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NORMALITY OF ONE-MATCHING SEMI-CAYLEY
GRAPHS OVER FINITE ABELIAN GROUPS WITH
MAXIMUM DEGREE THREE

MAJID AREZOOMAND AND MOHSEN GHASEMI

ABSTRACT. A graph I' is said to be a semi-Cayley graph over
a group G if it admits G as a semiregular automorphism group
with two orbits of equal size. We say that I' is normal if G is a
normal subgroup of Aut(I'). We prove that every connected in-
transitive one-matching semi-Cayley graph, with maximum degree
three, over a finite abelian group is normal and characterize all
such nonnormal graphs.

1. INTRODUCTION

Throughout this paper, groups are finite and graphs are finite, con-
nected, simple, and undirected. For the graph-theoretic and group-
theoretic terminology not defined here, we refer the reader to [7, 24].
Let G be a permutation group on € and a € 2. Denote by G, the
stabilizer of a in G, that is, the subgroup of G fixing the point a. We
say that G is semiregular on Q if G, = 1 for every a € () and regular
if G is transitive and semiregular. Let G be a group and S a sub-
set of G not containing the identity element 15. The Cayley digraph
I' = Cay(G,S) of G with respect to S has vertex set G and arc set
{(9,89) | g € G,s € S}. If S = S~ then Cay(G,S) can be viewed as
an undirected graph, identifying an undirected edge with two directed
edges (g, h) and (h, g). This graph is called the Cayley graph of G with
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respect to S. By a theorem of Sabidussi [22], a graph I' is a Cayley
graph over a group G if and only if there exists a regular subgroup of
Aut(I") isomorphic to G.

There is a natural generalization of Sabidussi’s Theorem. A graph
I' is called an n-Cayley graph over a group G if there exists an n-
orbit semiregular subgroup of Aut(I') isomorphic to G. Undirected
and loop-free 2-Cayley graphs are called semi-Cayley [4, 9], and also
bi-Cayley by some authors [25]. n-Cayley graphs have played an im-
portant role in many classical fields of graph theory, such as strongly
regular graphs [17, 20, 21, 9], Hamiltonian graphs [23], n-extendable
graphs [11, 19], the spectrum of graphs [3, 2, 12|, automorphisms
[5, 1, 14, 25], and the connectivity of graphs [8, 18].

A graph T is called a semi-Cayley graph over a group G if Aut(T)
admits a semiregular subgroup Rg isomorphic to G' with two orbits (of
equal size). Let I" be a semi-Cayley graph over a group G. Then there
exists subsets R, L, and S of G such that R = R™', L = L7!, and
1 ¢ RU L such that I' = SC(G; R, L, S), where SC(G; R, L, S) is an
undirected graph with vertices G x {1,2} and its edge set consists of
three sets (see [9, Lemma 2.1]):

{{(2,1), (y, 1)} | yz~! € R} (right edges),
{{(2,2),(,2)} |yz~t € L} (left edges),
H{(z,1),(y,2)} |yz~' € S} (spoke edges).

Furthermore, Rg = {p, | ¢ € G}, where p, : G x {1,2} — G x
{1,2} and (x,i)?» = (xg,i), i = 1,2, is a semiregular subgroup of
Aut(SC(G; R, L, S)) isomorphic to G with two orbits G x {1} and G x
{2}. A semi-Cayley graph I = SC(G; R, L, S) over a group G is called
normal over G if R¢ is a normal subgroup of Aut(I') (see [5, p. 42])
and it is called one-matching if S = {1} (see [16, p. 603]). In this
paper, we prove:

Theorem 1.1. Let I' = SC(G; R, L,{1}) be a connected one-matching
semi-Cayley graph over a finite abelian group G # 1 with |R|,|L| < 2.
Then T is normal if and only if none of the following are satisfied (even
after interchanging R and L)

(1) |R|=|L| =1 (so G=Zy orZ2),
2) |[R|=|L|=2and |[RNL|=1 (so GXZ3 orZ3),
=L = {a,a™ '}, where o(a) =4 (so G = {(a) = Z,),

