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A LOWER BOUND FOR RADIO k-CHROMATIC NUMBER

OF AN ARBITRARY GRAPH

SRINIVASA RAO KOLA AND PRATIMA PANIGRAHI

Abstract. Radio k-coloring is a variation of Hale’s channel assignment
problem, in which one seeks to assign positive integers to the vertices
of a graph G, subject to certain constraints involving the distance be-
tween the vertices. Specifically, for any simple connected graph G with
diameter d and a positive integer k, 1 ≤ k ≤ d, a radio k-coloring of
G is an assignment f of positive integers to the vertices of G such that
|f(u)−f(v)| ≥ 1+k−d(u, v), where u and v are any two distinct vertices
of G and d(u, v) is the distance between u and v. In this paper we give
a lower bound for the radio k-chromatic number of an arbitrary graph
in terms of k, the total number of vertices n and a positive integer M
such that d(u, v) + d(v, w) + d(u,w) ≤M for all u, v, w ∈ V (G). If M is
the triameter we get a better lower bound. We also find the triameter
M for several graphs, and show that the lower bound obtained for these
graphs is sharp for the case k = d.

1. Introduction

The channel assignment problem is the problem of assigning frequencies to
the transmitters in some optimal manner and with no interferences; see Hale
[7]. Griggs and Yeh [6] adapted this to graphs as follows: For nonnegative
integers p1, . . . , pm, an L(p1, . . . , pm)-coloring of a graph G is a coloring of
its vertices by nonnegative integers such that vertices at distance exactly
i receive labels that differ by at least pi. The maximum label assigned to
any vertex is called the span of the coloring. The goal of the problem is to
construct an L(p1, . . . , pm)-coloring of the smallest span. Chartrand et al. [3]
introduced a variation L(p1, . . . , pm)-coloring known as radio k-colorings of
graphs. A radio k-coloring of a simple connected graph G, 1 ≤ k ≤ diam(G),
is an assignment f of positive integers to the vertices of G such that for any
two distinct vertices u and v, |f(u)− f(v)| ≥ 1 + k − d(u, v), where d(u, v)
is the distance between u and v. The span of f , rck(f), is max{f(u) : u ∈
V (G)}. The radio k-chromatic number, rck(G), of G is the minimum of
spans of all possible radio k-colorings of G. A radio k-coloring having the
span rck(G) is called a minimal radio k-coloring. Radio k-colorings have
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been studied by many authors [2, 4, 8, 9, 10, 11, 12, 13, 14, 15, 19]. For
some specific values of k there are specific names for radio k-colorings as well
as the radio k-chromatic number in the literature, which are given below in
the table:

k Name of coloring rck(G)
1 Usual Chromatic number, χ(G)

diam(G) Radio Radio number, rn(G)
diam(G)− 1 Antipodal Antipodal number, ac(G)
diam(G)− 2 Nearly antipodal Nearly antipodal number, ac′(G)

Finding the radio k-chromatic number of graphs is highly non-trivial and
therefore is known for very few graphs. For a path Pn, rck(Pn) is known
for k = n − 1 [15], n − 2 [11], n − 3 [17], and n − 4 (n odd) [18]. For a
cycle Cn, the radio number was determined by Liu and Zhu [15], and the
antipodal number is known only for n ≡ 1, 2, 3 (mod 4) (see [1, 8]). The
radio number of square of paths and cycles have been determined in [14]
and [13] respectively. For the current status of radio k-chromatic number
of graphs see [16]. Prior to this paper, no bound for the radio k-chromatic
number of an arbitrary graph was known. In this paper, we give a lower
bound for the radio k-chromatic number of an arbitrary graph in terms of k,
the total number of vertices n, and a positive integer M with the property
d(u, v) + d(v, w) + d(u,w) ≤M for all u, v, w ∈ V (G). The value of M can
be taken as a large positive real number, but it is of no use, as the smallest
possible value of M gives a better lower bound of the graph. That is, if M
takes the triameter (max{d(u, v) + d(v, w) + d(u,w) : u, v, w ∈ V (G)}, see
[5] for instance) of G then we get a better lower bound. In this article we
find the smallest value of M for several graphs: cycles, prism graphs, and
stacked book graphs. Furthermore, we show that the lower bound obtained
is sharp with the radio number for many of these graphs. For any two graphs
G1 and G2, we also give a lower bound for the radio k-chromatic number of
their Cartesian product G1�G2 in terms of their respective M values. For
any graph G, we find a lower bound for the radio k-chromatic number of
Gr, the rth power of G in terms of M .

