## Contributions to Discrete Mathematics

# H-ABSORBENCE AND H-INDEPENDENCE IN 3-QUASI-TRANSITIVE H-COLOURED DIGRAPHS. 

HORTENSIA GALEANA-SÁNCHEZ AND EUGENIA O'REILLY-REGUEIRO


#### Abstract

In this paper we prove that if $D$ is a loopless asymmetric 3 -quasi-transitive arc-coloured digraph having its arcs coloured with the vertices of a given digraph $H$, and if in $D$ every $C_{4}$ is an $H$-cycle and every $C_{3}$ is a quasi- $H$-cycle, then $D$ has an $H$-kernel.


## 1. Introduction

The concepts of independence, absorbing set, kernel, and colouring of digraphs have been studied for quite some time (see Section 2 for definitions). For example, a digraph always has a set $K$ of pairwise nonadjacent vertices such that any other vertex has directed distance at most two to at least one vertex in $K$ (the semikernel), but it need not have a set of pairwise nonadjacent vertices such that any other vertex has directed distance one to at least one vertex in it (the kernel), that is, replacing distance two by distance one. There are many applications of kernels in different topics of mathematics (see, for instance, $[4,5,10,11]$ ) and they have been studied by several authors. Interesting surveys of kernels in digraphs can be found in $[8,12]$. This has been generalised in many ways by colouring the arcs and asking for each vertex not in $K$ to have a directed path with some specified properties to some vertex in $K$. See, among others $[1,9]$. This paper is concerned with colouring the arcs of a digraph $D$ with vertices of another digraph $H$ and showing that $D$ has a kernel when the paths in question are obtained from $H$ and $D$ is 3-quasi-transitive.

## 2. Preliminaries

For general concepts and notation, we refer the reader to [3, 6]. A digraph $D$ has a vertex set $V(D)$ and an arc set $A(D)$. An arc is an element of $(V(D))^{2}$ and is written $(u, v)$; loops $(u=v)$ are allowed. All paths and cycles in digraphs in this paper are directed and cycles are elementary. A

[^0]path (cycle) of length $n$ ( $n$ a positive integer), $n \geq 1$ for paths, ( $n \geq 2$ for cycles) will be $P_{n}=\left(u_{0}, \ldots, u_{n}\right)\left(C_{n}=\left(u_{0}, \ldots, u_{n}=u_{0}\right)\right.$, so the length is the number of arcs on it; all arcs and vertices are distinct. An arc $(u, v) \in A(D)$ is asymmetric if $u \neq v$ and $(v, u) \notin A(D)$, and it is symmetric if both $(u, v)$ and $(v, u)$ are in $A(D)$. A walk in $D$ is an alternating sequence of vertices and $\operatorname{arcs}\left(u_{0}, e_{1}, u_{2}, e_{2}, \ldots e_{n}, u_{n}\right)$ with $e_{i}=\left(u_{i-1}, u_{i}\right)$; this definition is needed in particular if $D$ is a multidigraph, i.e. a digraph where multiple arcs between the same pair of vertices may exist. Paths and cycles are particular walks. Our digraphs may have loops but no multiple arcs, unless otherwise stated. A digraph is asymmetric if all of its arcs are asymmetric. Note that in such a $D$, every walk of length three with distinct endpoints is a path. A digraph $D$ is 3-quasi-transitive if whenever $(x, y),(y, w),(w, z) \in A(D), x, y, w, z$ pairwise distinct, then one of $(x, z),(z, x)$ is in $A(D)$. A set $N \subseteq V(D)$ is absorbent if from any vertex not in $N$ there is a path to some vertex in $N$. It is independent is there are no arcs between the vertices of $N$. A set which is both absorbent and independent is called a kernel. Kernels have found many uses (as stated in Section 1, see [4, 5, 10, 11]). These ideas can be generalised. For example, the arcs of $D$ can be coloured, the paths can be required to be monochromatic and the set deemed independent if there are no monochromatic paths between them (this was done by Sands, Sauer, and Woodrow in [2]) and the conjecture, attributed to Erdős, that if $k$ colours are used, than the kernel size is bounded by a function of $k$ was only proved recently by Thomassé et al. (see [14]). We explore another way of defining a kernel.

In the rest of the paper, we assume that $D$ is a loopless asymmetric 3-quasi-transitive digraph and that $H$ is a digraph possibly with loops. We say that $D$ is $H$-arc-coloured if there is a mapping $c: A(D) \longrightarrow V(H)$. We will forgo the notation $(D, H, c)$ but will assume them fixed once given and most of the time we will speak of "colours" when we mean the vertices of $H$. An $H$-walk in $D$ is a path $\left(u_{0}, \ldots, u_{n}\right)$ such that $c\left(u_{0}\right), \ldots, c\left(u_{n}\right)$ is a walk in $H$. This was introduced by Linek and Sands in [13]. Building on this, Arpin and Linek defined an $H$-walk absorbing set as a set $N$ such that from any vertex not in $N$ there is an $H$-walk to some vertex in $N$. Similarly, a set $N$ is $H$-walk independent if there are no $H$-walks between the vertices of $N$. As expected, an $H$-walk kernel is a set that both $H$-walk absorbing and $H$-walk independent.

