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H-ABSORBENCE AND H-INDEPENDENCE IN

3-QUASI-TRANSITIVE H-COLOURED DIGRAPHS.

HORTENSIA GALEANA-SÁNCHEZ AND EUGENIA O’REILLY-REGUEIRO

Abstract. In this paper we prove that if D is a loopless asymmetric
3-quasi-transitive arc-coloured digraph having its arcs coloured with the
vertices of a given digraph H, and if in D every C4 is an H-cycle and
every C3 is a quasi-H-cycle, then D has an H-kernel.

1. Introduction

The concepts of independence, absorbing set, kernel, and colouring of
digraphs have been studied for quite some time (see Section 2 for definitions).
For example, a digraph always has a set K of pairwise nonadjacent vertices
such that any other vertex has directed distance at most two to at least
one vertex in K (the semikernel), but it need not have a set of pairwise
nonadjacent vertices such that any other vertex has directed distance one
to at least one vertex in it (the kernel), that is, replacing distance two by
distance one. There are many applications of kernels in different topics of
mathematics (see, for instance, [4, 5, 10, 11]) and they have been studied
by several authors. Interesting surveys of kernels in digraphs can be found
in [8, 12]. This has been generalised in many ways by colouring the arcs and
asking for each vertex not in K to have a directed path with some specified
properties to some vertex in K. See, among others [1, 9]. This paper is
concerned with colouring the arcs of a digraph D with vertices of another
digraph H and showing that D has a kernel when the paths in question are
obtained from H and D is 3-quasi-transitive.

2. Preliminaries

For general concepts and notation, we refer the reader to [3, 6]. A digraph
D has a vertex set V (D) and an arc set A(D). An arc is an element of
(V (D))2 and is written (u, v); loops (u = v) are allowed. All paths and
cycles in digraphs in this paper are directed and cycles are elementary. A
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path (cycle) of length n (n a positive integer), n ≥ 1 for paths, (n ≥ 2 for
cycles) will be Pn = (u0, . . . , un) (Cn = (u0, . . . , un = u0), so the length is the
number of arcs on it; all arcs and vertices are distinct. An arc (u, v) ∈ A(D)
is asymmetric if u 6= v and (v, u) 6∈ A(D), and it is symmetric if both (u, v)
and (v, u) are in A(D). A walk in D is an alternating sequence of vertices and
arcs (u0, e1, u2, e2, . . . en, un) with ei = (ui−1, ui); this definition is needed in
particular if D is a multidigraph, i.e. a digraph where multiple arcs between
the same pair of vertices may exist. Paths and cycles are particular walks.
Our digraphs may have loops but no multiple arcs, unless otherwise stated.
A digraph is asymmetric if all of its arcs are asymmetric. Note that in such
a D, every walk of length three with distinct endpoints is a path. A digraph
D is 3-quasi-transitive if whenever (x, y), (y, w), (w, z) ∈ A(D), x, y, w, z
pairwise distinct, then one of (x, z), (z, x) is in A(D). A set N ⊆ V (D) is
absorbent if from any vertex not in N there is a path to some vertex in N .
It is independent is there are no arcs between the vertices of N . A set which
is both absorbent and independent is called a kernel. Kernels have found
many uses (as stated in Section 1, see [4, 5, 10, 11]). These ideas can be
generalised. For example, the arcs of D can be coloured, the paths can be
required to be monochromatic and the set deemed independent if there are
no monochromatic paths between them (this was done by Sands, Sauer, and
Woodrow in [2]) and the conjecture, attributed to Erdős, that if k colours
are used, than the kernel size is bounded by a function of k was only proved
recently by Thomassé et al. (see [14]). We explore another way of defining
a kernel.

In the rest of the paper, we assume that D is a loopless asymmetric 3-
quasi-transitive digraph and that H is a digraph possibly with loops. We
say that D is H-arc-coloured if there is a mapping c : A(D) −→ V (H). We
will forgo the notation (D,H, c) but will assume them fixed once given and
most of the time we will speak of “colours” when we mean the vertices of H.
An H-walk in D is a path (u0, . . . , un) such that c(u0), . . . , c(un) is a walk
in H. This was introduced by Linek and Sands in [13]. Building on this,
Arpin and Linek defined an H-walk absorbing set as a set N such that from
any vertex not in N there is an H-walk to some vertex in N . Similarly, a
set N is H-walk independent if there are no H-walks between the vertices of
N . As expected, an H-walk kernel is a set that both H-walk absorbing and
H-walk independent.

