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NORMALITY OF ONE-MATCHING SEMI-CAYLEY
GRAPHS OVER FINITE ABELIAN GROUPS WITH

MAXIMUM DEGREE THREE

MAJID AREZOOMAND AND MOHSEN GHASEMI

Abstract. A graph Γ is said to be a semi-Cayley graph over
a group G if it admits G as a semiregular automorphism group
with two orbits of equal size. We say that Γ is normal if G is a
normal subgroup of Aut(Γ). We prove that every connected in-
transitive one-matching semi-Cayley graph, with maximum degree
three, over a finite abelian group is normal and characterize all
such nonnormal graphs.

1. Introduction

Throughout this paper, groups are finite and graphs are finite, con-
nected, simple, and undirected. For the graph-theoretic and group-
theoretic terminology not defined here, we refer the reader to [7, 24].
Let G be a permutation group on Ω and α ∈ Ω. Denote by Gα the
stabilizer of α in G, that is, the subgroup of G fixing the point α. We
say that G is semiregular on Ω if Gα = 1 for every α ∈ Ω and regular
if G is transitive and semiregular. Let G be a group and S a sub-
set of G not containing the identity element 1G. The Cayley digraph
Γ = Cay(G, S) of G with respect to S has vertex set G and arc set
{(g, sg) | g ∈ G, s ∈ S}. If S = S−1 then Cay(G, S) can be viewed as
an undirected graph, identifying an undirected edge with two directed
edges (g, h) and (h, g). This graph is called the Cayley graph of G with
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respect to S. By a theorem of Sabidussi [22], a graph Γ is a Cayley
graph over a group G if and only if there exists a regular subgroup of
Aut(Γ) isomorphic to G.

There is a natural generalization of Sabidussi’s Theorem. A graph
Γ is called an n-Cayley graph over a group G if there exists an n-
orbit semiregular subgroup of Aut(Γ) isomorphic to G. Undirected
and loop-free 2-Cayley graphs are called semi-Cayley [4, 9], and also
bi-Cayley by some authors [25]. n-Cayley graphs have played an im-
portant role in many classical fields of graph theory, such as strongly
regular graphs [17, 20, 21, 9], Hamiltonian graphs [23], n-extendable
graphs [11, 19], the spectrum of graphs [3, 2, 12], automorphisms
[5, 1, 14, 25], and the connectivity of graphs [8, 18].

A graph Γ is called a semi-Cayley graph over a group G if Aut(Γ)
admits a semiregular subgroup RG isomorphic to G with two orbits (of
equal size). Let Γ be a semi-Cayley graph over a group G. Then there
exists subsets R,L, and S of G such that R = R−1, L = L−1, and
1 /∈ R ∪ L such that Γ ∼= SC(G;R,L, S), where SC(G;R,L, S) is an
undirected graph with vertices G × {1, 2} and its edge set consists of
three sets (see [9, Lemma 2.1]):

{{(x, 1), (y, 1)} | yx−1 ∈ R} (right edges),

{{(x, 2), (y, 2)} | yx−1 ∈ L} (left edges),

{{(x, 1), (y, 2)} | yx−1 ∈ S} (spoke edges).

Furthermore, RG := {ρg | g ∈ G}, where ρg : G × {1, 2} → G ×
{1, 2} and (x, i)ρg = (xg, i), i = 1, 2, is a semiregular subgroup of
Aut(SC(G;R,L, S)) isomorphic to G with two orbits G×{1} and G×
{2}. A semi-Cayley graph Γ = SC(G;R,L, S) over a group G is called
normal over G if RG is a normal subgroup of Aut(Γ) (see [5, p. 42])
and it is called one-matching if S = {1} (see [16, p. 603]). In this
paper, we prove:

Theorem 1.1. Let Γ = SC(G;R,L, {1}) be a connected one-matching
semi-Cayley graph over a finite abelian group G 6= 1 with |R|, |L| ≤ 2.
Then Γ is normal if and only if none of the following are satisfied (even
after interchanging R and L)

