
Volume 10, Number 2, Pages 10–21
ISSN 1715-0868

ON UNIVERSALLY RIGID FRAMEWORKS ON THE LINE

TIBOR JORDÁN AND VIET-HANG NGUYEN

Abstract. A d-dimensional bar-and-joint framework (G, p) with un-
derlying graph G is called universally rigid if all realizations of G with
the same edge lengths, in all dimensions, are congruent to (G, p). We
give a complete characterization of universally rigid one-dimensional
bar-and-joint frameworks in general position with a complete bipartite
underlying graph. We show that the only bipartite graph for which all
generic d-dimensional realizations are universally rigid is the complete
graph on two vertices, for all d ≥ 1. We also discuss several open ques-
tions concerning generically universally rigid graphs and the universal
rigidity of general frameworks on the line.

1. Introduction

A d-dimensional (bar-and-joint) framework is a pair (G, p), where G =
(V,E) is a graph and p is a configuration of the vertices, that is, a map from
V to Rd. We consider the framework to be a straight line realization of G
in Rd. Two frameworks (G, p) and (G, q) are equivalent if ‖p(u) − p(v)‖ =
‖q(u) − q(v)‖ holds for all pairs u, v with uv ∈ E, where ‖.‖ denotes the
Euclidean norm in Rd. Frameworks (G, p), (G, q) are congruent if ‖p(u) −
p(v)‖ = ‖q(u)− q(v)‖ holds for all pairs u, v with u, v ∈ V . This is the same
as saying that (G, q) can be obtained from (G, p) by an isometry of Rd.

Let (G, p) be a d-dimensional framework for some d ≥ 1. We say that
(G, p) is rigid in Rd if there is a neighborhood Up in the space of configu-

rations in Rd such that if a d-dimensional framework (G, q) is equivalent to
(G, p) and q ∈ Up, then q is congruent to p. The framework (G, p) is called

globally rigid in Rd if every d-dimensional framework (G, q) which is equiv-
alent to (G, p) is congruent to (G, p). We obtain an even stronger property
by extending this condition to equivalent realizations in any dimension: we
say that (G, p) is universally rigid if it is a unique realization of G, up to

congruence, with the given edge lengths, in all dimensions Rd′ , d′ ≥ 1.
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It seems to be a hard problem to decide if a given framework is rigid,
globally rigid, or universally rigid. Indeed, Abbott [1] verified that recog-
nizing rigid frameworks in the plane is NP-hard and Saxe [17] proved that
it is NP-hard to decide if even a 1-dimensional framework is globally rigid.
The complexity of the corresponding decision problem for universal rigidity
seems to be open, even for d = 1.

These problems become more tractable, however, if we assume that there
are no algebraic dependencies between the coordinates of the points of the
framework. A framework (G, p) is said to be generic if the set containing the
coordinates of all its points is algebraically independent over the rationals. It
is well-known [6] that rigidity of frameworks in Rd is a generic property, that
is, the rigidity of (G, p) depends only on the graph G and not the particular
realization p, if (G, p) is generic. Global rigidity is also a generic property
in Rd, for all d [9, 13]. This property does not hold for universal rigidity,
even if d = 1, which follows by considering different generic realizations of
a four-cycle on the line.

A graph G is called generically rigid (resp. generically globally rigid,
generically universally rigid) in Rd if every d-dimensional generic framework
(G, p) is rigid (resp. globally rigid, universally rigid). We shall also use the
shorter versions d-GR, d-GGR, and d-GUR, respectively, for these families
of graphs. d-GR and d-GGR graphs are well-characterized for d ≤ 2. It
remains an open problem to extend these results to higher dimensions or to
characterize d-GUR graphs for any d ≥ 1. We refer the reader to [18] for
more details on the theory of rigid graphs and frameworks.

Let (G, p) be a framework in Rd with G = (V,E). An equilibrium stress
(or stress, for short) on (G, p) is an assignment of scalars ωij to the edges
vivj such that for each vi ∈ V we have

∑
j|vivj∈E

ωij(p(vi)− p(vj)) = 0.

