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CYCLES, WHEELS, AND GEARS IN FINITE PLANES

JAMIE PEABODY, OSCAR VEGA, AND JORDAN WHITE

Abstract. The existence of a primitive element of GF (q) with certain
properties is used to prove that all cycles that could theoretically be
embedded in AG(2, q) and PG(2, q) can, in fact, be embedded there
(i.e. these planes are ‘pancyclic’). We also study embeddings of wheel
and gear graphs in arbitrary projective planes.

1. Introduction

In this article, a graph will be understood to be simple, finite, and undi-
rected. Since we will mostly focus on cycles and cycle-related graphs we
define, for k ≥ 3, a k-cycle as the graph Ck with V = {x1, . . . , xk} and
E = {x1x2, x2x3, . . . , xk−1xk, xkx1}. We refer the reader to [11] for any
graph theoretical notion we use and fail to define.

Next, we define the concepts in finite geometry that we will need later
on; any those missing concepts may be found in [2].

Definition 1.1. Let π = (P,L, I) where P is a set of points, L is a set of
lines, and I is an incidence relation. Then π is an affine plane if it satisfies
the following conditions:

(1) Given any two distinct points, there is exactly one line incident with
both of them.

(2) For every line l and every point P not incident with l there is a
unique line m that is incident with P and that does not intersect l.

(3) There are three points that do not lie on the same line.

We may obtain a projective plane Π from any given affine plane π by the
addition of a line at infinity, denoted `∞. Furthermore, lines which were
parallel with one another in π, meet at a point at infinity in Π. Finally,
these points at infinity are all incident with the line at infinity. Conversely,
deleting any line in a projective plane (and all points incident with that line)
yields an affine plane.
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In this work we consider planes that contain only a finite number of points
and lines. In this case, it is known that for every affine plane π = (P,L, I)
there is a positive integer q, called the order of the plane, such that |P| = q2,
|L| = q2 + q, each line contains exactly q points, and every point is incident
with exactly q + 1 lines. A similar result is also valid for projective planes.
In this case, the addition of `∞ yields the following: |P| = |L| = q2 + q + 1,
every line contains q+ 1 points, and every point is incident with q+ 1 lines.
All known examples of finite planes have order equal to the power of a prime
number.

It is known that for every q, a power of a prime, there is only one
affine/projective plane that may be coordinatized by GF (q). For every fixed
q, we denote this plane by AG(2, q) (if affine) or PG(2, q) (if projective).

Our objective is to study how cycles, and some cycle-related graphs can
be embedded in finite planes (both affine and projective). For this, we must
define what we understand an embedding of a graph into a finite plane.

Definition 1.2. Let G = (V,E) be a graph. An embedding of G into a plane
(affine or projective) π = (P,L, I), is an injective function ψ : V → P that
induces naturally an injective function ψ : E → L by preserving incidence.
We call ψ an embedding of G in π. If such a function exists, we say that
G embeds in π and write G ↪→ π.

Note that since ψ is injective, we will identify edges in G with whole lines.
That is, if a line has been used as an edge for a graph, this line cannot be
used again in the same embedding.

Definition 1.3. We say that AG(2, q) is pancyclic if and only if Ck ↪→
AG(2, q), for all 3 ≤ k ≤ q2. Similarly, we say that PG(2, q) is pancyclic if
and only if Ck ↪→ PG(2, q), for all 3 ≤ k ≤ q2 + q + 1.

The idea of embedding a graph into other structures has been present for
a long time. For instance, the history of embeddings of graphs into linear
spaces goes back to Hall [4], includes Erdős [3], and the more recent work
by Moorhouse and Williford [7]. On the other hand, not much is known
about embeddings of graphs in finite planes: most of what is known is on
embeddings of cycles. This is likely because studying k-cycles embedded in
a projective plane Π is equivalent to studying embeddings of (2k)-cycles in
the Levi graph of Π. For instance, one can use the Singer cycle in PG(2, q)
to construct a (q2 + q + 1)-cycle in PG(2, q) (e.g., see [5]). Also, the con-
structions by Schmeichel [8] proved that PG(2, p) is pancyclic for p prime.
Moreover, Schmeichel’s longest cycle is different from the one constructed
using the Singer cycle (these cycles are constructed in [5]). Recently, in [5],
one may find expressions for the number of k-cycles in a projective plane of
order q, for 3 ≤ k ≤ 6. This work has been extended by Voropaev [10] to
7 ≤ k ≤ 10.