(1) |R| = |L| = 1 (so G ∼= Z2 or Z2
2),

(2) |R| = |L| = 2 and |R ∩ L| = 1 (so G ∼= Z2
2 or Z3

2),
(3) R = L = {a, a−1}, where o(a) = 4 (so G = 〈a〉 ∼= Z4),
(4) R = {a, b}, L = {c, c−1}, where o(a) = o(b) = 2, o(c) = 4 and

G = 〈a〉 × 〈b〉 × 〈c〉 ∼= Z2
2 × Z4,

(5) R = {a, a−1}, L = {b, ba2}, where o(a) = 4, o(b) = 2 and
G = 〈a〉 × 〈b〉 ∼= Z4 × Z2,
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(6) R = {a, a−1}, L = {ak, a−k}, where o(a) = n and (n, k) is one
of the pairs (5, 2), (8, 3), (10, 2), (10, 3), (12, 5) or (24, 5) (so
G ∼= Zn),

(7) R = {a, a−1}, L = {a3b, a−3b} or L = {a2b, a−2b}, where o(a) =
10, o(b) = 2 and G = 〈a〉 × 〈b〉 ∼= Z10 × Z2,

(8) R = {a, a−1}, L = {ab, a−1b}, where o(a) = 4, o(b) = 2 and
G = 〈a〉 × 〈b〉 ∼= Z4 × Z2.

Furthermore, in all of the above cases, Γ is transitive.

For a graph Γ, we use V (Γ), E(Γ), A(Γ) and Aut(Γ) to denote its
vertex set, edge set, arc set and its full automorphism group respec-
tively. For v ∈ V (Γ), N(u) is the neighborhood of u in Γ, that is,
the set of vertices adjacent to u in Γ. A graph Γ is called transitive if
Aut(Γ) is transitive on V (Γ), otherwise it is called intransitive. Also a
graph Γ is said to be edge-transitive and arc-transitive (or symmetric)
if Aut(Γ) acts transitively on E(Γ) and A(Γ), respectively.

2. Preliminaries

Let Γ = SC(G;R,L, {1}) be a one-matching semi-Cayley graph over
a finite group G 6= 1. Let Γ0 = SC(G;L,R, {1}) the graph obtained
from interchanging the left and right edges of Γ. Then Γ ∼= Γ0. Fur-
thermore, Aut(Γ) ∼= Aut(Γ0) and also RG E Aut(Γ) if and only if
RG EAut(Γ0). Hence, in studying the normality of Γ, we may assume
that |L| ≤ |R|. Moreover, since Γ is a normal over a group G if and if
its complement Γc is normal over G, we may assume that Γ is connected
or equivalently G = 〈R ∪ L〉.

Let Γ = SC(G;R,L, {1}) be a connected semi-Cayley graph over a
finite abelian group G, and let A and V , be its automorphism group
and vertex set, respectively. For each σ ∈ Aut(G) we define two maps

ϕσ : V (Γ)→ V (Γ); (x, 1)ϕσ = (xσ, 1), (x, 2)ϕσ = (xσ, 2),

ψσ : V (Γ)→ V (Γ); (x, 1)ψσ = (xσ, 2), (x, 2)ψσ = (xσ, 1).

Set

X := {ϕσ | σ ∈ Aut(G), Rσ = R,Lσ = L},
Y := {ψσ | σ ∈ Aut(G), Rσ = L,Lσ = R},

and let us denote X ∪ Y by Aut(G;R,L). Then NA(RG) = RG o
Aut(G;R,L) by [5, Theorem 1]. So RG E A if and only if A = RG o
Aut(G;R,L) [5, Proposition 2 (1)]. Moreover, if RGEA, then A(1,1) =
X and the converse holds if Γ is intransitive [5, Proposition 2 (2)]. Also
if RG EA then Γ is intransitive if and only if A(1,1) = Aut(G;R,L) [5,
Corollary 2.9]. Note that if Y 6= ∅, then Γ is transitive. So if RG E A
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then Γ is transitive if and only if Y 6= ∅. Also, by the following lemma
and above results, if Γ is intransitive or Y 6= ∅, then Γ is normal
if and only if A(1,1) = X. It is easy to see that A(1,1) ∩ NA(RG) =
A(1,2)∩NA(RG) = X. In particular, if RGEA then A(1,1) = A(1,2) = X.
In what follows, unless otherwise stated, we keep the above notations
and use the above results without referring them.

