ON UNIFORMLY RESOLVABLE $\left\{K_{2}, P_{k}\right\}$-DESIGNS WITH
 $$
k=3,4
$$

MARIO GIONFRIDDO AND SALVATORE MILICI

Abstract

Given a collection of graphs \mathcal{H}, a uniformly resolvable \mathcal{H} design of order v is a decomposition of the edges of K_{v} into isomorphic copies of graphs from \mathcal{H} (also called blocks) in such a way that all blocks in a given parallel class are isomorphic to the same graph from \mathcal{H}. We consider the case $\mathcal{H}=\left\{K_{2}, P_{k}\right\}$ with $k=3,4$, and prove that the necessary conditions on the existence of such designs are also sufficient.

1. Introduction

Given a collection of graphs \mathcal{H}, an \mathcal{H}-design of order v is a decomposition of the edges of K_{v} into isomorphic copies of graphs from \mathcal{H}, the copies of $H \in \mathcal{H}$ in the decomposition are called blocks. An \mathcal{H}-design is called resolvable if it is possible to partition the blocks into classes \mathcal{P}_{i} such that every point of K_{v} appears exactly once in some block of each \mathcal{P}_{i}.

A resolvable \mathcal{H}-decomposition of K_{v} is sometimes also referred to as a \mathcal{H}-factorization of K_{v}, a class can be called an \mathcal{H}-factor of K_{v}. The case where \mathcal{H} is a single edge $\left(K_{2}\right)$ is known as a 1-factorization of K_{v} and it is well known to exist if and only if v is even. A single class of a 1 -factorization, a pairing of all points, is also known as a 1 -factor or a perfect matching. A resolvable \mathcal{H}-design is called uniform if every block of the class is isomorphic to the same graph from \mathcal{H}. Of particular note is the result of Rees [10] which finds necessary and sufficient conditions for the existence of uniformly resolvable $\left\{K_{2}, K_{3}\right\}$-designs of order v. Uniformly resolvable decompositions of K_{v} have also been studied in $[2,3,4,5,6,7,8,9,12,11,14,13]$. In what follows, we will denote by $\left[a_{1}, \ldots, a_{k}\right], k \geq 2$, the path P_{k} having vertex set $\left\{a_{1}, \ldots, a_{k}\right\}$ and edge set $\left\{\left\{a_{1}, a_{2}\right\},\left\{a_{2}, a_{3}\right\}, \ldots,\left\{a_{k-1}, a_{k}\right\}\right\}$. If v is even and $k \in\{3,4\}$, let $\left(K_{2}, P_{k}\right)-\operatorname{URD}(v ; r, s)$ denote a uniformly resolvable decomposition of K_{v} into r classes containing only copies of 1-factors and s classes containing only copies of paths P_{k}. Let $\operatorname{URD}\left(v ; K_{2}, P_{k}\right)$ denote the set of all pairs (r, s) such that there exists a $\left(K_{2}, P_{k}\right)-\operatorname{URD}(v ; r, s)$.

[^0]Given $v \equiv 0(\bmod 6)$, define $J_{1}(v)$ according to the following table:

v	$J_{1}(v)$
$0(\bmod 12)$	$\{(v-1-4 x, 3 x), x=0,1, \ldots,(v-4) / 4\}$
$6(\bmod 12)$	$\{(v-1-4 x, 3 x), x=0,1, \ldots,(v-2) / 4\}$
TABLE 1. The set $J_{1}(v)$	

Given $v \equiv 0(\bmod 4)$, define $J_{2}(v)$ according to the following table:

v	$J_{2}(v)$
$0(\bmod 12)$	$\{(v-1-3 x, 2 x), x=0,1, \ldots,(v-3) / 3\}$
$4(\bmod 12)$	$\{(v-1-3 x, 2 x), x=0,1, \ldots,(v-1) / 3\}$
$8(\bmod 12)$	$\{(v-1-3 x, 2 x), x=0,1, \ldots,(v-2) / 3\}$

Table 2. The set $J_{2}(v)$.

