crucial for the
recursive constructions given there, are constructed in this article to com-
plete the proof of Theorem 1.1. For ¢ = 9, the required design is constructed
directly in Example A.5. For ¢ = 8, we can first construct a Gg-GDD of type
1810! (Example A.35), and then fill in the hole with a Gg-design of order 10
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which has been constructed in [18]. These two constructions complete the
proof of Theorem 1.1.

In addition to the results in Theorem 1.1, the spectrum problem has been
completely solved for the graph G in [20], where references have been given
to [21] for some constructions. Also, some partial results have been obtained
on the spectrums of the graphs G711 and Gig, in [23] and [11], respectively.
Since [21] is not easy to obtain, and the results for the graphs G1; and Gig
are incomplete, these three graphs, G11, G1g, and G1g are included in this
article for completeness. A complete solution to the spectrum problem for
all graphs G;, 11 < 7 < 20 is given. We can see that for 11 < ¢ < 20,
the necessary conditions for the existence of a G;-design of order n is that
n =0,1 (mod 9). The main result of this article is the following theorem,
which completes the spectrum problem for all graphs with six vertices and
up to nine edges.

Theorem 1.2. Let 11 < i < 20. There exists a G;-design of order n if and
only if n=0,1 (mod 9), n # 9, and (i,n) & {(18,10), (20,10)}.

The spectrum problems solved in this article have also been solved inde-
pendently in [9, 10]. Although these two articles have been published first,
our work has actually been done earlier with an exception of a Gap-design
of order 18. In the original version of our article, a Ggg-design of order 18
was missing which has later been constructed in [9]. For completeness, we
take this design from [9] and include here.

In what follows, as a block in a design, all graphs with six vertices
are denoted by [a,b,c,d,e, f] according to the vertex labels in Figures 1

and 2. Also, the complete graph on vertices x1,xs,...,x, is denoted by
{z1,29,...,2,}. In the constructions, an ordered pair (z,y) is denoted by
Ty.

2. NONEXISTENCE RESULTS

In this section, we prove the nonexistence results given in Theorem 1.2
for the orders that satisfy the necessary conditions. The constructions for
the remaining orders will be given in the following sections by using direct
and recursive construction techniques.

Lemma 2.1. There does not exist a G;-design of order 9 for 11 < i < 20.

Proof. A G;-design of order 9 would consist of 4 blocks. For 16 < i < 20,
the graph G; contains K4 as a subgraph, and 4 Kj4’s cannot be packed in
Ky. Therefore, a G;-design of order 9 cannot exist. The proofs for the cases

11 <4 < 15 are also straightforward but more tedious. We omit those proofs
here. O

Lemma 2.2. There does not exist a G;-design of order 10 for i € {18,20}.

Proof. A G;i-design of order 10 would consist of 5 blocks. Both G1g and Gag
contain K4 as a subgraph. Up to isomorphism, there is a unique way of
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packing 5 Ky’s in Kjg, namely by taking the blocks {0, 1,2,3}, {0,4,5,6},
{1,4,7,8}, {2,5,7,9}, and {3,6,8,9}. After removing the edges in these 5
Ky’s from Ko, we are left with a 3-regular graph with 10 vertices. One can
check that this graph cannot be decomposed into 5 K7 3’s (for Gig), or into

5 K3’S (fOI‘ GQQ). |

3. FUNDAMENTAL TOOLS FOR RECURSIVE CONSTRUCTIONS

The following theorems on TDs, PBDs, and GDDs will be useful in the
recursive constructions, and may be found in [1, 2, 12, 14].

Theorem 3.1 ([2]). There exists a TD(k,q) for any prime power q, and
k<qg+1.

Theorem 3.2 ([2]|). There exists a TD(3,n) if and only if n > 2.
Theorem 3.3 ([2]). There exists a TD(4,n) if and only if n > 3, and n # 6.

Theorem 3.4 ([1]). There exists a PBD(n,{3,4,5}) if and only if n > 3
and n ¢ {6,8}.

Theorem 3.5 ([1]). There exists a PBD(n,{4,5,6}) if and only if n > 4
and n ¢ {7,8,9,10,11,12, 14, 15,18, 19, 23}

Theorem 3.6 ([12]). There exists a 4-GDD of type 27.

Theorem 3.7 ([12]). There exists a 4-GDD of type 3% if and only if k = 0,1
(mod 4).

Theorem 3.8 ([14]). There exists a {4,7}-GDD of type 3¥ if and only if
k>4, and k # 6.

The following fundamental recursive constructions may be found in [5].

Theorem 3.9 (Wilson’s Fundamental Construction [5]). Let G be a graph,
(X,Y,B) be a {ki,ka,...,k:}-GDD, and w : X — Z* U {0} be a weight
function. Suppose that for each block B € B, there exists a G-GDD of type
[w(z) : @ € B]. Then there exists a G-GDD of type [3 . w(z): X; € Y].

Theorem 3.10 (Inflation [5]). Let G be a k-colorable graph, i.e. a subgraph
of some complete k-partite graph. Suppose that there exists a G-GDD of
type T, and a TD(k,m). Then there exists a G-GDD of type mT.

Note that the graph G; is 3-colorable if 11 < ¢ < 15, and 4-colorable if
16 < i < 20. Therefore, we get the following corollaries of Theorems 3.2, 3.3,
and 3.10.

Proposition 3.11 (Inflation I). Let 11 < i < 15 and suppose that there
exists a G;-GDD of type T'. Then there exists a G;-GDD of type mT for all
m > 2.

Proposition 3.12 (Inflation II). Let 16 < i < 20 and suppose that there
exists a G;-GDD of type T'. Then there exists a G;-GDD of type mT for all
m >3 and m # 6.
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4. SPECTRUM OF THE GRAPHS G; FOR 11 <3 <15

In this section, we consider the graphs G; for 11 <4 < 15, and determine
their spectrums by giving the necessary constructions. Note that these five
graphs are 3-colorable graphs, but the last five graphs are not. Our main
strategy is based on the following corollaries of Theorems 3.4 and 3.9.

Proposition 4.1. Let a € {0,1} and suppose that there exists a G-GDD of
type g* for all k € {3,4,5}, and a G-design of order g+a. Then there exists
a G-design of order gu+ a for all uw >3 and u ¢ {6,8}.

Proof. Take a {3,4,5}-GDD of type 1* from Theorem 3.4, and apply Wil-
son’s construction by giving weight g to each point, and using G-GDDs of
types ¢°, g%, and ¢°, to obtain a G-GDD of type g*. Finally add a points
and fill in the holes with G-designs of order g + a. U

Proposition 4.2. Let a € {0,1} and suppose that there exists a G-GDD of
type g and a G-design of order g(k—1)+a for all k € {3,4,5}. Then there
exists a G-design of order gu+ a for all u > 2 and u ¢ {5,7}.

Proof. Take a PBD(u+1,{3,4,5}) from Theorem 3.4 and remove one point
to obtain a {3, 4, 5}-GDD of type 2#3%4¢ for some a, b, ¢ with 2a+3b-+4c = u.
Then use Wilson’s construction by assigning weight ¢ to each point to obtain
a G-GDD of type (29)%(39)’(49)¢. Add a points and fill in the holes with
G-designs of orders 2g + a, 3g + a, and 4g + a to obtain a G-design of order
qu + a. O

Our goal is to use Propositions 4.1 and 4.2 with ¢ = 9. So, we first
construct G;-GDDs of types 9% for u € {3,4,5} (Examples A.31—A.33).

Consider the case n = 1 (mod 9). Let n = 9u + 1. For u € {1,2}, we
construct G;-designs of order n directly in Examples A.3, A.4, and A.10.
For u > 3 and u ¢ {6, 8}, apply Proposition 4.1 with (g,a) = (9,1). Finally
for u € {6, 8}, apply Proposition 4.2 with (g,a) = (9,1) to settle the case
n=1 (mod9).