2. Lower Bound for rck(G)

In this section, we give the main result of the paper, i.e., a lower bound for
radio k-chromatic number of an arbitrary graph G. The following definition
may be found in [11].

Definition 2.1. For any radio k-coloring f of a simple connected graph G
on n vertices and an ordering x1, x2, . . . , xn of vertices of G with f(xi) ≤
f(xi+1), 1 ≤ i ≤ n− 1, we define εi (or εfi if we wish to specify the coloring
f) as εi = (f(xi)− f(xi−1))− (1 + k − d(xi, xi−1)), 2 ≤ i ≤ n.

It is clear from the definition of radio k-coloring that εi ≥ 0 for all i.
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Lemma 2.2. For any radio k-coloring f of G,

rck(f) = (n− 1)(1 + k)−
n∑

i=2

d(xi, xi−1) +
n∑

i=2

εfi + 1,

where the xi’s are as taken in Definition 2.1.

Proof. Let f be a radio k-coloring of G, then

f(xn)− f(x1) =
n∑

i=2

[f(xi)− f(xi−1)] =
n∑

i=2

[1 + k − d(xi, xi−1) + εfi ]

= (n− 1)(1 + k)−
n∑

i=2

d(xi, xi−1) +
n∑

i=2

εfi .

Since f(x1) = 1, we get,

(2.1) f(xn) = (n− 1)(1 + k)−
n∑

i=2

d(xi, xi−1) +
n∑

i=2

εfi + 1.

�

Remark: From Lemma 2.2, we observe that for any graph G, rck(G) is the
minimum value of a function which consists of a constant term (i.e., (n −
1)(k + 1) + 1) and two variable terms; the distance sum

∑n
i=2 d(xi, xi−1),

and the ε-sum
∑n

i=2 εi. Therefore any radio k-coloring f , if it exists, must
have

∑n
i=2 εi = 0 and maximum distance sum

∑n
i=2 d(xi, xi−1) among all

possible radio k-colorings to be minimal.

Theorem 2.4. In a simple connected graph G on n vertices, if d(x, z) ≤
M − (d(x, y) + d(y, z)) for a fixed positive real number M and any three
vertices x, y, and z, if ak denotes the quantity

(n−1)(3(k+1)−M)
4 + 1,

if n odd, M 6≡ k (mod 2);
(n−1)(3(k+1)−(M−1))

4 + 1,

if n odd, M ≡ k (mod 2);
(n−2)(3(k+1)−M)

4 + k + 2− diam(G),

if n even, M 6≡ k (mod 2);
(n−2)(3(k+1)−(M−1))

4 + k + 2− diam(G),

if n even, M ≡ k (mod 2);

we have rck(G) ≥ ak.

Proof. Let f be a radio k-coloring of G and x1, x2, . . . , xn be an ordering
of vertices of G such that f(xi) ≤ f(xi+1), 1 ≤ i ≤ n − 1. For any three
vertices xi, xi+1, and xi+2, we have

(2.2) f(xi+1)− f(xi) = 1 + k − d(xi, xi+1) + εfi+1
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and

(2.3) f(xi+2)− f(xi+1) = 1 + k − d(xi+1, xi+2) + εfi+2.

By adding (2.2) and (2.3), we get

(2.4) f(xi+2)−f(xi) = 2(1 +k)− [d(xi, xi+1) +d(xi+1, xi+2)] + εfi+1 + εfi+2.

Since f is a radio k-coloring, we have

(2.5) f(xi+2)− f(xi) ≥ 1 + k − d(xi, xi+2).

From (2.4) and (2.5),

2(1 + k)− [d(xi, xi+1) + d(xi+1, xi+2)] + εfi+1 + εfi+2 ≥ 1 + k − d(xi, xi+2).