Our work may also be related to [6], as in that article embeddings of cycles
in projective planes are also studied. However, the approach in [6] is purely
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geometrical, and our approach is an effort to bring an algebraic perspective
to the problem. In fact, we will coordinatize AG(2, q) using a field to give
an algebraic characterization of the pancyclicity of AG(2, q) and PG(2, q).
We refer the reader to [5] and [6] for a thorough historical narrative on this
problem.

2. Cycles in AG(2, q) and PG(2, q)

In this section we investigate pancyclicity in AG(2, q) and PG(2, q) by
modifying the approach of constructing of cycles in [6].

Let F = GF (q) and let 〈α〉 = F∗, that is, α is a primitive element of F.
We will consider the following coordinatization of AG(2, q) using F×F. The
points on its axes will be labeled using 0 or powers of α. Next we label the
lines through O = (0, 0) as follows:

li :


x = 0, if i = 0

y = xαi, if i = 1, 2, . . . , q − 1

y = 0, if i = q.

Also, for any point Q in the plane we denote the line parallel to li that
passes through Q by li +Q.

Pick any point P0 ∈ l0, different from O. We define Pi = (li+1 +Pi−1)∩ li
for i = 1, . . . , q − 1 and Pq = (l0 + Pq−1) ∩ lq. Next, we connect Pi−1 with
Pi using li+1 + Pi−1 for i = 1, . . . , q − 1, and connect Pq−1 with Pq using
l0 + Pq−1. In this way, we obtain a path of length q + 1. We denote this
path by PP0 .

In [6], it is shown that the q−1 paths constructed this way share no points
or lines with P0 being any point on l0 different from O. Hence, these paths
partition the points of AG(2, q) \ {O}. Moreover, a path starting at (0, β)
may be obtained from the path starting at (0, α) by using a translation Tv
with v = (0, β − α).

Note that no line parallel to l1 has been used in the construction of these
paths. Hence, using the line l1 + Pq we connect Pq with a (uniquely deter-
mined) point Q0 on l0. If Q0 = P0, then we get a cycle of length q+1. On the
other hand, if Q0 6= P0 then we may concatenate PQ0 to the path starting
at P0 and ending at Q0 to form a longer path. It seems that when P0 6= Q0

we are able to create long cycles. But, how long? To answer this question
we need to study the case when P0 6= Q0. We will do this algebraically by
identifying AG(2, q) with F× F.

Lemma 2.1. Let P0 = (0, β) be a point in AG(2, q) then

Pi+1 =
(
y = αi+2x+ β(1 +α)i

)
∩
(
y = αi+1x

)
=

(
β(1 + α)i

αi+1(1− α)
,
β(1 + α)i

1− α

)
for all 0 ≤ i ≤ (q − 2). Also,

Pq =

(
β

(1 + α)2(1− α)
, 0

)
, Q0 =

(
0,

−αβ
(1− α)(1 + α)2

)
.
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Proof. Let P0 = (0, β), then

P1 = (y = α2 + β) ∩ (y = αx) =

(
β

α(1− α)
,

β

(1− α)

)
.

In general,

Pi+1 = (y = αi+2x+ b) ∩ (y = αi+1x).

We find b by substituting the coordinates of Pi into y = αi+2x+ b and get

b = β(1 + α)i−1

(
αi − αi+2

αi(1− α)

)
= β(1 + α)i.

So,

Pi+1 =
(
y = αi+2x+ β(1 + αi)

)
∩ (y = αi+1x).

