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THE RIGIDITY OF PERIODIC FRAMEWORKS AS

GRAPHS ON A FIXED TORUS

ELISSA ROSS

Abstract. We define periodic frameworks as graphs on the torus, using
the language of gain graphs. We present some fundamental definitions
and results about the infinitesimal rigidity of graphs on a torus of fixed
size and shape, and find necessary conditions for the generic rigidity of
periodic frameworks on a d-dimensional fixed torus.

1. Introduction

Like many problems in the field of discrete geometry, the question of the
rigidity of a framework admits a simple formulation. Given a set of physi-
cally rigid bars which are linked together by flexible joints, when is it possible
to continuously deform the resulting framework into a non-congruent struc-
ture, without destroying the connectivity or the bars themselves? In other
words, when is such a framework flexible, and therefore not rigid?

The study of rigidity has a rich history of questions generated by appli-
cations in structural engineering, mechanical engineering (in the study of
linkages), chemistry, biology, materials science and computing, which then
inspire and motivate a body of mathematical research. The study of periodic
rigidity can be seen as exactly such a case, with one of the main inspirations
coming from the study of zeolites. Zeolites are a type of mineral with a crys-
talline structure characterized by a repetitive (periodic) porous pattern and
a high internal surface area [24]. Since the activity of these materials in ap-
pliations appears to depend in part on their flexibility, it is desirable to have
methods that would predict the rigidity or flexibility of these hypothetical
minerals prior to laboratory synthesis.

Infinite periodic frameworks in 3-space are used to model the molecular
structure of zeolites, and as a result, there has been a recent surge of in-
terest in the rigidity of these periodic structures. Examples of such work
include Fowler and Guest [8] and Guest and Hutchinson [12], both of which
address two and three dimensional frameworks (with a view toward ma-
terials). Even more recently, work by Owen and Power [17], Power [18],
Borcea and Streinu [2, 3] and Malestein and Theran [15] has formalized the
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mathematics involved in a general (d-dimensional) study of infinite periodic
frameworks and provided substantial initial results.

In this paper, we describe one structure and corresponding vocabulary
for this investigation. We outline results from a natural “base case” for the
study of general infinite periodic frameworks, namely frameworks on a torus
of fixed size and shape. While at first the question of rigidity on a “fixed
torus” may seem contrived, several materials scientists have confirmed that
there may be some resonance with experiments on molecular compounds in
which the time scales of lattice movement are several orders of magnitude
slower than the molecular deformations within the lattice [28]. When we
allow the lattice (torus) to deform, the velocities of the vertices that are
“far away from the centre” will become arbitrarily large.

The results of this paper will lay the groundwork for a subsequent pa-
per [21] which will provide sufficient conditions for the generic rigidity of a
2-dimensional framework on a fixed torus. In addition, the structures and
vocabulary contained here are employed in recent joint work with Bernd
Schulze and Walter Whiteley [23] concerning periodic frameworks with ad-
ditional symmetry.

The central idea that underlies our research is to exploit the periodicity of
the infinite graph to reduce the problem to a finite graph that captures the
periodic structure. We accomplish this by considering quotient graphs on
tori. For example, to study two-dimensional infinite periodic frameworks,
we view the two-dimensional torus as a fundamental region for a tiling of the
plane, and consider graphs realized on the torus as models of infinite periodic
frameworks in the plane. Any motion of the elements of the framework
on the torus can be viewed as a periodic motion of the plane graph. We
can similarly consider graphs on the d-torus (equivalently the d-dimensional
hypercube with pairs of opposite faces identified) and use this as a model of
a d-dimensional periodic framework. Gain graphs [11, 31] provide a useful
language for the description of these graphs, and the tools of topological
graph theory will be used to show that graphs in the same homotopy class
share the same rigidity properties (the T -gain procedure).

There are three qualities of infinite periodic frameworks that are of inter-
est to the study of their rigidity:

(i) the combinatorial properties of the graph,
(ii) the geometric position of vertices of the graph on the torus, and in its

cover in d-space,
(iii) the topological structure (up to homotopy) of the graph on the torus.

The usual study of rigidity of finite frameworks (as described in [9, 10, 30]
for example) is an investigation of (i) and (ii), but the consideration of (iii)
is unique to the study of periodic frameworks. It should be noted that the
approach of Borcea and Streinu [2, 3] to the study of periodic frameworks
does not explicitly include the consideration of topological structures as in
(iii). Like the approach outlined in this paper, Malestein and Theran [15]
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also choose to include these topological properties. Their work is concerned
with frameworks on a flexible torus, and is restricted to two-dimensional
frameworks. In this paper, we describe necessary conditions for the rigidity
of periodic frameworks on the fixed torus in d-dimensions. Of course neces-
sary conditions for rigidity can always be viewed as sufficient conditions for
flexibility, something that we exploit in [23].

We remark finally that this work is concerned with forced periodicity.
That is, we are interested in motions of a periodic structure that preserve
the periodicity of the structure. An infinite periodic framework may have
motions that break the periodic symmetry of the framework, but we will
not address these motions here. The consideration of periodicity-breaking
motions would be the study of incidental periodicity, frameworks which hap-
pen to be periodic, but do not necessarily preserve their periodicity through
some motion of their joints. That is a distinct, though important, topic.

1.1. Outline of paper. In Section 2, we present some necessary back-
ground from topological graph theory, specifically introducing gain graphs.
We also introduce the fixed torus. In Section 3, we define periodic frame-
works as graphs on the torus, and show that this definition makes sense.
Section 4 contains numerous periodic-adapted versions of standard defini-
tions and results of rigidity theory, including a definition of the periodic
rigidity matrix. We provide some context for the current approach in light
of recent work in the area by other authors. We also prove that all graphs
in the same homotopy class on the fixed torus have the same generic rigid-
ity properties (Corollary 4.29). In Section 5, we prove necessary conditions
on periodic orbit frameworks for generic rigidity on the fixed d-dimensional
torus (Theorem 5.2). We conclude in Section 6 with some areas for further
work, and a preview of the sequel paper [21].

2. Background

2.1. Gain graphs. Gain graphs are a concise way of describing infinite
periodic graphs. We also view a gain graph as a set of instructions for how
to realize a graph on the torus, although this need not be a 2-cell embedding
(an embedding without crossings), which distinguishes this treatment from
other discussions of gain graph realizations [11]. Note that in some literature,
namely Gross and Tucker’s book [11], these graphs are called voltage graphs.
Our discussion here is based on that presentation, but we use the word ‘gain’
to avoid the extra connotations given by the term ‘voltage’, and to connect
to the larger body of literature on the topic of gain graphs [31].