Given a stress, there is an associated |V | × |V | symmetric matrix Ω,
the stress matrix such that for i 6= j, the i, j entry of Ω is −ωij , and the
diagonal entries for i, i are

∑
j 6=i ωij . Here we follow the convention that an

equilibrium stress can be extended to non-adjacent pairs vi, vj by putting
wij = 0. Note that all row and column sums are now zero. It is easy to see
that the rank of Ω is at most |V | − d− 1. We say that Ω is of full rank if its
rank is equal to |V | − d− 1.

Connelly [11] and Gortler and Thurston [14] show that a generic frame-
work (G, p) in Rd on at least d+2 vertices is universally rigid if and only if it
has a positive semi-definite (PSD) stress matrix of full rank. The ‘if’ direc-
tion also holds for frameworks in general position by a theorem of Alfakih
and Ye [5].
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2. Complete bipartite graphs

In this section, we give a complete characterization of the universally rigid
one-dimensional realizations of complete bipartite graphs. As a corollary we
shall deduce that no bipartite graph, other than K1,1, is 1-GUR (or d-GUR,
for any d ≥ 1).

We will need the following result due to Alfakih [3, Theorem 6].

Theorem 2.1. [3] Let (G, p) be a framework on n vertices, where G is not
a complete graph. Then the only PSD stress matrix Ω of (G, p) is the zero
matrix if and only if (G, p) has an equivalent realization in Rn−1, in which
the vertices are located at affinely independent points.

Let (G, p) be a framework on the line with G = (V,E). A pair of vertices
{u, v}, u, v ∈ V is called universally linked in (G, p) if ‖q(u) − q(v)‖ =
‖p(u)− p(v)‖ holds for all frameworks (G, q) which are equivalent to (G, p)
(in all dimensions). Let C be a cycle of G passing through v1, . . . , vk with
E(C) = {v1v2, . . . , vk−1vk, vkv1}. If p(v1) < p(v2) < · · · < p(vk) then C is
called a stretched cycle in (G, p). If C is a stretched cycle in (G, p) then it
is not difficult to see that every pair of vertices of C is universally linked in
(G, p).

Theorem 2.2. Let G be a complete bipartite graph on at least three vertices
and let (G, p) be a realization of G on the line in which the vertices are
located at pairwise distinct points. Then (G, p) is universally rigid if and
only if it contains a stretched cycle.

Proof. Let X = {x1, . . . , xm} and Y = {y1, . . . , yn} be the vertex sets of the
two colour classes of G. For simplicity we shall also use x1, . . . , xm, y1, . . . , yn
to denote the coordinates of the corresponding vertices in (G, p).

First suppose that (G, p) contains a stretched cycle. Without loss of
generality we may assume that x1, y1, x2, y2 form a stretched cycle. Then
{x1, x2} and {y1, y2} are universally linked pairs in (G, p). This implies
that the pairwise distances among these four vertices are the same in all
realizations of G equivalent to (G, p) and hence (G, p) is universally rigid
if and only if (G′, p) is universally rigid, where G′ = G + x1x2 + y1y2. It
remains to observe that (G′, p) can be obtained from a framework on a
complete graph on four vertices by iteratively attaching vertices of degree
two (and adding edges). These operations are known to preserve universal
rigidity on the line. Therefore (G′, p) and hence (G, p) are universally rigid,
as required.

Next consider the case where (G, p) contains no stretched cycle. Observe
that there is no streched cycle if and only if the vertices of at least one of
the two colour classes are consecutive on the line. Thus we may assume that

x1 < · · · < xk < y1 < · · · < yn < xk+1 < · · · < xm for some 1 ≤ k ≤ m

(note that when k = m we have x1 < · · · < xm < y1 < · · · < yn). If n = 1,
that is, when colour class Y consists of a single vertex y1, the framework is
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not even globally rigid on the line. This follows by observing that y1 is a
cut-vertex of G and hence we may obtain an equivalent but not congruent
realization by reflecting any vertex xi to the other side of y1. Hence we may
assume that n ≥ 2.