Since d(x, z) ≤ M − (d(x, y) + d(y, z)), for every three vertices x, y, and z
in G, we have

2(1 + k)− [d(xi, xi+1) + d(xi+1, xi+2)] + εfi+1 + εfi+2

≥ 1 + k − [M − (d(xi, xi+1) + d(xi+1, xi+2))] .

That is,

(2.6) d(xi, xi+1) + d(xi+1, xi+2) ≤
M + k + 1

2
+
εfi+1 + εfi+2

2
.

Case 1: n 6≡ 0(mod 2):

Subcase(ii): M 6≡ (mod 2): Sub-subcase (a): Suppose that
n∑

i=2

d(xi, xi−1) ≤
(
n− 1

2

)(
M + k + 1

2

)
.

Then by equation (2.1), we have

f(xn) = (n− 1)(k + 1)−
n∑

i=2

d(xi, xi−1) +
n∑

i=2

εfi + 1

≥ (n− 1)(k + 1)−
n∑

i=2

d(xi, xi−1) + 1

≥ (n− 1)(k + 1)−
(
n− 1

2

)(
M + k + 1

2

)
+ 1

= (n− 1)

(
3(k + 1)−M

4

)
+ 1.

Sub-subcase (b): Here we suppose that
n∑

i=2

d(xi, xi−1) >

(
n− 1

2

)(
M + k + 1

2

)
.

Let
n∑

i=2

d(xi, xi−1) =

(
n− 1

2

)(
M + k + 1

2

)
+N,
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where N is a positive integer. Since
∑n

i=2 d(xi, xi−1) contains exactly (n−
1)/2 disjoint consecutive pairs, we get d(xi, xi+1)+d(xi+1, xi+2) > (M+k+
1)/2 for some triplets xi, xi+1, and xi+2.
Suppose that d(xij , xij+1)+d(xij+1, xij+2) > (M+k+1)/2, for j = 1, 2, . . . , l,
where ij is odd for each j. Let d(xij , xij+1) + d(xij+1, xij+2) = (M + k +
1)/2 +mj , where mj is a positive integer, 1 ≤ j ≤ l.
Now from equation (2.6),

M + k + 1

2
+
εfij+1 + εfij+2

2
≥ M + k + 1

2
+mj , 1 ≤ j ≤ l

implies

(2.7) εfij+1 + εfij+2 ≥ 2mj , 1 ≤ j ≤ l.

Since
n∑

i=2

d(xi, xi−1) =

(
n− 1

2

)(
M + k + 1

2

)
+N,

we have

(2.8) m1 +m2 + · · ·+ml ≥ N.
From equations (2.7) and (2.8), we have

n∑
i=2

εfi ≥ 2(m1 +m2 + · · ·+ml) ≥ 2N.

From equation (2.1), we have

f(xn) = (n− 1)(k + 1)−
n∑

i=2

d(xi, xi−1) +
n∑

i=2

εfi + 1.

Using this equality we find that:

(n− 1)(k + 1)−
n∑

i=2

d(xi, xi−1) +

n∑
i=2

εfi + 1

= (n− 1)(k + 1)−
[(

n− 1

2

)(
M + k + 1

2

)
+N

]
+

n∑
i=2

εfi + 1

≥ (n− 1)(k + 1)−
[(

n− 1

2

)(
M + k + 1

2

)
+N

]
+ 2N + 1

= (n− 1)(k + 1)−
(
n− 1

2

)(
M + k + 1

2

)
+N + 1

> (n− 1)(k + 1)−
(
n− 1

2

)(
M + k + 1

2

)
+ 1

= (n− 1)

(
3(k + 1)−M

4

)
+ 1.
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Since f is an arbitrary radio k-coloring of G,

rck(G) ≥ (n− 1)

(
3(k + 1)−M

4

)
+ 1

in this case. Notice that in subcase (i) we are not using the assumption that
(M + k+ 1)/2 is an integer; the result here is also true when (M + k+ 1)/2
is not an integer. However, since we can improve the lower bound in the
latter situation, we have the subcase (ii) below.
Case ii: M ≡ k(mod 2):

Subcase (ii): M ≡ k (mod 2). Sub-subcase (c): Suppose that
n∑

i=2

d(xi, xi−1) ≤
(
n− 1

2

)(
M + k

2

)
.