Now let n = 9u. For u = 1, a G;-design of order n does not exist
by Lemma 2.1. Therefore we cannot apply Proposition 4.1 in this case.
However, we can still apply Proposition 4.2. For u € {2,3,4}, we make direct
constructions in Examples A.5—A.7, A.11, and A.13. Now Proposition 4.2
can be applied for u > 6 and u # 7 with (g,a) = (9,0). This leaves only
the cases u = 5 and u = 7 unsettled. For these cases, we first construct
G-GDDs of types 13510 and 1%528! (Examples A.37 and A.39), and then
fill in the holes with G;-designs of orders 10 and 28 to obtain G;-designs of
orders 45 and 63. This settles the case n = 0 (mod 9) and we obtain the
following theorem.

Theorem 4.3. Let 11 <1 < 15. There exists a G;-design of order n if and
only if n=0,1 (mod 9) and n # 9.
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5. SPECTRUM OF THE GRAPHS G; FOR 16 <3 <19

Since the graphs G; for 16 < 7 < 20 contain K4 as a subgraph, a G;-GDD
of type 9% cannot exist, and hence the strategy used in the previous section
cannot be applied for these graphs. However, we may use the following
construction whose proof is analogous to the proof of Proposition 4.2, where
Theorem 3.5 is used instead of Theorem 3.4.

Proposition 5.1. Let a € {0,1} and suppose that there exists a G-GDD
of type g* and a G-design of order g(k—1)+4-a for allk € {4,5,6}. Then there
exists a G-design of order gu+a for allu > 3 andu ¢ {6,7,8,9,10,11, 13,14,
17,18,22}.

We could also state a construction analogous to Proposition 4.1 here, but
such a construction is not going to be needed. Our goal is to use Propo-
sition 5.1 with ¢ = 9. So, we need to construct G;-GDDs of types 9% for
u € {4,5,6}. All graphs G; for 16 < ¢ < 20 are 4-colorable graphs, and we
may expect that there exist G;~-GDDs of types 9%, 9°, and 95. However, one
can show using counting arguments that a Goo-GDD of type g* cannot exist
when ¢ is odd. Therefore, we consider only the graphs G; for 16 < i < 19
in this section. We deal with the graph Gag in the next section.

Our first goal is to construct G;-GDDs of types 9% for v € {4,5,6} and
16 < i < 19. Since there does not exist a Gig-design of order 10 (see
Lemma 2.2), our strategy will be slightly different for the graph Gis. We
construct G1g-GDDs of types 9* and 9° directly (Examples A.32 and A.33).
For a G'13-GDD of type 95, inflate (i.e. use Proposition 3.12) a G13-GDD of
type 3% (Example A.25) by a factor of 3. For the graphs Gy, G17, and G1g,
we do much better and prove the following lemma.

Lemma 5.2. There exists a G;-GDD of type 9* for all i € {16,17,19} and
u > 4.

Proof. We first construct G;-GDDs of types 3%, 35, and 37 (Examples A.24—
A.27). Now, for v > 4 and u # 6, take a {4,7}-GDD of type 3* (The-
orem 3.8) and apply Wilson’s construction by assigning weight 3 to each
point and using G;-GDDs of types 3* and 37, to obtain a G;~GDD of type
9. For u = 6, inflate a G;-GDD of type 3% by a factor of 3 to obtain a
G,-GDD of type 9°. O

Using Lemma 5.2, we get the following result.

Lemma 5.3. There exists a G;-design of order Qu + 1 for u > 1 and i €
{16,17,19}.

Proof. For u € {1,2,3}, see Examples A.3, A.10, and A.12. For u > 4, take
a G;-GDD of type 9% (Lemma 5.2), add one point, and fill in the holes with
G-designs of order 10. O

For the remaining cases, our goal is to apply Proposition 5.1. We first
make some direct constructions for small orders.
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Lemma 5.4. Let 16 <i < 19,1 <u <7, anda € {0,1}. Then, there exists
a Gi-design of order Yu+a except when (u,a) = (1,0) or (u,a,i) = (1,1,18).

Proof. For the nonexistence results in the cases (u,a) = (1,0) or (u,a,i) =
(1,1,18), see Lemmas 2.1 and 2.2. For i € {16,17,19}, 1 < u < 7, and
a =1, see Lemma 5.3. For 2 < u <7 (where a = 0 if ¢ € {16,17,19}, and
a € {0,1} if i = 18) a G-design of order 9u+a is either constructed directly
(Examples A.8—A.17 and A.19—A.21) or by constructing G;-GDDs of types
13°m! with m € {10,19, 28} (Examples A.37—A.39) and then filling in the
holes with G;-designs of orders 10, 19, or 28. O

Applying Proposition 5.1, we get the following result.

Lemma 5.5. Let 16 < i < 19 and a € {0,1}. There exists a G;-design
of order 9u + a for allu > 1 and u ¢ {8,9,10,11,13,14,17,18,22}, except
when (u,a) = (1,0) or (u,a,i) = (1,1,18).

To deal with the remaining orders, we make the following constructions.

Lemma 5.6. There exist G;-GDDs of types 18% and 18“~127! for u= 0,1
(mod 4) and 16 < ¢ < 19.

Proof. Take a 4-GDD of type 3% (Theorem 3.7), and apply Wilson’s con-
struction by assigning weight 6 or 9 to all points in one group, and weight
6 to the remaining points. The input G;-GDDs of types 6% and 629! come
from Examples A.28 and A.44. O

Lemma 5.7. There exist G;-GDDs of types 189271, 187, and 45*18' for
16 <1i < 19.

Proof. For 18°27!, inflate a G;-GDD of type 6°9! (Example A.46) by a fac-
tor of 3. For 187, take a 4-GDD of type 27 (Theorem 3.6), and apply Wil-
son’s construction by assigning weight 9 to each point and using G;-GDDs
of type 9* (Lemma 5.2 and Example A.32). For 45*18! take a TD(5,5)
(Theorem 3.1) and apply Wilson’s construction by assigning weight 0 to
three points in the same group, weight 9 to the remaining points, and using
G-GDDs of types 9% and 95 (Lemma 5.2 and Examples A.32, A.33). O

To settle the unresolved cases in Lemma 5.5 (i.e. v € {8,9,10,11,13, 14,
17,18,22}), take G;-GDDs of types 184, 183271, 18, 184271 18527 187,
187271, 18°, and 45*18' constructed in Lemmas 5.6 and 5.7, add 0 or 1
points, and fill in the holes with G;-designs of orders 18, 19, 27, 28, 45, or
46.

We obtain the final result of this section.

Theorem 5.8. For i € {16,17,19}, there exists a G;-design of order n if
and only if n = 0,1 (mod 9) and n # 9. There exists a G1g-design of order
n if and only if n = 0,1 (mod 9) and n ¢ {9,10}.
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6. SPECTRUM OF THE GRAPH (G

In Lemmas 2.1 and 2.2, we have shown that G9g-designs of orders 9 or
10 do not exist. Also, as noted in the previous section, one can show using
counting arguments that a Ggo-GDD of type g* cannot exist when g is odd,
and hence the strategy used in the previous section cannot be applied for
the graph Ggo. However, a Ggo-GDD of type 18% may exist. Our strategy
in this section is based on considering the cases n = 0,1,9,10 (mod 18)
separately. The constructions made here do not make use of the existence
of a Gap-design of order 18. This design has been constructed in [9] and we
give an isomorphic copy of it here in Example A.5.

Lemma 6.1. There exists a Gog-GDD of type 18" for all u > 4.

