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A NOTE ON BOUNDS FOR THE COP NUMBER USING

TREE DECOMPOSITIONS

ANTHONY BONATO, NANCY E. CLARKE, STEPHEN FINBOW,
SHANNON FITZPATRICK, AND MARGARET-ELLEN MESSINGER

Abstract. In this short note, we supply a new upper bound on the
cop number in terms of tree decompositions. Our results in some cases
extend a previously derived bound on the cop number using treewidth.

1. Introduction

The game of Cops and Robbers (defined at the end of this section) is
usually studied in the context of the minimum number of cops needed to
have a winning strategy, or cop number. The cop number (written c(G)
for a graph G) is a challenging graph parameter for a variety of reasons,
and establishing upper bounds for this parameter are the focus of Meyniel’s
conjecture: the cop number of a connected n-vertex graph is O(

√
n). For

additional background on both Cops and Robbers and Meyniel’s conjecture,
see the recent book [3].

The following elegant upper bound was given in [6]:

(1) c(G) ≤ tw(G)/2 + 1,

where tw(G) is the treewidth of G. The bound (1) is tight if the graph has
small treewidth (up to treewidth 5). Further, it gives a simple proof that
outerplanar graphs have cop number at most 2 (first proved in [4]).

For many families of graphs, however, the bound (1) is far from tight; for
example, for a positive integer n, a clique Kn has treewidth n − 1, but is
cop-win. Similarly, Cartesian n × n grids Pn�Pn have cop number 2, but
have treewidth n.

In this short note, we give a new bound on the cop number that exploits
tree decompositions, and in some cases improves on (1). The idea behind
the proof of (1) is to guard bags and use isometric paths to move cops from
one bag to another. We modify this approach using the notion of a retract,
and a retract cover of a graph (see Theorems 1, 2, and 3). Besides giving
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the optimal bounds for various families (such as grids, cliques, and k-trees),
our results give a new approach to bounding the cop number by exploiting
properties of tree decompositions.

1.1. Definitions and notation. We consider only finite, reflexive, undi-
rected graphs in the paper. For background on graph theory, the reader is
directed to [5, 9].

The game of Cops and Robbers was independently introduced in [7, 8] and
the cop number was introduced in [1]. The game is played on a reflexive
graph; that is, vertices each have at least one loop. Multiple edges are al-
lowed, but make no difference to the gameplay, so we always assume there is
exactly one edge between adjacent vertices. There are two players consisting
of a set of cops and a single robber. The game is played over a sequence of
discrete time-steps or rounds, with the cops going first in round 0 and then
playing alternate time-steps. The cops and robber occupy vertices; for sim-
plicity, we often identify the player with the vertex they occupy. We refer to
the set of cops as C and the robber as R. When a player is ready to move in
a round they must change vertices to a neighbouring vertex. Because of the
loops, players can pass, or remain on their own vertex. Observe that any
subset of C may move in a given round. The cops win if after some finite
number of rounds, one of them can occupy the same vertex as the robber (in
a reflexive graph, this is equivalent to the cop landing on the robber). This
is called a capture. The robber wins if he can evade capture indefinitely.

If we place a cop at each vertex, then the cops are guaranteed to win.
Therefore, the minimum number of cops required to win in a graph G is a
well-defined positive integer named the cop number (or copnumber) of the
graph G. We write c(G) for the cop number of a graph G. In the special
case c(G) = 1, we say G is cop-win.

An induced subgraph H of G is a retract if there is a homomorphism f
from G onto H so that f(x) = x for x ∈ V (H); that is, f is the identity
on H. The map f is called a retraction. For example, each isometric path
is a retract (as first shown in [1]), as is each clique. Each retract H with
retraction f can be guarded by a set of cops in the following sense: if the
robber is on x, then the cops play in H as if the robber were on f(x). If
there are a sufficient number of cops to capture the image of the robber, then,
after finitely many rounds, if the robber entered H he would be immediately
caught. We denote the minimum number of cops needed to guard H by
guard(H). Note this parameter is well-defined, as each vertex of H can
be guarded. In the case of an isometric path P , it was shown in [1] that
guard(P ) = 1.

2. Tree decompositions

In a tree decomposition, each vertex of the graph is represented by a
subtree such that vertices are adjacent only when the corresponding subtrees
intersect. Formally, given a graph G = (V,E), a tree decomposition is a pair
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(X,T ), where X = {X1, . . . , Xn} is a family of subsets of V called bags, and
T is a tree whose vertices are the subsets Xi, satisfying the following three
properties.