Let G = (V,E) be a connected multigraph possibly having loops and
multiple edges with vertices V = {v0, v1, . . . , vn}, |V | = n < ∞. Let the
edges of G be assigned both plus and minus directions. Let m be a set
function from the plus-directed edges into Zd. The pair 〈G,m〉 is called a
gain graph. G is called the base graph of 〈G,m〉, m : E → Zd is called
the gain assignment. In general, gain graphs have edges which are labeled
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Figure 1. A gain graph 〈G,m〉, m : E → Zd.

by elements of a group A (the gain group), but for reasons that will soon
become clear, we will use A = Zd throughout this paper.

The vertices of 〈G,m〉 are the same as the vertices of G: V 〈G,m〉 =
〈V,m〉 = V . The edges of 〈G,m〉 are denoted by 〈E,m〉 or E〈G,m〉. An
edge e in 〈E,m〉 is denoted by

(1) e = {vi, vj ;me}, or {i, j;me},
where {vi, vj} ∈ E. This represents the directed edge from vertex vi to
vertex vj , which is labeled with the gain me. This edge may equivalently be
written in the reverse order, by using the group inverse m−1

e = −me of the
gain assignment on e:

(2) e = {vj , vi;m−1
e }.

A subgraph of 〈G,m〉 is a gain graph 〈G′,m′〉 where G′ ⊂ G is a subgraph
of G, and m′ is the restriction of m to the edges of G′.

A path of 〈G,m〉 is defined to be a path of the base graph G. We record
a path of 〈G,m〉 by

P = eα1
1 eα2

2 · · · eαkk ,

where ei ∈ E〈G,m〉, and αi is either +1 or −1 depending on the orientation
of the edge in the path. This allows us to define the net gain on the path to
be the sum of the elements on the edges of the path, with the appropriate
multiplier (+1 or −1) according to the orientation of the edges in the path:

k∑
i=1

αim(ei).

We similarly define a cycle of 〈G,m〉 to be a cycle of the base graph G, and
the net gain on the cycle is defined as for paths.

For example, consider the graph in Figure 1. Suppose the edge ei has
gain mi, as labeled. Then the cycle in the graph shown in Figure 1 given by

e+1
1 e+1

2 e−1
4 e+1

5 = {1, 2;m1}{2, 3;m2}{3, 4;−m4}{4, 1;m5}
has net gain m1 +m2 −m4 +m5.

The edge space E(G) of a graph G = (V,G) is the set of functions E →
F2 = {0, 1}. The elements of E(G) are naturally associated with the subsets
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of E, however the edge set thus defined has the structure of a vector space.
The elements are the subsets of E, vector addition is the same as symmetric
difference, ∅ ⊆ E is the zero element, and F = −F for all F ∈ E(G). See [6]
for further details.

The cycle space C = C(G) of G is the subspace of E(G) spanned by the
(edge sets of the) cycles of G. Suppose 〈G,m〉 is a gain graph where C(G) is
the cycle space of the (undirected) graph G. The gain space MC(G) is the
vector space (over Z) spanned by the net gains on the cycles of C(G).

Remark 2.1. In contrast to cycles in directed graphs, we permit re-direction
of the edges of a gain graph provided that they are accompanied by a rela-
belling of the gains on the edges as well (by the equivalence of (1) and (2)).
In this way, we should think of cycles in the gain graph as corresponding
one-to-one with cycles in the base graph. That is, the gain graph 〈G,m〉
has the same cycle space as the base graph G, while a directed graph does
not share the same cycle space as its underlying graph.

2.2. Derived graphs corresponding to gain graphs. The key feature
of gain graphs is that from a gain graph 〈G,m〉 we may define a related
graph called the derived graph which we denote Gm. The derived graph
Gm has vertex set V m and edge set Em where V m is the Cartesian product
V × Zd, and Em is the Cartesian product E × Zd. Vertices in V m have the
form (vi, a), where vi ∈ V , and a ∈ Zd. Edges in Em are denoted similarly.
If e is the directed edge connecting vertex vi to vj in 〈G,m〉, and b is the
gain assigned to the edge e, then the directed edge {e; a} of Gm connects
vertex (vi, a) to (vj , a + b). In this way, the derived graph is a (directed)

graph whose automorphism group contains Zd.
If v is a vertex in the gain graph, then the set of vertices {(v, a) : a ∈ Zd}

in the vertices V m of the derived graph is called the fiber over v. Similarly,
the set of edges {(e, a) : a ∈ Zd} is the fiber over the edge e ∈ E. There is
a natural projection from the derived graph to the base graph which is the
graph map φ : Gm → G that maps every vertex (resp. edge) in the fiber
over v (resp. e) to the vertex v (resp. e) for all v ∈ V (resp. e ∈ E). Since
Zd is an infinite group, this representation allows us to view gain graphs as
a ‘recipe’ for an infinite periodic graph.

Example 2.2. Let 〈G,m〉 be the gain graph pictured in Figure 2 (A), with
gain group Z2. The unlabeled, undirected edges have gain (0, 0). Part of the
corresponding derived graph Gm is pictured in 2 (B). Gm has a countably
infinite number of vertices and edges.

2.3. Local gain groups and the T -gain procedure. Let u be a vertex
of the gain graph 〈G,m〉, and let W and W ′ be distinct closed walks that
begin and end at u. The walk WW ′ is also a u-based closed walk. The set
of all such walks forms a semigroup, with the product operation so defined.
It was observed by Alpert and Gross that the set of net gains occurring on
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1.4 External Deadlines

March 28, 2011 Last date for FGS to receive a Recommendation for Oral Examination form,
from the Graduate Program Director for students who expect to fulfill all Doctor of Philos-
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April 25, 2011 Last date for the Faculty of Graduate Studies to receive from Graduate
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for June 2011 convocation

April 29, 2011 Last date for FGS to receive three unbound copies

Dissertation Colloquium: at least one month before defense

Tentative defense date: April 15, 2011

May 31, 2011 Last day for full refund of summer fees.