We then isolate x to get

x =
β(1 + αi)

αi+1(1− α)
,

and it follows that for 1 ≤ i ≤ (q − 2),

Pi+1 =

(
β(1 + α)i

αi+1(1− α)
,
β(1 + α)i

(1− α)

)
.

Finally, Pq and Q0 are obtained using similar procedures. �

The previous lemma proves that each of the paths of the form PP0 starts
at (0, β) and returns to l0 at(

0,
−αβ

(1− α)(1 + α)2

)
.

Note that this behavior is being dictated by the action of the group F∗ on
itself defined by

α · β =
−α

(1− α)(1 + α)2
β.

The following result is almost immediate.

Theorem 2.2. Assume that there is a primitive element α ∈ F such that

γ =
−α

(1− α)(1 + α)2

is also primitive. Then, Cq2−1 ↪→ AG(2, q).

Proof. Having γ be primitive means that the sequential action of α on F∗
yields the cycle

β
α−−→ γβ

α−−→ γ2β
α−−→ . . .

α−−→ γq−2β
α−−→ γq−1β = β

which runs through all the elements in F∗. Hence, the paths of the form PP0

create a cycle of length q2− 1 when connected using lines parallel to l1. �
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We have not been able to prove that the hypothesis in Theorem 2.2 must
hold. However, Mathematica was used to verify that the hypothesis holds
for all finite fields of order at most 106 and Python was used to verify that it
holds for fields of prime order 106 ≤ p ≤ 107. Different labelings of the lines
through O in AG(2, q) might yield different possibilities for γ in Theorem
2.2. For instance,

li :


x = 0, if i = 0

y = αix, if 1 ≤ i ≤ q − 2

y = 0, if i = q − 1

y = x, if i = q

(2.1)

yields

γ′ =
α− 1

(α+ 1)3
.

We tried many different labelings on the lines throughO, no other interesting
γ’s were found.

If γ obtained in Theorem 2.2 were equal to γ′ obtained from (2.1), we
would get 3α = 1, which would mean that char(F) 6= 3. Moreover, if we
also assume γ′ = 1, then (α+ 1)3 = α− 1, which implies α4 = −1, and thus
〈α〉 has order 8, forcing F = GF (9). However this is impossible because
char(F) 6= 3. Hence, γ 6= 1 or γ′ 6= 1. It follows that one may choose a
coordinatization of AG(2, q) such that P0 6= Q0, and thus our construction
may always be assumed to create cycles of length at least 2(q + 1).

Lemma 2.3. Let q = 2a, where a ∈ N, a > 1, and γ′ is the element from
(2.1). Then there is a primitive element α of F = GF (q) such that γ′ is also
a primitive element.

Proof. When q is even we obtain,

γ′ =
1

(α+ 1)2
.

A conjecture of Golomb that has been verified asserts that, if q is even
and larger than 2, then there are consecutive primitive elements α and α+1
of F (see e.g., the survey [1]). Next, since q − 1 is odd then (α + 1)2 is a
primitive element because α+1 is a primitive element and gcd(2, q−1) = 1.
Finally, we use the fact that the inverse of a primitive element is also a
primitive element to get that 1/(α+ 1)2 is a primitive element. �

Remark. We will say that Hypothesis J holds when q is a power of 2, or
the hypothesis in Theorem 2.2 holds.
As of now, we know that Hypothesis J holds when either q = 2a for some
a ∈ N, q is an odd prime less than 107, or when q is a power of an odd prime
that is less than 106.

The following corollary is immediate.
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Corollary 2.4. If Hypothesis J holds, then Cq2−1 ↪→ AG(2, q).

The largest possible cycle that could be embedded in AG(2, q) has length
q2. We will construct such a cycle in AG(2, q) by noticing that the q2 − 1
cycles already constructed do not use any of the lines through O.

Corollary 2.5. If Hypothesis J holds, then Cq2 ↪→ AG(2, q).