In this paper, the main purpose is to investigate the existence problem of a $\left(K_{2}, P_{k}\right)-\operatorname{URD}(v ; r, s)$ of K_{v} for $k=3,4$. We completely solve the spectrum problem for such design; i.e., characterize the existence of uniformly resolvable $\left\{K_{2}, P_{k}\right\}$-designs of order v, by proving the following result:

Main Theorem.

(i) $A\left(K_{2}, P_{3}\right)-U R D(v ; r, s)$ exists if and only if $v \equiv 0(\bmod 6)$ and $U R D-\left(v ; K_{2}, P_{3}\right)=J_{1}(v)$.
(ii) $A\left(K_{2}, P_{4}\right)-U R D(v ; r, s)$ exists if and only if $v \equiv 0(\bmod 4)$ and $U R D-\left(v ; K_{2}, P_{3}\right)=J_{2}(v)$.

2. Preliminaries and necessary conditions

In this section we will introduce some useful definitions, results, and give necessary conditions for the existence of a uniformly resolvable decomposition of K_{v} into r classes of 1-factors and s classes of paths $P_{k}, k=3,4$. For missing terms or results that are not explicitly explained in the paper, the reader is referred to [1] and its online updates. For some results below, we also cite this handbook instead of the original papers. A (resolvable) \mathcal{H}-decomposition of the complete multipartite graph with u parts each of size g is known as a resolvable group divisible design \mathcal{H}-RGDD of type g^{u}, the parts of size g are called the groups of the design. When $\mathcal{H}=K_{n}$ we will call it an n-(R)GDD. A $\left(K_{2}, P_{k}\right)$-URGDD (r, s) of type g^{u} is a uniformly resolvable decomposition of the complete multipartite graph with u parts each of size g into r classes containing only copies of 1-factors and s classes containing only copies of paths P_{k}.

If the blocks of an \mathcal{H}-GDD of type g^{u} can be partitioned into partial parallel classes, each of which contain all points except those of one group, we refer to the decomposition as a frame.

A incomplete resolvable $\left(K_{2}, P_{4}\right)$-decomposition of K_{v} with a hole of size h is an (K_{2}, P_{4})-decomposition of $K_{v+h}-K_{h}$ in which there are two types of classes, full classes and partial classes which cover every point except those in the hole (the points of K_{h} are referred to as the hole). Specifically a $\left(K_{2}, P_{4}\right)-\operatorname{IURD}\left(v+h, h ;\left[r_{1}, s_{1}\right],\left[\bar{r}_{1}, \bar{s}_{1}\right]\right)$ is a uniformly resolvable $\left(K_{2}, P_{4}\right)$ decomposition of $K_{v+h}-K_{h}$ with r_{1} 1-factors which cover only the points not in the hole, s_{1} partial classes of paths P_{4} which cover only the points not in the hole, $\bar{r}_{1} 1$-factors and \bar{s}_{1} full classes of paths P_{4} which cover every point of K_{v+h}.
Lemma 2.1. If there exists a $\left(K_{2}, P_{3}\right)-U R D(v ; r, s)$ of K_{v}, then $v \equiv 0$ $(\bmod 6)$ and $(r, s) \in J_{1}(v)$.

Proof. The condition $v \equiv 0(\bmod 6)$ is trivial. Let D be a $\left(K_{2}, P_{3}\right)$ $\operatorname{URD}(v ; r, s)$ of K_{v}. Counting the edges of K_{v} that appear in D we obtain

$$
\frac{r v}{2}+\frac{2 s v}{3}=\frac{v(v-1)}{2},
$$

and hence

$$
\begin{equation*}
3 r+4 s=3(v-1) . \tag{2.1}
\end{equation*}
$$

This equation implies that $3 r \equiv 3(v-1)(\bmod 4)$ and $4 s \equiv 3(v-$ 1) $(\bmod 3)$. Then we obtain

- $r \equiv 3(\bmod 4)$ and $s \equiv 0(\bmod 3)$ for $v \equiv 0(\bmod 12)$,
- $r \equiv 1(\bmod 4)$ and $s \equiv 0(\bmod 3)$ for $v \equiv 6(\bmod 12)$.