Similarly, we can define an $H$-cycle in $D$ and an $H$-uv path. If $C$ is a cycle $\left(u_{0}, \ldots, u_{n}\right)$ in $D$ such that $\left(c\left(u_{0}\right), \ldots, c\left(u_{n}\right)\right)$ is a closed walk in $H$ then $C$ is an $H$-cycle in $D$. If $\left(u=u_{0}, \ldots, u_{n}=v\right)$ is a $u v$-path in $D$ such that $\left(c\left(u_{0}\right), \ldots, c\left(u_{n}\right)\right)$ is a walk in $H$ it is an $H$-uv-path. We do not require that the walk have distinct endpoints. It particular, if $H$ has no arcs other than loops, all $H$-cycles and $H$-paths will be monochromatic. If a cycle $C$ of length $n$ in $D$ contains an $H$-path of length at least $n-1$, it will be called a quasi- $H$-cycle (note an $H$-cycle is one).

We finish this section with two more definitions. Given an $H$-coloured digraph $D$, its $H$-closure $\mathcal{C}(D)$ is the multidigraph on the vertex set $V(D)$ with $A(\mathcal{C}(D))=A(D) \cup\{(u, v)$ : there is a $H-u v$-path in $D\}$. Recall that a tournament is a complete oriented graph, that is, a digraph any two of whose vertices are connected by exactly one arc (so a tournament is an asymmetric digraph).

## 3. Results

We will use the following theorem (in which more than one arc between the same pair of vertices is allowed):

Theorem 3.1 (Berge-Duchet [7]). Let $D$ be a digraph. If every directed cycle of $D$ has at least one symmetric arc, then $D$ has a kernel.

The following lemma is essential for the proof of our main result:
Lemma 3.2. If $D$ is an $H$-arc-coloured digraph such that every cycle $\gamma$ in $\mathcal{C}(D)$ has a symmetric arc, then $D$ has an $H$-kernel.

Proof. Let $D$ be an $H$-arc-coloured digraph such that every cycle in $\mathcal{C}(D)$ has a symmetric arc. By Theorem 3.1 this implies $\mathcal{C}(D)$ has a kernel, which in turn implies $D$ has an $H$-kernel.

We give a well-known result in digraphs:
Lemma 3.3. Let $D$ be a digraph and $x, y \in V(D)$. Then every $x y$-walk in $D$ contains an xy-path in $D$.
Lemma 3.4. Let $D$ be an asymmetric 3-quasi-transitive digraph, and $u, v \in$ $V(D)$ such that there is a uv-path $P$ of length $n$ and no vu-path. Then one of the following holds:
(1) $(u, v) \in A(D)$ (when $n$ is odd), or
(2) there is a vertex $w \in D$ such that $(u, w)$ and $(w, v)$ are arcs in $D$ (when $n$ is even).
Proof. Let $D$ be an asymmetric 3-quasi-transitive digraph, and $u, v \in V(D)$ such that there is a path $P=\left(u=w_{0}, w_{1}, \ldots, w_{n}=v\right)$ and no $v u$-path. We have two cases:
Case 1: $n$ odd.
We will prove, by induction on $n$, that $(u, v) \in A(D)$. If $n=3$ then there are vertices $w_{1}$ and $w_{2}$ in $V(D)$ such that $P=\left(u, w_{1}, w_{2}, v\right)$ (and all these vertices are distinct). Since $D$ is 3-quasi-transitive, either ( $u, v$ ) or $(v, u)$ is in $A(D)$. Since we assumed $(v, u) \notin A(D)$, we conclude $(u, v) \in A(D)$, which proves the basis of our induction.
Now suppose the result is true for all paths in $D$ of length $m$ such that $3 \leq m<n=2 k+1$, and let $u, v \in V(D)$ such that there is a path $P=\left(u=w_{0}, w_{1}, \ldots w_{n}=v\right)$ of length $n=2 k+1$ and there is no $v u$ path in $D$. Since $D$ is 3 -quasi-transitive, either $\left(w_{0}, w_{3}\right)$ or $\left(w_{3}, w_{0}\right)$ is in $A(D)$.

If $\left(w_{0}, w_{3}\right) \in A(D)$, then there is a path $P^{\prime}=\left(w_{0}, w_{3}, \ldots, w_{n}\right)$ in $D$ with length $2 k-1$, and no $w_{n} w_{0}$-path, so by the induction hypothesis, $\left(w_{0}=u, v=w_{n}\right) \in A(D)$ and we are done.
Now suppose $\left(w_{3}, w_{0}\right) \in A(D)$, and consider the path (which is part of P) $Q=\left(w_{2}, \ldots, w_{n}\right)$, of length $2 k-1$. If there is a path from $w_{n}$ to $w_{2}$, then there is a directed walk