5

(b) Gm

Figure 2. A gain graph 〈G,m〉, where m : E → Z2, and its
derived graph Gm. We use graphs with vertex labels as in
(A) to depict gain graphs, and graphs without such vertex
labels will record derived graphs, or graphs that are realized
in Rd.

u-based closed walks forms a subgroup of the gain group [11]. We call this
group the local gain group at u. For a connected graph, it is clear that there
is a unique local gain group that is independent of the choice of base vertex
u. Furthermore, Gross and Tucker [11] observe that we can extend the idea
of local gain group to a notion of the fundamental group of a graph. They
note that the standard topological theorems relating fundamental groups
and covering spaces may be obtained for graphs. Furthermore, this justifies
the use of the term “graph homotopic” to describe the T -gain procedure, or
any other transformation which preserves the cycles of a gain graph 〈G,m〉
and their net gains. We now describe a procedure to isolate the local gain
group of a gain graph.

If our graph is a bouquet of loops, then the local gain group is simply the
group generated by the gains of the loops. If our graph is not, however, a
bouquet of loops, how do we find the local gain group? We have an algorithm
called the T-gain procedure that will effectively transform our graph into a
bouquet of loops. It appears in [11] and we outline it here. See Figure 3 for
a worked example.

T -gain Procedure

(1) Arbitrarily select a spanning tree T of G, and choose a vertex u to
be the root vertex (of the local gain group). Such a spanning tree is
known to exist, as we assumed G to be connected.

(2) For every vertex v in G, there exists a unique path in the tree T
from the root vertex u to v. Let the net gain along that path be
denoted by m(v, T ), and call this the T -potential of v. Compute the
T -potential of every vertex v of G.
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Figure 3. A gain graph 〈G,m〉 in (A), with identified tree
T (in red), root u, and T -potentials in (B). The resulting
T -gain graph 〈G,mT 〉 is shown in (C). The local gain graph
is now seen to be generated by the elements (4, 0) and (2, 2),
hence the local gain group is 2Z× 2Z.

(3) Let e be a forward-directed edge of G with initial vertex v and ter-
minal vertex w. Define the T -gain of e, mT (e) to be

mT (e) = m(v, T ) +m(e)−m(w, T ).

Compute the T -gain of every edge in G. The T -gain of every edge
of the spanning tree will be zero.

(4) Contract the graph along the spanning tree to obtain |E|− (|V |− 1)
loops at the root vertex u (there are |V | − 1 edges as part of the
spanning tree). The gains on these loops will generate the local gain
group. In other words, the gains on all of the edges of the graph
that are not contained in T will generate the local gain group.

Since the net gain on any u-based closed walk is the same with respect
to the T -gains as with respect to m, we have the following theorem:

Theorem 2.3 ([11]). Let 〈G,m〉 be a gain graph, and let u be any vertex
of G. Then the local gain group at u with respect to the T -gains, for any
choice of spanning tree T , is identical to the local group of u with respect to
m.

In other words, the T -gain procedure supplies us with the net gains on
a fundamental system of cycles. It should be noted that different choices
of T will correspond to different fundamental systems of cycles, but all will
generate the same cycle space and gain space.

What is important for the study of rigidity is that the gain graph with
T -gains generates the same derived graph as the gain graph 〈G,m〉. Note
that the following is a combinatorial rather than geometric result.

Theorem 2.4 ([11]). Let 〈G,m〉 be a gain graph, let u be any vertex of G,
and let T be any spanning tree of G. Then the derived graph GmT corre-
sponding to 〈G,mT 〉 is isomorphic to the derived graph Gm.
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Proof. This amounts to showing that there exists an appropriate relabeling
of Gm. For each vertex v of G, relabel the vertices (v, z), z ∈ Zd in the fiber
over v according to the rule z → z− c, where c is the net gain on the unique
path from the root vertex u to the vertex v. If e is an edge originating at
v, then we also change the indices of edges (e, i) in the fiber over e so that
they agree with the relabeled indices of their initial points. This relabeling
of vertices and edges defines an isomorphism Gm → GmT . �

We say that the graphs 〈G,m〉 and 〈G,mT 〉 are T -gain related and we
write 〈G,m〉 ∼ 〈G,mT 〉. More broadly, we say that 〈G,m〉 and 〈G,m′〉
are T -gain equivalent if 〈G,m〉 ∼ 〈G,mT 〉 and 〈G,m′〉 ∼ 〈G,mT 〉, for some
choice of spanning tree T . In fact, if this is true for one spanning tree, it
must be true for all choices of spanning tree, since the T -gain procedure
preserves the net gains on cycles. T -gain equivalence can easily be shown
to be an equivalence relation on the set of all gain assignments on a graph
G. Theorem 4.28 will demonstrate that T -gain equivalent graphs share the
same generic rigidity properties.

It is also possible to perform the T -gain procedure on subgraphs of 〈G,m〉,
by selecting a spanning tree for the subgraph and computing the T -gains on
the edges of G accordingly.

Remark 2.5. The T -gain procedure is not limited to the class of periodic
graphs, but can be applied broadly to any circumstance in which we are
using an orbit graph. For example, the symmetric graphs discussed in the
work of Schulze [25, 26] and others can be represented as gain graphs where
the edges of the graph are labeled by elements of a symmetry group. The
T -gain procedure will work in the same way in that case.

2.4. The fixed d-torus, T d0 . Let L̃ be the d×d matrix whose rows are the

linearly independent vectors {t1, . . . , td}, ti ∈ Rd. Let L̃Zd denote the group

generated by the rows of L̃, viewed as translations of Rd (alternatively, we

can think of this as the integer lattice, scaled by the rows of L̃). We call

L̃Z the fixed lattice, and L̃ is the lattice matrix. We call the quotient space

Rd/L̃Zd the fixed d-torus generated by L̃, and denote it by T d0 . It follows

that a ≡ b in T d0 if and only if a− b =
∑d

i=1 kiti, where ki ∈ Z.
There is an equivalence class of sets of translations (equivalently, lattice

matrices) which all generate the ‘same’ torus, up to rotational orientation

of the translation vectors at the origin. For any d × d matrix L̃, there is a

rotation matrix R such that RL̃ = L0, where L0 is a lower triangular matrix
and R is a d× d rotation matrix which rotates the parallelotope generated

by the rows of L̃ (d-dimensional generalization of the parallelogram, see

Coxeter [5]) such that RL̃ = L0 is lower-triangular.