Letting now $s=3 x$, the equation (2) yields $r=(v-1)-4 x$. Since r and s cannot be negative, and x is an integer, the value of x has to be in the range as given in the definition of $J_{1}(v)$. This completes the proof.

Lemma 2.2. If there exists a $\left(K_{2}, P_{4}\right)-U R D(v ; r, s)$ of K_{v} then $v \equiv 0$ $(\bmod 4)$ and $(r, s) \in J_{2}(v)$.

Proof. The condition $v \equiv 0(\bmod 4)$ is trivial. Let D be a $\left(K_{2}, P_{4}\right)$ $\operatorname{URD}(v ; r, s)$ of K_{v}. Counting the edges of K_{v} that appear in D we obtain

$$
\frac{r v}{2}+\frac{3 s v}{4}=\frac{v(v-1)}{2}
$$

and hence

$$
\begin{equation*}
2 r+3 s=2(v-1) . \tag{2.2}
\end{equation*}
$$

This equation implies that

$$
2 r \equiv 2(v-1)(\bmod 3) \quad \text { and } 3 s \equiv 2(v-1)(\bmod 2) .
$$

Then we obtain

- $r \equiv 2(\bmod 3)$ and $s \equiv 0(\bmod 2)$ for $v \equiv 0(\bmod 12)$,
- $r \equiv 0(\bmod 3)$ and $s \equiv 0(\bmod 2)$ for $v \equiv 4(\bmod 12)$,
- $r \equiv 1(\bmod 3)$ and $s \equiv 0(\bmod 2)$ for $v \equiv 8(\bmod 12)$.

Letting now $s=2 x$, the equation (2) yields $r=(v-1)-3 x$. Since r and s cannot be negative, and x is an integer, the value of x has to be in the range as given in the definition of $J_{2}(v)$. This completes the proof.

We now recall some results that can be used to produce the main result.
Theorem 2.3. [10] There exists a $\left(K_{2}, K_{3}\right)-U R D(v ; r, s), r, s>0$, if and only if
(1) $v \equiv 0(\bmod 6)$,
(2) $(r, s) \in\left\{(v-1-2 x, x), x=1,2, \ldots, \frac{v-2}{2}\right\}$,
(3) with the two exceptions $(v, s)=(6,2),(12,5)$.

Theorem 2.4. [9] Let $v \equiv 0(\bmod 3), v \geq 9$. The union of any two edge-disjoint parallel classes of 3 -cycles of K_{v} can be decomposed into three parallel classes of P_{3}.

We also need the following definitions. Let $\left(s_{1}, t_{1}\right)$ and $\left(s_{2}, t_{2}\right)$ be two pairs of non-negative integers. Define $\left(s_{1}, t_{1}\right)+\left(s_{2}, t_{2}\right)=\left(s_{1}+s_{2}, t_{1}+t_{2}\right)$. If X and Y are two sets of pairs of non-negative integers, then $X+Y$ denotes the set $\left\{\left(s_{1}, t_{1}\right)+\left(s_{2}, t_{2}\right):\left(s_{1}, t_{1}\right) \in X,\left(s_{2}, t_{2}\right) \in Y\right\}$. If X is a set of pairs of non-negative integers and h is a positive integer, then $h * X$ denotes the set of all pairs of non-negative integers which can be obtained by adding any h elements of X together (repetitions of elements of X are allowed).

3. Small cases

Lemma 3.1. $U R D\left(6 ; K_{2}, P_{3}\right)=\{(5,0),(1,3)\}$.
Proof. The case $(5,0)$ corresponds to a 1 -factorization of the complete bipartite graph K_{6} which is known to exist [1]. For the case $(1,3)$, let $V\left(K_{12}\right)=\mathbb{Z}_{6}$, and the classes as listed below:
$\{\{0,1\},\{2,3\},\{4,5\}\},\{[1,4,5],[2,3,6]\},\{[3,1,5],[4,2,6]\},\{[1,6,4],[2,5,3]\}$.