Lemma 2.1. Let Y 6= ∅. Then Γ is normal if and only if A(1,1) = X.

Proof. If Γ is normal then A(1,1) = X. Conversely, suppose that A(1,1) =
X. Let β ∈ A be arbitrary. We have to show that β ∈ NA(RG). Since
Y 6= ∅ (and Y ⊆ NA(RG)), we may assume that (1, 1)β ∈ G × {1}
(if (1, 1)β ∈ G × {2}, then we replace β with βy for some y ∈ Y ).
Then after multiplying by an element of RG, we may assume that
(1, 1)β = (1, 1). So β ∈ A(1,1) = X ⊆ NA(RG). �

3. Proof of Theorem 1.1

Keeping the notations of previous section, recall that Γ = SC(G;R,
L, {1}) is a connected semi-Cayley graph over a finite abelian group
G 6= 1 with |L| ≤ |R| ≤ 2, and A denotes the automorphism group
of Γ. To prove Theorem 1.1, we consider all the possibilities for the
orders of R and L and their intersection.

Let us start with the following lemma:

Lemma 3.1. Let Γ be edge-transitive. Then it is nonnormal. Also if
Γ is arc-transitive then Γ is nonnormal.

Proof. It is enough to note that any element of the normalizer of RG

must map G-orbits to G-orbits but an element of A that takes a right
edge or left edge to a spoke edge does not do this. Since every connected
arc-transitive graph is edge-transitive, the second part is clear. �

Lemma 3.2. Let L = ∅, R 6= ∅. Then Γ is intransitive and normal,
and

(1) if |R| = 1 then G ∼= Z2, Γ ∼= P4, A ∼= Z2,
(2) if |R| = 2 then G ∼= Zn or Z2 × Z2, n ≥ 3, and A ∼= D2|G|.

Proof. (1) It is clear.
(2) Since Γ is connected and L = ∅, we have G = 〈R〉 ∼= Zn or

Z2 × Z2, for some n ≥ 3. Hence Cay(G,R) is a |G|-cycle. By [5,
Lemma 4.1], A ∼= Aut(Cay(G,R)) ∼= D2|G|. �

Lemma 3.3. Let R = {a} and L = {b}. Then Γ is transitive and
nonnormal and one of the following holds:

(1) G ∼= Z2, A ∼= D8,
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(2) G ∼= Z2 × Z2, A ∼= D16.

Proof. If a = b then G ∼= Z2 and otherwise G ∼= Z2 × Z2. In both
cases, Γ is a 2|G|-cycle and so A ∼= D4|G|. Furthermore, in both cases
A(1,1) 6= X, which implies that both are nonnormal. �

Lemma 3.4. Let Γ be intransitive, R ∩ L = ∅, and ΓΩ be the quotient
graph of Γ with respect to the one-matching set Ω = {{(g, 1), (g, 2)} |
g ∈ G}. Then A ≤ Aut(ΓΩ), where ΓΩ is a Cayley graph of RG with
respect to S = {ρr, ρl | r ∈ R, l ∈ L} of valency |R|+ |L|. In particular,
if ΓΩ is a normal Cayley graph of RG then Γ is a normal semi-Cayley
graph of RG.

Proof. We consider the action of A on Ω. Let K be the kernel of this
action. Since Γ is intransitive, it implies that K = 1 and so A ≤
Aut(ΓΩ). Clearly RG acts transitively on V(ΓΩ). Now suppose that
ρh ∈ RG and {(g, 1), (g, 2)}ρh = {(g, 1), (g, 2)}. Therefore (g, 1)ρh =
(g, 1) and (g, 2)ρh = (g, 2) and so (gh, 1) = (g, 1). Thus ρh = 1 and
RG acts regularly on V(ΓΩ) and so ΓΩ is a Cayley graph on RG with
respect to S. Also since R ∩ L = ∅, it implies that ΓΩ has valency
|R|+ |L|. �

Lemma 3.5. If |R| = 2 and |L| = 1 then Γ is normal.