Proof. For u > 4 and u # 6, take a {4, 7}-GDD of type 3“ (Theorem 3.8)
and apply Wilson’s construction by assigning weight 6 to each point and
using G29-GDDs of types 6* and 67 (Examples A.28 and A.30). For u = 6,
inflate a Goo-GDD of type 6° (Example A.29) by a factor of 3. O

Lemma 6.2. There exists a Gog-design of order 18u + 1 for all u > 1.

Proof. For u € {1,2,3}, see Examples A.10, A.15, and A.19. For u > 4,
take a G29-GDD of type 18" from Lemma 6.1, add one point, and fill in the
holes with Gp-designs of order 19. O

Lemma 6.3. There exists a Goo-GDD of type (2k)3k' for all k > 2, k # 3.

Proof. Take a TD(4,2k) (Theorem 3.3) and label the points with the ele-
ments of Zog, x {1, 2, 3,4}, where the holes are on Zgi, x {b} for b € {1, 2, 3,4}.
For any m,n € Zog, where 0 < n < k, there exist unique blocks containing
the edges {m1,n4} and {my, (k + n)s}, say the blocks {m1,pa,qs,n4} and
{mi,72,s3,(k + n)s}, where we necessarily have p # r and ¢ # s. For all
m,n with 0 < m < 2k and 0 < n < k, replace these two blocks with the
block [ng4, p2, g3, m1, 72, s3]. Finally, remove the points (k+n)4 for 0 <n < k
to obtain a Goo-GDD of type (2k)3k!. O

Lemma 6.4. There exists a Goo-GDD of type (36k)3(18k + 3m)* for all
k>1and 0 <m < 9k.

Proof. Take a TD(4,9k) (Theorem 3.3), assign weight 5 to m points, and
weight 2 to the remaining points in one of the groups, and weight 4 to all
points in the remaining three groups. Apply Wilson’s construction by using
G20-GDDs of types 432! (Lemma 6.3) and 435! (Example A.43). O

Lemma 6.5. There erists a Gog-design of order n for alln = 0,1 (mod 9)
and 19 <n <91.

Proof. For n € {19,37,55,73,91}, see Lemma 6.2. For n € {27, 28, 36, 45,

46,54, 63,64, 81} see Examples A.11-A.13, A.16-A.18, A.20, and A.22-A.23.
For n € {72,82,90}, take a G-GDD of type 1»2727! (Examples A.40-
A.42) and fill in the hole with a Ggg-design of order 27. O
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Proposition 6.6. Let u > 11 and suppose that there exists a PBD(’”‘Tm +
1,{4,5,6}) for somem € {0,1,2,3}. Then there exists a Gao-design of order
9u + a for all a € {0,1}.

Proof. Take a PBD(“‘*‘Tm + 1,{4,5,6}) and remove one point to obtain a
{4,5,6}-GDD of type 3%4%5¢ for some a, b, ¢ with 3a+4b-+5c = “*Tm Assign
weight 9 to m points in the same group and weight 18 to the remaining
points. Apply Wilson’s construction by using G29-GDDs of types 184, 185,
186, 18391, 1849, and 1859 (Lemmas 6.1, 6.3 and Examples A.53, A.54)
to obtain a Goo-GDD of type (54)9(72)¢(90)/(9t)! for some d, e, f,t with
3 <t <10 and 54d + 72e + 90f + 9t = 18(*E™ —m) + 9m = Yu. Add a
points and fill in the holes with Gag-designs of orders 54 + a, 72 + a, 90 + a,
and 9t + a (Lemma 6.5) to obtain a Ggp-design of order 9u + a. O

Theorem 6.7. There exists a Gog-design of order n if and only if n =0, 1
(mod 9) and n ¢ {9,10}.

Proof. For n € {9,10}, see Lemmas 2.1 and 2.2. For n = 18, see Exam-
ple A.5. For 19 < n < 91, see Lemma 6.5. For n > 99, write n = 9u + a
where a € {0,1} and v > 11. For a = 1 and u even, see Lemma 6.2.
For a = 0, u even, and u ¢ {12,14,16, 18,20, 22,26, 28,34,36,44}, use
Theorem 3.5 and apply Proposition 6.6 with m = 0. For a = 0 and
u € {22,28,36,44}, apply Proposition 6.6 with m = 2. Fora € {0,1}, u odd,
and u ¢ {11,13,15,17,19,21, 25,27, 33, 35,43}, apply Proposition 6.6 with
m = 1. For a € {0,1} and u € {21,27, 35,43}, apply Proposition 6.6 with
m = 3. These constructions leave the cases u € {12,14, 16, 18,20, 26,34},
a=0; and u € {11,13,15,17,19,25,33}, a € {0, 1}.

For u € {15,16,17,33, 34}, take G20-GDDs of types 36327%, 364, 363451,
723811, and 72390! from Lemma 6.4, add a points, and fill in the holes.

For u € {11,13} and a = 1, or u € {18,19, 26}, inflate G29-GDDs of types
6491, 6°9', 95 12491 and 15%18! (Examples A.34 and A.45-A.48) by a factor
of 3 to obtain G29-GDDs of types 184271, 185271, 276, 36%27! and 45%54!.
Then add a points and fill in the holes.

For u € {20,25}, inflate a Goo-GDD of type 9° (Example A.33) by a factor
of 4 or 5 to obtain G29-GDDs of types 36° and 45°. Then add a points and
fill in the holes.

Finally, for v € {11,12,13,14} and a = 0, take a G2-GDD of type
16°(9u —86)! (Examples A.49-A.52), add 6 points, and fill in the holes with
G'20-GDDs of type 1'66! (Example A.36) and a Gag-design of order 9u — 80.
U

APPENDIX A.

In what follows, a G-design of order n is denoted by G — D(n), and
a G-GDD of type T is denoted by G — GDD(T'). In a few constructions
we take X = {1,2,...,n} and list all blocks explicitly. In all of the other
constructions, we take X = (Upeg(Zm, x Ug)) U ({0} x Us) for some S,



SPECTRUMS FOR GRAPHS WITH SIX VERTICES AND UP TO NINE EDGES 11

my, Uy and Uy, where Uy, is possibly empty. We denote (z,y) as x,, and
when |Us| = 1 we omit the subscript of co. Then the construction is made
by developing the given base blocks with the permutation x, — (x + 1)y,
where addition is modulo my when y € Uy, for all k € S. The infinite points
are fixed.

Example A.1. Hio—D(32) on X = (Z4 x{1,2,3,4,5,6})U(Za x {7,8})U
({oo} x {a,b,c,d}). There are 12 orbits of length 4, 6 short orbits of length
2, and 2 fized blocks.

01,11, 32,29,33,00¢]  [01,02,23,33, 12, 004]

017 057 257 167 027 OOGL]

[ [ [01, 03, 13,24, 31, 004]
(01,04, 14,15,21,004] [ [02, 03, 34, 06, 21, 00p]
(06,01, 11,17, 02, 04] [02, 14, 24,05, 03, 17] [05, 12, 13, 35, 22, 00p)
[0 06,08,14,23,0017] [05,33,08,06,12,36] [08,03,15,36,13,14}
[ [ [
[ [ [
[ [

07702a22708701721] 07703a23a18702722] 07,04,24,ooa,03,23]
07705a257000704724] 07306>26;ooda05725] 08711731aOOCa06326]
04, 08, 18, 00y, 07, 17]  [00c, 004, 00p, 04, 08, 1]

Example A.2. Hi3—D(32) on X = (Z4x{1,2,3,4})U(Z2x{5,6,7,8,9})U
({0} x {a,b,c,d,e, f}). There are 11 orbits of length 4, 7 short orbits of
length 2, and /4 fixed blocks.