{a,b}, L = {c,c™'}, where o(a) = o(b) = 2, o(c) = 4 and
X (b) x (c) X 73 x Z4,
a '}, L = {b,ba*}, where o(a) = 4, o(b) = 2 and
X <b> = 74 X Zz,
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(6) R={a,a™*}, L = {a* a*}, where o(a) = n and (n, k) is one
of the pairs (5,2), (8,3), (10,2), (10,3), (12,5) or (24,5) (so
G = Zn)7

(7) R={a,a '}, L = {a®b,a=3b} or L = {a®b,a"2b}, where o(a) =
10, o(b) = 2 and G = (a) x (b) = Zy X Za,

(8) R = {a,a™'}, L = {ab,a b}, where o(a) = 4, o(b) = 2 and
G:<6L> X <b>gZ4XZ2.

Furthermore, in all of the above cases, T' is transitive.

For a graph I', we use V(I'), E(I'), A(I') and Aut(I') to denote its
vertex set, edge set, arc set and its full automorphism group respec-
tively. For v € V(I'), N(u) is the neighborhood of w in I', that is,
the set of vertices adjacent to u in I'. A graph I' is called transitive if
Aut(T") is transitive on V/(I'), otherwise it is called intransitive. Also a
graph T is said to be edge-transitive and arc-transitive (or symmetric)
if Aut(I") acts transitively on E(I') and A(T"), respectively.

2. PRELIMINARIES

Let I' = SC(G; R, L, {1}) be a one-matching semi-Cayley graph over
a finite group G # 1. Let 'y = SC(G; L, R, {1}) the graph obtained
from interchanging the left and right edges of I'. Then I" = T'y. Fur-
thermore, Aut(I') = Aut(I'g) and also R < Aut(I') if and only if
Re < Aut(Ty). Hence, in studying the normality of I', we may assume
that |L| < |R|. Moreover, since I' is a normal over a group G if and if
its complement ['“ is normal over GG, we may assume that I" is connected
or equivalently G = (RU L).

Let I' = SC(G; R, L,{1}) be a connected semi-Cayley graph over a
finite abelian group G, and let A and V', be its automorphism group
and vertex set, respectively. For each o € Aut(G) we define two maps

v, V()= VI); (z,1)% = (29,1), (z,2)% = (27,2),
Yo+ V(D) = V(D) (2, 1) = (27,2), (2,2)" = (27,1).
Set
X ={p, | o€ Aut(G),R° =R, L? = L},
Y :={¢, |0 € Aut(G),R° = L,L° = R},
and let us denote X UY by Aut(G;R,L). Then Na(Rg) = Rg %
Aut(G; R, L) by [5, Theorem 1]. So Rg < A if and only if A = Rg %
Aut(G; R, L) [5, Proposition 2 (1)]. Moreover, if R < A, then Aq 1) =
X and the converse holds if I' is intransitive [5, Proposition 2 (2)]. Also
if Rg < A then I' is intransitive if and only if Ay 1y = Aut(G; R, L) [5,
Corollary 2.9]. Note that if Y # (), then T is transitive. So if Rg < A
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then T is transitive if and only if Y # (). Also, by the following lemma
and above results, if T' is intransitive or Y # (), then I' is normal
if and only if Aqq) = X. It is easy to see that An 1) N Na(Rg) =
AaNNa(Rg) = X. In particular, if R QA then Ap 1y = Aqg = X.
In what follows, unless otherwise stated, we keep the above notations
and use the above results without referring them.

Lemma 2.1. Let Y # 0. Then I' is normal if and only if A1y = X.

Proof. If I' is normal then A ;) = X. Conversely, suppose that A 1) =
X. Let f € A be arbitrary. We have to show that 8 € Na(Rs). Since
Y # 0 (and Y C N4(Rg)), we may assume that (1,1)° € G x {1}
(if (1,1)% € G x {2}, then we replace 3 with By for some y € Y).
Then after multiplying by an element of Rg, we may assume that
(1,1)7 = (1,1). So B € Aq1y) = X C Na(Rg). O

3. PROOF OF THEOREM 1.1

Keeping the notations of previous section, recall that I' = SC(G; R,
L,{1}) is a connected semi-Cayley graph over a finite abelian group
G # 1 with |L| < |R| < 2, and A denotes the automorphism group
of I'. To prove Theorem 1.1, we consider all the possibilities for the
orders of R and L and their intersection.