$$
\left(w_{n}, \ldots, w_{2}, w_{3}, w_{0}\right)
$$

which by Lemma 3.3 contains a $w_{n} w_{0}$-path, contradicting our assumption. So there is no path from $w_{n}$ to $w_{2}$, and by our induction hypothesis, $\left(w_{2}, w_{n}\right) \in A(D)$, hence there is a path $\left(w_{0}, w_{1}, w_{2}, w_{n}\right)$ in $D$, and since there is no path from $w_{n}$ to $w_{0}$ and $D$ is 3-quasi-transitive, we conclude $\left(w_{0}, w_{n}\right) \in A(D)$.
Case 2: $n$ is even.
As above, we will prove the result by induction on $n$, so first let $n=2$, and the proof is immediate. For the sake of clarity, now let $n=4$, so $P=$ $\left(w_{0}, w_{1}, w_{2}, w_{3}, w_{4}\right)$. Since $P$ is a path, these vertices are all distinct, and $D$ 3-quasi-transitive implies either $\left(w_{0}, w_{3}\right) \in A(D)$ or $\left(w_{3}, w_{0}\right) \in A(D)$, and either $\left(w_{1}, w_{4}\right) \in A(D)$ or $\left(w_{4}, w_{1}\right) \in A(D)$. If both $\left(w_{3}, w_{0}\right)$ and $\left(w_{4}, w_{1}\right)$ are in $A(D)$, then $\left(w_{4}, w_{1}, w_{2}, w_{3}, w_{0}\right)$ is a path from $w_{4}$ to $w_{0}$, a contradiction, so at least one of $\left(w_{0}, w_{3}\right) \in A(D)$ or $\left(w_{1}, w_{4}\right) \in A(D)$ holds. Then $\left(w_{0}, w_{3}, w_{4}\right)$ and (resp. or) $\left(w_{0}, w_{1}, w_{4}\right)$ are paths (resp. is a path) in $D$, which proves the lemma for $n=4$.
For the induction hypothesis, suppose the result is true for all paths in $D$ of length $m$ such that $6 \leq m \leq n-2$ and let $P=\left(u=w_{0}, w_{1}, \ldots, w_{n-2}\right.$, $w_{n-1}, w_{n}=v$ ) be a path in $D$ such that there is no $w_{n} w_{0}$-path in $D$.
Since $P$ is a path, $w_{0}, \ldots, w_{n}$ are all distinct, and since $D$ is 3-quasitransitive, for every $w_{i}, w_{i+3}$ with $0 \leq i \leq n-3$ either $\left(w_{i}, w_{i+3}\right) \in A(D)$ or $\left(w_{i+3}, w_{i}\right) \in A(D)$.
If $\left(w_{i+3}, w_{i}\right) \in A(D) \forall i=0, \ldots, n-3$ then

$$
\left(w_{n}, w_{n-3}, w_{n-2}, w_{n-1}, w_{n-4}, w_{n-3}, w_{n-2}, \ldots, w_{1}, w_{2}, w_{3}, w_{0}\right)
$$

is a directed walk from $w_{n}$ to $w_{0}$, which by Lemma 3.3 contains a $w_{n} w_{0^{-}}$ path, a contradiction.
Therefore there is an $i \in\{0, \ldots, n-3\}$ such that $\left(w_{i}, w_{i+3}\right) \in A(D)$, the path $P^{\prime}=\left(w_{0}, \ldots, w_{i}, w_{i+3}, \ldots, w_{n}\right)$ has length $n-2$ and there is no path from $w_{n}$ to $w_{0}$, so by our induction hypothesis there is $w \in V(D)$ such that $\left(w_{0}, w\right)$ and $\left(w, w_{n}\right)$ are in $A(D)$, and the proof is complete.

Lemma 3.5. Let $H$ be any digraph, $D$ an $H$-arc-coloured asymmetric 3-quasi-transitive digraph such that every $C_{4}$ in $D$ is an $H$-cycle, and $u, v \in$ $V(D)$ such that there is an $H$-uv-path $P$ of length $n$ and no $H$-vu-path. Then either:
(1) $(u, v) \in A(D)$ (when $n$ is odd), or
(2) there exists $w \in V(D)$ such that $(u, w)$ and $(w, v)$ are arcs in $D$ (when $n$ is even).

Proof. Let $D$ be an $H$-arc-coloured asymmetric 3-quasi-transitive digraph with every $C_{4}$ an $H$-cycle, and suppose $u, v \in V(D)$ are such that there is an $H$-uv-path $P$ and there is no $H$-vu-path. Let $P=\left(u=w_{0}, w_{1}, \ldots, w_{n}=v\right)$ be an $H-u v$-path of length $n$. If $n=1$ or 2 , then we are done.

If $n=3$ then $D$ being 3-quasi-transitive implies either $\left(w_{0}, w_{3}\right) \in A(D)$ or $\left(w_{3}, w_{0}\right) \in A(D)$, the latter is an $H$-vu-path, a contradiction, so $\left(w_{0}, w_{3}\right) \in$ $A(D)$, proving the lemma for $n=3$. Suppose then that there is an $H-u v$ path of length at least 4 , and let $P=\left(u=w_{0}, w_{1}, \ldots, w_{n}=v\right)$ be such a path of minimum length $n \geq 4$, (and there is no $H-v u$-path).

First we will prove by induction on $i$ that either the lemma holds, or for every $w_{i}, w_{j}$ with $0 \leq i<j \leq n$ and $j-i \geq 2,\left(w_{i}, w_{j}\right) \notin A(D)$, that is, if there is an arc between $w_{i}$ and $w_{j}$ then it is $\left(w_{j}, w_{i}\right)$, i.e., it goes "backwards".

We will do the basis of our induction for both $w_{0}$ and $w_{1}$. Consider the set of vertices $\left\{w_{j}\right\}$ of $P$ such that there is an arc between $w_{0}$ and $w_{j}$, with $j \geq 2$, and note $w_{3}$ is one such vertex since $D$ is 3 -quasi-transitive, so this set is not empty. If for all such $w_{j}$ the arc $\left(w_{j}, w_{0}\right)$ is in $A(D)$, then we are done, so suppose there is at least one vertex $w_{j}$ such that $\left(w_{0}, w_{j}\right) \in A(D)$, and let $j$ be the maximum subscript such that $\left(w_{0}, w_{j}\right) \in A(D)$. If $j=n$ then $\left(w_{0}, w_{n}\right) \in A(D)$ and the lemma is proved. Similarly, if $j=n-1$ then $\left(w_{0}, w_{n-1}\right)$ and $\left(w_{n-1}, w_{n}\right)$ are in $A(D)$, also proving the lemma, so suppose $j \leq n-2$.