THE RIGIDITY OF PERIODIC FRAMEWORKS 19

We therefore assume, without loss of generality, that L̃ is the lower trian-
gular matrix L0

L0 =


t11 0 0 . . . 0
t21 t22 0 . . . 0
...

...
... . . . 0

td1 td2 td3 . . . tdd

 ,

where t`r ∈ R are the
(
d+1

2

)
non-zero entries.

Remark 2.6. It is possible to define a flexible lattice and flexible torus by
simply allowing the entries of the lattice matrix to vary continuously with
time. This is essentially the approach of Borcea and Streinu [3], and we
will highlight extensions of the present work to the flexible torus setting
where appropriate. Similarly, it is possible to consider a range of partial
flexibility by fixing some of the entries of the matrix and allowing others to
vary. The ‘partially flexible d-torus’ is treated in [23] and [20], but will not
be considered here.

Remark 2.7. This representation of an abstract torus should not be confused
with a realization of it. For example, we can realize the 2-torus T 2 in R3 as
the familiar donut. This realization will change the metric properties of T 2,
due to the curvature of the surface in R3. However, T 2 can also be realized
in R4 in the following way:

p : R2 −→ R4

(x, y) −→ 1

2π
(cos 2πx, sin 2πx, cos 2πy, sin 2πy).

This is an isometric realization of T 2 in R4, and it can be shown that this
surface has zero Gaussian curvature everywhere, which explains why this
realization is sometimes called the “flat” torus. See [7] or [13] for details. �

3. Periodic frameworks

The work of Borcea and Streinu on periodic frameworks is closely related
to what is presented here. We will note, where appropriate, the connections
and terminology that appear in their paper [3]. It should be emphasized
however that the work of the present paper was completed independently,
as reflected in a 2009 talk at the sectional AMS meeting in Worcester [19].

At a general level, the work of Borcea and Streinu treats periodic frame-
works as infinite simple graphs with periodic structure. In contrast, the
work described here is concerned with finite frameworks on a torus, which
correspond to infinite periodic frameworks. Both approaches share some
common features: basic counting on orbit frameworks, a similar rigidity
matrix, and fundamental results linking rigidity and infinitesimal rigidity.
The two perspectives diverge on genericity. In [3], the edge directions are
assumed to be generic, while in the present work, the edge directions are
partially determined by the topology of the graph on the torus (the gains).
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In other words, we view this as part of the combinatorial information we
seek to characterize. Only the positions of the vertices on the torus are
assumed to be generic, as in finite rigidity.

3.1. Periodic orbit frameworks on T d0 . Let T d0 be the fixed d-torus gen-

erated by a d× d matrix L̃ (where L̃ is not necessarily lower-triangular). A
d-periodic orbit framework is a pair (〈G,m〉, p), where 〈G,m〉 is a gain graph
with gain group Zd, and p is an assignment of a unique geometric position
on the fixed d-torus T d0 to each vertex in V . That is, p : V −→ T d0 ⊂ Rd,
with p(vi) 6= p(vj) for i 6= j. We denote the position of the vertex vi by
p(vi) = pi, and call p a configuration of 〈G,m〉. The geometric image of the
edge e = {vi, vj ;me}, is denoted by {pi, pj + me}, and will be called a bar
of the framework. The geometric vertices p1, . . . pm will be called the joints.
We will also call a d-periodic orbit framework (〈G,m〉, p) simply a framework
on T d0 . When we wish to talk only about the combinatorial structure of a
periodic framework, we will refer to the gain graph 〈G,m〉 as a d-periodic
orbit graph. Where it is clear from context we omit the ‘d’.

The periodic framework (〈G,m〉, p) determines the derived periodic frame-

work described by the pair (〈Gm, L̃〉, pm). The graph Gm = (V m, Em) is
determined as described in Section 2.1, with the vertices and edges indexed
by the elements of the integer lattice: V m = V × Zd, and Em = E × Zd.
The configuration pm : V m → Rd is determined by the configuration p. The
vertex (v, z) ∈ V m where v ∈ V , z ∈ Zd, has the position

pm(v, z) = p(v) + zL̃,

where L̃ is the lattice matrix whose rows are the generators of T d0 .

Similarly, from the derived periodic framework (〈Gm, L̃〉, pm) we can de-
fine the periodic framework (〈G,m〉, p). Let G = (V,E) be the graph of
vertices and edges consisting of all the elements of Gm whose indices are the
zero vector. The gain assignment m is determined by the edges Em. If, for
example, the edge (e, 0) connects vertices (v1, 0) and (v2, z) in Gm, then the
directed edge {v1, v2} ∈ E has gain z.

3.2. d-periodic frameworks in Rd. In [3], Borcea and Streinu set out
notation for the study of infinite graphs with periodic structure. They say

that the pair (G̃,Γ) is a d-periodic graph if G̃ = (Ṽ , Ẽ) is a simple infinite

graph with finite degree at every vertex, and Γ ⊂ Aut(G̃) is a free abelian
group of rank d, which acts without fixed points and has a finite number of
vertex orbits. In other words, Γ is isomorphic to Zd.

Let (G̃,Γ) be a d-periodic graph, with G̃ = (Ṽ , Ẽ). Borcea and Streinu

define a periodic placement of (G̃,Γ) to be the pair (p̃, π) given by the func-
tions

p̃ : Ṽ → Rd and π : Γ→ Trans(Rd),
where p̃ assigns positions in Rd to each of the vertices of G̃, and π is an
injective homomorphism of Γ into the group of translations of Rd, denoted
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by Trans(Rd). The image π(γ) has the form π(γ)(x) = x + γ∗, where
γ∗ ∈ Rd is a translation vector. The placement functions p̃ and π must
satisfy

p(γv) = π(γ)(p(v)),

or equivalently,

(3) p̃(γv) = p̃(v) + γ∗.

Together, a d-periodic graph (G̃,Γ) and its periodic placement (p̃, π) define

a d-periodic framework, which is denoted by (G̃,Γ, p̃, π) [3].
In contrast to the periodic orbit framework, the periodic framework has

a countably infinite number of vertices and edges. The key relationship
between these two different objects is the following:

Theorem 3.1. A d-periodic framework (G̃,Γ, p̃, π) has a representation as

the derived periodic framework (〈Gm, L̃〉, pm) corresponding to the periodic

orbit framework (〈G,m〉, p) on T d0 = Rd/L̃Zd.