Similarly, we can define an H-cycle in D and an H-uv path. If C is a
cycle (u0, . . . , un) in D such that (c(u0), . . . , c(un)) is a closed walk in H
then C is an H-cycle in D. If (u = u0, . . . , un = v) is a uv-path in D such
that (c(u0), . . . , c(un)) is a walk in H it is an H-uv-path. We do not require
that the walk have distinct endpoints. It particular, if H has no arcs other
than loops, all H-cycles and H-paths will be monochromatic. If a cycle C of
length n in D contains an H-path of length at least n− 1, it will be called
a quasi-H-cycle (note an H-cycle is one).
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We finish this section with two more definitions. Given an H-coloured
digraph D, its H-closure C(D) is the multidigraph on the vertex set V (D)
with A(C(D)) = A(D) ∪ {(u, v) : there is a H − uv-path in D}. Recall
that a tournament is a complete oriented graph, that is, a digraph any two
of whose vertices are connected by exactly one arc (so a tournament is an
asymmetric digraph).

3. Results

We will use the following theorem (in which more than one arc between
the same pair of vertices is allowed):

Theorem 3.1 (Berge–Duchet [7]). Let D be a digraph. If every directed
cycle of D has at least one symmetric arc, then D has a kernel.

The following lemma is essential for the proof of our main result:

Lemma 3.2. If D is an H-arc-coloured digraph such that every cycle γ in
C(D) has a symmetric arc, then D has an H-kernel.

Proof. Let D be an H-arc-coloured digraph such that every cycle in C(D)
has a symmetric arc. By Theorem 3.1 this implies C(D) has a kernel, which
in turn implies D has an H-kernel. �

We give a well-known result in digraphs:

Lemma 3.3. Let D be a digraph and x, y ∈ V (D). Then every xy-walk in
D contains an xy-path in D.

Lemma 3.4. Let D be an asymmetric 3-quasi-transitive digraph, and u, v ∈
V (D) such that there is a uv-path P of length n and no vu-path. Then one
of the following holds:

(1) (u, v) ∈ A(D) (when n is odd), or
(2) there is a vertex w ∈ D such that (u,w) and (w, v) are arcs in D

(when n is even).

Proof. Let D be an asymmetric 3-quasi-transitive digraph, and u, v ∈ V (D)
such that there is a path P = (u = w0, w1, . . . , wn = v) and no vu-path. We
have two cases:
Case 1: n odd.

We will prove, by induction on n, that (u, v) ∈ A(D). If n = 3 then there
are vertices w1 and w2 in V (D) such that P = (u,w1, w2, v) (and all these
vertices are distinct). Since D is 3-quasi-transitive, either (u, v) or (v, u)
is in A(D). Since we assumed (v, u) /∈ A(D), we conclude (u, v) ∈ A(D),
which proves the basis of our induction.
Now suppose the result is true for all paths in D of length m such that
3 ≤ m < n = 2k + 1, and let u, v ∈ V (D) such that there is a path
P = (u = w0, w1, . . . wn = v) of length n = 2k + 1 and there is no vu-
path in D. Since D is 3-quasi-transitive, either (w0, w3) or (w3, w0) is in
A(D).
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If (w0, w3) ∈ A(D), then there is a path P ′ = (w0, w3, . . . , wn) in D
with length 2k − 1, and no wnw0-path, so by the induction hypothesis,
(w0 = u, v = wn) ∈ A(D) and we are done.
Now suppose (w3, w0) ∈ A(D), and consider the path (which is part of
P ) Q = (w2, . . . , wn), of length 2k− 1. If there is a path from wn to w2,
then there is a directed walk

(wn, . . . , w2, w3, w0),

which by Lemma 3.3 contains a wnw0-path, contradicting our assump-
tion. So there is no path from wn to w2, and by our induction hypothesis,
(w2, wn) ∈ A(D), hence there is a path (w0, w1, w2, wn) in D, and since
there is no path from wn to w0 and D is 3-quasi-transitive, we conclude
(w0, wn) ∈ A(D).

