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A THEOREM ON FRACTIONAL

ID-(g, f)-FACTOR-CRITICAL GRAPHS

SIZHONG ZHOU, ZHIREN SUN, AND YANG XU

Abstract. Let a, b and r be three nonnegative integers with 2 ≤ a ≤
b− r, let G be a graph of order p satisfying the inequality p(a + r) ≥
(a+b−3)(2a+b+r)+1, and let g and f be two integer-valued functions
defined on V (G) satisfying a ≤ g(x) ≤ f(x) − r ≤ b − r for every
x ∈ V (G). A graph G is said to be fractional ID-(g, f)-factor-critical if
G − I contains a fractional (g, f)-factor for every independent set I of
G. In this paper, we prove that G is fractional ID-(g, f)-factor-critical
if bind(G)((a + r)p − (a + b − 2)) > (2a + b + r − 1)(p − 1), which is a
generalization of a previous result of Zhou.

1. Introduction

The graphs considered here are finite undirected graphs which have nei-
ther loops nor multiple edges. Let G = (V (G), E(G)) be a graph, where
V (G) and E(G) denote its vertex set and edge set. For every x ∈ V (G), we
denote by dG(x) the degree of x and by NG(x) the set of vertices adjacent
to x in G. For a subset S of V (G), we write NG(S) =

⋃
x∈S NG(x), G[S]

for the subgraph of G induced by S, and we define G − S = G[V (G) \ S].
The minimum degree of G is denoted by δ(G), while a subset S of V (G) is
said to be independent if G[S] has no edges. The binding number of G is
denoted by bind(G) and defined as

bind(G) = min

{
|NG(X)|
|X|

: ∅ 6= X ⊆ V (G), NG(X) 6= V (G)

}
.

Let g and f be two nonnegative integer-valued functions defined on V (G)
satisfying g(x) ≤ f(x) for any x ∈ V (G). A spanning subgraph F of G is a
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(g, f)-factor if g(x) ≤ dF (x) ≤ f(x) for any x ∈ V (G). Assume there exists
a function h : E(G)→ [0, 1] such that

g(x) ≤
∑
e3x

h(e) ≤ f(x)

for every vertex x of G. The spanning subgraph of G induced by the set
of edges {e : e ∈ E(G), h(e) > 0} is called a fractional (g, f)-factor of G with
indicator function h.

Definition 1.1. A graph G is said to be fractional ID-(g, f)-factor-critical
if G− I contains a fractional (g, f)-factor for every independent set I of G.

A fractional ID-(f, f)-factor-critical graph is a fractional ID-f -factor-
critical graph. If f(x) ≡ k, then we say a fractional ID-k-factor-critical
graph instead of a fractional ID-f -factor-critical graph. For any function
f(x) and S ⊆ V (G), we define

f(S) =
∑
x∈S

f(x).

In particular, note that

dG(S) =
∑
x∈S

dG(x).

A huge amount of work has been done concerning factors and fractional
factors in graphs (see [1, 4, 5, 6, 8]). In [3] Chang, Liu, and Zhu first inves-
tigated the fractional ID-k-factor-critical graph and obtained a minimum
degree condition for a graph to be a fractional ID-k-factor-critical graph.
This result is summarized below:

Theorem 1.2 (Chang, Liu, and Zhu [3]). Let k be a positive integer and G
be a graph of order p with p ≥ 6k − 8. If δ(G) ≥ 2p/3, then G is fractional
ID-k-factor-critical.

In [11] Zhou, Xu, and Sun proved the following result on the fractional
ID-k-factor-critical graphs:

Theorem 1.3 (Zhou, Xu, and Sun [11]). Let G be a graph, and let k be an
integer with k ≥ 1. If

α(G) ≤ 4k(δ(G)− k + 1)

k2 + 6k + 1
,

then G is fractional ID-k-factor-critical.