The proof of this result consists of picking representatives from the vertex

orbits of the periodic framework (G̃,Γ, p̃, π), and using them to define the
periodic orbit framework (〈G,m〉, p). We will describe this construction in

detail, beginning with the following result about the graph (G̃,Γ).

The quotient multigraph G̃/Γ is finite since both Ṽ /Γ and Ẽ/Γ are finite

[3]. Let G = G̃/Γ, and let qΓ : G̃ → G be the quotient map. Then qΓ

identifies each vertex orbit in G̃ with a single vertex in G, and similarly for
edges.

Theorem 3.2 (Theorem 2.2.2 in [11]). Let (G̃,Γ) be a d-periodic graph, and
let G be the resulting quotient graph by the action of Γ. Then there is an
assignment m of gains in Zd to the edges of G and a labeling of the vertices

of G̃ by the elements of VG × Zd, such that G̃ = Gm and the action of Γ on

G̃ is the natural action of Zd on Gm.

Proof. This follows directly from the proof of Theorem 2.2.2 in [11]. See
also [20]. �

From Theorem 3.2, we know that the d-periodic graph (G̃,Γ) can be
described by the derived graph Gm corresponding to a d-periodic orbit graph
〈G,m〉, where G = (V,E). We now show that there is also a correspondence

between the periodic placement (p̃, π) of (G̃,Γ) and the map pm on Gm.
Suppose that the generators of Γ are given by {γ1, . . . , γd}. Put

L̃ =

 γ∗1
...
γ∗d

 ,

where γ∗i is determined by (3).
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Then L̃ is the matrix whose rows are the translations of Rd that are the
images under π of the generators of Γ (and again L̃ is not necessarily lower-
triangular). For γ ∈ Γ, let z ∈ Zd be the row vector of coefficients of γ
written as a linear combination of {γ1, . . . , γd}. Then

p̃(γv) = p̃(v) + γ∗

= p̃(v) + zL̃.

Let A : Rd → Rd be the linear transformation satisfying

A(γ∗i ) = (· · · , 0, 1, 0, · · · ),
where the non-zero entry occurs in the ith column of the row vector. Then
define

AL̃ =

 Aγ∗1
...

Aγ∗d

 = Id×d.

This permits us to write

Ap̃(γv) = Ap̃(v) + z ·AL̃ = Ap̃(v) + z.

For each v ∈ V , there is exactly one vertex in q−1
Γ (v) (the orbit of v in

G̃), whose image under Ap̃ is in [0, 1)d. Label this vertex by (v, 0), and label
the other vertices in q−1

Γ (v) according to Theorem 3.2. In addition, label

the edges e of G by the same theorem, so that G̃ = Gm, the derived graph
corresponding to 〈G,m〉.

To determine the map pm : V m → Rd, for each v ∈ V , let pm(v, 0) =
p̃(v, 0). For a = (a1, . . . , ad) ∈ Zd, let γa = a1γ1 + · · ·+ adγd. Now define

pm(v, a) = p̃(γav).

Therefore, Apm(v, a) = Ap̃(v) + a, and applying the inverse linear transfor-
mation A−1,

pm(v, a) = p̃(v) + aL̃.

These observations complete the proof of Theorem 3.1.
Table 1 summarizes the different graphs and notations for periodic frame-

works just described. Because every d-periodic framework (G̃,Γ, p̃, π) has a

representation as the derived framework (〈Gm, L̃〉, pm) corresponding to the
periodic orbit framework (〈G,m〉, p) on T d0 (by Theorem 3.1), we adopt the

following simplification of notation for d-periodic frameworks. Let (G̃,Γ, p̃, π)

be an arbitrary periodic framework. Let L̃ be the matrix described in (3).
Then (3) can be rewritten

p̃(vi, z) = p̃(vi, 0) + zL̃.

It is straightforward to show the following.
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Proposition 3.3. A d-periodic framework (G̃,Γ, p̃, π) is equivalent under

rotation to a periodic framework (〈G̃, L〉, Rp̃) which is represented as the
derived periodic framework (〈Gm, L〉, pm) corresponding to the periodic orbit
framework (〈G,m〉, p) on T d0 = Rd/L0Zd, where L0 is lower triangular.

As a consequence of this result, we assume that the configuration p̃ in

all subsequent frameworks (〈G̃, L0〉, p̃) is the rotated placement, and that
T d0 = Rd/L0Zd, where L0 is lower triangular.

In the next section, we will explore to what extent the representation
of d-periodic frameworks as d-periodic orbit graphs is unique. In addition,
before we can define rigidity for periodic orbit frameworks, we first need to
define length in this setting.

Graph Vertices Edges Configuration

(G̃,Γ)

G = G̃/Γ

Ṽ , |Ṽ | =∞
V = Ṽ /Γ
|V | <∞

Ẽ, |Ẽ| =∞
E = Ẽ/Γ, |E| <∞

undirected edges

(p̃, π)

p̃ : Ṽ → Rd
π : Γ→ Trans(Rd)

〈G,m〉 〈V,m〉 = V

m : E → Zd
〈E,m〉 ={

{v, w;me} : {v, w} ∈ E
}

{v, w;me} = {w, v;−me}
|〈E,m〉| = |E|

directed, labeled edges

p : V → T d0
T d0 = Rd/L0Zd

〈Gm, L0〉
V m =

{(v, z) : v ∈ V, z ∈ Zd}
|V m| =∞

Em ={
{e, z} : e ∈ E, z ∈ Zd

}
{e, z} =

{(v, z), (w, z +me)}
|Em| =∞

pm : V m → Rd
pm(v, z) =
p(v) + zL0

Table 1. Summary of notation for the different conceptions
of periodic frameworks.

3.3. Equivalence relations among d-periodic orbit frameworks. We
now define notions of length and congruence for frameworks on T d0 , which
leads to an equivalence relation among all d-periodic orbit graphs. Let L0

be the lower triangular matrix whose rows are the translations {t1, . . . , td},
where T d0 = Rd/L0Zd.

Given an edge e = {vi, vj ;me} ∈ E〈G,m〉, we define the length of the
edge e to be the Euclidean length of the vector (pi − (pj +meL0)), denoted
by ‖pi − (pj +meL0)‖.