Let us start with the following lemma:

Lemma 3.1. Let I' be edge-transitive. Then it is nonnormal. Also if
I' is arc-transitive then I' is nonnormal.

Proof. Tt is enough to note that any element of the normalizer of Rg
must map G-orbits to G-orbits but an element of A that takes a right
edge or left edge to a spoke edge does not do this. Since every connected
arc-transitive graph is edge-transitive, the second part is clear. U

Lemma 3.2. Let L =0, R # (). Then T is intransitive and normal,
and

(1) if |R| =1 then G 2 Zy, I' = Py, A= 7o,

(2) if |R| =2 then G = Zy, or Ly X Ly, n > 3, and A= Dyg.

Proof. (1) It is clear.

(2) Since I' is connected and L = ), we have G = (R) = Z, or
Ly X Loy, for some n > 3. Hence Cay(G,R) is a |G|-cycle. By [5,
Lemma 4.1], A = Aut(Cay (G, R)) = Dyq. O

Lemma 3.3. Let R = {a} and L = {b}. Then I' is transitive and
nonnormal and one of the following holds:

(1) G=2Zy, A= Dsg,
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(2) G = ZQ X ZQ, A= D16.

Proof. If a = b then G = Zs and otherwise G = Zsy X Zy. In both
cases, I' is a 2|G|-cycle and so A = Dyg|. Furthermore, in both cases
Ay # X, which implies that both are nonnormal. U

Lemma 3.4. Let T’ be intransitive, RN L =0, and T'q be the quotient
graph of T' with respect to the one-matching set Q = {{(g,1), (g,2)} |
g € G}. Then A < Aut(T'q), where T'q is a Cayley graph of Rg with
respect to S = {pr,pi | r € R,l € L} of valency |R|+|L|. In particular,
if ['q is a normal Cayley graph of Rg then I' is a normal semi-Cayley
graph of R¢.

Proof. We consider the action of A on 2. Let K be the kernel of this
action. Since I' is intransitive, it implies that K = 1 and so A <
Aut(T'g). Clearly R acts transitively on V(I'g). Now suppose that
pr € Rg and {(g,1),(9,2)}" = {(9,1),(9,2)}. Therefore (g,1)" =
(g9,1) and (g,2)*» = (g,2) and so (gh,1) = (g,1). Thus p, = 1 and
R¢ acts regularly on V(I'g) and so I'g is a Cayley graph on Rg with
respect to S. Also since RN L = (), it implies that T'q has valency
|R| + |L|. O

Lemma 3.5. If |R| =2 and |L| = 1 then T is normal.

Proof. Let R = {a,b} and L = {c}. If c=a or ¢ = b then a® = b =1,
A= Rg = 73 and so I is normal. Hence, we may assume that ¢ # a, b.
Suppose, towards a contradiction, that I" is nonnormal. Then RNL = ().
Let Q = {{(9,1),(g9,2)} | ¢ € G} and T'q be the Cayley graph of Rg
with respect to S = {pa, pp, pc}. Since I' is nonnormal, Lemma 3.4 and
[6, Theorem 1.2] imply that one of the following occurs:

(1) o(a) =4, b=a"! and ¢ = @,

(2) oa) =4, b=a"', *=1and c ¢ (a),

(3) o(a) =6,b=a""' and c = a>.
In the first case, A = Dg and I is normal, in the second case A
Zo x Dg and T' is normal, and in the last case, A = Dy, and I’
normal. Hence we get a contradiction.

Lemma 3.6. Let R = L, |R| = 2. Then I is transitive and the
following are equivalent:

12

O &

(1) T is normal,
(2) T is not arc-transitive,

(3) R=1{a,a '}, where a is of order k > 2 and k # 4.

Proof. 1t is easy to see that I' is isomorphic to the n-prism graph, the
cartesian product of an n-cycle with a path with two vertices, where
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n = |G|, which is isomorphic to a Cayley graph on the dihedral group
Dy, = (s,t | s" = t* = (st)? = 1), with respect to S = {s,s7,¢}.
Hence I' is transitive.