Zhou studied the relationship between binding number and the fractional
ID-k-factor-critical graph in [10] and proved the following theorem:

Theorem 1.4 (Zhou [10]). Let k be an integer with k ≥ 2, and let G be a
graph of order p with p ≥ 6k − 9. If

bind(G) >
(3k − 1)(p− 1)

kp− 2k + 2
,

then G is fractional ID-k-factor-critical.
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In this work, we generalize the fractional ID-k-factor-critical graph to
the fractional ID-(g, f)-factor-critical graph and obtain a binding number
condition for a graph to be fractional ID-(g, f)-factor-critical:

Theorem 1.5. Let a, b, and r be three integers such that 2 ≤ a ≤ b− r and
r ≥ 0, let G be a graph of order p, where

p ≥ (a+ b− 3)(2a+ b+ r) + 1

a+ r
,

and let both g and f be nonnegative integer-valued functions defined on
V (G), where a ≤ g(x) ≤ f(x)− r ≤ b− r for any x ∈ V (G). If

bind(G) >
(2a+ b+ r − 1)(p− 1)

(a+ r)p− (a+ b− 2)
,

then G is fractional ID-(g, f)-factor-critical.

We obtain the following corollary by setting r = 0 in Theorem 1.5:

Corollary 1.6. Let a and b be two integers with 2 ≤ a ≤ b, and let G be a
graph of order p, where

p ≥ (a+ b− 3)(2a+ b) + 1

a
,

and let g and f be nonnegative integer-valued functions defined on V (G)
such that a ≤ g(x) ≤ f(x) ≤ b for any x ∈ V (G). If

bind(G) >
(2a+ b− 1)(p− 1)

ap− (a+ b− 2)
,

then G is fractional ID-(g, f)-factor-critical.

If g(x) ≡ f(x) in Corollary 1.6, then we have the following result:

Corollary 1.7. Let a and b be two integers satisfying 2 ≤ a ≤ b, and let G
be a graph of order p with

p ≥ (a+ b− 3)(2a+ b) + 1

a
,

and let f be a nonnegative integer-valued function defined on V (G), where
a ≤ f(x) ≤ b for any x ∈ V (G). If

bind(G) >
(2a+ b− 1)(p− 1)

ap− (a+ b− 2)
,

then G is fractional ID-f -factor-critical.

2. Proof of Theorem 1.4

The following result was first obtained by Anstee [2], and it is very useful
for proving Theorem 1.5. An alternative proof was provided by Liu and
Zhang in [7].
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Lemma 2.1 (Anstee [2], Liu and Zhang [7]). Let G be a graph. Then G
has a fractional (g, f)-factor if and only if for every subset S of V (G),

δG(S, T ) = f(S) + dG−S(T )− g(T ) ≥ 0,

where T = {x : x ∈ V (G) \ S, dG−S(x) ≤ g(x)}.

In [9] Woodall presented the following result, which will also be used in
the proof of Theorem 1.5:

Lemma 2.2 (Woodall [9]). Let c be a positive real number and let G be a
graph of order p with bind(G) > c. Then

δ(G) ≥ p− p− 1

bind(G)
> p− p− 1

c
.

Proof of Theorem 1.5. Let X be an independent set of G and H = G−X.
In order to prove Theorem 1.5, by Definition 1.1 we only need to prove that
H admits a fractional (g, f)-factor.

Suppose that H has no fractional (g, f)-factor. Then from Lemma 2.1,
there exists some subset S of V (H) satisfying

δH(S, T ) = f(S) + dH−S(T )− g(T ) ≤ −1, (1)

where T = {x : x ∈ V (H) \ S, dH−S(x) ≤ g(x)}.
Henceforth we write bind(G) = λ. In terms of Lemma 2.2 and the hy-

potheses of Theorem 1.5, we obtain the inequality

δ(G) ≥ p− p− 1

λ
>

(a+ b− 1)p+ a+ b− 2

2a+ b+ r − 1
. (2)

Assume, in order to derive a contradiction, that T = ∅. Then using
Equation (1) we derive that

−1 ≥ δH(S, T ) = f(S) ≥ 0,

which is a contradiction. Therefore T 6= ∅.
In the following, we set h = min{dH−S(x) : x ∈ T}. Obviously, 0 ≤ h ≤

b− r. We now must prove the following claims:

Claim 2.3. |S| ≥ δ(G)− |X| − h.