More generally, for any pair of joints pi, pj and any element mij ∈ Zd, we
write ‖{pi, pj ;mij}‖ to denote the Euclidean length of the vector (pi− (pj +
mijL0)). Note that this need not be the same as ‖{pj , pi;mij}‖. That is,
the order of the vertices matters.
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By definition, the edges of (〈Gm, L0〉, pm), have the same lengths as the
edges of (〈G,m〉, p). Let e = {vi, vj ;me} be an edge of 〈G,m〉. The edge
(e, z) ∈ Em connects the vertex (vi, z) to the vertex (vj ,me + z). Hence

‖(e, z)‖ =‖(pi + zL0)− (pj +meL0 + zL0)‖
=‖pi − (pj +meL0)‖
=‖e‖.

In other words, all edges in the fibre over e have length ‖e‖.
Now let L0 = Id×d be the d-dimensional identity matrix, and consider

Ud = [0, 1)d|V | to be the unit torus generated by L0. Let pi = (pi1, . . . , pid) ∈
Rd. We write bpic to denote the vector (bpi1c, . . . , bpidc), where bxc, x ∈ R
is the floor function, defined to be the largest integer less than or equal to
x. We say that the framework (〈G,n〉, q) is Ud-congruent to (〈G,m〉, p) if
there exists a vector t ∈ Rd such that

(a) qi = (pi + t)− bpi + tc for each vertex vi ∈ V , and
(b) ne = me + (bpj + tc − bpi + tc).
We write (〈G,n〉, q) ∼= (〈G,m〉, p).

If (〈G,m〉, p) and (〈G,m〉, q) are two periodic frameworks with the same
underlying gain graph 〈G,m〉, the description of congruence is more simple.
In this case (b) is automatically satisfied, and (a) becomes simply qi = pi+t,
for all vi ∈ V .

More generally, if T d0 is the torus generated by the matrix L0, then there
is an affine transformation mapping L0 to the d × d identity matrix. We
say that the framework (〈G,n〉, q) is T d0 -congruent to (〈G,m〉, p) if their
corresponding affine images on the unit torus are Ud-congruent. With these
definitions in place, it is easy to confirm the following.

Proposition 3.4. The T d0 -congruence is an equivalence relation on the set
of all periodic frameworks.

We say that the gain graphs 〈G,m〉 and 〈G,n〉 are periodic equivalent
if there exist configurations p and q such that the periodic frameworks
(〈G,m〉, p) and (〈G,n〉, q) are T d0 -congruent. Following directly from Propo-
sition 3.4, we have:

Proposition 3.5. Periodic equivalence is an equivalence relation on the set
of all d-periodic orbit graphs.

For two periodic equivalent graphs 〈G,m〉 and 〈G,n〉, the net gain on any
cycle is the same. For any vertex v ∈ V , let `(vi) = bpi + tc, where p is the
configuration such that (〈G,m〉, p) ∼= (〈G,n〉, q) for some configuration q of
〈G,n〉. Consider a cycle C of edges in G. The net gain on C in 〈G,m〉 is
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e∈C me. In the graph 〈G,n〉, the same cycle has gain∑

e∈C
ne =

∑
e∈C

(me + `(t(e))− `(o(e)))

=
∑
e∈C

me +
∑
e∈C

`(t(e))−
∑
e∈C

`(o(e))(4)

where we denote the origin of the directed edge e by o(e), and the terminus
by t(e). Since C is a cycle, each vertex appears exactly once as the origin of
an edge, and exactly once as the terminus of another edge. Hence the last
two sums in (4) cancel, and we obtain∑

e∈C
me =

∑
e∈C

ne.

The following proposition follows from these observations.

Proposition 3.6. If 〈G,m〉 and 〈G,n〉 are periodic equivalent, they have
the same gain space

MC〈G,m〉 =MC〈G,n〉.
Remark 3.7. All of the definitions and results of the previous sections are also
meaningful for describing frameworks on a flexible torus. Since frameworks
are defined at a particular moment in time, no changes are required to the
definitions. Simply replace the matrix L0 by a matrix of variables.

4. Rigidity and infinitesimal rigidity on T d0
4.1. Rigidity on T d0 . Let (〈G,m〉, p) be a periodic orbit framework with
m : E → Zd and p : V → T d0 = Rd/L0Zd, where V = {v1, v2, . . . , vn}. A
motion of the framework on T d0 is an indexed family of functions Pi : [0, 1]→
Rd, i = 1, . . . , |V | such that

(1) Pi(0) = p(vi) for all i;
(2) Pi(t) is continuous on [0, 1], for all i;
(3) for all edges e = {vi, vj ;me} ∈ E〈G,m〉,

‖Pi(t)− (Pj(t) +meL0)‖ = ‖p(vi)− (p(vj) +meL0)‖,
for all t ∈ [0, 1].

In other words, a motion Pi of a periodic orbit framework (〈G,m〉, p)
preserves the distances between each pair of vertices connected by an edge.
Let M = {−1, 0, 1}. Let Md represent the set of all d-tuples with entries
from the set M . If a motion Pi preserves all of the distances ‖{pi, pj ;m}‖,
where vi, vj ∈ V , and m ∈ Md, then we say that Pi is a rigid motion or
trivial motion. Note that there will be some duplication among this set of
distances, for example, ‖{pi, pj ;mα}‖ = ‖{pj , pi;−mα}‖, which we could
eliminate with further restrictions on m.

Proposition 4.1. Given any pair of vertices vi, vj, a rigid motion preserves

the length of the segment ‖{pi, pj ;m}‖, for all m ∈ Zd.
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1

2

3

4 (1, 0)

(0, 1)

(a)
〈G,m〉

p1
p2

(v1, v2; 0, 0)

p4

p1

(v1, v4; 0, 1)

p1

p3

(v1, v3;−1, 0)

3

(b) trivial

4

(c)
non-
trivial

Figure 4. A periodic orbit framework (A). Two trivial in-
finitesimal motions (translations) for a framework on T 2

0 are
indicated in (B). Removing a single edge produces a non-
trivial infinitesimal motion on the modified framework pic-
tured in (C).

If the only motions of a framework (〈G,m〉, p) on T d0 are rigid motions,
then we say that the framework (〈G,m〉, p) is rigid on the fixed torus T d0 .