(1) Each graph vertex is associated with at least one tree vertex, that
is, V =

⋃n
i=1Xi.

(2) For every edge (v, w) in the graph, there is a subset Xi that contains
both v and w. That is, vertices are adjacent in G only when the
corresponding subtrees have a vertex in common.

(3) If Xi, Xj and Xk are nodes, and Xk is on the path from Xi to Xj ,
then Xi ∩Xj ⊆ Xk.

Item (3) is equivalent to the fact that for each vertex x, the bags contain-
ing x form a subtree of T. The width of a tree decomposition is the size of
its largest set Xi minus one. The treewidth of a graph G, written tw(G), is
the minimum width among all possible tree decompositions of G. For more
on treewidth, see [2, 5].

Given an induced subgraph H of G, a cover of H in G, written CG(H) is
a set of induced subgraphs {Hi : i ∈ I} of G whose union contains H (note
that the subgraphs Hi need not be disjoint). A retract cover of H in G is
a cover where each Hi is a retract; we write CR,G(H) to denote a retract
cover. See Figure 1 for an example.

Figure 1. The subgraph induced by the white and gray
vertices form a retract cover of the subgraph H induced by
the white vertices.

Define the retract cover cop number of H by

rccG(H) = min
CR,G(H)

∑
Hi∈CR,G(H)

guard(Hi),

where the minimum ranges over all retract covers CR,G(H) of H in G. For
example, rccG(H) = 1 in the graph in Figure 1, while rccH(H) = 2. A
retract cover which achieves this minimum is called a minimal retract cover
of H. Note that if rccG(H)-many cops are available, then after the finitely
many rounds, the cops can be positioned so that if the robber entered H,
he would be immediately caught. For each retract in a retract cover of H,
the appropriate number of cops guard that retract. This is an essential
observation used to prove the following theorem. For a bag B, we use the
notation 〈B〉 for the subgraph induced by B.
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Theorem 1. If G is a graph, then

c(G) ≤ 2 min
T

{
max
B∈T

rccG(〈B〉)
}
,

where the minimum ranges over all tree decompositions T of G.

For example, if G is the n×n Cartesian grid Pn�Pn, then the following is
a tree decomposition of G into isometric paths. Label the vertices as (i, j),
where 1 ≤ i, j ≤ n. For 1 ≤ i ≤ n− 1 and 1 ≤ j ≤ n, consider the path

Bi,j = {(i, k) : j ≤ k ≤ n} ∪ {(i + 1, k) : 1 ≤ k ≤ j}.
See Figure 2 for an illustration of one such path in the case n = 5. As the

Figure 2. The path with white vertices is the bag B2,3.
Note that vertices are labelled with increasing values moving
from left-to-right and bottom-to-top (with the bottom left
vertex labelled (1, 1)).

retract cover cop number of an isometric path is 1, this tree decomposition
and Theorem 1 gives an upper bound of 2 for the cop number of grids (and
of course, 2 is the optimal value).

Proof. Let m = minT {maxB∈T rccG(〈B〉)}, and let T be a fixed tree decom-
position of G realizing the minimum. Arbitrarily place 2m cops in a fixed
bag B of T (any bag will do, or the cops can all move to a bag in the centre
of the tree to speed up capture). We call one team of m cops X and the
other X ′. Match each cop C from X with a unique cop C ′ from X ′, so that
the cops C and C ′ share each other’s positions. (In particular, at this phase
of the cops’ strategy, there are at least two cops at any position occupied by
the cops). After a finite number of rounds, the cops can position themselves
on a minimal retract cover of 〈B〉 so that 〈B〉 is guarded. Hence, the robber
R cannot enter B.

Let B′ be the unique bag adjacent to B in T which is on a shortest
path connecting the bag B to a bag containing the robber. Note that since
the set of bags containing the robber is a subtree of T , the robber is not
necessarily in a unique bag. However, as T is a tree, there is a unique bag
neighbouring B which has shortest distance to the subtree containing the
robber. The cops would like to move to B′ in such a manner that R cannot
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enter B. The cops in team X remain in the minimal retract cover of 〈B〉
and continue to guard it; the team X ′ moves to a minimal retract cover of
〈B′〉 and after finitely many rounds, guards 〈B′〉. Note that B ∩B′ remains
guarded throughout the transition. The cops in X are now free to move
without concern that the robber R will enter B.