Consider a stress ω on (G, p) for which the corresponding stress matrix Ω
is PSD. We shall prove that Ω is the zero matrix. This fact and Theorem 2.1
will imply that (G, p) has a higher dimensional equivalent realization and
hence it is not universally rigid.

Let ωij denote the stress on the edge xiyj for 1 ≤ i ≤ m, 1 ≤ j ≤ n. Let

Ai =

{
(y1 − xi)

∑n
j=1 ωij for i ≤ k,

(xi − y1)
∑n

j=1 ωij for i > k.

Since
∑n

j=1(xi−yj)ωij = 0 for each i = 1, . . . ,m by the equilibrium condition
at xi, we have

Ai =

{ ∑n
j=1(y1 − yj)ωij for i ≤ k,∑n
j=1(yj − y1)ωij for i > k.

Let Bj = (xk+1 − yj)
∑m

i=1 ωij for j = 1, . . . , n. Using the equilibrium
condition

∑m
i=1(yj − xi)ωij = 0 at yj we have

Bj =

m∑
i=1

(xk+1 − xi)ωij .

Since
∑n

j=1 ωij , for i = 1, . . . ,m, and
∑m

i=1 ωij , for j = 1, . . . , n, are

diagonal entries of the PSD matrix Ω, we have
∑n

j=1 ωij ≥ 0 for i = 1, . . . ,m

and
∑m

i=1 ωij ≥ 0 for j = 1, . . . , n. Hence, by definition, Ai, Bj ≥ 0 for all
1 ≤ i ≤ m, 1 ≤ j ≤ n.

Suppose that k < m. Then we obtain

0 ≤
∑
i≤k

(xk+1 − xi)Ai +
∑
i>k

(xi − xk+1)Ai

=
∑
i≤k

(xk+1 − xi)
∑
j

(y1 − yj)ωij +
∑
i>k

(xi − xk+1)
∑
j

(yj − y1)ωij

=
∑
j

(y1 − yj)
(∑

i≤k
(xk+1 − xi)ωij +

∑
i>k

(xk+1 − xi)ωij

)
=

∑
j

(y1 − yj)Bj

≤ 0.

Hence we must have Ai = 0 for all i 6= k + 1 and Bj = 0 for all j 6= 1.
By applying the same argument to the mirror image of the framework and
using that n ≥ 2 we can conclude that in fact Ai = 0 for all i = 1, . . . ,m and
Bj = 0 for all j = 1, . . . , n. Therefore, all the diagonal entries of the PSD
matrix Ω are zeros, which implies that Ω is the zero matrix, as claimed.
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It remains to consider the case when k = m. This case is even simpler as
it suffices to consider the Ai’s for which we can deduce that

0 ≤
m∑
i=1

Ai =
m∑
i=1

n∑
j=1

(y1 − yj)ωij =
n∑

j=1

(y1 − yj)(
m∑
i=1

ωij) ≤ 0.

Thus Ai = 0 must hold for all 1 ≤ i ≤ m. Therefore
∑n

j=1 ωij = 0 for all

1 ≤ i ≤ m. Moreover,
∑n

j=1

∑m
i=1 ωij =

∑m
i=1

∑n
j=1 ωij = 0 holds. Hence∑m

i=1 ωij = 0 for all 1 ≤ j ≤ n. Therefore Ω is the zero matrix, as required.
The theorem follows. �

Theorem 2.2 implies the following observation of Connelly1.

Corollary 2.3. [10] The only generically universally rigid bipartite graph
in R1 is the single edge K1,1.