Proof. Let P and Q be two points in AG(2, q) that are adjacent in the
embedding of Cq2−1 in AG(2, q) described in Corollary 2.4. Without loss
of generality, assume that P ∈ l0 and Q ∈ l1. We disconnect P and Q by
eliminating the line that joins them, and then we connect each one of them
with O by using l0 and l1. This new cycle has length q2. �

As of now, we have proven the embedding of cycles of length q2 − 1 and
q2. What about shorter cycles?

Theorem 2.6. If Hypothesis J holds, then AG(2, q) is pancyclic.

Proof. We only need to prove Ck ↪→ AG(2, q) for all 3 ≤ k ≤ q2 − 2. We
know (see [5]) that Kq+1 ↪→ AG(2, q), and thus get Ck ↪→ AG(2, q) for all
3 ≤ k ≤ q + 1. For q + 2 ≤ k ≤ q2 − 2, let

P0 → P1 → P2 → · · · → Pq2−3 → Pq2−2 → P0

be the (q2 − 1)-cycle in Corollary 2.4.
Let k − 1 = (q + 1)λ + r, where r, λ ∈ N and 0 ≤ r < q + 1. We have two
cases:

(1) If r 6= 0 then the vertices P1 and Pk−1 are not on the same line
through O. Hence the cycle

O → P1 → P2 → · · · → Pk−2 → Pk−1 → O
is a k-cycle embedded in AG(2, q).

(2) If k−1 = (q+1)λ then O and the vertices P1 and Pk−1 are collinear.
As q > 1 neither Pk−3 nor Pk−2 are on the line joining P1 and O.
Note that O, Pk−2, and P(k−3)+(q+1)+1 are collinear.

Since k ≤ q2 − 2, then λ ≤ q − 2, and thus (k − 3) + (q + 1) + 1 ≤ q2 − 1.
Hence, the cycle

O → P1 → · · · → Pk−3 → P(k−3)+(q+1) → P(k−3)+(q+1)+1 → O

is an embedding of Ck in AG(2, q). �

We now prove a result equivalent to Theorem 2.6 for projective planes.
Since PG(2, q) is constructed from AG(2, q), Theorem 2.6 also holds in
PG(2, q). It is also known that Cq2+q+1 embeds in PG(2, q), this cycle
is constructed from the Singer cycle of the plane (see [5] and [9]). For the
pancyclicity of PG(2, q), it remains to embed k-cycles with length q2 ≤ k ≤
q2 + q. Our plan is to modify the embedding of Cq2−1 in AG(2, q) described
in Corollary 2.4.
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First take the (q2− 1)-cycle embedded in PG(2, q) described in Corollary
2.4 and shorten it to get the following path on q2 − q − 1 vertices:

P : P1 → P2 → · · · → Pq2−q−2 → Pq2−q−1.

Note that the q + 1 affine points Pq2−q, Pq2−q+1, . . . , Pq2−2, and P0 have
not been used in this path. Since Pq2−q ∈ l2, Pq2−q+1 ∈ l3, . . . , Pq2−2 ∈ lq,
and P0 ∈ l0, we will re-label these points (to simplify the notation later) as
follows:

Pq2−q = Q2, Pq2−q+1 = Q3, . . . , Pq2−2 = Qq, P0 = Q0.

Hence, Qi ∈ li for all i = 2, 3, . . . , q, 0. The points of PG(2, q) not used in
this path are the:

(a) q+ 1 points on `∞: {(0), (1), . . . , (q− 1), (q)}, where (i) is the point
on `∞ incident with li, for all i = 0, 1, . . . , q;

(b) q + 1 affine points Q2, Q3, . . . , Qq, Q0, and O.

In terms of lines, we have not used the:

(i) line `∞;
(ii) q + 1 lines through O;
(iii) q − 1 lines mi, joining Qi and Qi+1 mod q+1, for all i = 2, 3, . . . , q;
(iv) line m0 connecting Q0 with P1, and the line m joining Pq2−q−1 and

Q2.

This yields q + 1 lines not incident with O and we are now ready to prove
pancyclicity in PG(2, q).

Theorem 2.7. If Hypothesis J holds, then PG(2, q) is pancyclic.