Lemma 3.2. There exists a $\left(K_{2}, P_{4}\right)-U R G D D(r, s)$ of type 6^{2} with $(r, s) \in$ $\{(0,4),(3,2),(6,0)\}$.
Proof. The case $(6,0)$ corresponds to a 1-factorization of the complete bipartite graph $K_{6,6}$ which is known to exist [1]. The case (0,4) corresponds to a $\left(K_{2}, P_{4}\right)$ - $\operatorname{URGDD}(0,4)$ which is known to exist [15]. For the case $(3,2)$ take the groups to be $\{1,2,3,4,5,6,7,8\},\{a, b, c, d, e, f\}$ and the classes listed below:

$$
\begin{aligned}
&\{\{1, c\},\{2, d\},\{3, e\},\{4, f\},\{5, a\},\{6, b\}\} \\
&\{\{1, d\},\{2, c\},\{3, f\},\{4, e\},\{5, b\},\{6, a\}\} \\
&\{\{1, b\},\{2, e\},\{3, c\},\{4, a\},\{5, f\},\{6, d\}\} \\
&\{[1, a, 2, b],[3, d, 4, c],[5, e, 6, f]\},\{[4, b, 3, a],[6, c, 5, d],[e, 1, f, 2]\} .
\end{aligned}
$$

Lemma 3.3. $U R D\left(12 ; K_{2}, P_{4}\right)=\{(11,0),(8,2),(5,4),(2,6)\}$.
Proof. The case $(11,0)$ corresponds to a 1-factorization of the complete graph K_{12} which is known to exist [1]. The rest of the cases are given explicitly below.

- $(8,2),(5,4)$.

Take a $\left(K_{2}, P_{4}\right)$-URGDD (r, s) of type 6^{2} with $(r, s) \in\{(0,4),(3,2)\}$, which come from Lemma 3.2. Fill in each of the groups of size 6 with the same 1 -factorization of K_{6}. This gives a $\left(K_{2}, P_{4}\right)$-URD $(12 ; r, s)$ for each $(r, s) \in\{(5,0)+4 *\{(0,4),(3,2),(6,0)\}\}$.

- $(2,6)$.

Let $V\left(K_{12}\right)=\{0,1, \ldots, 11\}$ be the vertex set and the classes listed below:
$\{[0,1,2,3],[4,5,6,7],[8,9,10,11]\},\{[1,3,0,2],[5,7,4,6],[9,11,8,10]\}$, $\{[0,4,1,5],[8,6,9,7],[10,2,11,3]\},\{[1,7,0,6],[2,8,3,9],[11,5,10,4]\}$, $\{[9,4,8,5],[11,0,10,1],[3,6,2,7]\},\{[2,5,3,4],[8,1,9,0],[10,7,11,6]\}$, $\{\{0,8\},\{1,11\},\{2,4\},\{3,7\},\{6,10\},\{5,9\}\}$, $\{\{0,5\},\{1,6\},\{2,9\},\{3,10\},\{4,11\},\{7,8\}\}$.

Lemma 3.4. There exists a $\left(K_{2}, P_{4}\right)-\operatorname{IURD}(8,2 ;[1,0],[r, s])$ with $(r, s) \in$ $\{(6,0),(3,2),(0,4)\}$.

Proof. Let the point set be $V=\{a, b, 0,1,2,3,4,5\}$ and let $\{a, b\}$ be the hole. Let $\mathcal{F}=\left\{F_{1}, F_{2}, \ldots, F_{7}\right\}$ be a 1-factorization of K_{8} such that $\{a, b\} \in F_{1}$.