By Lemma 3.1, (1) implies (2). Now suppose that (2) holds. If
R = {b,c}, where V> = ¢* = 1, then I' is isomorphic to the three
dimensional hypercube, which is arc-transitive, a contradiction. Hence
R = {a,a™ '}, where a is of order k > 2. Hence G = (a) = Z.
Hence, by [16, Theorem 1.1], k& # 4. Thus (2) implies (3). To complete
the proof, it is enough to prove that (3) implies (1). Suppose (3)
holds. Then G = Z; and it is easy to see that I' is isomorphic to the
generalized Petersen graph GP(k,1) (see [10]). Also by [10, Theorems
1 and 2] GP(k,1) is vertex transitive and A = Dgy x Zy. Hence I is
vertex transitive and so |A| = |A(1,1)|2k. This shows that |A 1) = 2.
Since R = L = {a,a™'}, Y # 0 and |X| > 2. Since X < Ag ), we
have X = A 1y. Hence I' is normal, i.e. (1) holds. This completes the
proof. O

Lemma 3.7. Let |R| = |L| =2, |RNL|=1. Then I is transitive and
nonnormal. Also one of the following holds:

(1) G =(a,by =2 Zy X Z3, R={a,b} and L = {ab, b},

(2) G ={a,b,c) = Zoy X Ly X Loy, R=1{a,b} and L = {b,c}.

Proof. Since R = R™! and L = L™!, both R and L consist of two
involutions. Assume that R = {a,b} and L = {b,c}. Since G =
(a,b,c), if ¢ = ab, G = (a,b) = Zy X Ly, otherwise G = Zy X Ly X Lo.
In the former case,

g = ((ab> 1)7 <b7 2))((@, 2)7 (ab> 2))((@, 1)7 (17 2)) S A(l,l)

but o ¢ X. Therefore I" is not normal. In the latter,

o= ((a,1),(1,2))((a,2), (¢,2))((ad, 1), (b, 2))
((ab,2), (be, 2))((ac, 2), (¢, 1)) € A

but ¢ ¢ X. So I' is not normal. Also in both cases we see that I' is
transitive. O

Lemma 3.8. Let |R| = |L| =2, RNL =10. If R = {a,b}, where
a’? = b? =1, then one of the following holds:
(1) L = {ab,c}, where ¢® = 1. In this case G = 73, T is intransitive
and normal.
(2) L = {c,d}, where ¢* = d*> = 1. In this case G = Z3 and T is
transitive and normal.
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(3) L = {c,c™'}, where ¢ is of order n > 2. In this case, G =
Z3 X Ly, and T is normal if and only if T is intransitive if and
only if n # 4.

(4) L = {c,c™}, where o(c) = n > 2 is even, and b = /2. In this
case, G = 7Ly, X Lo, and I' is normal and intransitive.

(5) L = {c,c}, where o(c) = n > 2 is even, and b = ac¥?. In
this case, G = Z, X Zy and ' is normal if and only if I is
intransitive if and only if n # 4.

Proof. 1t is obvious that the possibilities of L are exactly the same
given in (1)—(5).

(1) In this case, G = (a,b,c) = Z3. Then, by GAP [13], ' is intran-
sitive and normal.

(2) In this case, G = Zj and by GAP, A & (Dg x Dg) X Zy, T is
transitive and normal.

(3) Suppose that L = {¢,c™ '}, where ¢ is an element of order n > 2.
Then G = Z32 x Z,. We prove that I' is normal if and only if it is
intransitive if and only if n # 4.

If n = 4 then by GAP, I' is transitive. Conversely, suppose that I"
is transitive. Then there exists a € Aut(I') such that (1,1)* = (1,2).
Then o maps the 4-cycle

(1,1),(b, 1), (ab, 1), (a,1),(1,1)

to a 4-cycle including the point (1,2). Since RN L = (, we have
(a,1)*,(b,1)* # (1,1). Hence (a,1)*, (b,1)* € {(c,2),(c"',2)}, which
implies that (ab,1)* = (¢?,2) = (¢72,2). This means that n = 4.

Let T' is normal. Then, since Y = (), I" is intransitive. Conversely,
suppose that I' is intransitive. So n # 4, by the above discussion. Now
(6, Theorem 1.2] and Lemma 3.4, imply that I" is normal.