Case 2: n is even.
As above, we will prove the result by induction on n, so first let n = 2,
and the proof is immediate. For the sake of clarity, now let n = 4, so P =
(w0, w1, w2, w3, w4). Since P is a path, these vertices are all distinct, and
D 3-quasi-transitive implies either (w0, w3) ∈ A(D) or (w3, w0) ∈ A(D),
and either (w1, w4) ∈ A(D) or (w4, w1) ∈ A(D). If both (w3, w0) and
(w4, w1) are in A(D), then (w4, w1, w2, w3, w0) is a path from w4 to w0,
a contradiction, so at least one of (w0, w3) ∈ A(D) or (w1, w4) ∈ A(D)
holds. Then (w0, w3, w4) and (resp. or) (w0, w1, w4) are paths (resp. is a
path) in D, which proves the lemma for n = 4.
For the induction hypothesis, suppose the result is true for all paths in D
of length m such that 6 ≤ m ≤ n− 2 and let P = (u = w0, w1, . . . , wn−2,
wn−1, wn = v) be a path in D such that there is no wnw0-path in D.
Since P is a path, w0, . . . , wn are all distinct, and since D is 3-quasi-
transitive, for every wi, wi+3 with 0 ≤ i ≤ n−3 either (wi, wi+3) ∈ A(D)
or (wi+3, wi) ∈ A(D).
If (wi+3, wi) ∈ A(D) ∀i = 0, . . . , n− 3 then

(wn, wn−3, wn−2, wn−1, wn−4, wn−3, wn−2, . . . , w1, w2, w3, w0)

is a directed walk from wn to w0, which by Lemma 3.3 contains a wnw0-
path, a contradiction.
Therefore there is an i ∈ {0, . . . , n− 3} such that (wi, wi+3) ∈ A(D), the
path P ′ = (w0, . . . , wi, wi+3, . . . , wn) has length n − 2 and there is no
path from wn to w0, so by our induction hypothesis there is w ∈ V (D)
such that (w0, w) and (w,wn) are in A(D), and the proof is complete.

�

Lemma 3.5. Let H be any digraph, D an H-arc-coloured asymmetric 3-
quasi-transitive digraph such that every C4 in D is an H-cycle, and u, v ∈
V (D) such that there is an H-uv-path P of length n and no H-vu-path.
Then either:

(1) (u, v) ∈ A(D) (when n is odd), or
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(2) there exists w ∈ V (D) such that (u,w) and (w, v) are arcs in D
(when n is even).

Proof. Let D be an H-arc-coloured asymmetric 3-quasi-transitive digraph
with every C4 an H-cycle, and suppose u, v ∈ V (D) are such that there is an
H-uv-path P and there is no H-vu-path. Let P = (u = w0, w1, . . . , wn = v)
be an H − uv-path of length n. If n = 1 or 2, then we are done.

If n = 3 then D being 3-quasi-transitive implies either (w0, w3) ∈ A(D) or
(w3, w0) ∈ A(D), the latter is an H-vu-path, a contradiction, so (w0, w3) ∈
A(D), proving the lemma for n = 3. Suppose then that there is an H − uv-
path of length at least 4, and let P = (u = w0, w1, . . . , wn = v) be such a
path of minimum length n ≥ 4, (and there is no H − vu-path).

First we will prove by induction on i that either the lemma holds, or
for every wi, wj with 0 ≤ i < j ≤ n and j − i ≥ 2, (wi, wj) /∈ A(D),
that is, if there is an arc between wi and wj then it is (wj , wi), i.e., it goes
“backwards”.

We will do the basis of our induction for both w0 and w1. Consider the
set of vertices {wj} of P such that there is an arc between w0 and wj , with
j ≥ 2, and note w3 is one such vertex since D is 3-quasi-transitive, so this
set is not empty. If for all such wj the arc (wj , w0) is in A(D), then we are
done, so suppose there is at least one vertex wj such that (w0, wj) ∈ A(D),
and let j be the maximum subscript such that (w0, wj) ∈ A(D). If j = n
then (w0, wn) ∈ A(D) and the lemma is proved. Similarly, if j = n− 1 then
(w0, wn−1) and (wn−1, wn) are in A(D), also proving the lemma, so suppose
j ≤ n− 2.