Since $D$ is 3-quasi-transitive, $\left(w_{0}, w_{j}\right) \in A(D)$ implies there is an arc between $w_{0}$ and $w_{j+2}$, and $j$ being the maximum subscript such that the arc forces $\left(w_{j+2}, w_{0}\right) \in A(D)$, i.e., it goes "forwards" (so $j \leq n-3$ since there is no $H-v u$-path). Then $\left(w_{0}, w_{j}, w_{j+1}, w_{j+2}\right)$ is a $C_{4}$ in $D$, and is therefore an $H$-cycle, which makes $\left(w_{0}, w_{j}, \ldots, w_{n}\right)$ an $H$-uv-path of length at least 4 (since $j \leq n-3$ ) and shorter than $n$, a contradiction. We conclude that for every $w_{j} \in P$ such that there is an arc between $w_{0}$ and $w_{j}$ and $j \geq 2$, $\left(w_{j}, w_{0}\right) \in A(D)$.

We now prove the result for $w_{1}$ in the same way. If for every $w_{j} \in P$ (with $j>2)$ such that there is an arc between $w_{1}$ and $w_{j}$ the $\operatorname{arc}\left(w_{j}, w_{1}\right) \in A(D)$, then we are done. So consider $w_{j}$ to be the vertex furthest from $w_{1}$ such that $\left(w_{1}, w_{j}\right) \in A(D)$ and suppose $j>2$. As above, if $j=n$ then the lemma follows. If $j=n-1$ then since $D$ is 3 -quasi-transitive, there is an arc between $w_{0}$ and $w_{n}$. If $\left(w_{0}, w_{n}\right) \in A(D)$ we are done, and if $\left(w_{n}, w_{0}\right) \in A(D)$ then there is an $H$-vu-path in $D$, a contradiction. Therefore $2<j \leq n-2$. Since $D$ is 3 -quasi-transitive, there is an arc between $w_{0}$ and $w_{j+1}$, and from the previous paragraph we conclude $\left(w_{j+1}, w_{0}\right) \in A(D)$ so $\left(w_{0}, w_{1}, w_{j}, w_{j+1}, w_{0}\right)$ is a $C_{4}$ in $D$ and therefore an $H$-cycle, so as above, $\left(w_{0}, w_{1}, w_{j}, \ldots, w_{n}\right)$ is an $H$-uv-path in $D$ of length shorter than $n$ and greater than 3 , a contradiction.

Now for our induction hypothesis suppose that for every $i<k$, if there is an arc between $w_{i}$ and $w_{j}$ and $j>i+1$, then $\left(w_{j}, w_{i}\right) \in A(D)$, and consider $w_{k}$. If $k=n$ or $n-1$ then we have nothing to prove, so $1<k<n-1$. Suppose also there is $j>k+1$ such that $\left(w_{k}, w_{j}\right) \in A(D)$, and let $m$ be the maximum of these subscripts $j$.

If $m=n$ then $\left(w_{k}, w_{n}\right) \in A(D)$, also $\left(w_{k-2}, w_{k-1}\right)$ and $\left(w_{k-1}, w_{k}\right)$ are in $A(D)$, and since $D$ is 3 -quasi-transitive, there is an arc between $w_{k-2}$ and $w_{n}$, which by our induction hypothesis must be $\left(w_{n}, w_{k-2}\right)$.

Then $\left(w_{k-2}, w_{k-1}, w_{k}, w_{n}\right)$ is a $C_{4}$ in $D$ which must therefore be an $H$ cycle, which implies $\left(w_{0}, \ldots, w_{k}, w_{n}\right)$ is an $H$-uv-path. If $k=2$ then this path has length 3 , in which case $\left(w_{0}, w_{n}\right) \in A(D)$ and the lemma holds. Otherwise this path is of length at least 4 and shorter than $n$, a contradiction.

If $m=n-1$ then $\left(w_{k-1}, w_{k}\right),\left(w_{k}, w_{n-1}\right)$, and $\left(w_{n-1}, w_{n}\right)$ are arcs in $D$ which is 3 -quasi-transitive, this implies there is an arc between $w_{k-1}$ and $w_{n}$, which by induction hypothesis must be $\left(w_{n}, w_{k-1}\right)$. This implies the cycle $\left(w_{k-1}, w_{k}, w_{n-1}, w_{n}\right)$ is a $C_{4}$ in $D$, which is an $H$-cycle, so ( $w_{0}, \ldots, w_{k}, w_{n-1}, w_{n}$ ) is an $H$-uv-path of length shorter than $n$ and greater than 3, a contradiction.

Finally, if $m<n-1$ we consider the following arcs: $\left(w_{k-1}, w_{k}\right),\left(w_{k}, w_{m}\right)$, and ( $w_{m}, w_{m+1}$ ). Since $D$ is 3 -quasi-transitive, there is an arc between $w_{k-1}$ and $w_{m+1}$. From the definition of $k,\left(w_{m+1}, w_{k-1}\right) \in A(D)$, and the cycle $\left(w_{m+1}, w_{k-1}, w_{k}, w_{m}, w_{m+1}\right)$ is a $C_{4}$ in $D$, so it is an $H$-cycle. This implies $\left(w_{0}, \ldots, w_{k}, w_{m}, \ldots, w_{n}\right)$ is an $H$-uv-path in $D$ of length shorter than $n$ and greater than 3, again, a contradiction, with which the proof or our claim is complete.