4.2. Infinitesimal rigidity of frameworks on T d0 . An infinitesimal mo-
tion of a periodic orbit framework (〈G,m〉, p) on T d0 is an assignment of
velocities to each of the vertices, u : V → Rd, with u(vi) = ui such that

(5) (ui − uj) · (pi − pj −meL0) = 0,

for each edge e = {vi, vj ;me} ∈ E〈G,m〉. Such an infinitesimal motion
preserves the lengths of any of the bars of the framework (see Figure 4).

A trivial infinitesimal motion of (〈G,m〉, p) on T d0 is an infinitesimal mo-
tion that preserves the distance between all pairs of vertices:

(6) (ui − uj) · (pi − pj −meL0) = 0,

for all triples {vi, vj ;me}, m ∈ Zd. For any periodic orbit framework

(〈G,m〉, p) on T d0 , there will always be a d-dimensional space of trivial infin-
itesimal motions of the whole framework, namely the space of infinitesimal
translations. See Figure 4 (B).

Rotation is not a trivial motion for periodic orbit frameworks thus defined,
because a rotation of a graph on T d0 will always change the distance between
some pair of points. This is a consequence of the fact that we have fixed
our representation of T d0 , and are considering motions of the periodic orbit
framework relative to the fixed torus. This is in contrast to the approach of
Borcea and Streinu, who do view rotations as trivial infinitesimal motions of

the infinite framework (G̃,Γ, p̃, π) in Rd. Recall that our frameworks on the

torus are equivalence classes of the periodic frameworks (G̃,Γ, p̃, π), where
two such frameworks are equivalently represented by the orbit framework
(〈G,m〉, p) if they are rotations of one another in Rd.
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Proposition 4.2. If u is a trivial infinitesimal motion of (〈G,m〉, p) on T d0 ,
then u is an infinitesimal translation.

Proof. Let u = (u1, . . . , u|V |) be an infinitesimal motion satisfying (6) for
all values of me of the form (0, . . . , 0, 1, 0, . . . , 0) (vectors of 0’s with a sin-
gle 1 in the i-th place). Elementary linear algebra demonstrates that the
simultaneous solution of

(ui − uj) · (pi − pj −meL0) = 0

, for all such values of me will yield the single solution, u1,= u2 = · · · = u|V |,
which corresponds to an infinitesimal translation. �

If the only infinitesimal motions of a framework (〈G,m〉, p) on T d0 are triv-
ial (i.e. infinitesimal translations), then it is infinitesimally rigid. Otherwise,
the framework is infinitesimally flexible.

An infinitesimal motion u of (〈G,m〉, p) on T d0 is called an infinitesimal
flex if

(7) (ui − uj) · (pi − pj − zL0) 6= 0,

for some triple {vi, vj ; z}, where vi, vj ∈ V , and z ∈ Zd. Note that we no

longer require that the vertices of the framework affinely span Rd, in contrast
to the analogous definition for finite frameworks (see [10] for example). This
is a consequence of the fact that we need only find some triple {vi, vj ; z} for

which (ui − uj) · (pi − pj − zL0) 6= 0, and we are free to choose z from Zd.

Example 4.3. The framework on T 2
0 shown in Figure 4 (B) is infinitesimally

rigid. The only infinitesimal motions of this framework are trivial, as in-
dicated. Removing a single bar (p3, p4; (0, 0)) from the orbit graph shown
in (A) yields a framework with a non-trivial infinitesimal motion (a flex).
Figure 4 (C) depicts this motion, which was found by solving the rigidity
matrix described below.

4.3. Infinitesimal rigidity of (〈G̃, L0〉, p̃) in Rd. We now confirm that the

representation of (〈G̃, L0〉, p̃) as an orbit framework on the torus provides us

with the information we seek, namely the infinitesimal motions of (〈G̃, L0〉, p̃)
in Rd that preserve its periodicity.

An infinitesimal periodic motion of (〈G̃, L0〉, p̃) in Rd is a function ũ : Ṽ →
Rd such that the infinitesimal velocity of every vertex of G̃ in an equivalence

class (under Zd) is identical. Recall that (〈G̃, L0〉, p̃) can be represented as

(〈Gm, L0〉, pm), and therefore the vertices of G̃ = Gm are naturally indexed

by the elements of Zd. Then an infinitesimal periodic motion of (〈G̃, L0〉, p̃)
in Rd is a function ũ : Ṽ → Rd such that the following two conditions are
satisfied.

(1) For every edge e = {(vi, a), (vj , b)} ∈ Ẽ,(
p̃(vi, a)− p̃(vj , b)

)
·
(
ũ(vi, a)− ũ(vj , b)

)
= 0,
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(2) ũ(vi, z) = ũ(vi, 0), for all z ∈ Zd.
The framework (〈G̃, L0〉, p̃) is infinitesimally periodic rigid in Rd if the only

such motions assign the same infinitesimal velocity to all vertices of Ṽ (i.e.
they are translations).

Remark 4.4. An infinitesimal motion of (〈G̃, L0〉, p̃) is a motion that is itself
periodic in that ũ assigns the same infinitesimal velocity to every vertex
in an equivalence class. It is possible to relax this assumption to consider
infinitesimal motions that preserve the periodicity of the framework, but
that are not themselves periodic, since they also change the lattice. These
motions correspond to motions of the periodic orbit framework on the flexible
torus.

Proposition 4.5. Let (〈G̃, L0〉, p̃) be a d-periodic framework. Let (〈G,m〉, p)
be its d-periodic orbit framework given by Proposition 3.1. Then the follow-
ing are equivalent:

(i) (〈G̃, L0〉, p̃) is infinitesimally periodic rigid in Rd
(ii) (〈G,m〉, p) is infinitesimally rigid on T d0 = Rd/L0Zd.

Proof. Let u be an infinitesimal motion of (〈G,m〉, p) on T d0 . We extend

u to an infinitesimal motion ũ of (〈G̃, L0〉, p̃) = (〈Gm, L0〉, pm) by letting
every vertex of (〈Gm, L0〉, pm) in the fibre over v ∈ V 〈G,m〉 have the same
infinitesimal velocity. More precisely, for all z ∈ Zd, let

ũ(v, z) = u(v).

Since an edge (e, a) = {(vi, a), (vj , b)} ∈ Ẽ if and only if e = {vi, vj ; b− a} ∈
E〈G,m〉, the fact that ũ is an infinitesimal periodic motion of (〈G̃, L0〉, p̃)
is obvious.