Since D is 3-quasi-transitive, (w0, wj) ∈ A(D) implies there is an arc
between w0 and wj+2, and j being the maximum subscript such that the
arc forces (wj+2, w0) ∈ A(D), i.e., it goes “forwards” (so j ≤ n − 3 since
there is no H − vu-path). Then (w0, wj , wj+1, wj+2) is a C4 in D, and is
therefore an H-cycle, which makes (w0, wj , . . . , wn) an H-uv-path of length
at least 4 (since j ≤ n−3) and shorter than n, a contradiction. We conclude
that for every wj ∈ P such that there is an arc between w0 and wj and j ≥ 2,
(wj , w0) ∈ A(D).

We now prove the result for w1 in the same way. If for every wj ∈ P (with
j > 2) such that there is an arc between w1 and wj the arc (wj , w1) ∈ A(D),
then we are done. So consider wj to be the vertex furthest from w1 such
that (w1, wj) ∈ A(D) and suppose j > 2. As above, if j = n then the lemma
follows. If j = n−1 then since D is 3-quasi-transitive, there is an arc between
w0 and wn. If (w0, wn) ∈ A(D) we are done, and if (wn, w0) ∈ A(D) then
there is an H-vu-path in D, a contradiction. Therefore 2 < j ≤ n−2. Since
D is 3-quasi-transitive, there is an arc between w0 and wj+1, and from the
previous paragraph we conclude (wj+1, w0) ∈ A(D) so (w0, w1, wj , wj+1, w0)
is a C4 in D and therefore an H-cycle, so as above, (w0, w1, wj , . . . , wn) is an
H-uv-path in D of length shorter than n and greater than 3, a contradiction.
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Now for our induction hypothesis suppose that for every i < k, if there is
an arc between wi and wj and j > i+ 1, then (wj , wi) ∈ A(D), and consider
wk. If k = n or n − 1 then we have nothing to prove, so 1 < k < n − 1.
Suppose also there is j > k+ 1 such that (wk, wj) ∈ A(D), and let m be the
maximum of these subscripts j.

If m = n then (wk, wn) ∈ A(D), also (wk−2, wk−1) and (wk−1, wk) are in
A(D), and since D is 3-quasi-transitive, there is an arc between wk−2 and
wn, which by our induction hypothesis must be (wn, wk−2).

Then (wk−2, wk−1, wk, wn) is a C4 in D which must therefore be an H-
cycle, which implies (w0, . . . , wk, wn) is an H-uv-path. If k = 2 then this
path has length 3, in which case (w0, wn) ∈ A(D) and the lemma holds.
Otherwise this path is of length at least 4 and shorter than n, a contradiction.

If m = n − 1 then (wk−1, wk), (wk, wn−1), and (wn−1, wn) are arcs in
D which is 3-quasi-transitive, this implies there is an arc between wk−1

and wn, which by induction hypothesis must be (wn, wk−1). This im-
plies the cycle (wk−1, wk, wn−1, wn) is a C4 in D, which is an H-cycle, so
(w0, . . . , wk, wn−1, wn) is an H-uv-path of length shorter than n and greater
than 3, a contradiction.

Finally, if m < n−1 we consider the following arcs: (wk−1, wk), (wk, wm),
and (wm, wm+1). Since D is 3-quasi-transitive, there is an arc between wk−1

and wm+1. From the definition of k, (wm+1, wk−1) ∈ A(D), and the cycle
(wm+1, wk−1, wk, wm, wm+1) is a C4 in D, so it is an H-cycle. This implies
(w0, . . . , wk, wm, . . . , wn) is an H-uv-path in D of length shorter than n and
greater than 3, again, a contradiction, with which the proof or our claim is
complete.

Since D is 3-quasi-transitive, for every i = 0, . . . , n − 3 either (wi, wi+3)
or (wi+3, wi) is in A(D), and by the claim we have just proved, (wi+3, wi) ∈
A(D). This implies that for each i = 0, . . . , n−3, there is a C4 in D, namely
(wi, wi+1, wi+2, wi+3), which is an H-cycle.