Since $D$ is 3-quasi-transitive, for every $i=0, \ldots, n-3$ either ( $w_{i}, w_{i+3}$ ) or $\left(w_{i+3}, w_{i}\right)$ is in $A(D)$, and by the claim we have just proved, $\left(w_{i+3}, w_{i}\right) \in$ $A(D)$. This implies that for each $i=0, \ldots, n-3$, there is a $C_{4}$ in $D$, namely $\left(w_{i}, w_{i+1}, w_{i+2}, w_{i+3}\right)$, which is an $H$-cycle.

This yields an $H$-vu-walk in $D$, namely

$$
\left(w_{n}, w_{n-3}, w_{n-2}, w_{n-1}, w_{n-4}, \ldots, w_{1}, w_{2}, w_{3}, w_{0}\right)
$$

which by Lemma 3.3 contains an $H$-vu-path, a contradiction, so the conclusions of the lemma hold.

Lemma 3.6. Let $H$ be a digraph and $D$ an $H$-arc-coloured asymmetric 3-quasi-transitive digraph such that every $C_{4}$ in $D$ is an $H$-cycle, and every $C_{3}$ in $D$ is a quasi- $H$-cycle. Suppose there is an asymmetric cycle $\gamma$ in $\mathcal{C}(D)$. Then the length of $\gamma$ is at least 4.

Proof. If $\gamma$ is an asymmetric cycle in $\mathcal{C}(D)$, then it has length at least 3 , so suppose it is 3 and $\gamma=(x, y, z)$ is asymmetric. Then by Lemma 3.5 there are $x y$-, $y z-$, and $z x$-paths with length 1 or 2 , so we have four cases:
CASE 1: They all have length 1 , and $(x, y, z)$ is a directed triangle in $D$.

In this case, since all directed triangles in $D$ are quasi- $H$-cycles, there is an $H$-path of length at least two, say, $(x, y, z)$ that is, there is an $H$ - $x z$ path, which induces the $\operatorname{arc}(x, z)$ in $\mathcal{C}(D)$, this is a contradiction as we assumed the cycle $\gamma$ asymmetric.
Case 2: One of the paths, say, $x y$ has length 2 in $D$, and the others have length 1 , that is, there is a vertex $x_{0}$ in $D$ such that $\left(x, x_{0}, y, z\right)$ is a cycle in $D$.

This is a $C_{4}$, so it must be an $H$-cycle, hence there is an $H$-path from any vertex to any other vertex, that is, $\gamma$ is symmetric, a contradiction. Case 3: Two of the paths, say $x y$ and $y z$ are of length 2 , the other is of length 1 in $D$.

There are vertices $x_{0}$ and $y_{0}$ in $D$ such that $\left(x, x_{0}, y, y_{0}, z\right)$ is a cycle in $D$. Since $D$ is 3-quasi-transitive and $\left(y, y_{0}, z, x\right)$ is a path in $D$, either $(x, y)$ or $(y, x)$ is in $A(D)$. If $(y, x) \in A(D)$ then this is a symmetric arc in $\gamma$, a contradiction. If, on the other hand, $(x, y) \in A(D)$ then $\left(y, y_{0}, z, x\right)$ is a $C_{4}$ in $D$, and must therefore be an $H$-cycle, which implies the $\operatorname{arc}(y, x)$ is in $\gamma$ contradicting the assumption of $\gamma$ being asymmetric.
Case 4: The three paths have length 2 in $D$, so there are vertices $x_{0}, y_{0}$, and $z_{0}$ in $D$ such that ( $x, x_{0}, y, y_{0}, z, z_{0}$ ) is a cycle in $D$.

Since $D$ is 3-quasi-transitive, either $\left(x, y_{0}\right)$ or $\left(y_{0}, x\right)$ is in $A(D)$. Suppose first that $\left(x, y_{0}\right) \in A(D)$, so $\left(x, y_{0}, z, z_{0}\right)$ is a $C_{4}$ in $D$, and hence an $H$ cycle. Similarly, either $\left(z, x_{0}\right)$ or $\left(x_{0}, z\right)$ is in $A(D)$. If $\left(z, x_{0}\right) \in A(D)$ then $\left(z, x_{0}, y, y_{0}\right)$ is a $C_{4}$ in $D$, and therefore also an $H$-cycle. Given the overlap of these two cycles, the path $\left(x_{0}, y, y_{0}, z, z_{0}, x\right)$ is is an $H$-path, so the $\operatorname{arc}(y, x) \in \gamma$, a contradiction. Suppose now that $\left(x_{0}, z\right) \in A(D)$. Then $\left(x_{0}, z, z_{0}, x\right)$ is a $C_{4}$ in $D$, and hence an $H$-cycle. Again, the overlap of these two cycles implies the path $\left(y_{0}, z, z_{0}, x, x_{0}\right)$ is an $H$-path. Also, either $\left(y, z_{0}\right)$ or $\left(z_{0}, y\right)$ is in $A(D)$. Following the same reasoning as above, if $\left(y, z_{0}\right) \in A(D)$ then there is an $H$ - path in $D$ from $z$ to $y$, so in $\gamma$ the $\operatorname{arc}(y, z)$ is symmetric, a contradiction. If, however, $\left(z_{0}, y\right) \in A(D)$ then in $D$ there is a $H$-path from $y$ to $x$, so the $\operatorname{arc}(x, y)$ in $\gamma$ is symmetric, again, a contradiction.
Now suppose $\left(y_{0}, x\right) \in A(D)$. The proof is analogous, due to symmetry.