Then by equation (2.1), we have

f(xn) = (n− 1)(k + 1)−
n∑

i=2

d(xi, xi−1) +

n∑
i=2

εfi + 1

≥ (n− 1)

(
3(k + 1)− (M − 1)

4

)
+ 1.

Sub-subcase (d): Here we suppose that

n∑
i=2

d(xi, xi−1) >

(
n− 1

2

)(
M + k

2

)
.

Let
n∑

i=2

d(xi, xi−1) =

(
n− 1

2

)(
M + k

2

)
+ S,

where S is a positive integer. Since
∑n

i=2 d(xi, xi−1) contains exactly (n −
1)/2 disjoint consecutive pairs, we get d(xi, xi+1)+d(xi+1, xi+2) > (M+k)/2
for some triplet xi, xi+1, xi+2. Suppose that d(xij , xij+1) +d(xij+1, xij+2) >
M + k/2 for j = 1, 2, . . . , l, where ij is odd for each j. Let d(xij , xij+1) +
d(xij+1, xij+2) = M + k/2 +mj , where mj is a positive integer1 ≤ j ≤ l.
Now from equation (2.6),

M + k + 1

2
+
εfij+1 + εfij+2

2
≥ M + k

2
+mj , 1 ≤ j ≤ l

implies

(2.9) εfij+1 + εfij+2 ≥ 2mj − 1, 1 ≤ j ≤ l.

Since
n∑

i=2

d(xi, xi−1) =

(
n− 1

2

)(
M + k

2

)
+ S,

(2.10) m1 +m2 + · · ·+ml ≥ S.
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We assume l ≤ S as equation (2.10) remains true, since each mj , j =
1, 2, . . . , l, is a positive integer (if l > S, we neglect S − l triplets).
From equations (2.9) and (2.10), we have

n∑
i=2

εfi ≥ 2m1 − 1 + 2m2 − 1 + · · ·+ 2ml − 1 ≥ 2S − l ≥ S.

From equation (2.1), we have

f(xn) = (n− 1)(k + 1)−
n∑

i=2

d(xi, xi−1) +
n∑

i=2

εfi + 1

= (n− 1)(k + 1)−
[(

n− 1

2

)(
M + k

2

)
+ S

]
+

n∑
i=2

εfi + 1

≥ (n− 1)(k + 1)−
[(

n− 1

2

)(
M + k

2

)
+ S

]
+ S + 1

= (n− 1)(k + 1)−
(
n− 1

2

)(
M + k

2

)
+ 1

= (n− 1)

(
3(k + 1)− (M − 1)

4

)
+ 1.

Since f is an arbitrary radio k-coloring of G,

rck(G) ≥ (n− 1)

(
3(k + 1)− (M − 1)

4

)
+ 1.

The distance sum
∑n

i=2 d(xi, xi−1) consists of (n − 2)/2 disjoint pairs and
one single term. Similar to the n odd case, in sub-subcases (b) and (d),
we collect pairs of distances among these disjoint pairs such that the sum
of distances in each pair is strictly greater than (M + k + 1)/2, which
yields the equations (2.7) and (2.9). Since any distance term is less than
or equal to diam(G), we proceed similarly to the n odd case, replacing
((n− 1) /2) ((M + k + 1)/2)) by ((n− 2)/2) ((M + k + 1/2)) + diam(G) in
sub-subcases (a) and (b) and then replacing ((n− 1)/2) ((M + k)/2)) by
((n− 2)/2))((M + k)/2)) + diam(G) in sub-subcases (c) and (d) to get the
following:

rck(G) ≥

(n− 2)
[
3(k+1)−M

4

]
+ k + 2− diam(G), if M+k+1

2 ∈ Z;

k + 2− diam(G) + (n− 2)
[
3(k+1)−(M−1)

4

]
, if M+k+1

2 /∈ Z.