05, 01,02, 004, 03, 14] 05, 11, 32, 00y, 03, 24] 05, 03, 13, 06, 01, 11]
05704a14706702712] 077117037006702704] [OOd,OQ,14,07, 12a04]
Ood701723718711734] 0 12703709711702] [006701714709713704]

[ [
[ [
[ [
[00¢, 02,13, 00, 01, 34] [01,03,04,22, 11, 23]

[05, 06, 003, 07,01, 21] [05, 16, 07, 0g, 02, 22] 05, 08, 09, 17, 03, 23]
[ [

[ [

[ [

[ [

06,09,006,18,04,24] e 05,17,00(1,06,19]
004, 06, 0g, 00, 05, 19] 004 07709700]”705718]
00, 00h, O0¢, 004, 05, 15]  [00¢, 004, 004, 00§, O, 6]
OOb,OOe,OOf,OOC,O7,17] OOa,Og,lg,OOb,Og,lg]

Example A.3. G; — D(10) for i € {11,12,14,15,16,17,19} on X = Zs x
{1,2}.

i Base Block i Base Block

11 [01711702a22712731] 12 [01711a42712702a31]

14 [02701711a22712741] 15 [11702a01731722a32]

16 [01722711a42741712] 17 [01a22a11742741a02]
[ ]

19 01711731722742732

Example A.4. G135 — D(10) on X ={1,2,3,...,10}.

1,2,3,4,5,6] [1,4,7,8,9,2] [3,5,8,10,9,4]
5,7,2,6

1 ]
[10,3,7,6,1,8] [9,5,7,2,6,10]
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Example A.5. G;—D(18) fori € {9,11,12,13,20} on X = {1,2,3,...,

i Blocks

9 | [2,3,4,51,0] 7.8,9,10,1,11]  [12,13,14,15,1,16
[17 2,7,12,18,1] [3,7,10,13,6,16]  [4,8,11,14,6, 17]
5,9,12,15,6,18]  [2,8,3,18,13,4]  [3,12,4,8, 15, 10]
(3,9,2,4,11, 18] [5,14,3,12,17,15] [7,12,10,11,5,4]
8,5,2,13,16,17] [9,13,10,11,17,7] [2, 15,11,18, 14, 10]
7.14,4,9.16.15]  [16,18,4,9,10, 11

T 1,253,457 [1,6,7,8,9,12] 1,10,11,12,13,15
(14,15,1,16,2,8]  [3.17,6,13,18,1] [2.13.9,15,17, 5]
2,6,10,12,18.8]  [4.2,11.6,9,5]  [3.5,8,11,15,6]
[14,3,7,18,6,16]  [10,3,9,14,4,12]  [5,10,18,11,14,17
12,7,15,5,16,9]  [8,4,17,12,14,13] [4,7,16,15,18, 17]
[17,9,11,13,16,18] [10,7,13,8, 16,11

2 | L2 ,5,6] [1,7.8,9, 10 1] [1,12,13,14,15,16]
17,1,18,3,5,8]  [2,17,4,6,7,9]  [2,5,10,12,14,16]
2,8, 11 13,15,18)  [5.7,11,9,14,18]  [12,3,6,8, 15,5]
(13,3,7,4,16,5]  [15,3,9.17,11,4] [10,7,15,6,13, 17
[17.12,7,14,6,16] [14,8,4,10,3,11]  [16,3,8,10,18,7]
[18.8,13,9,6,11]  [12,11,16,9,4, 18

3 [ [1,2.3.5,4.8] 1569710  [1,8.9,12,10,11]
[1,11 12,15,13,17] [1,14,15,18,16,2] [4,6,10,17,18,1]
(2,4,7, 14 11 3] [2,9,13,4,17, 11] 6, 3, 12,4 15, 16]
2,6,14,16,12,17]  [5,10,15,9,17,14] [10,2,8,15,3,7]
(17,3,8,13,7,12]  [14,5,13,11,8,6] [8,7, 16,5, 18, 12]
7,6,18,13,10,16]  [16,3.9, 18,11, 10]

20 | [L,2,3,4,5,6] 1,7,8,9,10,4  [1,10,14,6,12,15]
[1,11,12,13,5,9]  [1,16,17,5,2,18]  [4.8,17,15,1, 18]
2.7,16,6,3,9] 2,8,14,12,5,10]  [2,10,17,13, 15, 16]
2.11,15,9,12,16]  [3.5,11,8,10,16]  [3.7,17,12, 4, 18]
[4.11,16,14,3.13]  [5.7.14,15,3.10] [7,10,11,18,3, 16]
6,8,18,13,4,7  [9,14,18,17,6, 11

Y

Example A.6. G4 —
of length 2, and 9 fixed blocks.

D(18) on X = Zyx{1,2,3, ...

18}.

,9}. There are 4 orbits

O4a 027 16703” 057 19
O 12311702a077 8

[047 OS; 017 067 O7a 19]

[047 157 177 057 097 08]

09, 18,04, 14, 0g, 19

[ ]
[ ]
[03, 09,01, 11, 19, 13]
[ ]
[01, 14, 17,07,04, 14]

[03, 14,02, 12, 04, 13]
(06,11, 15,05, 01, 16]
(03,15, 03, 13, 05, 13]

[07, 16, 13,03, 06, 17]
[08, 12, 16, 06, 02, 1g]
(02,17, 19, 09, 07, 1]
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Example A.7. Gi5 — D(18) on X = (Z2 x {1,2,3,...,7}) U ({oo} %
{a,b,c,d}). There are 5 orbits of length 2, and 7 fixed blocks.

[04, 07, 06, 00q, 003, 03] [07, 00¢, 05, 14, 16, 004]
[0 16,02,12,03,01] [01,13,04,07, 15, 11]

[03, 15,09, 19,07, 1]

[01, 11, 008, 00g, 004, 0] [02, 12, 00¢, 00p, 004, 004]
[

[

[

03, 13, 004, 00, 004, 00p] (04, 14, 05, 004, 15, 00
05,15, 06,004, 16, 008)  [06, 16, 01,004, 11, 00
077 177 02a Xd, 127 OOa]

Example A.8. G; — D(18) fori € {16,17,18} on X = Z;7 U {c0}.

[4,6,0,1,8, o]

Example A.9. Gig—D(18) on X =Zsx{1,2,3,...,9}. There are 7 orbits
of length 2, and 3 fixed blocks.

[01,13,11,04,18,05] [01, 14, 15,06, 19, 15] [03, 12,08, 05, 16, 01]
[0 12,15,07,19,11] [03,15,17,09,07,01] [02,16,18,08,19,03]
[0 04,09, 17, Og, 7]
[01a02303711a12713]

(04,05, 06, 14, 15, 16] {07, 08,09, 17,15, 1]

Example A.10. G; — D(19) for 11 <1i <20 on X = Zg.

i Base Block 1 Base Block

11 [0,1,3,9,5,12] 12 [0,1,3,8,15,6]
13 [0,1,3,10,4, 15] 14 [0,1,3,7,2,13]
15 [0,1,3,5,9,15] 16 [0,1,3,7,12,9]
17 [0,1,3,7,12,15] 18 [0,1,3,7,12,4]
19 [0,1,3,4,9,15] 20 [0,1,3,8,2,12]

Example A.11. G; — D(27) for 11 <1 <20 on X = (Z13 x {1,2}) U{oo}.