Proof. Let R = {a, b} and L = {c}. If c = a or c = b then a2 = b2 = 1,
A = RG

∼= Z2
2 and so Γ is normal. Hence, we may assume that c 6= a, b.

Suppose, towards a contradiction, that Γ is nonnormal. ThenR∩L = ∅.
Let Ω = {{(g, 1), (g, 2)} | g ∈ G} and ΓΩ be the Cayley graph of RG

with respect to S = {ρa, ρb, ρc}. Since Γ is nonnormal, Lemma 3.4 and
[6, Theorem 1.2] imply that one of the following occurs:

(1) o(a) = 4, b = a−1 and c = a2,
(2) o(a) = 4, b = a−1, c2 = 1 and c /∈ 〈a〉,
(3) o(a) = 6, b = a−1 and c = a3.

In the first case, A ∼= D8 and Γ is normal, in the second case A ∼=
Z2 × D8 and Γ is normal, and in the last case, A ∼= D12 and Γ is
normal. Hence we get a contradiction. �

Lemma 3.6. Let R = L, |R| = 2. Then Γ is transitive and the
following are equivalent:

(1) Γ is normal,
(2) Γ is not arc-transitive,
(3) R = {a, a−1}, where a is of order k > 2 and k 6= 4.

Proof. It is easy to see that Γ is isomorphic to the n-prism graph, the
cartesian product of an n-cycle with a path with two vertices, where
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n = |G|, which is isomorphic to a Cayley graph on the dihedral group
D2n = 〈s, t | sn = t2 = (st)2 = 1〉, with respect to S = {s, s−1, t}.
Hence Γ is transitive.

By Lemma 3.1, (1) implies (2). Now suppose that (2) holds. If
R = {b, c}, where b2 = c2 = 1, then Γ is isomorphic to the three
dimensional hypercube, which is arc-transitive, a contradiction. Hence
R = {a, a−1}, where a is of order k > 2. Hence G = 〈a〉 ∼= Zk.
Hence, by [16, Theorem 1.1], k 6= 4. Thus (2) implies (3). To complete
the proof, it is enough to prove that (3) implies (1). Suppose (3)
holds. Then G ∼= Zk and it is easy to see that Γ is isomorphic to the
generalized Petersen graph GP (k, 1) (see [10]). Also by [10, Theorems
1 and 2] GP (k, 1) is vertex transitive and A ∼= D2k × Z2. Hence Γ is
vertex transitive and so |A| = |A(1,1)|2k. This shows that |A(1,1)| = 2.
Since R = L = {a, a−1}, Y 6= ∅ and |X| ≥ 2. Since X ≤ A(1,1), we
have X = A(1,1). Hence Γ is normal, i.e. (1) holds. This completes the
proof. �

Lemma 3.7. Let |R| = |L| = 2, |R∩L| = 1. Then Γ is transitive and
nonnormal. Also one of the following holds:

(1) G = 〈a, b〉 ∼= Z2 × Z2, R = {a, b} and L = {ab, b},
(2) G = 〈a, b, c〉 ∼= Z2 × Z2 × Z2, R = {a, b} and L = {b, c}.

Proof. Since R = R−1 and L = L−1, both R and L consist of two
involutions. Assume that R = {a, b} and L = {b, c}. Since G =
〈a, b, c〉, if c = ab, G = 〈a, b〉 ∼= Z2 × Z2, otherwise G ∼= Z2 × Z2 × Z2.
In the former case,

σ = ((ab, 1), (b, 2))((a, 2), (ab, 2))((a, 1), (1, 2)) ∈ A(1,1)

but σ /∈ X. Therefore Γ is not normal. In the latter,

σ = ((a, 1), (1, 2))((a, 2), (c, 2))((ab, 1), (b, 2))

((ab, 2), (bc, 2))((ac, 2), (c, 1)) ∈ A(1,1)

but σ /∈ X. So Γ is not normal. Also in both cases we see that Γ is
transitive. �

Lemma 3.8. Let |R| = |L| = 2, R ∩ L = ∅. If R = {a, b}, where
a2 = b2 = 1, then one of the following holds:

(1) L = {ab, c}, where c2 = 1. In this case G ∼= Z3
2, Γ is intransitive

and normal.
(2) L = {c, d}, where c2 = d2 = 1. In this case G ∼= Z4

2 and Γ is
transitive and normal.
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(3) L = {c, c−1}, where c is of order n > 2. In this case, G ∼=
Z2

2 × Zn, and Γ is normal if and only if Γ is intransitive if and
only if n 6= 4.