(4) In this case G = Z,, X Zs. If n = 4, then by GAP, I is intransitive
and normal. Hence, we may assume that n # 4. So, by a similar
argument of the previous case, ' is intransitive. Suppose, towards
a contradiction, that I is nonnormal. Then, by Lemma 3.4 and [6,
Theorem 1.2], n = 6. Now, by GAP, A = Z2 x S3 which implies that
[' is normal, a contradiction.

(5) In this case G = Z, X Zy. If n = 4 then I' is transitive and
nonnormal. Let n # 4. Then by a similar argument of the case (3), I'
is intransitive. By the same argument in case (4), if " is nonnormal,
then n = 6, which implies that, by GAP, A = Dg x Z3 and T is
normal. 0
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Let S be an inverse-closed subset of a group G not containing the
identity element of G. Recall that a permutation ¢ of GG is a colour-
preserving automorphism of Cay(G,S) if and only if we have (zs)¥ €
{x?s*!} for each x € G and s € S [15, p. 190].

Lemma 3.9. Let R = {a,a™'} and L = {b,b7'}, o(a),o(b) > 3, and
RN L=0. IfT is intransitive then it is normal.

Proof. Suppose, towards a contradiction, that there exists o € A that
does not normalize Rg. Since I is intransitive, there is a permutation
o of G such that (g,7)* = (¢7,7) for all ¢ € G and i = 1,2. There
is a natural colouring of Cay(G, {a*!,b*'}) with two colours, where
a-edges have one colour and b-edges have the other colour. Then o is
a colour-preserving automorphism of Cay(G, {a*!,b*'}) because « is
an automorphism of ', which means that (ga)® € {ga*'} and (gb)? €
{g0*™'}.

Since « does not normalize R (and G is 2-generated), we know from
[15, Proposition 4.1] that G has a direct factor that is isomorphic to
Zs x Zy. So o(a) and o(b) are even. Therefore o(a),o(b) # 3 and so
o(a),o(b) > 4. If o(a) = o(b) = 4 then, by GAP, I is a transitive graph
which is a contradiction. So we may assume that o(b) > 4.

By composing with a translation, we may assume that o fixes 1. We
may also assume that o fixes a by composing with inversion if necessary.
Then (a*)? = a* for all k.

We claim that we may assume b° = b. Suppose b° # b, so b7 =
b~!. Then o is the identity on (a) but inverts (b), which implies that
|{(a) N (b)| < 2. Therefore there is an automorphism of G agrees with
o on (a) U (b). By composing with this automorphism, we have b = b
as desired.

Since o does not normalize R, we know that o is not the identity
permutation and so there is some minimal k > 0 such that (a*b)? =
a*b~1. Since a*~'b is adjacent to a*b via an a-edge, we have a*~1ha =
a*b~! or a*"'ba! = aFb~'. The first implies that b*> = 1 which con-
tradicts the fact that o(b) > 4. The second implies a* = b Since
[{a)N(b)| < 2, we have o(b) < 4 which contradicts the fact o(b) > 4. O

Corollary 3.10. Let R = {a,a '} and L = {b,b™'}, where o(a) # o(b)
and RN L =10, then ' is normal if and only if T is intransitive.

Proof. One direction is clear by Lemma 3.9. Let I' be normal and
suppose, towards a contradiction, that I' is transitive. Then there
exists & € A such that (1,1)* = (1,2). Since I' is normal, there exists
o € Aut(G) such that o = 9,, R = L and L° = R, which implies
that o(a) = o(b), a contradiction. O
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Lemma 3.11. Let |R| = |L| =2 and RN L = 0. If R = {a,a” '},
where o(a) = n > 3, then, perhaps after interchanging R and L, one
of the following holds:

(1) L = {a™?,b}, where n is even, b> = 1 and b ¢ (a). In this case
G =2 7, X Lo, I is normal and intransitive.

(2) L = {b,ba™?}, where n is even, b*> = 1 and b ¢ (a). In this
case G = 7, X Zs, if n =4 then I is transitive and nonnormal
and otherwise I' is normal and intransitive.