In fact, this corollary extends to all dimensions. To see this first observe
that no general position d-dimensional realization of a non-complete graph
on at most d+ 1 vertices is rigid. Thus the only d-GR (or d-GUR) bipartite
graph on at most d + 1 vertices is K1,1. Next consider a complete bipar-
tite graph G on at least d + 2 vertices and a d-dimensional generic realiza-
tion (G, p) with the property that the projected one-dimensional framework
(G, p′), obtained by projecting the configuration p to one coordinate axis,
contains no streched cycles. A PSD stress matrix of (G, p) is also a PSD
stress matrix of (G, p′) and hence, by the proof of Theorem 2.2, it must
be the zero matrix. Thus, by Theorem 2.1, (G, p) is not universally rigid.
Therefore we have the following stronger result.

Theorem 2.4. The only generically universally rigid bipartite graph in Rd

is the single edge K1,1, for every dimension d ≥ 1.

We close this section with two questions. Motivated by Theorem 2.2 one
may ask:

Question 2.5. Is it true that the universal rigidity of a general position
framework (G, p) in R1 depends only on the ordering of vertices on the line
(and not on the coordinates)?

Theorem 2.1, which was used in the proof of Theorem 2.2, might be
extended in the following sense, at least for generic frameworks.

1Connelly’s argument is as follows: map the bipartite graph G = Km,n onto the unit
interval on the line. This framework has a realization as a subframework of a unit-length
simplex (S, p) in Rd, where d = m + n − 1. Then perturb the realization on the line to
a generic one and follow it with a modified realization of the simplex in Rd. The inverse
function theorem can be used to verify the construction. (In detail, consider the rigidity
map fG on the d-dimensional realizations of G which assigns the edge lengths to the
realizations. Since the simplex is minimally infinitesimally rigid in Rd, p is a regular point
of fS . By the inverse function theorem, we can choose an open neibourhood Up of p and
an open neighbourhood W of fS(p) such that fS maps Up diffeomorphically onto W . Thus
there is a realization of S for which the edge lengths of the complete bipartite subframework
are consistent with the edge lengths of the perturbed one-dimensional framework.)
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Question 2.6. Let G be a graph on n vertices and let k ≤ n− 2. Is it true
that a framework (G, p) in generic position has a PSD stress matrix Ω of
rank at least k if and only if (G, p) has no equivalent realization (G, q) in
Rn−i which contains n− i+ 1 affinely independent points, for all 1 ≤ i ≤ k?

The answer to the “only if” direction is affirmative even for frameworks
in general position. This can be verified as follows. Suppose that Ω is a
PSD stress matrix of (G, p) of rank at least k and let (G, q) be a framework
equivalent to (G, p) in Rd. By another result of Alfakih [3, Theorem 5] Ω
is a stress matrix for (G, q) as well. Thus rank Ω ≤ |V (G)| − d − 1, which
implies that d ≤ |V (G)| − k − 1.

The answer to the “if” direction is negative if we replace generic position
by general position. A counterexample, due to Connelly and Whiteley, can
be found e.g. in [4, Example 2.1].

3. Generic universal rigidity on the line

In this section we consider generic frameworks in R1 and list a few ques-
tions and observations concerning the family of 1-GUR graphs. As we noted
earlier, the complexity of recognizing these graphs is still an open question.

First we recall a conjectured inductive construction of 1-GUR graphs.

Conjecture 3.1. [10] A graph G on at least three vertices is 1-GUR if and
only if G can be obtained from K3 by the following operations:
(i) add an edge,
(ii) choose two graphs G1, G2 built by these operations, choose two sets U1 ⊆
V (G1), U2 ⊆ V (G2) with |U1| = |U2| ≥ 2, delete all edges joining vertices of
U1 in G1, then glue the two graphs together along the vertices in U1 and U2.

The “if” direction of Conjecture 3.1 follows from a recent result of Rat-
manski [16]. Note that the graphs built up from a triangle by operations (i)
and (ii) must contain a triangle. Thus finding triangle-free 1-GUR graphs
would be interesting, c.f. Section 4. Furthermore, Conjecture 3.1, if true,
does not seem to provide a good characterization of 1-GUR graphs since it
is not clear how to test whether G can be constructed from a triangle by
the above operations.