(4) L = {c, c−1}, where o(c) = n > 2 is even, and b = cn/2. In this
case, G ∼= Zn × Z2, and Γ is normal and intransitive.

(5) L = {c, c−1}, where o(c) = n > 2 is even, and b = acn/2. In
this case, G ∼= Zn × Z2 and Γ is normal if and only if Γ is
intransitive if and only if n 6= 4.

Proof. It is obvious that the possibilities of L are exactly the same
given in (1)–(5).

(1) In this case, G = 〈a, b, c〉 ∼= Z3
2. Then, by GAP [13], Γ is intran-

sitive and normal.
(2) In this case, G ∼= Z4

2 and by GAP, A ∼= (D8 × D8) o Z2, Γ is
transitive and normal.

(3) Suppose that L = {c, c−1}, where c is an element of order n > 2.
Then G ∼= Z2

2 × Zn. We prove that Γ is normal if and only if it is
intransitive if and only if n 6= 4.

If n = 4 then by GAP, Γ is transitive. Conversely, suppose that Γ
is transitive. Then there exists α ∈ Aut(Γ) such that (1, 1)α = (1, 2).
Then α maps the 4-cycle

(1, 1), (b, 1), (ab, 1), (a, 1), (1, 1)

to a 4-cycle including the point (1, 2). Since R ∩ L = ∅, we have
(a, 1)α, (b, 1)α 6= (1, 1). Hence (a, 1)α, (b, 1)α ∈ {(c, 2), (c−1, 2)}, which
implies that (ab, 1)α = (c2, 2) = (c−2, 2). This means that n = 4.

Let Γ is normal. Then, since Y = ∅, Γ is intransitive. Conversely,
suppose that Γ is intransitive. So n 6= 4, by the above discussion. Now
[6, Theorem 1.2] and Lemma 3.4, imply that Γ is normal.

(4) In this case G ∼= Zn×Z2. If n = 4, then by GAP, Γ is intransitive
and normal. Hence, we may assume that n 6= 4. So, by a similar
argument of the previous case, Γ is intransitive. Suppose, towards
a contradiction, that Γ is nonnormal. Then, by Lemma 3.4 and [6,
Theorem 1.2], n = 6. Now, by GAP, A ∼= Z2

2 × S3 which implies that
Γ is normal, a contradiction.

(5) In this case G ∼= Zn × Z2. If n = 4 then Γ is transitive and
nonnormal. Let n 6= 4. Then by a similar argument of the case (3), Γ
is intransitive. By the same argument in case (4), if Γ is nonnormal,
then n = 6, which implies that, by GAP, A ∼= D8 × Z3 and Γ is
normal. �
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Let S be an inverse-closed subset of a group G not containing the
identity element of G. Recall that a permutation ϕ of G is a colour-
preserving automorphism of Cay(G,S) if and only if we have (xs)ϕ ∈
{xϕs±1} for each x ∈ G and s ∈ S [15, p. 190].

Lemma 3.9. Let R = {a, a−1} and L = {b, b−1}, o(a), o(b) ≥ 3, and
R ∩ L = ∅. If Γ is intransitive then it is normal.

Proof. Suppose, towards a contradiction, that there exists α ∈ A that
does not normalize RG. Since Γ is intransitive, there is a permutation
σ of G such that (g, i)α = (gσ, i) for all g ∈ G and i = 1, 2. There
is a natural colouring of Cay(G, {a±1, b±1}) with two colours, where
a-edges have one colour and b-edges have the other colour. Then σ is
a colour-preserving automorphism of Cay(G, {a±1, b±1}) because α is
an automorphism of Γ, which means that (ga)σ ∈ {ga±1} and (gb)σ ∈
{gb±1}.