(3) L = {b,c}, where b* = * =1, {a) N {b,c) =1 and b,c ¢ {a).
In this case G = Z,, x Z3, if n = 4 then T is transitive and
nonnormal and otherwise I' is normal and intransitive.

(4) L = {a*,a=*}, for some k > 2. In this case, G = Z,,. Further-
more, I' is nonnormal if and only if (n, k) = (5,2), (8,3), (10, 2),
(10,3),(12,5),(24,5). Also if I' is nonnormal then I is transi-
tive.

(5) L = {b,b7'}, b ¢ (a), and (b) N {a) # 1. In this case, T is
nonnormal if and only if L = {a®y,a 3y} or L = {a*y,a %y},
where o(a) = 10, o(y) = 2, and G = (a) x (y) = Zip X Za, or
L = {ay,a 'y}, where o(a) = 4, o(y) = 2, and G = (a) x (y) =
Ly X L. Also if T is nonnormal then I is transitive.

(6) L = {b,b7'}, and (b) N (a) = 1. In this case, G = Z, x 7,
where | = o(b) and T is normal. Furthermore, T is transitive if

and only if o(a) = o(b).

Proof. 1t is easy to see that the only possibilities of L are the cases
(1)—(6). Since SC(G; R, L,{1}) = SC(G; L, R,{1}), by the last three
cases of Lemma 3.8, cases (1), (2), and (3) are clear.

(4) In this case, I' is isomorphic to the generalized Petersen graph
GP(n, k). Let I is nonnormal and suppose, for the contrary,

(n, k) ¢ {(5,2), (8,3), (10, 2), (10,3), (12, 5), (24, 5)}.

Then I is not edge-transitive by [10, Lemma 3 and Theorem 2|. Hence
|A| = 4n [10, Theorem 1 and Theorem 2|. Since I' is nonnormal,
Lemma 3.9 and [7, p. 105] imply that k* = +1 (mod n). Hence
(k,n) = 1. Let 01, 09,03 : G — G be the maps by the rules (a')?* = a’*,
(a2 = a %, and (a")°* = a~*. Then these three maps are au-
tomorphisms of G. Furthermore, ©,,,%s,, 0o, € Aut(G;R,L). So
| Aut(G; R, L)| > 4, which implies that A = N4(R¢) i.e., I' is normal,
a contradiction.
Conversely, suppose that

(n, k) € {(5,2),(8,3), (10,2), (10,3), (12, 5), (24,5)}.
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Then I' is arc-transitive by [7, p. 105] and so it is nonnormal by Lemma
3.1. If I" is nonnormal then it is transitive by Lemma 3.9.

(5) Let L = {b,b"'}, b & (a), a ¢ (b), and (b) N {(a) # 1. If T is
intransitive, then by Lemma 3.9, I' is normal. Hence, we may assume
that T' is transitive. If I' is arc-transitive then by [26, Proposition
5.1(2)], it is the unique arc-transitive cubic graph of order 40, denoted
by F040A in the Foster Census, G = (x) X (y) = Zyo X Za, and we
may assume that @ = z and b € {2®y, x*y}. Then T is nonnormal by
Lemma 3.1. So we may now assume that I' is not arc-transitive. Then
by [26, Theorem 1.1], up to isomorphism, one of the following occurs:

(1) G = (x) X (y) = Zpk X Ly, k > 3,m > 1, where (m, k,t) =
(1,10,2) or (t,mk) =1 and ¢* = —1 (mod k) and we may as-
sume that a = z, b = a'y. Clearly m = 1 is impossible, because
b ¢ (a). Also Aut(I') & Rg x Z4 [26, Theorem 5.5(3)], which
implies that I" is normal.

(2) G = (x) X (y) = Zpk X L, km > 3, and m > 1, where
(t,mk) =1,t> =1 (mod k) and I is a Cayley graph over G x(z)
for some involution z, [26, Theorem 5.2(5)]. Furthermore, we
may assume that a = z, b = z'y. Clearly m = 1 is impossible
because b ¢ (a).