- A $\left(K_{2}, P_{4}\right)-\operatorname{IURD}(8,2 ;[1,0],[6,0])$
$F_{1}-\{a, b\},\left\{F_{2}, \ldots, F_{7}\right\}$.
- A $\left(K_{2}, P_{4}\right)-\operatorname{IURD}(8,2 ;[1,0],[3,2])$
$F_{1}-\{a, b\},\{\{0, b\},\{1,5\},\{2, a\},\{3,4\}\}$,
$\{\{4, b\},\{a, 5\},\{2,3\},\{0,1\}\},\{\{0,3\},\{b, 5\},\{2,1\},\{3,0\}\}$,
$\{[0, a, 1, b],[3,5,2,4]\},\{[2, b, 3, a],[5,0,4,1]\}$.
- A $\left(K_{2}, P_{4}\right)-\operatorname{IURD}(8,2 ;[1,0],[0,4])$
$F_{1}-\{a, b\},\{[0, a, 1, b],[3,5,2,4]\},\{[2, b, 3, a],[5,0,4,1]\}$, $\{[2, a, 5, b],[1,0,3,4]\},\{[0, b, 4, a],[5,1,2,3]\}$.

Lemma 3.5. $U R D\left(8 ; K_{2}, P_{4}\right)=\{(7,0),(4,2),(1,4)\}$.
Proof. The assertion follows from Lemma 3.4.

4. Main results

Lemma 4.1. For every $v \equiv 0(\bmod 6) J_{1}(v) \subseteq U R D\left(v ; K_{2}, P_{3}\right)$.
Proof. For $v=6$ the conclusion follows from Lemma 3.1. For $v \geq 12$, take a $\left(K_{2}, K_{3}\right)-\operatorname{URD}(v ; v-1-4 t, 2 t)$ with $t \in\{0,1, \ldots,(v-4) / 4\}$ for $v \equiv 0(\bmod 12)$ and $t \in\{0,1, \ldots,(v-2) / 4\}$ for $v \equiv 6(\bmod 12)$, which exists
by Theorem 2.3. Applying Theorem 2.4 we obtain a $\left(K_{2}, P_{3}\right)-\mathrm{URD}(v ; v-$ $1-4 t, 3 t)$.

Lemma 4.2. For every $v \equiv 4(\bmod 12), J_{2}(v) \subseteq U R D\left(v ; K_{2}, P_{4}\right)$.
Proof. Let $R_{1}, R_{2}, \ldots, R_{\frac{v-1}{3}}$ be the parallel classes of a resolvable $\left\{K_{4}\right\}-$ design R of order v. Place on each block of a given resolution class of R the same $\left(K_{2}, P_{4}\right)-\operatorname{URD}(4 ; r, s)$ with $(r, s) \in\{(3,0),(0,2)\}$. Since R contains $(v-1) / 3$ parallel classes the result is a $\left(K_{2}, P_{4}\right)-\operatorname{URD}(v ; r, s)$ of K_{v} for each $(r, s) \in(v-1) / 3 *\{(3,0),(0,2)\}$. This implies

$$
U R D\left(v ; K_{2}, P_{4}\right) \supseteq\left\{\frac{v-1}{3} *\{(3,0),(0,2)\}\right\} .
$$

Since

$$
\frac{v-1}{3} *\{(3,0),(0,2)\}=\left\{(v-1-3 x, 2 x), x=0, \ldots, \frac{v-1}{3}\right\}=J_{2}(v)
$$

we obtain the proof.
Lemma 4.3. For every $v \equiv 0(\bmod 12) J_{2}(v) \subseteq U R D\left(v ; K_{2}, P_{4}\right)$.
Proof. For $v=12$ the conclusion follows from Lemma 3.3. For $v \geq 24$ start with a 2 -RGDD G of type $2^{\frac{v}{12}}$ [1]. Give weight 6 to each point of this 2-GDD and place on each edge of a given resolution class the same $\left(K_{2}, P_{4}\right)-\operatorname{URGDD}(r, s)$ of type 6^{2}, with $(r, s) \in\{(6,0),(3,2),(0,4)\}$, which exists by Lemma 3.2. Fill the groups of sizes 12 with the same $\left(K_{2}, P_{4}\right)$ $\operatorname{URD}(12 ; r, s)$, with $(r, s) \in\{(11,0),(8,2),(5,4),(2,6)\}$, which exists by Lemma 3.3. Since G contains $(v-12) / 6$ resolution classes the result is a $\left(K_{2}, P_{4}\right)-\operatorname{URD}(v ; r, s)$ of K_{v} for each $(r, s) \in\{\{(11,0),(8,2),(5,4),(2,6)\}+$ $(v-12) / 6 *\{(6,0),(3,2),(0,4)\}\}$. This implies