Lemma 3.7. Let $H$ be any digraph and $D$ an $H$-arc-coloured asymmetric 3-quasi-transitive digraph such that every $C_{4}$ in $D$ is an $H$-cycle, every $C_{3}$ in $D$ is a quasi- $H$-cycle, and let $\mathcal{C}(D)$ be the closure of $D$. Suppose there is an asymmetric cycle $\gamma$ in $\mathcal{C}(D)$ and consider $\gamma^{\prime}$ to be the corresponding closed directed walk in $D$, that is, the vertices $u, v$ and arcs $(u, v)$ of $\gamma$ when $(u, v) \in A(D)$ plus the vertices $w$ and arcs $(u, w)$ and $(w, v)$ in $D$ when $(u, v) \in A(\mathcal{C}(D)) \backslash A(D)$.

If the vertices of the closed directed walk $\gamma^{\prime}$ are $x_{0}, x_{1}, \ldots, x_{n}$, then $\left(x_{0}, x_{2 k+1}\right) \in A(D)$ for every $k$ such that $3 \leq 2 k+1<n$ and for any $x_{0} \in \gamma$.

Proof. Let $x_{0}, x_{1}, \ldots, x_{n}$ be the vertices in $\gamma^{\prime}$. Since $D$ is 3 -quasi-transitive there is an arc between $x_{0}$ and $x_{3}$. Suppose $\left(x_{3}, x_{0}\right) \in A(D)$. Then $\left(x_{0}, x_{1}, x_{2}, x_{3}\right)$ is a $C_{4}$ in $D$ (all vertices are distinct) and is therefore an $H$-cycle. If $x_{1} \in \gamma$ then there is an $H$-path from $x_{1}$ to $x_{0}$, contradicting the assumption that $\gamma$ is asymmetric. If $x_{1} \notin \gamma$, then $x_{2} \in \gamma$ and the same reasoning applies. Therefore $\left(x_{0}, x_{3}\right) \in A(D)$.

If $n=4$ or 5 then we are done, so suppose $n>5$. Consider $x_{5}$ so $x_{5} \neq x_{0}$ and note $x_{5} \neq x_{4}$. Also, $D$ asymmetric implies $x_{5} \neq x_{3}$. If $x_{5}=x_{1}$ then $\left(x_{0}, x_{5}\right) \in A(D)$. If $x_{5}=x_{2}$ then this vertex is not in $\gamma$, which forces $x_{1}, x_{3}$, and $x_{4}$ to be all in $\gamma$. Since $D$ is 3 -quasi-transitive and $\left(x_{0}, x_{3}\right),\left(x_{3}, x_{4}\right)$, and $\left(x_{4}, x_{2}\right)$ are all arcs in $D$, there must be an arc between $x_{0}$ and $x_{2}$. If $\left(x_{2}, x_{0}\right) \in A(D)$ then $\left(x_{0}, x_{3}, x_{4}, x_{2}\right)$ is a $C_{4}$ in $D$, and so it must be an $H$-cycle, which makes the $\operatorname{arc}\left(x_{3}, x_{4}\right) \in \gamma$ symmetric, a contradiction.

Finally if $x_{5}$ is none of the previous vertices since $\left(x_{0}, x_{3}\right) \in A(D)$ and $D$ is 3-quasi-transitive then either $\left(x_{0}, x_{5}\right) \in A(D)$ or $\left(x_{5}, x_{0}\right) \in A(D)$. If $\left(x_{5}, x_{0}\right) \in A(D)$ then $\left(x_{0}, x_{3}, x_{4}, x_{5}\right)$ is a $C_{4}$ in $D$, hence an $H$-cycle, which implies an arc in $\gamma$ is symmetric, a contradiction. Therefore $\left(x_{0}, x_{5}\right) \in A(D)$.

Following the same reasoning, by induction, suppose the lemma is not true and let $j$ be the first subscript such that $\left(x_{0}, x_{2 j+1}\right) \notin A(D)$ (with $2 j+1<n)$. Since $\left(x_{0}, x_{2 j-1}\right) \in A(D)$ and $D$ is 3 -quasi-transitive, we conclude $\left(x_{2 j+1}, x_{0}\right) \in A(D)$. We observe $x_{0} \neq x_{2 j-1}, x_{2 j}$, and $x_{2 j+1}$. Also, $x_{2 j} \neq x_{2 j-1}$ and $x_{2 j+1}$, and since $D$ is asymmetric $x_{2 j-1} \neq x_{2 j+1}$. That is, all four vertices are distinct. Then $\left(x_{0}, x_{2 j-1}, x_{2 j}, x_{2 j+1}\right)$ is a $C_{4}$ in $D$, hence an $H$-cycle. If $x_{2 j-1} \in \gamma$ then so is at least one of $x_{2 j}$ and $x_{2 j+1}$, this implies there is a symmetric arc in $\gamma$, a contradiction. If $x_{2 j-1} \notin \gamma$ then $x_{2 j} \in \gamma$. If $x_{2 j+1} \in \gamma$ then again we get a symmetric arc in $\gamma$, a contradiction. Now suppose neither $x_{2 j-1}$ nor $x_{2 j+1}$ are in $\gamma\left(\right.$ and $\left.x_{2 j} \in \gamma\right)$.