Since I' is connected and transitive but not edge-transitive, every auto-
morphism of I" maps G-orbits to G-orbits. If (m, k) = (2,2), then L =
{ay,a 'y}, G = Zyx Zy, and T is nonnormal over G by GAP. Hence, we
may assume that (m, k) # (2,2). Then we claim that I' is normal. Sup-
pose, towards a contradiction, that I' is not normal. So, there exists
a colour-preserving automorphism o of Iy = Cay(G, {a,a™*,b,b71})
which fixes 1 but is not a group automorphism of G (see [15, Remark
2.1]). Since the map z + z~! is an automorphism of G, we may assume
that a? = a.

We may assume that o is not the identity. Then there is some i
such that (a’d)® = a'b~!. By composing with a translation, we may
assume that ¢ = 0 and b = b~'. Then we have (b™)° = b~™. But
b™ € (a) and o is the identity on (a). So " must have order two which
means that b™ = a*™/2. So tm = km/2 (mod km) which means that
t = k/2 (mod k). Since t* = 1 (mod k) this implies that & = 2. So,
by [15, Corollary 4.2], |G| = 2m? is divisible by 8. Thus m is even and
m > 4 because (m, k) # (2,2). Since (a)N(b) # 1 and (b™)~! = b™, the
map ¢ : a'l’/ + a’b7 is a well-defined automorphism of G that is also
an automorphism of I'g. Furthermore, ¢» = oy is a colour-preserving
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automorphism of I'y which fixes all powers of a (including 1) and b, but
is not a group automorphism of G.

Since mk, m > 4, it is easy to see that for all g € GG, g and gab are
the only common neighbours of ga and gb in I'y. Putting g = 1, we get
(ab)¥ = ab. Now putting g = a we get (a?b)¥ = a’b. By continuing this
procedure we get (a’b)¥ = a'b for all i. Since m > 4, we have b # 1.
So, for all i we have (a'b?)¥ = a’b®. This implies that (a’6®)¥ = a’b® for
all .. By continuing this procedure, we get (a‘t?)¥ = a't’ for all i, j.
This means that ¢ is the trivial automorphism of G. Hence o is an
automorphism of group G, a contradiction.

(6) Let L = {b,b7'}, where (a) N (b) = 1. We claim that T is
normal. If T' is intransitive, then by Lemma 3.9, I" is normal. Hence,
we may assume that I' is transitive. Then, by [26, Theorem 1.1], G =
(x) x (y), o(x) = mk, o(y) = m, for some m,k > 1, where mk > 3.
Furthermore ¢ = z and b = a'y for some integer ¢ with (¢, mk) =
1 and t* = 1 (mod k), or (m,k,t) = (1,10,2), or (t,mk) = 1 and
t* = —1 (mod k). Clearly (m,k,t) = (1,10,2) is impossible, because
{(a) N (b) = 1. So we have b™ = o' € (a) N (b) = 1. Thus o(b) divides
m, and k divides ¢t. The latter implies that k =t = 1. Thus b = ay
and o(b) = o(a) = m.

Since I is connected, [26, Proposition 5.1] implies that I" is not edge-
transitive. So every automorphism of I' maps G-orbits to G-orbits.
Suppose, towards a contradiction, that I' is not normal. Similar to the
previous case, there exists a colour-preserving automorphism o of I'y =
Cay(G,{a,a',b,b~'}) which fixes 1 but is not a group autmorphism
of G and we may assume that a° = a and b° = b~'. Then [15, Theorem
1.3(ii)] implies that 8 divides |G| = m?. So 4 divides m. Since (a) N
by =1, v : a't! + a'b™7 is a well-defined automorphism of G that is
also an automorphism of I'y. Again, by the same argument in the last
paragraph of the proof of previous case, we get ¢ is an automorphism
of G which is a contradiction. So we have proved that I' is normal.

As we saw above, if I" is transitive, then o(a) = o(b). Conversely,
suppose that o(a) = o(b). Then o : a't’ — a’b’ is a group auto-
morphism of G' and (Rg, 1,), where v is defined by the rule (g,1)¥ =
(99,2),(9,2)¥ = (¢°,1) for all g € G, is a transitive subgroup of Aut(T’).
This completes the proof. U

Proof of Theorem 1.1. 1t is a direct consequence of Lemmas 3.2, 3.3,
3.5-3.8, and 3.11. O
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