$$
\begin{aligned}
& U R D\left(v ; K_{2}, P_{4}\right) \supseteq \\
& \qquad\left\{\{(11,0),(8,2),(5,4),(2,6)\}+\frac{(v-12)}{6} *\{(6,0),(3,2),(0,4)\}\right\}
\end{aligned}
$$

Since

$$
\frac{v-12}{6} *\{(6,0),(3,2),(0,4)\}=\left\{(v-12-3 x, 2 x), x=0, \ldots, \frac{v-12}{3}\right\}
$$

it easy to see that

$$
\left\{\{(11,0),(8,2),(5,4),(2,6)\}+\frac{(v-12)}{6} *\{(6,0),(3,2),(0,4)\}\right\}=J_{2}(v) .
$$

This completes the proof.
Lemma 4.4. For every $v \equiv 8(\bmod 12) J_{2}(v) \subseteq U R D\left(v ; K_{2}, P_{4}\right)$.

Proof. For $v=8$ the conclusion follows from Lemma 3.5. For $v>8$ start with a 2 -frame F of type $1^{\frac{v-2}{6}}[14]$ with groups $G_{i}, i=1, \ldots,(v-2) / 6$. Let p_{i} be the partial parallel class which miss the group G_{i}. Expand each point 6 times and add a set H of 2 ideal points a_{1}, a_{2}. For each $i=1, \ldots,(v-2) / 6$, place on $G_{i} \times\{1, \ldots, 6\} \cup H$ the same $\left(K_{2}, P_{4}\right)-\operatorname{IURD}(8,2 ;[1,0],[x, y]) D_{i}$ of $K_{8}-K_{2}$ with $(x, y) \in\{(6,0),(3,2),(0,4)\}$, which exists by Lemma 3.4 , in such a way the hole covers the point of H. For each $i=1, \ldots,(v-2) / 6$, place on each block of the p_{i} partial parallel class the same ($\left.K_{2}, P_{4}\right)-\operatorname{URGDD}\left(r_{2}, s_{2}\right)$ of type 6^{2} with $\left(r_{2}, s_{2}\right) \in\{(6,0),(3,2),(0,4)\}$, which exists by Lemma 3.2. Add the edge $\left\{a_{1}, a_{2}\right\}$ of H to the partial classes of D_{i} and form, on $\cup_{i=1}^{\frac{v-2}{6}} G_{i} \times$ $\{1, \ldots, 6\} \cup H, 1$ class of 1 -factors. For each $i=1, \ldots,(v-2) / 6$, add the full classes of D_{i} to the classes of p_{i} and form r_{3} classes of 1 -factors and s_{3} classes of P_{4}-factors with $\left(r_{3}, s_{3}\right) \in\{(6,0),(3,2),(0,4)\}$. Since each group G_{i} is missed by 1 partial parallel class of F we obtain a (K_{2}, P_{4})-URD $(v ; r, s)$ for each $(r, s) \in\{(1,0)+(v-2) / 6 *\{(6,0),(3,2),(0,4)\}\}$. This implies

$$
U R D\left(v ; K_{2}, P_{4}\right) \supseteq\left\{(1,0)+\frac{v-2}{6} *\{(0,4),(3,2),(6,0)\}\right\} .
$$

Since

$$
\frac{v-2}{6} *\{(0,4),(3,2),(6,0)\}=\left\{(v-1-3 x, 2 x), x=0, \ldots, \frac{v-2}{3}\right\},
$$

it easy to see that $\{(1,0)+(v-2) / 6 *\{(6,0),(3,2),(0,4)\}\}=J_{2}(v)$. This completes the proof.