Since α does not normalize RG (and G is 2-generated), we know from
[15, Proposition 4.1] that G has a direct factor that is isomorphic to
Z2 × Z4. So o(a) and o(b) are even. Therefore o(a), o(b) 6= 3 and so
o(a), o(b) ≥ 4. If o(a) = o(b) = 4 then, by GAP, Γ is a transitive graph
which is a contradiction. So we may assume that o(b) > 4.

By composing with a translation, we may assume that σ fixes 1. We
may also assume that σ fixes a by composing with inversion if necessary.
Then (ak)σ = ak for all k.

We claim that we may assume bσ = b. Suppose bσ 6= b, so bσ =
b−1. Then σ is the identity on 〈a〉 but inverts 〈b〉, which implies that
|〈a〉 ∩ 〈b〉| ≤ 2. Therefore there is an automorphism of G agrees with
σ on 〈a〉 ∪ 〈b〉. By composing with this automorphism, we have bσ = b
as desired.

Since σ does not normalize RG, we know that σ is not the identity
permutation and so there is some minimal k > 0 such that (akb)σ =
akb−1. Since ak−1b is adjacent to akb via an a-edge, we have ak−1ba =
akb−1 or ak−1ba−1 = akb−1. The first implies that b2 = 1 which con-
tradicts the fact that o(b) ≥ 4. The second implies a2 = b2. Since
|〈a〉∩〈b〉| ≤ 2, we have o(b) ≤ 4 which contradicts the fact o(b) > 4. �

Corollary 3.10. Let R = {a, a−1} and L = {b, b−1}, where o(a) 6= o(b)
and R ∩ L = ∅, then Γ is normal if and only if Γ is intransitive.

Proof. One direction is clear by Lemma 3.9. Let Γ be normal and
suppose, towards a contradiction, that Γ is transitive. Then there
exists α ∈ A such that (1, 1)α = (1, 2). Since Γ is normal, there exists
σ ∈ Aut(G) such that α = ψσ, Rσ = L and Lσ = R, which implies
that o(a) = o(b), a contradiction. �
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Lemma 3.11. Let |R| = |L| = 2 and R ∩ L = ∅. If R = {a, a−1},
where o(a) = n ≥ 3, then, perhaps after interchanging R and L, one
of the following holds:

(1) L = {an/2, b}, where n is even, b2 = 1 and b /∈ 〈a〉. In this case
G ∼= Zn × Z2, Γ is normal and intransitive.

(2) L = {b, ban/2}, where n is even, b2 = 1 and b /∈ 〈a〉. In this
case G ∼= Zn ×Z2, if n = 4 then Γ is transitive and nonnormal
and otherwise Γ is normal and intransitive.

(3) L = {b, c}, where b2 = c2 = 1, 〈a〉 ∩ 〈b, c〉 = 1 and b, c /∈ 〈a〉.
In this case G ∼= Zn × Z2

2, if n = 4 then Γ is transitive and
nonnormal and otherwise Γ is normal and intransitive.

(4) L = {ak, a−k}, for some k ≥ 2. In this case, G ∼= Zn. Further-
more, Γ is nonnormal if and only if (n, k) = (5, 2), (8, 3), (10, 2),
(10, 3), (12, 5), (24, 5). Also if Γ is nonnormal then Γ is transi-
tive.

(5) L = {b, b−1}, b /∈ 〈a〉, and 〈b〉 ∩ 〈a〉 6= 1. In this case, Γ is
nonnormal if and only if L = {a3y, a−3y} or L = {a2y, a−2y},
where o(a) = 10, o(y) = 2, and G = 〈a〉 × 〈y〉 ∼= Z10 × Z2, or
L = {ay, a−1y}, where o(a) = 4, o(y) = 2, and G = 〈a〉× 〈y〉 ∼=
Z4 × Z2. Also if Γ is nonnormal then Γ is transitive.