This leads us to minimally 1-GUR graphs, for which the deletion of any
edge makes them not 1-GUR. These graphs may be sparse and may have
small vertex separations, along which they may be decomposable by the
inverse operation of glueing (as in Conjecture 3.1(ii) above).

Question 3.2. Let G = (V,E) be a minimally 1-GUR graph. Is there an
upper bound on |E| as a linear function of |V |?

We remark here that there is no constant k for which the k-vertex-
connectivity of G would imply that G is 1-GUR, and there exist dense not
1-GUR graphs, for example, the complete bipartite graphs (c.f. Corollary
2.3). However, the end of the proof of Theorem 2.2 shows that by adding an
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edge to a complete bipartite graph we obtain a 1-GUR graph which contains
a sparse 1-GUR spanning subgraph.

Let G = (V,E) be a graph. A pair (G1, G2), where G1, G2 are subgraphs
of G, is called a k-separation of G if V (G1)∪V (G2) = V , E(G1)∪E(G2) = E,
and |V (G1)∩V (G2)| = k hold. For a subset X ⊆ V let G+K(X) denote the
supergraph of G obtained by adding all edges connecting pairs of vertices of
X (which are non-adjacent in G). The first observation about separations
is as follows.

Lemma 3.3. Let G be a 1-GUR graph and let (G1, G2) be a k-separation
of G with X = V (G1) ∩ V (G2). Then Gi + K(X) is 1-GUR for i = 1, 2.

Proof. Suppose that G1 = G1 + K(X) is not 1-GUR. Then there exists a
generic realization (G1, p1) of G1 in R1 which is not UR and hence there
exists a realization (G1, p

′
1) equivalent but not congruent to (G1, p1). We

can assume that p′1(v) = p1(v) for every v in X. Extend p1 to a generic
realization p of G in R1. Let

p′(v) =

{
p′1(v), v ∈ V (G1)
p(v), v ∈ V (G2)

Then (G, p′) is equivalent but not congruent to (G, p), which means that G
is not 1-GUR, a contradiction. �

Lemma 3.3 implies that we can cut a 1-GUR graph along a separating
vertex pair u, v into two smaller 1-GUR graphs if we add the edge uv to
both pieces2. What if we are not allowed to add the edge? In this context
the following statement may help.

A pair of vertices {u, v} in graph G is called universally linked in Rd if
{u, v} is universally linked in all d-dimensional generic realizations of G.

Conjecture 3.4. Suppose that {u, v} is not universally linked in G in R1,
for some pair u, v ∈ V . Then there exist generic 1-dimensional realizations
(G, p), (G, q) of G with the property that there exist a realization (G, p′)
equivalent to (G, p) and a realization (G, q′) equivalent to (G, q), such that
‖p′(u)− p′(v)‖ > ‖p(u)− p(v)‖ and ‖q′(u)− q′(v)‖ < ‖q(u)− q(v)‖.

The truth of this conjecture may imply:

Conjecture 3.5. Let G be a 1-GUR graph and let (G1, G2) be a 2-separation
in G with V (G1) ∩ V (G2) = {x, y}. Then G1 or G2 is 1-GUR.

By assuming the truth of Conjecture 3.4 we can show that if G1 and G2

are not 1-GUR then there exists a general position realization (G, p) on the
line which is not universally rigid. We believe that p can be made generic,
too (c.f. Question 2.5), which would imply Conjecture 3.5.

Our argument is as follows. We may assume that {x, y} is not universally
linked in G1 and G2. Thus there is a generic realization (G1, p) in R1 and an

2It is easy to see that every 1-GUR graph (in fact, every 1-GGR graph) is 2-connected.
Thus we may begin the study of small separators with the 2-separations.
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equivalent realization (G1, q) such that the distance between p(x) and p(y)
is, say, stricly smaller than the distance between q(x) and q(y). By assuming
the truth of Conjecture 3.4 we can find a generic realization (G2, p

′) in R1 and
an equivalent realization (G2, q

′) such that the distance between p′(x) and
p′(y) is, say, stricly smaller than the distance between q′(x) and q′(y). By
carefully choosing the generic realization (G2, p