This yields an H-vu-walk in D, namely

(wn, wn−3, wn−2, wn−1, wn−4, . . . , w1, w2, w3, w0),

which by Lemma 3.3 contains an H-vu-path, a contradiction, so the conclu-
sions of the lemma hold. �

Lemma 3.6. Let H be a digraph and D an H-arc-coloured asymmetric 3-
quasi-transitive digraph such that every C4 in D is an H-cycle, and every C3

in D is a quasi-H-cycle. Suppose there is an asymmetric cycle γ in C(D).
Then the length of γ is at least 4.

Proof. If γ is an asymmetric cycle in C(D), then it has length at least 3, so
suppose it is 3 and γ = (x, y, z) is asymmetric. Then by Lemma 3.5 there
are xy-, yz-, and zx-paths with length 1 or 2, so we have four cases:
Case 1: They all have length 1, and (x, y, z) is a directed triangle in D.
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In this case, since all directed triangles in D are quasi-H-cycles, there is
an H-path of length at least two, say, (x, y, z) that is, there is an H-xz-
path, which induces the arc (x, z) in C(D), this is a contradiction as we
assumed the cycle γ asymmetric.

Case 2: One of the paths, say, xy has length 2 in D, and the others have
length 1, that is, there is a vertex x0 in D such that (x, x0, y, z) is a cycle
in D.

This is a C4, so it must be an H-cycle, hence there is an H-path from
any vertex to any other vertex, that is, γ is symmetric, a contradiction.

Case 3: Two of the paths, say xy and yz are of length 2, the other is of
length 1 in D.

There are vertices x0 and y0 in D such that (x, x0, y, y0, z) is a cycle in D.
Since D is 3-quasi-transitive and (y, y0, z, x) is a path in D, either (x, y)
or (y, x) is in A(D). If (y, x) ∈ A(D) then this is a symmetric arc in γ, a
contradiction. If, on the other hand, (x, y) ∈ A(D) then (y, y0, z, x) is a
C4 in D, and must therefore be an H-cycle, which implies the arc (y, x)
is in γ contradicting the assumption of γ being asymmetric.

Case 4: The three paths have length 2 in D, so there are vertices x0, y0,
and z0 in D such that (x, x0, y, y0, z, z0) is a cycle in D.

Since D is 3-quasi-transitive, either (x, y0) or (y0, x) is in A(D). Suppose
first that (x, y0) ∈ A(D), so (x, y0, z, z0) is a C4 in D, and hence an H-
cycle. Similarly, either (z, x0) or (x0, z) is in A(D). If (z, x0) ∈ A(D)
then (z, x0, y, y0) is a C4 in D, and therefore also an H-cycle. Given the
overlap of these two cycles, the path (x0, y, y0, z, z0, x) is is an H-path,
so the arc (y, x) ∈ γ, a contradiction. Suppose now that (x0, z) ∈ A(D).
Then (x0, z, z0, x) is a C4 in D, and hence an H-cycle. Again, the overlap
of these two cycles implies the path (y0, z, z0, x, x0) is an H-path. Also,
either (y, z0) or (z0, y) is in A(D). Following the same reasoning as above,
if (y, z0) ∈ A(D) then there is an H- path in D from z to y, so in γ the
arc (y, z) is symmetric, a contradiction. If, however, (z0, y) ∈ A(D) then
in D there is a H-path from y to x, so the arc (x, y) in γ is symmetric,
again, a contradiction.
Now suppose (y0, x) ∈ A(D). The proof is analogous, due to symmetry.

�

Lemma 3.7. Let H be any digraph and D an H-arc-coloured asymmetric
3-quasi-transitive digraph such that every C4 in D is an H-cycle, every C3

in D is a quasi-H-cycle, and let C(D) be the closure of D. Suppose there
is an asymmetric cycle γ in C(D) and consider γ′ to be the corresponding
closed directed walk in D, that is, the vertices u, v and arcs (u, v) of γ when
(u, v) ∈ A(D) plus the vertices w and arcs (u,w) and (w, v) in D when
(u, v) ∈ A(C(D)) \A(D).