We go back to $x_{2 j-3}$ and note that $\left(x_{0}, x_{2 j-3}\right) \in A(D)$ (our first two steps of induction allow us to do this). We also note $x_{2 j-2} \in \gamma$. Since $D$ is 3 -quasi-transitive, and $\left(x_{2 j+1}, x_{0}\right),\left(x_{0}, x_{2 j-3}\right)$, and $\left(x_{2 j-3}, x_{2 j-2}\right)$ are all in $A(D)$, there must be an arc between $x_{2 j+1}$ and $x_{2 j-2}$ (and these are distinct vertices as one is in $\gamma$ and the other one is not). If $\left(x_{2 j+1}, x_{2 j-2}\right) \in A(D)$ then $\left(x_{2 j-2}, x_{2 j-1}, x_{2 j}, x_{2 j+1}\right)$ is a $C_{4}$ in $D$, and hence an $H$-cycle. This makes the arc $\left(x_{2 j-2}, x_{2 j}\right)$ in $\gamma$ symmetric, a contradiction.

If, on the other hand, $\left(x_{2 j-2}, x_{2 j+1}\right) \in A(D)$, then $\left(x_{0}, x_{2 j-3}, x_{2 j-2}, x_{2 j+1}\right)$ is a $C_{4}$ in $D$, so it is an $H$-cycle, and as it intersects $\left(x_{0}, x_{2 j-1}, x_{2 j}, x_{2 j+1}\right)$ in the $\operatorname{arc}\left(x_{2 j+1}, x_{0}\right)$, the arcs in these two $C_{4} \mathrm{~s}$ all have an $H$-colouring. This yields an $H$-path from $x_{2 j}$ to $x_{2 j-2}$ which makes the arc $\left(x_{2 j-2}, x_{2 j}\right) \in \gamma$ symmetric, a contradiction with which our proof is now complete.

Now we prove our main result.
Theorem 3.8. Let $H$ be any digraph and $D$ an $H$-arc-coloured asymmetric 3-quasi-transitive digraph such that every $C_{4}$ in $D$ is an $H$-cycle and every $C_{3}$ in $D$ is a quasi- $H$-cycle. Then $D$ has an $H$-kernel.

Proof. Let $H$ be any digraph and $D$ be an $H$-arc-coloured asymmetric 3-quasi-transitive digraph such that every $C_{4}$ is an $H$-cycle and every $C_{3}$ is a quasi- $H$-cycle, and consider $\mathcal{C}(D)$, the closure of $D$. If every cycle in $\mathcal{C}(D)$ has a symmetric arc, then by Theorem $3.1 \mathcal{C}(D)$ has a kernel, which by Lemma 3.2 implies $D$ has an $H$-kernel, and we are done. So suppose in $\mathcal{C}(D)$ there is an asymmetric cycle, and let $\gamma$ be such a cycle of minimum length, which, by Lemma 3.6 is at least 4.

We consider $\gamma^{\prime}=\left(x_{0}, \ldots, x_{n}\right)$ the corresponding closed directed walk in $D$, that is, the vertices $u, v$ and $\operatorname{arcs}(u, v)$ of $\gamma$ when $(u, v) \in A(D)$ plus the vertices $w$ and $\operatorname{arcs}(u, w)$ and $(w, v)$ in $D$ when $(u, v) \in A(\mathcal{C}(D)) \backslash A(D)$. We can assume w.l.o.g. that $x_{0} \in V(\gamma)$, and by Lemma $3.7\left(x_{0}, x_{2 j+1}\right) \in A(D)$ for every $j$ such that $1 \leq 2 j+1<n$. We now consider two cases, according to the parity of $n \geq 4$.

First suppose $n$ is odd, and consider the vertices $x_{0}, x_{n}, x_{n-1}$, and $x_{n-2}$. Note $x_{0}$ is different from any of the other vertices, otherwise the length of $\gamma$ would be shorter. Also, $x_{n} \neq x_{n-1} \neq x_{n-2}$ since they are adjacent, and $x_{n} \neq x_{n-2}$ because $D$ is asymmetric. Therefore ( $x_{0}, x_{n-2}, x_{n-1}, x_{n}$ ) is a $C_{4}$ and so it is an $H$-cycle. Since $x_{0} \in \gamma$ then at least one of $x_{n}$ and $x_{n-1}$ is in $\gamma$. If $x_{n} \in \gamma$ then the arc $\left(x_{n}, x_{0}\right) \in \gamma$ is symmetric, and if $x_{n} \notin \gamma$ then the $\operatorname{arc}\left(x_{n-1}, x_{n}\right) \in \gamma$ is symmetric, in both cases we have a contradiction.

Now suppose $n$ is even. As above, all the vertices $x_{0}, x_{n}, x_{n-1}$, and $x_{n-2}$ are distinct. Since $D$ is 3 -quasi-transitive, there is an arc between $x_{0}$ and $x_{n-2}$. If $\left(x_{0}, x_{n-2}\right) \in A(D)$ then as in the previous paragraph there is a symmetric arc in $\gamma$, a contradiction. Therefore $\left(x_{n-2}, x_{0}\right) \in A(D)$. Since $\left(x_{0}, x_{n-1}\right) \in A(D)$, if $x_{n} \notin \gamma$ then $x_{n-1} \in \gamma$ and $\gamma$ has a symmetric arc, a contradiction which implies $x_{n} \in \gamma$. Also, the vertices $\left(x_{0}, x_{n-1}, x_{n}\right)$ form a $C_{3}$, which is a quasi- $H$-cycle. If the arcs $\left(x_{0}, x_{n-1}\right)$ and $\left(x_{n-1}, x_{n}\right)$ form an $H$-path, then there is an $H$-path in $D$ from $x_{0}$ to $x_{n}$, which are consecutive vertices in $\gamma$, so in $\gamma$ there is a symmetric arc, a contradiction.