Proof. We choose x1 ∈ T with dH−S(x1) = h. Clearly, we have

δ(G) ≤ dG(x1) ≤ dG−X−S(x1) + |X|+ |S|
= dH−S(x1) + |X|+ |S| = h+ |X|+ |S|,

which implies

|S| ≥ δ(G)− |X| − h.
This completes the proof of Claim 2.3. �

Claim 2.4. |X| ≤ p− δ(G).
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Proof. Obviously, dG(x) ≥ δ(G) for any x ∈ V (G). Consequently, dG(x) ≥
δ(G) for any x ∈ X. Because X is an independent set of G we have

p ≥ dG(x) + |X| ≥ δ(G) + |X|

for all x ∈ X, which implies

|X| ≤ p− δ(G).

This proves Claim 2.4. �

We now consider the following two cases regarding the value of h:
Case 1: h = 0:

In this case, we first prove the following claim:

Claim 2.5. λ ≤ a+ b− 1.

Proof. Suppose that λ > a+ b− 1. In view of Equation (2) and 2 ≤ a ≤
b− r, we obtain

δ(G) ≥ p− p− 1

λ
>

(a+ b− 2)p

a+ b− 1
≥ (a+ b)p

2a+ b+ r
.

Combining this with Equation (1), the inequality p ≥ |X| + |S| + |T |,
and Claims 2.3 and 2.4, we have:

−1 ≥ δH(S, T ) = f(S) + dH−S(T )− g(T )

≥ (a+ r)|S| − (b− r)|T |
≥ (a+ r)|S| − (b− r)(p− |X| − |S|)
= (a+ b)|S| − (b− r)p+ (b− r)|X|
≥ (a+ b)(δ(G)− |X|)− (b− r)p+ (b− r)|X|
= (a+ b)δ(G)− (b− r)p− (a+ r)|X|
≥ (a+ b)δ(G)− (b− r)p− (a+ r)(p− δ(G))

= (2a+ b+ r)δ(G)− (a+ b)p > 0,

which is a contradiction. This completes the proof of Claim 2.5. �

Now set Y = {x : x ∈ T, dH−S(x) = 0}. Note that Y 6= ∅ and
NG(V (G)\(X∪S))∩Y = ∅, which gives |NG(V (G)\(X∪S))| ≤ p−|Y |.
Thus,

bind(G) = λ ≤ |NG(V (G) \ (X ∪ S))|
|V (G) \ (X ∪ S)|

≤ p− |Y |
p− |X| − |S|

,

that is,

|S| ≥
(

1− 1

λ

)
p− |X|+ 1

λ
|Y |. (3)
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It then follows from Equation (1) and the inequality |X|+ |S|+ |T | ≤ p
that:

−1 ≥ δH(S, T ) = f(S) + dH−S(T )− g(T )

≥ (a+ r)|S|+ |T | − |Y | − (b− r)|T |
= (a+ r)|S| − (b− r − 1)|T | − |Y |
≥ (a+ r)|S| − (b− r − 1)(p− |X| − |S|)− |Y |
= (a+ b− 1)|S| − (b− r − 1)p+ (b− r − 1)|X| − |Y |.

Invoking Equation (3) then gives that:

(a+ b− 1)|S| − (b− r − 1)p+ (b− r − 1)|X| − |Y |

≥ (a+ b− 1)

((
1− 1

λ

)
p− |X|+ |Y |

λ

)
+ (b− r − 1)(|X| − p)− |Y |

= (a+ r)p− (a+ b− 1)p

λ
− (a+ r)|X|+

(
a+ b− 1

λ
− 1

)
|Y |.