If the vertices of the closed directed walk γ′ are x0, x1, . . . , xn, then
(x0, x2k+1) ∈ A(D) for every k such that 3 ≤ 2k+1 < n and for any x0 ∈ γ.
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Proof. Let x0, x1, . . . , xn be the vertices in γ′. Since D is 3-quasi-transitive
there is an arc between x0 and x3. Suppose (x3, x0) ∈ A(D). Then
(x0, x1, x2, x3) is a C4 in D (all vertices are distinct) and is therefore an
H-cycle. If x1 ∈ γ then there is an H-path from x1 to x0, contradicting
the assumption that γ is asymmetric. If x1 /∈ γ, then x2 ∈ γ and the same
reasoning applies. Therefore (x0, x3) ∈ A(D).

If n = 4 or 5 then we are done, so suppose n > 5. Consider x5 so x5 6= x0

and note x5 6= x4. Also, D asymmetric implies x5 6= x3. If x5 = x1 then
(x0, x5) ∈ A(D). If x5 = x2 then this vertex is not in γ, which forces x1, x3,
and x4 to be all in γ. Since D is 3-quasi-transitive and (x0, x3), (x3, x4),
and (x4, x2) are all arcs in D, there must be an arc between x0 and x2.
If (x2, x0) ∈ A(D) then (x0, x3, x4, x2) is a C4 in D, and so it must be an
H-cycle, which makes the arc (x3, x4) ∈ γ symmetric, a contradiction.

Finally if x5 is none of the previous vertices since (x0, x3) ∈ A(D) and
D is 3-quasi-transitive then either (x0, x5) ∈ A(D) or (x5, x0) ∈ A(D). If
(x5, x0) ∈ A(D) then (x0, x3, x4, x5) is a C4 in D, hence an H-cycle, which
implies an arc in γ is symmetric, a contradiction. Therefore (x0, x5) ∈ A(D).

Following the same reasoning, by induction, suppose the lemma is not
true and let j be the first subscript such that (x0, x2j+1) /∈ A(D) (with
2j + 1 < n). Since (x0, x2j−1) ∈ A(D) and D is 3-quasi-transitive, we
conclude (x2j+1, x0) ∈ A(D). We observe x0 6= x2j−1, x2j , and x2j+1. Also,
x2j 6= x2j−1 and x2j+1, and since D is asymmetric x2j−1 6= x2j+1. That is,
all four vertices are distinct. Then (x0, x2j−1, x2j , x2j+1) is a C4 in D, hence
an H-cycle. If x2j−1 ∈ γ then so is at least one of x2j and x2j+1, this implies
there is a symmetric arc in γ, a contradiction. If x2j−1 /∈ γ then x2j ∈ γ.
If x2j+1 ∈ γ then again we get a symmetric arc in γ, a contradiction. Now
suppose neither x2j−1 nor x2j+1 are in γ (and x2j ∈ γ).

We go back to x2j−3 and note that (x0, x2j−3) ∈ A(D) (our first two
steps of induction allow us to do this). We also note x2j−2 ∈ γ. Since D is
3-quasi-transitive, and (x2j+1, x0), (x0, x2j−3), and (x2j−3, x2j−2) are all in
A(D), there must be an arc between x2j+1 and x2j−2 (and these are distinct
vertices as one is in γ and the other one is not). If (x2j+1, x2j−2) ∈ A(D)
then (x2j−2, x2j−1, x2j , x2j+1) is a C4 in D, and hence an H-cycle. This
makes the arc (x2j−2, x2j) in γ symmetric, a contradiction.

If, on the other hand, (x2j−2, x2j+1) ∈ A(D), then (x0, x2j−3, x2j−2, x2j+1)
is a C4 in D, so it is an H-cycle, and as it intersects (x0, x2j−1, x2j , x2j+1) in
the arc (x2j+1, x0), the arcs in these two C4s all have an H-colouring. This
yields an H-path from x2j to x2j−2 which makes the arc (x2j−2, x2j) ∈ γ
symmetric, a contradiction with which our proof is now complete. �

Now we prove our main result.