) Base Blocks

19
20

01,31,11,91,42,00
01,21, 72,102, 41, 00

01, 11,91, 72, 112, 59
017 117 OQa 227 127 62}

01, 02, 12, 22, 52, 21]
01, 32,92, 51, 11, 81]

11 [01,11,31,71,09,00]  [01,51, 12,22,42,02]  [01, 52,129, 72,109, 71]
12 [01,11,31,71,09,00]  [01,12,29,51,32,82]  [01,42, 72,92, 59, 129]
13 [01,11,31,71,09,00]  [01,51,12,02,22,31]  [01,42, 72,02, 52, 21]
14 [01,11,31,71,00,02]  [01,51,02,12,21,42]  [01,42,92,32,592,114]
15 [01,21,51,61,129,00] [01,11,32,52,82,101] [02,12,32,52,01,99]
16 [01,11,31,91,02,00] [01,82,52,92,61700} [01,02,22,72,11,21]
17 [01,11,31,91,02,0@] [01,52,82,92,101,00] [01,02,22,72,11,41]
18 [01,11,31,02,71,00] [01,61,12,112,22,00] [01,51,72,92,12,111]

[ ] [

[ [ [
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Example A.12. G; — D(28) for 16 <1i <20 on X =Z7 x {1,2,3,4}.

1

Base Blocks

16 [01,11,31,09,19,32] [01,19,32,03,02,23] [02,23,04,24,31,01]
[03,42,14,24,01,54] [03,13,21,33,04,32] [01,43,04,34,42,14]
17 | [01,11,31,02,12,51] [01,12,32,03,02,11] [01,13,23,43,61, 32]
[02,23,04,14,01,31] [02,53,24,54,61,22] [02,33,44, 64,21, 43]
18 | [01,11,31,02,12,61] [01,12,32,03,02,04] [01,13,23,43, 12, 04]
[0 94, 93,24, 61, 4] [0 14,42,63754,01] [01,33,14,64,41,23]
19 [01,11,31,02,22,61] [01,42,02,03,52, 3] [01,13,02,23,43, 4]
[0 04,31,64,22,23] [03,24,02,44,41, 4] [0 34,22,23,41,54]
20 {01a11731702a21332% {01732703723702712} {0 227037347517 i

01a22304714a21a44

01713753734732763

01533743744502724

Example A.13. G; — D(36) for i € {11,12,13,14,15,19,20} on
X = (Zyr x {1,2,3,4,5}) U {oo}.

1

Base Blocks

01,23, 53,04, 02,29

[01, 33,24, 34, 02, 42]
(01,44, 64,65, 12, 13]

[01,43, 14,05, 21, 35]
[02,13,24, 35, 12, 15]

11 [01,11,31,02,12, ] [03,23,41,04700,05] [01,22,52,32,03,31]
[01,13,25,63,04,02] [02,03,24,33,14,22] [02,23,54,34,44, 15]
[02,25, 63,35, 55,41]  [03,05,44,25,15,02] [01,05, 54, 14,25, 32]
[O 45711704’31754]

12 | [o0,01,62,33,44,65] [01,11,31,02,12,32] [01,22,52,03, 13, 33]
[Ola23353704a43314] [01763744724734764] [04a21705702a0371ﬂ
[05,01,15,52,33,24] [05,11,45,13,25,51] [02,13, 15, 33, 55, 44]
[05, 14, 32, 44, 12, 34]

13 [01,11,02,31,12,00] [00,03,34,51,05,11] [01,22,32,02,03, 13]
[01,13,33,41,04,23] [01,14,24,03,44,43] [01, 64,05, 32,15, 03]
[01, 35,45, 22, 55,03]  [02,23,14,32,04,24] [03, 05,25, 54,45, 14]
[05, 13,45, 52, 04, 55]

14 [01,11,31,02,03,00] [01,32,52,04,00,05] [01, 12,22, 62,03, 13]
[01,13,43,63,41,34] [01,03,34,53,21,04] [01, 44,24, 45,21, 35]
[01, 14, 55,05, 62,23]  [02,44,43,35,01,65] [02,04, 14, 05,24, 32]
[03,05, 22, 15, 43, 54]

15 [01,11,31,02,29,00] [03,04,11,21,00,05] [01,32,42,52,03,02]
[01,13,23,33,43,12] [02,23,04,34,64,31] [02,63, 14,24, 54, 04]
[02, 53, 15,45, 35,51]  [01, 05,04, 14,15,32] [05, 25,51, 03,44, 04]
(05,35, 1, 63, 64, 15]

19 [01,11,31,02,22, ] [03,14,51,00,25,11] [01,32,51,42,03,13]
[01,13,02,53,04,32] [01,23,31,43,24,04] [01, 14,21, 54,05, 15]
[O 03745,34,35,01] [02’63745755705,21] [02,23,42764725’55]
[04,52, 54, 64, 45, 02]

20 [01,11,31,02,21, ] [03,34,00,65,21,52] [01,12,22,03,11,23]
[

[
[

]
02, 33,43, 45, 52, 03]
01, 25, 35, 54, 12, 24]




SPECTRUMS FOR GRAPHS WITH SIX

VERTICES AND UP TO NINE EDGES 15

Example A.14. G; — D(36) fori € {16,17,18} on X = Zss U {oc}.

1 Base Blocks

16 [0,4,10,17,2,20] [0,1,3, 2, 17, o]
17 [0,4,10,17,2,1] [0,1,3,12,17, oc]
18 [0,4,10,17,2,18] [0,1,3,12,17, oc]

Example A.15. G; — D(37) fori € {18,20} on X = Zs7.

7 Base Blocks

18 | [0,1,4,9,15,2]
20 | [0,1,4,9,2,19]

[0,2,12,19,33,11]
[0,2,15,21,7,32]

Example A.16. G; — D(45) fori € {18,20} on X =

{oo}.

(le X {1727374}) U

7 Base Blocks

18 01,32,03,00 04711
017 237 431 837 127 62
037 14) 61; 247 047 21

[017 11731702771721]
[027 227 037 137 217 33]
[027 237 047 541 817 14]

[017 127 227 527 717 32]
[017 337 637 047 1017 14]
[025 437 347 1047 827 33]

01,13, 23,43,51,04
02,29,23,74,01,14
02, 52,93, 44, 72, 33]

[
[
|
20 (01,11, 31,09,44,
[
[
[

]
|
027 537 14a 947 527 4]
o0]
]
]

{OL 517 327 037 047 OO]
[01, 33, 73,04, 11,93]
(02,32, 14,34, 61, 04]

(01,41, 52, 62,21, 03]
[01, 53, 34,44, 21, 04]
(02,42, 64, 33, 22, 83]

Example A.17.

Gi — D(46) for i € {18,20} on X = Zag x {1,2}.

7 Base Blocks

18 017117617161702712]
01,31, 22, 62, 51, 02]
017 527 1327 192, 317 122]

[Ola 217 1117 027 227 52]
[Ola 417 827 1523 327 132]

01,44, 62, 72,131, 12]

[
[
[
20 | [01,11,31,101,21,09]
[
(02,32, 112, 71, 42, 175]

[01,51,114,09, 11, 22]
[01, 52,142,992, 11, 162]

Example A.18.
b,c}).

Ggo—D(54) on X =

017 117 027 277 127 04]

[01, 22, 19, 03, 05, 27]

01,42, 29,05, 06, 07]
057 151 197 567 Ola 33]
017 44; 20,7 16) 041 08]
017 34; 267 457 217 Ob]

027 24; 057 457 O3a 14

[ ]
[0174370(1753705728]
[017247213746754718]
[O 127147567317 5]
02,22, 24, 36, 16, 0a]
[02a2375572a512745]

[01713a04709a14124]
[0171411(1754712708]
[0 23118706>0110b]
[02 53a34710a11745]
[03, 34, 36, Oc, O2, 2¢]
[03,24,01»25,12, al

017 317 087 077 097
04,34, 17,07, 15, 0p
0(170672072770()7 }

[
[
[
{
{027 13,06, 2, 11, 5]]
{0 ,04, 95, 2p, 12, 13}]
[ ]
[

[02, 32, 09, Os, 17, Op]
[05, 35, 18, 0s, 19, Oc]
[Ob7 Oav 1a7 287 007 2(1]

[03, 33, 17, 09, 15, Oc]
[06, 36, 19, 09, 27, 1]
[067 0b7 1b7 297 1&7 25]

(Zex{1,2,3,4,5,6})U(Z3x{7,8,9,a,
There are 22 orbits of length 6, and 9 short orbits of length 3.