(6) L = {b, b−1}, and 〈b〉 ∩ 〈a〉 = 1. In this case, G ∼= Zn × Zl,
where l = o(b) and Γ is normal. Furthermore, Γ is transitive if
and only if o(a) = o(b).

Proof. It is easy to see that the only possibilities of L are the cases
(1)–(6). Since SC(G;R,L, {1}) ∼= SC(G;L,R, {1}), by the last three
cases of Lemma 3.8, cases (1), (2), and (3) are clear.

(4) In this case, Γ is isomorphic to the generalized Petersen graph
GP (n, k). Let Γ is nonnormal and suppose, for the contrary,

(n, k) /∈ {(5, 2), (8, 3), (10, 2), (10, 3), (12, 5), (24, 5)}.

Then Γ is not edge-transitive by [10, Lemma 3 and Theorem 2]. Hence
|A| = 4n [10, Theorem 1 and Theorem 2]. Since Γ is nonnormal,
Lemma 3.9 and [7, p. 105] imply that k2 ≡ ±1 (mod n). Hence
(k, n) = 1. Let σ1, σ2, σ3 : G→ G be the maps by the rules (ai)σ1 = aik,
(ai)σ2 = a−ik, and (ai)σ3 = a−i. Then these three maps are au-
tomorphisms of G. Furthermore, ψσ1 , ψσ2 , ϕσ3 ∈ Aut(G;R,L). So
|Aut(G;R,L)| ≥ 4, which implies that A = NA(RG) i.e., Γ is normal,
a contradiction.

Conversely, suppose that

(n, k) ∈ {(5, 2), (8, 3), (10, 2), (10, 3), (12, 5), (24, 5)}.
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Then Γ is arc-transitive by [7, p. 105] and so it is nonnormal by Lemma
3.1. If Γ is nonnormal then it is transitive by Lemma 3.9.

(5) Let L = {b, b−1}, b /∈ 〈a〉, a /∈ 〈b〉, and 〈b〉 ∩ 〈a〉 6= 1. If Γ is
intransitive, then by Lemma 3.9, Γ is normal. Hence, we may assume
that Γ is transitive. If Γ is arc-transitive then by [26, Proposition
5.1(2)], it is the unique arc-transitive cubic graph of order 40, denoted
by F040A in the Foster Census, G = 〈x〉 × 〈y〉 ∼= Z10 × Z2, and we
may assume that a = x and b ∈ {x3y, x2y}. Then Γ is nonnormal by
Lemma 3.1. So we may now assume that Γ is not arc-transitive. Then
by [26, Theorem 1.1], up to isomorphism, one of the following occurs:

(1) G = 〈x〉 × 〈y〉 ∼= Zmk × Zm, k ≥ 3,m ≥ 1, where (m, k, t) =
(1, 10, 2) or (t,mk) = 1 and t2 ≡ −1 (mod k) and we may as-
sume that a = x, b = xty. Clearly m = 1 is impossible, because
b /∈ 〈a〉. Also Aut(Γ) ∼= RG o Z4 [26, Theorem 5.5(3)], which
implies that Γ is normal.

(2) G = 〈x〉 × 〈y〉 ∼= Zmk × Zm, km ≥ 3, and m ≥ 1, where
(t,mk) = 1, t2 ≡ 1 (mod k) and Γ is a Cayley graph overGo〈z〉
for some involution z, [26, Theorem 5.2(5)]. Furthermore, we
may assume that a = x, b = xty. Clearly m = 1 is impossible
because b /∈ 〈a〉.

Since Γ is connected and transitive but not edge-transitive, every auto-
morphism of Γ maps G-orbits to G-orbits. If (m, k) = (2, 2), then L =
{ay, a−1y}, G ∼= Z4×Z2, and Γ is nonnormal over G by GAP. Hence, we
may assume that (m, k) 6= (2, 2). Then we claim that Γ is normal. Sup-
pose, towards a contradiction, that Γ is not normal. So, there exists
a colour-preserving automorphism σ of Γ0 = Cay(G, {a, a−1, b, b−1})
which fixes 1 but is not a group automorphism of G (see [15, Remark
2.1]). Since the map x 7→ x−1 is an automorphism of G, we may assume
that aσ = a.