′) and rescaling, if necessary,
we may assume that ‖p(x) − p(y)‖ = ‖p′(x) − p′(y)‖. Now we can use a
result of Bezdek and Connelly3 to obtain a pair of realizations (G1, r) and
(G2, r

′) for which ‖r(x)− r(y)‖ = ‖r′(x)− r′(y)‖ > ‖p(x)− p(y)‖ and such
that (G1, r) is equivalent to (G1, p) and (G2, r

′) is equivalent to (G2, p
′). By

glueing together (G1, p) and (G2, p
′) as well as (G1, r) and (G2, r

′) along
the pair x, y we obtain two equivalent but not congruent realizations of G,
where the former realization is one-dimensional.

Conjecture 3.5 would imply Conjecture 3.1 by induction in the case when
there is a 2-separation.

We close this section with the following question.

Question 3.6. Let G = (V,E) be 1-GUR. Does this imply that
(a) |E| ≥ 2|V | − 3 holds?
(b) G is 2-GR?

Note that the truth of Conjecture 3.1 would imply an affirmative answer
to (b), and hence also to (a), since both operations preserve generic rigidity
in R2.

4. Cover graphs and universal rigidity

Since it is probably difficult to characterize 1-GUR graphs, special families
of 1-GUR (or not 1-GUR) graphs may be of interest. In this context we offer
the study of the following family of graphs as a candidate for being not 1-
GUR.

Let G = (V,E) be a graph and let ~G be an acyclic orientation of G. An

edge e of G is dependent if the reversal of e in ~G creates a directed cycle.
An acyclic orientation without dependent edges is called strongly acyclic.
We say that G is a cover graph if G has a strongly acyclic orientation. (It
is known that G is a cover graph if and only if it is the Hasse diagram of
some partially ordered set on V .) Note that all bipartite graphs are cover
graphs: orient all edges from one colour class to the other. Also note that
cover graphs are triangle-free. We should also remark that it is NP-hard to
test whether a given graph is a cover graph [8, 15].

Question 4.1. Is it true that no cover graph is 1-GUR (except K1,1)?

3Bezdek and Connelly [7] proved that if p = (p1, p2, ..., pn) and q = (q1, q2, ..., qn) are
two configurations in Rd then there is a continuous motion p(t) in R2d, that is analytic
in t, such that p(0) = p, p(1) = q and for 0 ≤ t ≤ 1, ‖pi(t) − pj(t)‖ is monotone for all
1 ≤ i < j ≤ n.
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It is also known that triangle-free planar graphs (and more generally,
triangle-free 3-colorable graphs) are cover graphs [12]. (Recall that by a
theorem of Grötzsch, every triangle-free planar graph is 3-colorable.) These
special cases would also be interesting:

Question 4.2. Is it true that no triangle-free planar graph (or even triangle-
free 3-colorable graph) is 1-GUR (except K1,1)?

We may also ask whether all non-cover graphs are 1-GUR. An inter-
esting graph to analyse is the Grötzsch graph, which is triangle-free and
4-chromatic, see Figure 1. This graph is not a cover graph [12]. Is it 1-
GUR? Since it is triangle-free, an affirmative answer to this question would
disprove Conjecture 3.1.

Figure 1. The Grötzsch graph.

5. Further observations on cover graphs

This section contains some further questions and observations about cover
graphs, loosely related to (universal) rigidity of graphs. Let G = (V,E) be
a graph. We say that G is (2, 4)-sparse (resp. (2, 3)-sparse) if for all subsets
X ⊆ V with |X| ≥ 3 (resp. |X| ≥ 2) the subgraph induced by X has at
most 2|X| − 4 (resp. 2|X| − 3) edges. It follows that every (2, 4)-sparse
graph is triangle-free. It can also be seen that triangle-free planar graphs
are (2, 4)-sparse and minimally 2-GR graphs are (2, 3)-sparse. Perhaps the
following families also consist of cover graphs.

Question 5.1. Is every (2, 4)-sparse graph a cover graph?