5. Conclusion

We are now in a position to prove the main result of the paper.
Theorem 5.1. For every $v \equiv 0(\bmod 6)$, we have $U R D\left(v ; K_{2}, P_{3}\right)=J_{1}(v)$ and, for every $v \equiv 0(\bmod 4)$, we have $U R D\left(v ; K_{2}, P_{4}\right)=J_{2}(v)$.

Proof. Necessity follows from Lemmas 2.1 and 2.2. Sufficiency follows from Lemmas 4.1, 4.2, 4.3 and 4.4. This completes the proof.

Remark: Note that the existence of uniformly resolvable $\left\{K_{2}, P_{k}\right\}$-designs with $k>4$ is very difficult to study and it is currently under investigation.

References

1. C. J. Colbourn and J. H. Dinitz, The CRC handbook of combinatorial designs, Chapman and Hall/CRC, Boca Raton, Florida, 2007.
2. P. Danziger, G. Quattrocchi, and B. Stevens, The Hamilton-Waterloo problem for cycle sizes 3 and 4, J. Comb. Des. 12 (2004), 221-232.
3. J. H. Dinitz, A. C. H. Ling, and P. Danziger, Maximum uniformly resolvable designs with block sizes 2 and 4, Discrete Math. 309 (2009), 4716-4721.
4. M. Gionfriddo and S. Milici, On the existence of uniformly resolvable decompositions of K_{v} and $K_{v}-I$ into paths and kites, Discrete Math. 313 (2013), 2830-2834.
5. \qquad , Uniformly resolvable \mathcal{H}-designs with $\mathcal{H}-\left\{P_{3}, P_{4}\right\}$, Australas. J. Comb. 60 (2014), no. 3, 325-332.
6. S. Kucukcifci, G. Lo Faro, S. Milici, and A. Tripodi, Resolvable 3-star designs, Discrete Math. 338 (2015), 608-614.
7. S. Kucukcifci, S. Milici, and Zs. Tuza, Maximum uniformly resolvable decompositions of K_{v} into 3-stars and 3-cycles, Discrete Math. 338 (2015), 1667-1673.
8. S. Milici, A note on uniformly resolvable decompositions of K_{v} and $K_{v}-I$ into 2-stars and 4-cycles, Australas J. Comb. 56 (2013), 195-200.
9. S. Milici and Zs. Tuza, Uniformly resolvable decompositions of K_{v} into P_{3} and K_{3} graphs, Discrete Math. 331 (2014), 137-141.
10. R. Rees, Uniformly resolvable pairwise balanced designs with block sizes two and three, J. Comb. Th. Ser. A 45 (1987), 207-225.
11. E. Schuster, Uniformly resolvable designs with index one and block sizes three and five and up to five with blocks of size five, Discrete Math. 309 (2009), 4435-4442.
12. , Uniformly resolvable designs with index one and block sizes three and fourwith three or five parallel classes of block size four, Discrete Math. 309 (2009), 24522465.
13. , Small uniformly resolvable designs for block sizes 3 and 4, J. Comb. Des. 21 (2013), 481-523.
14. E. Schuster and G. Ge, On uniformly resolvable designs with block sizes 3 and 4, Des. Codes Cryptogr. 57 (2010), 47-69.
15. K. Ushio and R. Tsuruno, P_{3}-factorization of complete multipartite graphs, Graphs and Combinatorics 5 (1989), 385-387.

Dipartimento di Matematica e Informatica, Università di Catania, Catania,
Italy
E-mail address: gionfriddo@dmi.unict.it
Dipartimento di Matematica e Informatica, Università di Catania, Catania,
Italy
E-mail address: milici@dmi.unict.it

[^0]: Received by the editors September 12, 2014, and in revised form January 10, 2015.
 2010 Mathematics Subject Classification. 05B05.
 Key words and phrases. Resolvable graph decomposition; uniformly resolvable designs; paths.

 Research supported by MIUR-PRIN 2012 (Italy) and INDAM-GNSAGA (Italy).