�

Remark: In the above theorem, we can see that a smaller value of M will
give a better lower bound for rck(G). Suppose that

M0 = inf{M : d(x, z) ≤M − [d(x, y) + d(y, z)], ∀x, y, and z ∈ G}.
It is clear that M0 ≤ 3 diam(G). Since we can have three vertices u, v, and
w such that d(u, v) + d(v, w) = 2 diam(G) − 1, we get 1 ≤ d(u,w) ≤ M −
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[d(u, v) + d(v, w)] = M − [2 diam(G)− 1], which implies 2 diam(G) ≤ M .
Therefore we have 2 diam(G) ≤M0 ≤ 3 diam(G).

3. Sharp Lower Bound for Radio k-chromatic Number of some
Graphs

In this section, we give a lower bound for radio k-chromatic number of
cycles Cn, stacked book graphs, and prism graphs before proceeding to prove
that for some of these graphs, the bound agrees with their radio number.

3.1. Cycles.

Lemma 3.1. For any three vertices x, y, and z in a cycle Cn, d(x, z) ≤
n− [d(x, y) + d(y, z)].

Proof. Let x, y, and z be any three vertices in Cn. If d(x, y) +d(y, z) ≤ n/2,
then we are done. Suppose that d(x, y) + d(y, z) > n/2. Then we get that
d(x, z) ≤ n− [d(x, y) + d(y, z)] if z lies on the shortest path between x and
y, and d(x, z) = n− [d(x, y) + d(y, z)] otherwise.

�

From Lemma 3.1 and Theorem 2.4, we get the following.

Theorem 3.2. For any cycle Cn,

rck(Cn) ≥



(n− 1)
(
3(k+1)−n

4

)
+ 1, if n is odd and k is even,

(n− 1)
(
3(k+1)−(n−1)

4

)
+ 1, if both n and k are odd,

(n− 2)
(
3(k+1)−n

4

)
+ 2k−n+4

2 , if n is even and k is odd,

(n− 2)
(
3(k+1)−(n−1)

4

)
+ 2k−n+4

2 , if both n and k are even.

One can verify that the lower bound of rck(Cn) obtained in Theorem 3.2
for k = diam(Cn), agrees with the radio number of Cn determined in [15].

In the subsection below we show that the triameter for the Cartesian prod-
uct of two graphs is the sum of the triameters of the graphs in the product.
By using this, we determine the triameters of stacked book graphs, grid
graphs and prism graphs. From Theorem 2.4, one observes that calculat-
ing the triameter of a graph gives a lower bound for the radio k-chromatic
number of the graph.

3.2. Cartesian Product of Graphs.

Definition 3.3. The cartesian product of any two graphs G1 and G2, de-
noted by G1�G2, is the graph whose vertex set is the Cartesian product
V (G1) × V (G2) and any two vertices (u, u′) and (v, v′) are adjacent if and
only if either u = v and u′ is adjacent with v′ or u′ = v′ and u is adjacent
with v.
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Theorem 3.4. If d(u, v) +d(v, w) +d(u,w) ≤M1 and d(u′, v′) +d(v′, w′) +
d(u′, w′) ≤ M2 for every three vertices u, v, w in G1 and u′, v′, w′ in G2,
then d(x, y) + d(y, z) + d(x, z) ≤M1 +M2 for every three vertices x, y, z in
G1�G2.

Proof. Let V (G1) = {u1, u2, . . . , un} and V (G2) = {v1, v2, . . . , vm}. From
the definition of Cartesian product of graphs, one sees that G1�G2 can be
obtained by taking n copies of G2: exactly one copy G1

2, G
2
2, . . . , G

n
2 for each

vertex of G1, and making adjacent the corresponding vertices of Gi
2 and Gj

2
whenever ui is adjacent to uj in G1. Let x = (ui1 , vj1), y = (ui2 , vj2), and
z = (ui3 , vj3) be any three vertices of G1�G2. Now

d(x, y) + d(y, z) + d(x, z) = d(ui1 , ui2) + d(vj1 , vj2) + d(ui2 , ui3)

+ d(vj2 , vj3) + d(ui1 , ui3) + d(vj1 , vj3)

= d(ui1 , ui2) + d(ui2 , ui3) + d(ui1 , ui3)

+ d(vj1 , vj2) + d(vj2 , vj3) + d(vj1 , vj3)

≤M1 +M2.