Now the cops in team X can then move to a minimal retract cover CR,G(H)
of 〈B′′〉 where B′′ is the unique bag adjacent to B′ which is on a shortest
path in T to a bag containing the robber. Team X then guards CR,G(H).
Note that we may now swap the roles of X and X ′, and we have moved the
cops closer to the robber in the tree T. We call the process of moving X from
a minimal retract cover of B to a minimal retract cover of B′′ a leap step,
as the cops in X move through B′ and onwards toward B′′ (see Figure 3).

X

B

X ′

B′ B′′

Figure 3. A leap step

By the definition of tree decomposition, the bags containing R form a
subtree T ′ of T. By an iterated application of leap steps (after each such
step, we swap the roles of teams X and X ′) for each bag on a shortest
path connecting the cops’ bag to the robbers, the cops move closer to T ′,
ensuring the robber will never enter bags previously guarded by the cops.
By induction on the number of vertices of T , the cops may capture the
robber. �

Observe that the proof of Theorem 1 gives an algorithm for capturing
the robber. Further, we can estimate the length of the game using this
algorithm. To be more precise, the length of a game is the number of rounds
it takes (not including the initial, or 0th round) to capture the robber. We
say that a play of the game with c(G) cops is optimal if its length is the
minimum over all possible strategies for the cops, assuming the robber is
trying to evade capture for as long as possible. There may be many optimal
plays possible (for example, on P4, the cop may start on either vertex of the
centre), but the length of an optimal game is an invariant of G. We denote
this invariant capt(G), which we call the capture time of G. For a bound on
the capture time in terms of the strategy in the proof of Theorem 1, note
that the cops move to a bag in the centre of T , guard that bag, then move
towards the robber’s bag. Given a tree decomposition T , let the number
of rounds it takes to guard a minimal retract cover of any bag in T be at
most gT . Let trT be the number of rounds it takes to move from a minimal
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retract cover of a bag B to a minimal retract cover of a bag which is at most
distance two from B in T (for instance, as in a leap step). Since the capture
time of T is ddiam(T )/2e and the worst case is that the cops will need to
guard each bag and transition along each edge of a path with that length,
a bound on the capture time of G is then

(2) capt(G) ≤ min
T
{gT (ddiam(T )/2e+ 1) + trT (ddiam(T )/2e)},

where the minimum ranges over all tree decompositions T of G.
The bound (2) may be far from tight because it depends on the values of

the functions gT and trT . We can make a minor improvement on (2) in the
case when diam(T ) is odd (which implies that the centre of T consists of two
vertices). Start each of the two teams of cops on a minimal retract cover of
different bags associated with the two bags of the centre of T . After each of
these bags is guarded, the guards may proceed with leap steps. Using this
algorithm, a bound on the number of steps to capture the robber is found by
replacing the ceiling functions in (2) with floor functions. Nevertheless, (2)
represents the first estimate on the capture time we are aware of applicable
to diverse families of graphs such as outerplanar graphs.

We note that if each bag is a clique, then the idea of the proof shows a
strengthened bound.

Theorem 2. If G has a tree decomposition with each bag a clique, then the
graph G is cop-win.

Proof. The proof is analogous to Theorem 1, except one cop is needed to
guard a given bag. That cop can move to B ∩ B′ without concern that R
will enter B. �

Theorem 2 gives an alternative proof that chordal graphs are cop-win, as
chordal graphs are precisely those graphs with tree decompositions where
each bag induces a clique (see [2]). Note also that k-trees are chordal, and
have treewidth k; in particular, the bound (1) is linear in k, while Theorem 2
requires only one cop.

We finish with a bound in the case where there are conditions on the
intersection of bags.

Theorem 3. If G is a graph with a tree decomposition T with the property
that any two bags intersect in a clique, then

c(G) ≤ max
B∈T

rccG(〈B〉) + 1.

Proof. The proof is analogous to the proof of Theorem 1, except the team
X ′ consists of one additional cop C ′. Using the notation of the proof of
Theorem 1, m-many cops guard 〈B〉 , while the cop C ′ moves to B ∩ B′.
Hence, 〈B〉 is guarded. The cops X can move to a minimal retract cover
of 〈B′〉 and C ′ ensures that R never enters B (note that B ∩ B′ is a cut-
set of G). The cops may now iterate this procedure and, by induction on
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the number of vertices of the tree decomposition, eventually capture the
robber. �
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