[017 217 187327 037 07]
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Example A.19. G; — D(55) fori € {18,20} on X = Zss.

Example A.20. G;—D(63) fori € {18,19,20} on X =

Example A.21. Gig

) Base Blocks

18 | [0,1,5,11, 18, 38]
20 | [0,1,5,11,3,34]

(Zs31 x{1,2})U{oc}.

i Base Blocks

18 [01,11,61,131,221,00] [01,21,101, 09, 12, 00]
[01, 31,141, 29,02, 44] [01,41, 12, 72,207, 159]
[01, 52, 82, 162, 241, 29] [01, 62,102, 249, 59, 11]
[02, 72,181,229, 19, 214]

19 | [01,11,111,121,09,00]  [01,21, 71,81, 151, 244]
[01731702712172751] [01741715271427132742]
[01,52,131,212,172,02]  [01, 62, 32,249, 162, 224]
[O 72741>22a111a192]

20 01,11, 71,092,271, 00] [01,21, 117, 149,41, 199]
[01,31,181,232,92,02] [01,41,82,141,22,02]
(01,51, 12, 29,151, 71] [01, 62,132, 162, 261, 71]
[01, 72,112,229, 99, 39]

—D(64) on X =

(Z14x{1,2,3})U(Zr x {4, 5,6)})U{oc}.

There are 13 orbits of length 14, and 6 short orbits of length 7.

01,671,114, 89, 11,46]
01,23, 53,44, 11, 0¢]
017 037 137 147 217 04]

0 237 837467 327 26]

[Ola 217 327 1227 817 36}
[01, 63,83, 05,101, Og]
[03,44,22, 52, 34, 11]

[02, 06, 13,103, 15, 01]

[017 117 027 627 267 21]
01, 33,73, 16, 101, 53]
[0 12703735741705]
[027 227 637 157 327 04]

04, 14, 34, 05, 16, 44]

[
[
[
[0 047 427 1137 157 61]
[
[
[04, 55, 01, 71, o0 06]

(05,15, 35, 06, 14, 45
[055 567 027 725 0, 04]

[06, 16, 36, 04, 15, 4¢]
[06, 54, 03, 73, 00, 05]

Example A.22. Gy —

D(64) on X =

(Zgl X {1, 2})U

(Z7x{3,4,5})U{o0}.

There are 9 orbits of length 21, and 5 short orbits of length 7.

01, 11, 31,02, 21, 0]
01,92, 53, 62, 151, 64]
01,12,29,33,11,64]

01,81, 32,04, 31, 18]
02,92, 14, 52,161, 34]

01,101, 45,42, 111, 64]
01,91, 52,05, 11, 51]
02,102, 15, 22, 121, 63]

[
[
[
[
[

01,71, 141, 03, 13, 33]
247 647 155 037 357 65]

027 727 1427 037 14a 34

[
[
[02, 62, 35, 141, 12, 63]
[ ]
[447 547 25, 037 45, 55]

O3a 057 007047 ]-57 35]
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Example A.23. Gy — D(81) on X = (Zlg X {1, 2,3}) U (Zg X {4,5,6})
There are 17 orbits of length 18, and 6 short orbits of length 9.

01,11,31,06,41,151]  [01,41,101,26,71,02]  [O2, 12, 32, 66, 52, 13]

02,492,102, 8¢,03,23]  [03, 13,43, 26, 73,173]  [01, 51,103, 74, 02, 93]
01, 02,139, 64, 32,153] [01, 12,23, 14,51,152]  [01, 22,93, 34, 81, 23]
I
[

[ [
[ [
[ [
[01,32,133,84,02,33]  [01,42, 159, 15,21, 03 01,59, 33,35, 11, 02]
[01,69,113,75,21,13]  [01, 72,43, 65, 42, 83] 01,89, 13,45, 03, 53]
(01,99, 83,153, 11, 152] [01, 03,63, 162,41, 113]

[01791704705725755] [02192705706126756] [03193706724744774]
[14785726704715736] [44115786705a54716] [14a45316706734755]

Example A.24. G;—GDD(3%) fori € {16,17,19} on X = Z3 x {1,2,3,4},
where the holes are on {j} x {1,2,3} for j € {0,1,2}, and Z3 x {4}.

1 Base Blocks

16 | [01,11,29,14,09,03] [02,13,23,04, 11, 14]
17 [01711a22704712721] [02704713723701724]
19 [01711702723704721] [0271%04114723703]

Example A.25. G; —GDD(3%) for 16 <i < 18 on X = (Z5 x {1})U(Z3 x
{2}), where the holes are on {(a+5j)1 : 0 < j < 2} for a € {0,1,2,3,4},
and Zs x {2}.

7 Base Block 7 Base Block
16 | [01,11,31,71,12,09] 17 | [01,11,31,71,12,09]
18 | [01,11,31,71,12,24]

Example A.26. G19— GDD(3%) on X = Zg x {1,2, 3}, where the holes are
on {(a+27)p:0<j <2} forae{0,1} and b € {1,2,3}. There are 2 orbits
of length 6, and one short orbit of length 3.

[01711722752743732] [01722743703753a31] [01702703731732733]

Example A.27. G; — GDD(3") for i € {16,17,19,20} on X = Zs1, where
the holes are on {a+7j:0<j <2} fora€{0,1,2,3,4,5,6}.

3 Base Block 7 Base Block
16 0,1,3,9,13,6] 17 [0,1,3,9,13,4]
19 [0,1,3,6,9,13] 20 [0,1,4,16,3,5]

Example A.28. G; — GDD(6*) for 16 < i < 20 on X = Za4, where the
holes are on {a+4j:0 < j <5} forae{0,1,2,3}.

) Base Block 1 Base Block

16 [0,1,3,10,16, 6] 17 [0,1,3,10,16,5]
18 [0,1,3,10,16,11] 19 [0,1,6,18,3,16]
20 [0,1,3,10,4, 15]
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Example A.29. Gy — GDD(65) on X = (Z3g x {1}) U (Zg x {2}), where
the holes are on {(a+55)1:0<j <5} forae€{0,1,2,3,4} and Z¢ x {2}.
01,11, 02,81,21,114] [01,21,32,131, 14, 174]

Example A.30. Gog — GDD(67) on X = Zy, where the holes are on {a +
7j:0<j <5} forac{0,1,2,3,4,5,6}.

[0,1,4,9,19,31] [0,2,15,26,1,7]

Example A.31. G; — GDD(93) for 11 < i < 15 on X = Zo7, where the
holes are on {a+3j:0<j <8} forae€{0,1,2}.

i Base Block 1 Base Block

11 [0,1,5,13,11, 18] 12 [0,1,11,7,5,13]
13 [0,1,5,12,14, 4] 14 [0,1,11,4,17,9]
15 [0,1,5,8,17, 3]

Example A.32. G;—GDD(9%) fori € {11,12,13,14, 15,18} on X = (Zs7 x
{1}) U (Zg x {2}), where the holes are on {(a + 3j)1 : 0 < j < 8} for
a€{0,1,2}, and Zg x {2}.

i Base Blocks

11 [02, 31,141,441, 171, 19] [01,09,1y, 51,71, 151]
12 [02,21,127,251,141,221] [01,09,1y, 51,71, 12]
13 [01,11,51,09,71,151] [02,01, 21,167,267, 49]
14 [01,11, 09,21, 32, 71] [02,61,141,31,171,71]
15 [02,21,131,121,164,82]  [01,171,09,51, 81, 61]
18 [017117027517121712] [0172175271317317111]