We may assume that σ is not the identity. Then there is some i
such that (aib)σ = aib−1. By composing with a translation, we may
assume that i = 0 and bσ = b−1. Then we have (bm)σ = b−m. But
bm ∈ 〈a〉 and σ is the identity on 〈a〉. So bm must have order two which
means that bm = akm/2. So tm ≡ km/2 (mod km) which means that
t ≡ k/2 (mod k). Since t2 ≡ 1 (mod k) this implies that k = 2. So,
by [15, Corollary 4.2], |G| = 2m2 is divisible by 8. Thus m is even and
m ≥ 4 because (m, k) 6= (2, 2). Since 〈a〉∩〈b〉 6= 1 and (bm)−1 = bm, the
map ϕ : aibj 7→ aib−j is a well-defined automorphism of G that is also
an automorphism of Γ0. Furthermore, ψ = σϕ is a colour-preserving
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automorphism of Γ0 which fixes all powers of a (including 1) and b, but
is not a group automorphism of G.

Since mk,m ≥ 4, it is easy to see that for all g ∈ G, g and gab are
the only common neighbours of ga and gb in Γ0. Putting g = 1, we get
(ab)ψ = ab. Now putting g = a we get (a2b)ψ = a2b. By continuing this
procedure we get (aib)ψ = aib for all i. Since m ≥ 4, we have b2 6= 1.
So, for all i we have (aib2)ψ = aib2. This implies that (aib3)ψ = aib3 for
all i. By continuing this procedure, we get (aibj)ψ = aibj for all i, j.
This means that ψ is the trivial automorphism of G. Hence σ is an
automorphism of group G, a contradiction.

(6) Let L = {b, b−1}, where 〈a〉 ∩ 〈b〉 = 1. We claim that Γ is
normal. If Γ is intransitive, then by Lemma 3.9, Γ is normal. Hence,
we may assume that Γ is transitive. Then, by [26, Theorem 1.1], G =
〈x〉 × 〈y〉, o(x) = mk, o(y) = m, for some m, k ≥ 1, where mk ≥ 3.
Furthermore a = x and b = aty for some integer t with (t,mk) =
1 and t2 ≡ 1 (mod k), or (m, k, t) = (1, 10, 2), or (t,mk) = 1 and
t2 ≡ −1 (mod k). Clearly (m, k, t) = (1, 10, 2) is impossible, because
〈a〉 ∩ 〈b〉 = 1. So we have bm = atm ∈ 〈a〉 ∩ 〈b〉 = 1. Thus o(b) divides
m, and k divides t. The latter implies that k = t = 1. Thus b = ay
and o(b) = o(a) = m.

Since Γ is connected, [26, Proposition 5.1] implies that Γ is not edge-
transitive. So every automorphism of Γ maps G-orbits to G-orbits.
Suppose, towards a contradiction, that Γ is not normal. Similar to the
previous case, there exists a colour-preserving automorphism σ of Γ0 =
Cay(G, {a, a−1, b, b−1}) which fixes 1 but is not a group autmorphism
of G and we may assume that aσ = a and bσ = b−1. Then [15, Theorem
1.3(ii)] implies that 8 divides |G| = m2. So 4 divides m. Since 〈a〉 ∩
〈b〉 = 1, ϕ : aibj 7→ aib−j is a well-defined automorphism of G that is
also an automorphism of Γ0. Again, by the same argument in the last
paragraph of the proof of previous case, we get σ is an automorphism
of G which is a contradiction. So we have proved that Γ is normal.

As we saw above, if Γ is transitive, then o(a) = o(b). Conversely,
suppose that o(a) = o(b). Then σ : aibj 7→ ajbi is a group auto-
morphism of G and 〈RG, ψσ〉, where ψ is defined by the rule (g, 1)ψ =
(gσ, 2), (g, 2)ψ = (gσ, 1) for all g ∈ G, is a transitive subgroup of Aut(Γ).
This completes the proof. �

Proof of Theorem 1.1. It is a direct consequence of Lemmas 3.2, 3.3,
3.5–3.8, and 3.11. �
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