�

Proposition 3.5. For any three vertices x, y and z in a path Pn, d(x, y) +
d(y, z) + d(x, z) ≤ 2(n− 1).

Proof. Let x, y, and z be any three vertices in Pn. We know that d(x, z) is
equal to either d(x, y) + d(y, z) or |d(x, y) − d(y, z)|. If d(x, z) = d(x, y) +
d(y, z) then d(x, y) + d(y, z) + d(x, z) = 2d(x, z) ≤ 2(n− 1). Without loss of
generality let d(x, z) = d(x, y) − d(y, z). Since 2(n − 1) − d(x, y) ≥ d(x, y),
we get 2(n− 1)− [d(x, y) + d(y, z)] ≥ d(x, y)− d(y, z) = d(x, z). �

A star Sm with m vertices is the complete bipartite graph K1,m−1.

Proposition 3.6. For any three vertices x, y, and z in a star graph Sm,
d(x, y) + d(y, z) + d(x, z) ≤ 6.

Proof. Since the diameter of Sm is 2, we get d(x, y)+d(y, z)+d(x, z) ≤ 6. �

From Propositions 3.5, 3.6 and Theorem 3.4, we get the results below.

Theorem 3.7. For any three vertices x, y, and z in a stacked book graph
Bm,n = Sm+1�Pn, d(x, y) + d(y, z) + d(x, z) ≤ 2n+ 4.

Theorem 3.8. For any three vertices x, y, and z in a grid graph Pm�Pn,
d(x, y) + d(y, z) + d(x, z) ≤ 2(m+ n− 2).

Theorem 3.9. For any three vertices x, y, and z in a prism graph Cn�Pm,
d(x, y) + d(y, z) + d(x, z) ≤ n+ 2(m− 1).

From Theorem 3.9 and Theorem 2.4, we get the following bound for
rck(Cn�Pm).
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Theorem 3.10. For a prism graph Cn�Pm, let ak be defined as

ak =



(mn− 1)
[
3(k+1)−(n+2(m−1))

4

]
+ 1,

if mn is odd and k is even;

(mn− 1)
[
3(k+1)−(n+2m−3)

4

]
+ 1,

if mn is odd and k is odd;

(mn− 2)
[
3(k+1)−(n+2(m−1))

4

]
+ k + 2−

(⌊
n
2

⌋
+ (m− 1)

)
,

if mn is even, n 6≡ k (mod 2),

(mn− 2)
[
3(k+1)−(n+2m−3)

4

]
+ k + 2−

(⌊
n
2

⌋
+ (m− 1)

)
,

if mn is even, n ≡ k (mod 2).

Then rck(Cn�Pm) ≥ ak.

We now prove that the lower bound for Cn�P2 agrees with its radio
number for the cases n ≡ 1(mod 4), n ≡ 6(mod 8) and n ≡ 1(mod 8)
respectively.

An upper bound for radio number of Cn�P2 (or G(n, 1)). Here we
shall use the notation G(n, 1) for Cn�P2. The G(n, 1), consists of two cycles
C1 : u0u1 . . . un−1u0 (say the outer cycle) and C2 : v0v1 . . . vn−1v0 (say the
inner cycle), as well as the edges {ui, vi}, 0 ≤ i ≤ n − 1. For any two
vertices x and x′ in G(n, 1), if d(x, x′) = diam(G(n, 1)), then x and x′ are
called antipodal vertices. If n is even, then every vertex in G(n, 1) has a
unique antipodal vertex, while if n is odd every vertex in G(n, 1) has exactly
two antipodal vertices.

Lemma 3.11. Let x and x′ be antipodal vertices in G(n, 1), n even. Then
for every vertex y in G(n, 1), d(x, x′) = d(x, y) + d(y, x′).

Lemma 3.12. If x′ and x′′ are the two antipodal vertices of x in G(n, 1),
n odd, then for every vertex y in G(n, 1) we have either d(x, x′) = d(x, y) +
d(y, x′) or d(x, x′′) = d(x, y) + d(y, x′′).