Claim 2.5 and the fact that Y 6= ∅ imply together the inequality

(a+ r)p− (a+ b− 1)p

λ
− (a+ r)|X|+

(
a+ b− 1

λ
− 1

)
|Y |

≥ (a+ r)p− (a+ b− 1)p

λ
− (a+ r)|X|+ a+ b− 1

λ
− 1;

applying Claim 2.4 then yields the following:

(a+ r)p− (a+ b− 1)p

λ
− (a+ r)|X|+ a+ b− 1

λ
− 1

≥ (a+ r)p− (a+ b− 1)p

λ
− (a+ r)(p− δ(G)) +

a+ b− 1

λ
− 1

= −(a+ b− 1)p

λ
+ (a+ r)δ(G) +

a+ b− 1

λ
− 1.

Using Equation (2) allows us to conclude

− (a+ b− 1)p

λ
+ (a+ r)δ(G) +

a+ b− 1

λ
− 1

≥ −(a+ b− 1)p

λ
+ (a+ r)

(
p− p− 1

λ

)
+
a+ b− 1

λ
− (a+ b− 1)

= −(2a+ b+ r − 1)(p− 1)

λ
+ (a+ r)p− (a+ b− 1),

which implies

λ ≤ (2a+ b+ r − 1)(p− 1)

(a+ r)p− (a+ b− 2)
,

contradicting the hypotheses of Theorem 1.5.
Case 2: 1 ≤ h ≤ b− r:
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According to Equation (1), Claims 2.3 and 2.4, and the inequality p ≥
|S|+ |T |+ |X|, we obtain:

−1 ≥ δH(S, T ) = f(S) + dH−S(T )− g(T )

≥ (a+ r)|S| − (b− r − h)|T |
≥ (a+ r)|S| − (b− r − h)(p− |X| − |S|)
= (a+ b− h)|S|+ (b− r − h)|X| − (b− r − h)p

≥ (a+ b− h)(δ(G)− |X| − h) + (b− r − h)|X| − (b− r − h)p

= (a+ b− h)δ(G)− (a+ r)|X| − h(a+ b− h)− (b− r − h)p

≥ (a+ b− h)δ(G)− (a+ r)(p− δ(G))− h(a+ b− h)− (b− r − h)p

= (2a+ b+ r − h)δ(G)− h(a+ b− h)− (a+ b− h)p,

that is,

δ(G) ≤ (a+ b− h)(p+ h)− 1

2a+ b+ r − h
. (4)

If h = 1 in Equation (4), then we have

δ(G) ≤ (a+ b− 1)(p+ 1)− 1

2a+ b+ r − 1
,

which contradicts Equation(2). Hence we assume 2 ≤ h ≤ b− r. Let

F (h) =
(a+ b− h)(p+ h)− 1

2a+ b+ r − h
.

Using

p ≥ (a+ b− 3)(2a+ b+ r) + 1

a+ r
,

we calculate F ′(h) < 0, implying that F (h) attains its maximum value
at h = 2. Therefore we have

δ(G) ≤ F (2) =
(a+ b− 2)(p+ 2)− 1

2a+ b+ r − 2
. (5)

Since

p ≥ (a+ b− 3)(2a+ b+ r) + 1

a+ r
,

we prove easily that

(a+ b− 2)(p+ 2)− 1

2a+ b+ r − 2
≤ (a+ b− 1)p+ a+ b− 2

2a+ b+ r − 1
.

Combining this with Equation (5), we obtain

δ(G) ≤ (a+ b− 1)p+ a+ b− 2

2a+ b+ r − 1
,

which contradicts Equation (2). This completes the proof of Theorem
1.5.

�
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Finally, we present the following problem:
Problem. Is it possible to weaken the binding number condition

bind(G) >
(2a+ b+ r − 1)(p− 1)

(a+ r)p− (a+ b− 2)

for the existence of fractional ID-(g, f)-factor-critical graphs in Theorem
1.5?
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