Proof. We will use the path and information just described. This is based on
the cycle described in Corollary 2.4. Recall that we only need to construct
k-cycles, for q2 ≤ k ≤ q2 + q.

Note that mi is parallel to li+2 mod q+1, and thus goes through (i+ 2 mod
q+1) for i = 2, 3, . . . , q. Similarly, m0 goes through (2), and the line joining
m is incident with (3). Now, the following two paths:

Q2
l2−→ (2)

`∞−−→ (3)
l3−→ Q3

m2−−→ (4)
l4−→ . . .

mq−1−−−→ (q)
lq−→ Qq

mq−−→ Q0

and

Q0
m0−−→ P1 → · · · → Pq2−q−1︸ ︷︷ ︸

in P

m−→ Q2

may be joined to create a (q2 + q − 1)-cycle in PG(2, q). Call this cycle C.
Since l0, l1, and O have not been used in C, a slight modification of C

allows us to get a (q2 + q)-cycle. That cycle is:

Q2
l2−→ (2)

`∞−−→ (3)
l3−→ . . .

mq−−→ Q0
l0−→ O l1−→ P1 → · · · → Pq2−q−1︸ ︷︷ ︸

in P

m−→ Q2.

It remains to construct k-cycles for q2 ≤ k ≤ q2 + q − 2.
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First notice that if instead of the subpath

Pq2−q−1
m−→ Q2

l2−→ (2)
`∞−−→ (3)

l3−→ Q3

in C, we had

Pq2−q−1
m−→ Q2

l2−→ O l3−→ Q3,

then we get a (q2 + q− 2)-cycle in PG(2, q). Similarly, notice that if instead
of the subpath

Pq2−q−1
m−→ Q2

l2−→ (2)
`∞−−→ (3)

in C, we had

Pq2−q−1
m−→ (3),

then we get a (q2 + q − 3)-cycle in PG(2, q) that does not use `∞. Call this
cycle C′.
Next, for i = 4, . . . , q, delete the path

(3)
l3−→ Q3 → · · · → (i)

li−→ Qi

from C′ (keeping (3) and Qi in C′) and connect both (3) and Qi with O,
using l3 and li, to get the cycle

(3)
l3−→ O li−→ Qi → · · · → Pq2−q−1︸ ︷︷ ︸

in C′

m−→ (3)

which has length (q2 + q− 3)− (2i− 6). Since i = 4, . . . , q, this yields cycles
of lengths q2 + q − 5, q2 + q − 7, . . . , q2 − q + 3.
Now, for each of these cycles (for each i = 4, . . . , q), replace

(3)
l3−→ O li−→ Qi

by

(3)
`∞−−→ (2)

l2−→ O
li−→ Qi

to get cycles with length q2 + q− 4, . . . , q2− q+ 4. Therefore, the only cycle
left to be constructed would be a q2-cycle, in the case that q = 3. However,
this case is easy to handle without using the arguments in this proof. �

3. Wheels and Gears

The graphs studied in this section are all related to cycles in some way.
Embeddings of these graphs will often rely on first finding an embedding of
a specific cycle and then embedding the additional vertices and edges that
make up the graph. Most of the cycles we will be interested in will be short
but also have some additional desirable properties. We will focus on results
for projective planes although many of the constructions are generalizable
to affine planes.

Throughout this section, we will use the same notation as in the previous
section, and use Πq to denote a generic projective plane of order q (i.e. one
that is not necessarily isomorphic to PG(2, q)).
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3.1. Wheel graphs. We define the wheel graph Wn to be the graph on
n+1 vertices formed by a cycle of length n and one additional vertex, called
the centre, that is adjacent to every vertex in the cycle. Hence, the centre
of the wheel has degree n. Since no vertex of a graph embedded in Πq

can contain a vertex of degree greater than q + 1, we see immediately that
n ≤ q+ 1 if Wn ↪→ Πq. We now show by construction that Wq+1 can indeed
by embedded in Πq.