Example A.33. G; — GDD(9%) for i € {11,12,13,14,15,18,20} on X =
Zy5, where the holes are on {a+ 55 :0 < j <8} fora € {0,1,2,3,4}.

i Base Blocks

11 [0,1,4,11,23,7] [0,2,19,27,14,23]
12 [0,1,4,11,23,9] [0,2,19,6,24,8]
13 [0,1,4,10,18,32] [0,2,19,31,7,18]
14 [0,1,4,11,3,25] [0,2,18,12,3,31]
15 [0,1,4,7,9,20] [0,2,14,23,19,1]
18 [0,1,4,12,21,2] 0,2,16,23,10,28]
20 [0,1,4,12,6,28] [0,2,9,26,8,39]

Example A.34. Gy — GDD(9%) on X = Zo7 x {1,2}, where the holes are

on {(a+3j)y:0<3<8} forae{0,1,2} and b e {1,2}.
[01,11,81,02,21,71]  [01,21,131,152,41, 7] [01, 41,142,162, 71, 115]
01,52, 19,101, 02, 72] [01, 2, 62, 232,21, 109]

Example A.35. Gs—GDD(1810!) on X = (Zg x {1,2})U(Zy x {3}), where

the hole is on (Zg x {2}) U (Za x {3}). There is one orbit of length 8, and

one short orbit of length 4.

01,21, 02,42, 11, 31]

(01,44, 11,51, 03, 13]
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Example A.36. Gy — GDD(1'%6') on X = (Z3x {1,2,3,4,5,6,7})U{oo},
where the hole is on Z3 x {6,7}.

[017 117 027 037 o0, 06]
[01, 04, 14, 06, 11, 23]
[02, 13,05, 06, 24, 25]

[017 ]-27 24) 077 ]-17 OO]
[01,05,17,15,21, O¢]
[03, 05, 27, 12, 02, 2¢]

[027 245 o0, 157 035 04]
(03, 13,24, 17, 12, 14]

Example A.37. G; — GDD(13°10') fori € {11,12,13,14,15,16,17,19} on

X = (Zss x {1}) U (Z5 x {2,3}), where the hole is on Zs x {2,3}.

i Base Blocks

11 [0171177172317101702] [0172172017911127231]
[01731781703a41123]

12 [01,11,91,211,111,02] [01,21,1717221,327161]
01,31, 71, 03, 61, 23]

13 [01,11,61,171,91,09]  [01,21,151,271,42,9]
[01,31,03, 71,141, 33]

14 [01,11,61,151,331,02] [01,21,211, 117,29, 344]
01, 33,31, 71,151, 43]

15 [01,11,91,114,131,09] [01,2,171,161, 09, 114]
01,31, 71,03, 13, 21]

16 [0171176171717261702] [0172111017231712a22]
[03731701771a13102]

17 [01,11,51,1671,231,02] [01,21,101,231, 02, 12]
01, 33, 31, 91, 03, 0o

19 [01,11,51,111,281,09] [01,21, 151, 39, 141, 304]
01,31, 81, 03, 91, 23]

Example A.38. G; — GDD(1%519!) for i € {16,17,18,19} on X = (Z35 x
{1} U(Z7x{2,3})U(Z5 x{4}), where the hole is on (Z7 x{2,3})U(Z5x {4}).

i Base Blocks

16 [01,17,101,221,151,34] [01,22,111,1971,04, 3]
[01,33,151,181,34,51]  [02,41,01, 67,03, 13]

17 [01,11,71,171,281,34]  [01,22, 81,231, 52, 04]
[01, 33,91, 311, 12, 04] [01,43,21, 51,04, 33]

18 [01,11,71,151, 34, 61] [01,21,111, 09,67, 04]
[01,31,131,33,301,04] [01,42,121, 161,03, 14]

19 [01, 11, 81,049,617, 04] [01,21,101, 04,197, 314]
[01,31,121,03,131,12]  [01,41, 12,151, 63, 31]
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Example A.39. G; — GDD(1?°28Y) for i € {11,12,13,14,15,16,17} on

X = (Zgs x {1}) U

(Z7 x {2,3,4,5}), where the hole is on Z7 x {2,3,4,5}.

7 Base Blocks

11 01,11, 81,02, 31, 42] (01,21, 111,03, 51, 02]
[03,31,91,221, 61, 04] (01,44, 04,151, 05, 18]
05, 51,171,271, 91, 04]

12 [01,11,111,281,131,02] [01,21,161,42,121,32]
(01,33, 31,13, 41, 63] (01,44, 51,04,91, 34]
{017 557 617 15a 817 45]

13 | [01,14,114,271,144,02]) [01,21,42,191, 71, 32]
[03,31,01, 13, 51,91] [04,41,91,14,01,64]
[05,51,131,25,21,174]

14 [017157117141721>45] [037217011817657281]
[017317437911047151] [01741>021101a541151]
[027 517 1617 3417 1517 24]

15 [01,11,61,131,211,32]  [01,21,91,02,181,03]
01, 31,22, 03,23, 14] [01, 41,04, 14,05, 14]
01,55, 81,101, 111, 64]

16 [017127517131703721] [02721701a31705714]
[037 317 917 2117 247 101] [057 417 1317 2317 537 181]
[017 547 417 1517 357 21]

17 | [01,12,104,191,592,33]  [01,23,171,291, 02, 55]
(03,31, 71,181, 64, 05) (01,44, 11,31, 14,104]
01, 55,51, 131, 05, 271 ]

Example A.40. Goy— GDD(14527%) on X =

{5,8}) U

({oo} x {a,b}), where the hole is on (Z1o x {6,7})

(Zlo X {1, 2,3,4,6, 7}) U (Zg, X
U (Zs x {8}) U

({oo} x {a, b}).
5.

There are 23 orbits of length 10, and 3 short orbits of length

01, 03, o0, 04, 11, Og]
017417 027 667 117 35
017 227 327 76702742
017637 247 287027 4

0 23715777752743
0 53716794712707
03,84, 15, 16, 23, 83

02, 03, 004, 14, 01, Og]
017 527 727 077 117 25
017 127 427 087 117 02
01,43, 17,34, 12,48

027 637 457 677 821 4
027 437 867 74) 23; 67
04, 24, 15, 86, 63,34

[01,11,31, 46,61, 05]
[01, 82, 13, 27, 41, 25]
(01,23, 33, 13, 31, 13]
[01,53,47, 74, 14, 0g]
(02,13, 35, 96, 72, 43]
[027 547 251 177 127 93]
[027 347 64; 067 037 33]

[

[ ]
[ ]
[ ]
[01, 73,93, 57,21, 04]
[ ]
[ ]
[ ]
[

01, 51, 00q, 05, 15, Og]

[

[ ]
[ ]
[ ]
[017447547777111 4]
[ ]
[ ]
[ ]
[

02, 52, 00, 05, 25, 38]

[03, 53, 28, 05, 04, 54]

Example A.41. Gy — GDD(1%527') on X =
(Zs x {4}), where the hole is on (Z11 x {2,3}) U

(Z55 X {1}) @)

(ZH X {2, 3}) U
(Zs > {4}).

01, 11,81,191, 21, 09]
(01,41, 04,261, 11, 02]

[017 217 1217 627 417 171}
[01, 51,03, 141, 301, 24]

01,31, 23,231, 81, 92]
[01)617 2717 937 217 261]
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Example A.42. Goy — GDD(19327Y) on X = (Zo1 x {1,2,6}) U (Z7 x
{3,4,5})U(Z3x{7,8}), where the hole is on (Za1 x{6})U(Z3x{7,8}). There
are 18 orbits of length 21, and one short orbit of length 7. After developing
the blocks, insert a Go9-GDD of type 37 (Example A.27) on Z7 x {3,4,5},
where the holes are on {js, ja,J5} for j € Zs.