Question 5.2. Is every triangle-free (2, 3)-sparse graph a cover graph?

A well-known inductive construction of (2, 3)-sparse graphs is based on
the following operations. The 0-extension operation adds a new vertex v to
a graph G and two new edges vx, vy connecting v to different vertices of G.
The 1-extension operation deletes an edge xy of G, adds a new vertex v, and
three new edges vx, vy, vz, for some vertex z 6= x, y. These operations are
also called Henneberg operations. The next lemmas show that an affirmative
answer to the above questions may be obtained by finding a similar inductive
construction for triangle-free (2, 3)-sparse graphs.
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Lemma 5.3. Let G be a triangle-free graph obtained from a graph H by a
0-extension operation. Then G is a cover graph if and only if H is a cover
graph.

Proof. Since H is a subgraph of G, necessity is obvious. To see the other

direction consider a strongly acyclic orientation ~H of H. Suppose that

G = H +vx+vy. Since ~H is acyclic, we cannot have an (x, y)-directed path

and a (y, x)-directed path in ~H simultaneously. Thus, by relabelling x and y,
if necessary, we have two cases to consider: either there is an (x, y)-directed

path in ~H (which must have at least two edges, since G is triangle-free), or

there is neither an (x, y)-directed path nor a (y, x)-directed path in ~H.

In the former case we extend ~H to an orientation of G by orienting vx
from x to v and vy from v to y. In the latter case we orient vx from v to
x and vy from v to y. In both cases it is easy to check that the extended
orientation gives rise to a strongly acyclic orientation of G. �

We can use similar arguments to deal with the 1-extension operation.

Lemma 5.4. Let G be a triangle-free graph obtained from a cover graph H
by a 1-extension operation. Then G is also a cover graph.

Proof. Consider a strongly acyclic orientation ~H of H. Suppose that G =
H − xy + vx+ vy + vz. We may assume, without loss of generality, that xy

is oriented from x to y in ~H. Note that this implies that every path from y
to x has at least two backward edges.

As above, we extend ~H to an orientation of G by considering several
cases. In all cases it will be easy to check that the extended orientation
is a strongly acyclic orientation of G. We omit the simple arguments but
note that it is useful to observe that if there is an (a, b)-directed path in
~H then every (b, a)-path has at least two backward edges, and that each
path connecting two neighbours of v must have at least two edges since G
is triangle-free.

Case 1: There is an (x, z)-directed path P in ~H − xy.

Then P has at least two edges and there is no (z, y)-directed path in ~H−xy.

If there is a (y, z)-directed path in ~H − xy (Case 1.1), which must have at
least two edges, then we orient vx from x to v, vy from y to v and vz from v

to z. If there is no (y, z)-directed path in ~H − xy (Case 1.2) then we orient
vx from x to v, vy from v to y and vz from v to z. See Figure 2.

Case 2: There is a (z, x)-directed path Q in ~H − xy.

Then Q has at least two edges and every (y, z)-path in ~H − xy has at
least two backward edges. We orient vx from v to x, vy from v to y and vz
from z to v. See Figure 3.

Case 3: There is neither an (x, z)-directed path nor a (z, x)-directed path

in ~H − xy.
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Figure 2. Cases 1.1 and 1.2

Figure 3. Case 2 and Case 3.1

If there is a (y, z)-directed path in ~H − xy (Case 3.1) then every (x, z)-

path in ~H − xy has at least two forward edges. Then we orient vx from
x to v, vy from y to v and vz from v to z. See Figure 3. If there is a

(z, y)-directed path in ~H − xy (Case 3.2) then we orient vx from x to v, vy
from v to y and vz from z to v.

Figure 4. Cases 3.2 and 3.3

Finally, if there is neither a (y, z)-directed path nor a (z, y)-directed path

in ~H − xy (Case 3.3) then we orient vx from x to v, vy from y to v and vz
from z to v. See Figure 4. �
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Egerváry Research Group on Combinatorial Optimization, Pázmány sétány
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