Theorem 3.1. Wn ↪→ Πq if and only if 3 ≤ n ≤ q + 1.

Proof. Since having Wn ↪→ Πq implies n ≤ q + 1, we proceed to construct
wheels for all n ≤ q + 1.

We know that Kq+1 ↪→ Πq, when q is odd, and Kq+2 ↪→ Πq, when q is
even (see [5]). This implies that the result is obtained except, possibly when
n = q + 1 and q is odd.

Assume q is odd, let O be any point of Πq, and ` = {P1, . . . , Pq+1} be any
line in Πq not incident with O. Denote by `i the line joining O and Pi. The
points P1, P3, P5, . . . , Pq are vertices on the (q + 1)-cycle of the wheel. The
edges connecting these points and O are the corresponding `i’s. The other
(q+ 1)/2 vertices will be taken from the other `i’s. Let m be a line through
P1, different from ` and `1. Now choose Q2i to be the point on `2i ∩m for
i = 1, . . . , (q + 1)/2. Note that none of the Qi’s can be on `.

To create the path

P1 → Q2 → P3 → Q4 → · · · → Pq,

we need to show that the lines connecting Pi with Qi+1 mod q+1 and Qj with
Pj+1 mod q+1 are all distinct. This is clear because if the line connecting
Pi and Qi+1 mod q+1 were equal to the line connecting Pj and Qj+1 mod q+1,
then Pi and Pj would be on this line. Therefore, either we have the trivial
case, i = j, or this line must be `, but ` does not contain any of the Qi’s.
A similar argument shows that all the lines needed in this path are distinct.
Now, if we extend this path into a cycle by joining Pq with Qq+1 as done
above, we would encounter the problem of having the line joining Qq+1 with
P1 being m, which has already been used. So, we choose a point Tq+1 ∈ `q+1

such that the line t, through Tq+1 and P1, is different from m and `. Since
every line used in the path above goes through a point Pi, the lines t and s
(joining Tq+1 and Pq) are different from all others. We get the (q+ 1)-cycle

P1 → Q2 → P3 → Q4 → · · · → Pq
s−→ Tq+1

t−→ P1.

Since, all the vertices in the cycle connect to O by using different lines,
the vertices {P1, Q2, P3, Q4, . . . , Pq, Qq+1,O} form an embedding of Wq+1,
as desired. �

3.2. Gear graphs. We define a gear graph, Gn, to be a graph on 2n + 1
vertices and 3n edges. The graph consists of a 2n-cycle, and a centre vertex
that is adjacent to every other vertex in the (2n)-cycle. Note that no gear
graph can embed in Π2, since the smallest gear graph has 9 edges and there
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are only 7 lines in such a plane. For q = 3 and q = 4, the only possible
embeddings are G3 ↪→ Π3, G3 ↪→ Π4, G4 ↪→ Π4, and G5 ↪→ Π4. These are
all easy to verify, and no further details will be provided. From now on, we
assume q > 4.

Since the centre of Gn has degree n, we want to prove that Gn ↪→ Πq, for
all 3 ≤ n ≤ q + 1.

Lemma 3.2. Gn ↪→ Πq, for all 3 ≤ n ≤ b(q + 1)/2c.
Proof. If n is even, then Gn/2 is a subgraph of Wn. The result follows from
the fact that Wn ↪→ Πq for all 3 ≤ n ≤ q + 1 (Theorem 3.1). �

To embed larger gears in Πq, we need to construct a very specific family
of cycles and the corresponding gears. This will all described in the proof
of our next result.

Theorem 3.3. Gn ↪→ Πq, for all 3 ≤ n ≤ q.
Proof. The discussion for q = 2, 3, 4 was settled at the beginning of this
subsection. For q > 4, Lemma 3.2 proves the theorem for all 3 ≤ n ≤
b(q+ 1)/2c. Also, it is easy to verify that G4 ↪→ Π5. For n > b(q+ 1)/2c we
will give explicit constructions. First, recall that two distinct paths

PP0 : P0 → P1 → · · · → Pq

PQ0 : Q1 → Q2 → · · · → Qq

constructed at the beginning of Section 2 are disjoint in terms of both points
and lines as long as P0 6= Q0 (two points different from O on l0). From now
on, fix P0 and given n > 4, we will choose an appropriate Q0 that will allow
us to create a (2n)-cycle out of PP0 and PQ0 .