Next we give a radio coloring to G(n, 1) for the cases n ≡ 1 (mod 4) and
n ≡ 6(mod 8) respectively.

G(n, 1), n ≡ 1 (mod 4). Since the greatest common divisor of n and (n−
1)/4 is 1, we can have a sequence x1, x3, . . . , x2n−1 of vertices on the outer
cycle such that the corresponding distance sequence d(x1, x3), d(x3, x5), . . . ,
d(x2n−3, x2n−1) is a constant sequence of (n−1)/4. Since every vertex on the
outer cycle has a vertex on the inner cycle of distance equal to the diameter
apart, we can suppose that x2, x4, . . . , x2n are the vertices on the inner cycle
which are at diameter distance from x1, x3, . . . , x2n−1. Now, from Lemma
3.12, the sequence x1, x2, . . . , x2n is such that the corresponding distance
sequence is an alternating sequence of (n + 1)/2 and (n + 3)/4. Next the
following coloring f is a radio coloring of G(n, 1):
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f(x1) = 1

f(xi+1) = f(xi) + 1, i = 1, 3, 5, . . . , 2n− 1,

f(xi+1) = f(xi) +
n+ 3

4
, i = 2, 4, 6, . . . , 2n− 2.

By using Lemma 2.2, the span of f is

f(x2n) = 1 + (n− 1)

(
n+ 3

4

)
+ n =

n2 + 6n+ 1

4
.

Since d(xi, xi+1) = (n + 1)/2 = diam(G(n, 1)) and d(xi+1, xi+2) = (n +
3)/4 = (n − 1)/4 + 1 = d(xi, xi+2) + 1 for every triplet xi, xi+1, and xi+2

with 1 ≤ i ≤ 2n − 2 for which i is odd, by Theorem 3.10, f is the minimal
radio coloring.

Example 3.13. See Figure 1
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13
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7

2

Figure 1. Minimal radio coloring of G(5, 1).

G(n, 1), n ≡ 6 (mod 8). Since there exist two integers −(n − 6)/8 and
(n− 4)/2 such that

n

(
−n− 6

8

)
+
n− 2

4

(
n− 4

2

)
= 1,

n and (n − 2)/4 are relatively prime. We can then form a sequence x1,
x3, . . . , x2n−1 of vertices on the outer cycle such that the corresponding
distance sequence d(x1, x3), d(x3, x5), . . . , d(x2n−3, x2n−1) is a constant se-
quence of (n − 2)/4. Let x2, x4, . . . , x2n be the vertices on the inner cycle
which are at a distance equal to the diameter from x1, x3, . . . , x2n−1. Now,
from Lemma 3.11, the sequence x1, x2, . . . , x2n provides us with a corre-
sponding distance sequence alternating between (n + 2)/2 and (n + 6)/4.



56 SRINIVASA RAO KOLA AND PRATIMA PANIGRAHI

Thus the following coloring f is a radio coloring of G(n, 1):

f(x1) = 1,

f(xi+1) = f(xi) + 1, i = 1, 3, 5, . . . , 2n− 1,

f(xi+1) = f(xi) +
n+ 6

4
, i = 2, 4, 6, . . . , 2n− 2.

Using Lemma 2.2, the span of f is

f(x2n) = 1 + (n− 1)

(
n+ 6

4

)
+ n =

n2 + 9n− 2

4
.

Since d(xi, xi+1) = (n + 2)/2 = diam(G(n, 1)) and d(xi+1, xi+2) = (n +
6)/4 = (n−2)/4+2 = d(xi, xi+2)+2 with εi+2 = 1 for every triplet xi, xi+1,
and xi+2 with 1 ≤ i ≤ 2n− 2 for which i is odd, by Theorem 3.10, f is the
minimal radio coloring.

Example 3.14. See Figure 2.
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Figure 2. Minimal radio coloring of G(14, 1).

4. Conclusion and Future Scope

It is not very difficult to find the triameter for several types of graphs.
Furthermore, we observe that our lower bound is sharp for at least the radio
number of a graph which contains more pairs of antipodal vertices.
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