Now suppose there is an $H$-path from $x_{n}$ to $x_{n-1}$. This forces $x_{n-1} \notin \gamma$, otherwise $\left(x_{n-1}, x_{n}\right)$ would be a symmetric arc in $\gamma$, a contradiction. Now $x_{n-1} \notin \gamma$, forces $x_{n-2} \in \gamma$. Since $x_{n-2} \neq x_{0}, x_{n}$, and $x_{n-1}$, and $D$ is $3-$ quasi-transitive, there is an arc between $x_{n-2}$ and $x_{n}$ (because of the path $\left.\left(x_{n-2}, x_{0}, x_{n-1}, x_{n}\right)\right)$. If $\left(x_{n}, x_{n-2}\right) \in A(D)$ then it is a symmetric arc in $\gamma$, and if $\left(x_{n-2}, x_{n}\right) \in A(D)$ then in $D$ these two vertices are at distance 1 , so the existence of $x_{n-1}$ in the cycle $\gamma^{\prime}$ is a contradiction. We conclude the $\operatorname{arcs}\left(x_{n-1}, x_{n}\right)$ and $\left(x_{n}, x_{0}\right)$ form an $H$-path (and $x_{n-2} \in \gamma$ ).

We have proved that if $n$ is even and we consider a vertex in $\gamma^{\prime}$ which is also in $\gamma$, then the preceding vertex is also in $\gamma$ and the arc in $\gamma^{\prime}$ of which this vertex is an endpoint forms an $H$-path with the preceding arc. Going backwards by induction, we conclude every vertex of $\gamma^{\prime}$ is in $\gamma$, and $\gamma^{\prime}(=\gamma)$ is an $H$-cycle, and therefore it has a symmetric arc, a contradiction.

We have proved every directed cycle in $\mathcal{C}(D)$ has a symmetric arc. This, by Theorem 3.1 implies $\mathcal{C}(D)$ has a kernel, which in turn by Lemma 3.2 implies $D$ has an $H$-kernel.

## Acknowledgements

The authors are very grateful for the suggestions and comments generously provided by the anonymous referee. They greatly improved the paper, especially the first two sections. We are also grateful to Professor Robert Woodrow for his patience, attention, and correspondence.

## References

1. P. Arpin and V. Linek, Reachability problems in edge-coloured digraphs, Discrete Math. 307 (2007), 2276-2289.
2. N. Sauer B. Sands and R. Woodrow, On monochromatic paths in edge-coloured digraphs, J. Combin. Theory Ser. B 33 (1982), 271-275.
3. J. Bang-Jensen and G. Gutin, Digraphs: Theory, algorithms and applications, Springer, London, 2001.
4. J. M. Le Bars, Counterexample of the 0-1 law for fragments of existential second-order logic; an overview, Bull. Symbolic Logic 9 (2000), 67-82.
5. ._ The 0-1 law fails for frame satisfiability of propositional model logic, Proceedings of the 17th Symposium on Logic in Computer Science (2002), 225-234.
6. C. Berge, Graphs, North-Holland, Amsterdam, 1985.
7. C. Berge and P. Duchet, Recent problems and results about kernels in directed graphs, Discrete Math. 86 (1990), 27-31.
8. E. Boros and V. Gurvich, Perfect graphs, kernels and cores of cooperative games, Discrete Math. 306 (2006), 2336-2354.
9. P. Delgado-Escalante and H. Galeana-Sánchez, Restricted domination in arc-coloured digraphs, AKCE Int. J. of Graphs Comb. 11 (2014), no. 1, 95-104.
10. P. Duchet, Kernels in directed graphs: a poison game, Discrete Math. 115 (1993), 273-276.
11. A. S. Fraenkel, Combinatorial game theory foundations applied to digraph kernels, E-JC 4 (1997), 17.
12._, Combinatorial games: selected bibliography with a succinct gourmet introduction, E-JC \#DS2 (2012), 1-109.
12. V. Linek and B. Sands, A note on paths in edge-coloured tournaments, Ars Combin. 44 (1996), 225-228.
13. W. Lochet N. Bousquet and S. Thomassé, A proof of the Erdős-Sans-Sauer-Woodrow conjecture, J. Combin. Theory Ser. B. 137 (2019), 316-319.
```
Instituto de Matemáticas
UNAM
Ciudad Universitaria
Coyoacán 04510
CDMX, MEXICO
E-mail address: hgaleana@matem.unam.mx
Instituto de Matemáticas UNAM
Ciudad Universitaria
Coyoacán 04510
CDMX, MEXICO
E-mail address: eugenia@im.unam.mx
```


[^0]:    Received by the editors October 23, 2014, and in revised form December 9, 2020.
    The first author was supported by UNAM-DGAPA-PAPIIT with grant number IN102320, and by CONACyT-FORDECyT-PRONACES/39570/2020. The second author was supported by UNAM-DGAPA-PAPIIT with grant number IN106811.