Let n be even, then shorten PP0 to

P ′P0
: P0 → P1 → · · · → Pn−2.

Note that since n − 2 ≤ q − 2, no lines parallel to l0 or l1 have been used
in the construction of this path. Since q > 3, there are at least 2 lines
through (0) different from l0 + Pn−2, l0 + P1, and `∞, each of these lines
intersect l1 at a point different from P1. Now, there are q − 1 lines through
(1) different from l1 +P0 and `∞, each of these lines intersect ln−1 at a point
different from ln−1 ∩ (l1 + P0). Choose Q0 ∈ l0 so that (the points on PQ0)
Qn−1 6= ln−1 ∩ (l1 +P0), Q2 6= P2, and Q2 /∈ l0 +Pn−2. We get the following
(2n)-cycle.

(1)
l1+P0−−−−→P0 → · · · → Pn−2︸ ︷︷ ︸

in PP0

l0+Pn−2−−−−−→ (0) . . .

. . .
l0+Q1−−−−→Q1 → · · · → Qn−1︸ ︷︷ ︸

in PQ0

l1+Qn−1−−−−−→ (1).

To create Gn, join O with P0, P2, . . . , Pn−2, Q1, Q3, . . . , Qn−1.
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When n is odd we proceed similarly. Consider the path,

P ′P0
: P0 → P1 → · · · → Pn−1.

Notice that no lines through (0) or (1) have been used and that Pn−3 must
be different from one of (l1 + P0) ∩ ln−3 and (ln + P0) ∩ ln−3. We will say
that Pn−3 6= (lk + P0) ∩ ln−3, where k is either 0 or n. So, since Pn−3 6=
(lk +P0)∩ ln−3 we choose Q0 so that Qn−3 = (lk +P0)∩ ln−3. Now observe
neither PP0 or PQ0 can go through Q0. Because of l0, there are at least
two lines through Q0 that have not been used so far. Let T be a point on
ln such that T is on one of the lines through Q0 that are available, and
T 6= (l0 + Pn−1) ∩ ln. Note that

m =
←−→
Q0T

cannot be equal to the lines lk+P0, or l0+T . We get the following (2n)-cycle:

Qn−3
lk+P0−−−−→ P0 → · · · → Pn−1︸ ︷︷ ︸

in PP0

l0+Pn−1−−−−−→ (0)
l0+T−−−→ T

m−→ Q0 → · · · → Qn−3︸ ︷︷ ︸
in PQ0

where l0 + T could be `∞.
To create Gn we join O with P0, P2, . . . , Pn−1, T,Q1, . . . , Qn−4. We used

n > 4 in order to get that 1 ≤ n − 4, and thus that the last selection of
vertices (connected with O) is well defined. �

Thus far, we know we can embed gear graphs, Gn, where n is any integer
between 3 and q. The next step in embeddings of gear graphs is to determine
the largest gear that can be embedded.

Theorem 3.4. Let q > 4. Then Gq+1 ↪→ Πq. Furthermore, this is the
largest gear that can be embedded in Πq.

Proof. First, notice that Gq+1 is the largest possible gear that can be em-
bedded in Πq because the degree of the centre of Gq+1 is q+ 1, which is the
largest allowed in Πq.

To show that Gq+1 actually embeds in Πq, we need to construct a cycle
of length 2(q + 1) without using O and any of the q + 1 lines through O.
The cycle needs to be constructed in such a way that we are able to connect
every other vertex of the cycle to the point O. The construction of this cycle
depends on the parity of the order of the plane.
Case 1 : (q is even).