01; 517 17) 63; 117 76]
01; 417 287 43; 217 176}

(01,42, 07,04, 11, Og]
[01, 72,08, 14, 31, Og]
01,21,81,111,03,18]  [01, 11, 12,92, 03, Og]
[ ]
[
[

[ 02722a07305731a126
[

[

[02, 62, 33, 56, 71, 182] 02, 12,23, 7¢, 31, 64

[

[

[

[ ]
[027 42, 187 15, 21, 106]
[01, 71, ]-327 36, 827 03]
(01, 142, 22,24, 51, 0¢]
[01,172, 55, 116, 11, 45]
[01,202, 26, 102, 14, 3¢]

01, 152,129,136, 11,35] [01, 162, 15, 56, 121, 172]
01, 182,05, 16, 52, 44] 01, 192, 32, 0g, 02, 44]
02, 72, 142,03, 04, Os]

Example A.43. Goy — GDD(435') on X = (Zg x {1,2}) U (Z3 x {3}) U
(Za x {4}), where the holes are on {(a+3j)p :0<j7<1and1 <b<2} for
a €{0,1,2}, and (Zs x {3}) U (Za x {4}).

[03742721701711704] [03711722a02712704]

Example A.44. G;—GDD(639!) for 16 <i < 19 on X = (Zgx{1,2,3,4})U
(Z3 x{b}), where the holes are on Zg x {b} forb € {1,2,3}, and (Z¢ x {4})U
(Z3 x {5}).

) Base Blocks

16 [01,12,23,34,41,21] [01,42,33,24,12,14] [01,14,22,53,24,31]
[02,05,01,03,04,13] [05,23, 11,42, 25,04]

17 [01112753734741731] [01742733724722741] [01714722743754704]
[01,23,15,52,21,04] [01,05, 02,03, 15, 04]

18 [01,12,33,14,51,22] [01742,53,04,12, 4] [01,34,22,13,04,21]
[02,25,11,33,04,03] [01,05,02,03, 15, 2]

19 [01,02,11,03,05, 3] [01,12,03,25,33, 4] [01,22,15,53,14,31]
[01,32,04,43,34,11] [01,23, 34,42, 04, 25]

Example A.45. Gy — GDD(6%9') on X =

(Zlg X {1,2}) @]

(Zg x {3}) U

(Zs3 x {4}), where the holes are on {(a+2j)y : 0 < j <5} fora € {0,1} and

be{1,2}, and (Z¢ x {3}) U

(Z3 x {4}).

[017 117 047027 317 61]

[017427 727337 317 112]

[011 227 14) 32; 217 03]

[017 527 1027 537 317 101]

Example A.46. G;—GDD(6°9!) for 16 <i <20 on X =
(Zsx{4})U(Zax{5,6}), where the holes are on {(a+5j)y

(Z10X{1,2,3})U
0<j<landl <
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(23 x {5,6}).

011 327 067 621 42744

[017 337 167437 517 24]

[Ola 137 737 147 227 03]

7 Base Blocks

16 [01,11,31,292,91,05] [01,49,72,05,03,61] [01,23,62,33,22, 15]
[01,13,43,06,51,53] [03,34,12,22,06,41] [02,22,43,04, 71, 14]
[03,24,21,83,34,01]

17 [01,11,31,292,05,61] [01,42,61,32,05,02] [01,33,23, 06,31, 02]
[03,23,32,92,04,06] [01,43,24,73,61,05] [02,22,04,63,01,05]
[02, 23, 83,44,01, 14]

18 [01111731>22a917 5] [01742762723781705] [01’72513704731706]
[01a63773)06a02714] [02733742744772706] [02,12323705753733]
(03,24, 11,43,44,04]

19 [01,11,31,41,29,05] [01,392,41,42,72,05] [02,41,03,13,33,05]
[02,29,16,93,04,01] [03,21,43,33,06,02] [03,61,04, 93,44, 31]
[03, 42, 04, 34, 63, 82]

20 | [01,11,31,22,51,05] [01,41,34,63,81,05] [01,42,04,82,03, 15]
[ ]
[ ]

021 127437 731 627 53

Example A.47. Gy — GDD(12%9') on X =
where the holes are on {(a + 4j)1

Zs x {2,3,4}.

(Zag x {1})U

[02,01, 11,231, 81, 144]

[03,01,21,131, 107, 314]

(04,01, 51,191, 21, 91]

Example A.48. Gy — GDD(15%18!) on X =
(Zgx{3,4}), where the holes are on {(a+3j)1

215 X {2}, and Zg X {3,4}.

(Zas x {1}) U
:0 < j <14} fora € {0,1,2},

[01,11,261, 62,41, 03]
[017 517 2217325 ]-417 24]

[01; 217 ]-317 837 817 72}
[01; 717 ]-27 54, ]-517 11}

[01, 41, ]-22) 23, ]-71) 11]
01, 02,04, 81, 181, 24

Example A.49. Go—GDD(16°131) on X =
{3}), where the holes are on {(a + 5j)1
and (Zg x {2}) U

(Zs x {3}).

(Zgo x {1})U(Zs x {2})U(Z5 x
:0<j <15} fora€{0,1,2,3,4},

[01, 11,231, 371,661, 4]
[017 417 137 1717 5017 11]

01,21, 32,211,601, 321]
[017 61) 2417 3217 5917 251]

(01,31, 02,121, 501, 03]

Example A.50. Goy — GDD(16522!) on X =
(Zo x {3,4,5}), where the holes are on {(a + 5j)1
,3 4} and <Z16 X {2})

{0,1,

(Zs x {3,4,5}).

(Zso x {1}) U

[017 ]-17 1317 2917 5017 03]
(01,41, 12,414,551, 71]

[017 217 ]-]-17 1917 501704]
[01, 61,429,427, 601, 15]

[01,31,271, 62,581, 361]
[017 717 027 3317 5617 05]

Example A.51. Gy — GDD(16°31!) on X =
(Zs x {3,4,5}), where the holes are on {(a + 5j)1

(Zsgo x {1}) U

(Z3 x {2,3,4}),
10 < j <11} for a € {0,1,2,3}, and

(Z15 x {2}) U

(Z1s x {2} U
:0 < j <15} fora €

(Z16 x {2}) U
:0 < j <15} fora €
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10,1,2,3,4}, and (Zig x {2)) U (Zs x {3,4,5}).

[01711729179275417151] [017217021141>5117301] [0173117273411701a12}
[0174171272717511743] [01761703a191>6717411] [01771a181704a511a91}
[017 817 1717 057 5117 41]

Example A.52. Gy — GDD(16°40') on X = (Zso x {1}) U (Z4o x {2}),
where the holes are on {(a + 5j)1 : 0 < j < 15} for a € {0,1,2,3,4}, and
(Zao x {2}).

01,11, 121,02,101,461]  [01,21,261, 182,161, 48,]
[017 31) 1617 127 1017 481] [017 417 1817 727 1017 511]

[01,61,231,279,151,48;] [01,71,291,139,277,48]
[01,81,271,229,14;,451] [01,91,371,209, 114, 454]

Example A.53. Gog—GDD(18%9') on X = (Zzo x {1})U(Zg x {2}), where
the holes are on {(a+4j)1: 0 <j <17} fora € {0,1,2,3}, and (Zg x {2}).
01, 11,351,22,71,211]  [01,21,91,271,41,02] [01,31, 131,421,251, 40]

01,51, 111,261,441, 451]

Example A.54. Gog— GDD(18%°9') on X = (Zgo x {1})U(Zg x {2}), where
the holes are on {(a+55)1 : 0 < j < 17} fora € {0,1,2,3,4}, and (Zgx{2}).
(01,11,171,12,31,221]  [01,21,141,431,151,22] 01,341,114, 244,14, 0]

[01,41,3141,381,11,471] [01, 61,321,541, 31,21,
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