Theorem 3.8. Let H be any digraph and D an H-arc-coloured asymmetric
3-quasi-transitive digraph such that every C4 in D is an H-cycle and every
C3 in D is a quasi-H-cycle. Then D has an H-kernel.
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Proof. Let H be any digraph and D be an H-arc-coloured asymmetric 3-
quasi-transitive digraph such that every C4 is an H-cycle and every C3 is a
quasi-H-cycle, and consider C(D), the closure of D. If every cycle in C(D)
has a symmetric arc, then by Theorem 3.1 C(D) has a kernel, which by
Lemma 3.2 implies D has an H-kernel, and we are done. So suppose in
C(D) there is an asymmetric cycle, and let γ be such a cycle of minimum
length, which, by Lemma 3.6 is at least 4.

We consider γ′ = (x0, . . . , xn) the corresponding closed directed walk in
D, that is, the vertices u, v and arcs (u, v) of γ when (u, v) ∈ A(D) plus the
vertices w and arcs (u,w) and (w, v) in D when (u, v) ∈ A(C(D))\A(D). We
can assume w.l.o.g. that x0 ∈ V (γ), and by Lemma 3.7 (x0, x2j+1) ∈ A(D)
for every j such that 1 ≤ 2j + 1 < n. We now consider two cases, according
to the parity of n ≥ 4.

First suppose n is odd, and consider the vertices x0, xn, xn−1, and xn−2.
Note x0 is different from any of the other vertices, otherwise the length of
γ would be shorter. Also, xn 6= xn−1 6= xn−2 since they are adjacent, and
xn 6= xn−2 because D is asymmetric. Therefore (x0, xn−2, xn−1, xn) is a C4

and so it is an H-cycle. Since x0 ∈ γ then at least one of xn and xn−1 is in
γ. If xn ∈ γ then the arc (xn, x0) ∈ γ is symmetric, and if xn /∈ γ then the
arc (xn−1, xn) ∈ γ is symmetric, in both cases we have a contradiction.

Now suppose n is even. As above, all the vertices x0, xn, xn−1, and xn−2

are distinct. Since D is 3-quasi-transitive, there is an arc between x0 and
xn−2. If (x0, xn−2) ∈ A(D) then as in the previous paragraph there is a
symmetric arc in γ, a contradiction. Therefore (xn−2, x0) ∈ A(D). Since
(x0, xn−1) ∈ A(D), if xn /∈ γ then xn−1 ∈ γ and γ has a symmetric arc, a
contradiction which implies xn ∈ γ. Also, the vertices (x0, xn−1, xn) form a
C3, which is a quasi-H-cycle. If the arcs (x0, xn−1) and (xn−1, xn) form an
H-path, then there is an H-path in D from x0 to xn, which are consecutive
vertices in γ, so in γ there is a symmetric arc, a contradiction.

Now suppose there is an H-path from xn to xn−1. This forces xn−1 /∈ γ,
otherwise (xn−1, xn) would be a symmetric arc in γ, a contradiction. Now
xn−1 /∈ γ, forces xn−2 ∈ γ. Since xn−2 6= x0, xn, and xn−1, and D is 3-
quasi-transitive, there is an arc between xn−2 and xn (because of the path
(xn−2, x0, xn−1, xn)). If (xn, xn−2) ∈ A(D) then it is a symmetric arc in γ,
and if (xn−2, xn) ∈ A(D) then in D these two vertices are at distance 1, so
the existence of xn−1 in the cycle γ′ is a contradiction. We conclude the
arcs (xn−1, xn) and (xn, x0) form an H-path (and xn−2 ∈ γ).

We have proved that if n is even and we consider a vertex in γ′ which is
also in γ, then the preceding vertex is also in γ and the arc in γ′ of which
this vertex is an endpoint forms an H-path with the preceding arc. Going
backwards by induction, we conclude every vertex of γ′ is in γ, and γ′(= γ)
is an H-cycle, and therefore it has a symmetric arc, a contradiction.

We have proved every directed cycle in C(D) has a symmetric arc. This,
by Theorem 3.1 implies C(D) has a kernel, which in turn by Lemma 3.2
implies D has an H-kernel. �
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