Assume q is even. Choose q+ 1 points Pi ∈ li \ {O(i)} for i = 0, 1, . . . , q.
Choose P1 arbitrarily, next choose P3 such that P3 /∈ l2+P1, then choose
P5 such that P5 /∈ l4 +P3, etc. In general, choose Pi /∈ li−1 +Pi−2, for all
i = 1, 3, . . . , q−1 (only for i odd). Now choose P0 such that P0 /∈ lq+Pq−1.
As done before, we choose Pi /∈ li−1 + Pi−2 for i = 2, 3, . . . , q (now only
for i even) taking care with the choice of Pq that P1 6∈ l0 + Pq. If for
the chosen Pq, P1 ∈ l0 + Pq then choose a different Pq. We can do this
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because the only condition to choose Pq was that Pq /∈ lq−1 + Pq−2. It
follows that we get the (2q + 2)-cycle:

(0)
l0+P1−−−−→ P1

l2+P1−−−−→ (2)→ · · · → Pq−1
lq+Pq−1−−−−−→ (q)

lq+P0−−−−→ P0
l1+P0−−−−→ (1) . . .

· · · → (1)
l1+P2−−−−→ P2 → · · · → (q − 1)

lq−1+Pq−−−−−→ Pq
l0+Pq−−−−→ (0).

We obtain Gq+1 by joining O with (0), (2), (4), . . . (q), (1), (3), . . . , (q−1)
using the q + 1 lines through O.

Note that this proof also works for q = 4.
Case 2 : (q is odd).

We perform a similar construction to the one for q even. Choose P1,
P3, . . . , Pq as above, then begin by arbitrarily choosing P2, and continue
in the same fashion to get P2, P4, . . . , Pq−1. In case P1 ∈ lq+Pq−1, choose
a different Pq−1. Hence the line lq + P1 has not been used yet. Now we
want to find a point T such that T /∈ l0 +Pq, T /∈ l1 +P2, T /∈ l0, T /∈ l1,
and that T 6= Pi for i = 1, 2, . . . , q. This point will be connected to (0)
and (1) to create the cycle we need.

There are q − 2 lines through (0) different from l0 + Pq, l0, and `∞.
These q−2 lines may be used to connect (0) with q(q−2) distinct points
of Πq. Similarly, there are q − 2 lines through (1) different from l1 + P2,
l1, and `∞. It follows that there are at least

q(q − 2)− 2(q − 1) = q(q − 4) + 2 ≥ q + 2

points that can be reached simultaneously by lines through (0) or (1),
different from the six lines to be avoided. Of these points, at most q
could be a Pi. Hence, there are at least two possibilities to choose T
from and we get the following (2q + 2)-cycle:

(1)
l1+P2−−−−→ P2

l3+P2−−−−→ (3)→ · · · → Pq−1
lq+Pq−1−−−−−→ (q)

lq+P1−−−−→ P1
l2+P1−−−−→ (2) . . .

· · · → (2)
l2+P3−−−−→ P3 → · · · → (q−1)

lq−1+Pq−−−−−→ Pq
l0+Pq−−−−→ (0)

l0+T−−−→ T
l1+T−−−→ (1).

We obtain Gq+1 by joining O with (1), (3), . . . , (q), (2), (4), . . . (q−1), (0)
using the q + 1 lines through O.

�

We have also invstigated using the techniques to study embeddings of
other cycle-related families of graphs such as helm graphs and prism graphs,
obtaining similar results. Current work focuses on developing a theory of
embeddings in finite projective spaces.

References

1. Stephen D. Cohen, Primitive elements and polynomials: existence results, Finite fields,
coding theory, and advances in communications and computing (Las Vegas, NV, 1991),
Lecture Notes in Pure and Appl. Math., vol. 141, Dekker, New York, 1993, pp. 43–55.
MR 1199821 (93k:11113)



CYCLES, WHEELS, AND GEARS IN FINITE PLANES 87

2. Peter Dembowski, Finite geometries, Classics in Mathematics, Springer-Verlag, Berlin,
1997, Reprint of the 1968 original. MR 1434062 (97i:51005)
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