On the other hand, given an infinitesimal motion ũ of (〈G̃, L0〉, p̃), let
u : V → Rd be given by

u(vi) = ũ(vi, 0).

Again it is clear that u is an infinitesimal motion of (〈G,m〉, p) on T d0 .
In both cases, the non-trivial motions assign the same velocities to all

vertices of (〈G,m〉, p) or (〈G̃, L0〉, p̃) respectively, and therefore non-trivial
infinitesimal motions of (〈G,m〉, p) on T d0 correspond to non-trivial infini-

tesimal periodic motions of (〈G̃, L0〉, p̃) in Rd. �

Remark 4.6. Proposition 4.5 also holds when we replace “infinitesimally
rigid” with “rigid”. Because our focus is infinitesimal rigidity, we omit the
statement and proof of this version.

Remark 4.7. The reader should be reminded that an infinite framework
(G̃, p̃) may be infinitesimally periodic rigid without being infinitesimally
rigid, since there may be non-trivial infinitesimal motions of the framework
that do not preserve the periodicity. Hence it is important to distinguish
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between these forms of rigidity, and we emphasize that we are interested in
forced periodicity and not incidental periodicity.

If (〈G,m〉, p) is infinitesimally rigid on T d0 , then (〈G,m〉, p) is rigid on T d0 .
In other words, if a framework is flexible, then it also has an infinitesimal
flex. A periodic-adapted proof of this fact using the averaging technique
is presented in Section 4.8, after the definition of the rigidity matrix. The
converse is not true, as illustrated in the example pictured in Figure 5.
However, geometrically this example is highly ‘special’. It is known that
for generic frameworks (defined in Section 4.7), infinitesimal rigidity and
rigidity actually coincide. This is a periodic analogue of a well-known result
due to Asimow and Roth [1] in the theory of rigidity for finite graphs.

1

23

(1, 0)(−1, 0)

(1, 0)

(a) 〈G,m〉 (b) (〈G,m〉, p)

Figure 5. The framework (〈G,m〉, p) has an infinitesimal
flex on T 2

0 in (B), but no finite flex. The position of the
vertices of (〈G,m〉, p) has all three vertices on a line, however,
the drawing has been exaggerated to indicate the connections
between vertices in adjacent cells.

4.4. The fixed torus rigidity matrix. Rigidity matrices for periodic
frameworks have been recorded by Guest and Hutchinson [12], Borcea and
Streinu [3], and Malestein and Theran [15]. The matrix we present below
is different from these other presentations, for two reasons. The first is
that this is the matrix for the fixed torus, and the second is that we are
considering equivalence classes of frameworks under rotation.

The rigidity matrix, R0(〈G,m〉, p), records equations for the space of pos-
sible infinitesimal motions of a d-periodic orbit framework. It is the |E|×d|V |
matrix with one row of the matrix corresponding to each edge e = {i, j);me}
of 〈G,m〉 as follows:


i j

...
{i, j;me} 0 · · · 0 pi − (pj +meL0) 0 · · · 0 (pj +meL0)− pi 0 · · · 0

...

,
where each entry is actually a d -dimensional vector, and the non-zero entries
occur in the columns corresponding to vertices vi and vj respectively. By
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1

2

(1, 0)
(0, 0)

(a) (b) (c)

(d)

Figure 6. The zig zag framework has a gain graph with two
vertices (A). Realized as a framework on the 2-dimensional
torus (B). The derived framework is shown in (C). A non-
generic position of the vertices on T 2

0 (D). The framework
pictured in (d) is not infinitesimally rigid, but the framework
(〈G,m〉, p) shown in (B) is infinitesimally rigid on T 2

0 , and
the corresponding derived framework (〈Gm, L0〉, pm) (C) is
infinitesimally rigid in R2.

construction, the kernel of this matrix will be the space of infinitesimal
motions of (〈G,m〉, p) on T d0 . By an abuse of notation we may write

R0(〈G,m〉, p) · uT = 0,

where u = (u1, u2, . . . , u|V |), and ui ∈ Rd. That is, u is an infinitesimal

motion of the joints of (〈G,m〉, p) on T d0 .

Example 4.8. Consider the periodic orbit graph 〈G,m〉 shown in Figure 4
(A). Let L0 be the matrix generating the torus T 2

0 . The rigidity matrix
R0(〈G,m〉, p) will have have six rows, and eight columns (two columns cor-
responding to the two coordinates of each vertex). The edges of 〈G,m〉
are {1, 2; (0, 0)}, {2, 3; (0, 0)}, {3, 4; (0, 0)}, {1, 4; (0, 0)}, {1, 3; (−1, 0)}, and
{1, 4; (0, 1)}, and the rows correspond to these edges in that order.



p1 p2 p3 p4

p1 − p2 p2 − p1 0 0
0 p2 − p3 p3 − p2 0
0 0 p3 − p4 p4 − p3

p1 − p4 0 0 p4 − p1

p1 − p3 + (1, 0)L0 0 p3 − p1 − (1, 0)L0 0
p1 − p4 − (0, 1)L0 0 0 p4 − p1 + (0, 1)L0





THE RIGIDITY OF PERIODIC FRAMEWORKS 31

As stated, a framework on T d0 is infinitesimally rigid if and only if the
only infinitesimal motions of the framework are infinitesimal translations.
In addition, any periodic framework (〈G,m〉, p) on T d0 has a d-dimensional
space of trivial motions. It follows that the rigidity matrix always has at
least d trivial solutions, and hence

Theorem 4.9. A periodic orbit framework (〈G,m〉, p) is infinitesimally
rigid on the fixed torus T d0 if and only if the rigidity matrix R0(〈G,m〉, p)
has rank d|V | − d.

The rigidity matrix of the framework in Example 4.8 above has rank 6,
which is exactly 2|V | − 2, and hence (〈G,m〉, p) is infinitesimally rigid on
T 2

0 .

Example 4.10 (the zig-zag framework, Figure 6). Consider the graph G =
(V,E) where V = {v1, v2} and E consists of two copies of the edge connecting
the two vertices v1 and v2 (Figure 6 (A)). If the gains on the two edges are
the same, then the framework is not infinitesimally rigid, since both rows of
the rigidity matrix will be identical. Let m be a gain assignment on G with
m1 6= m2. The periodic orbit framework (〈G,m〉, p) is infinitesimally rigid
on T 2

0 if and only if:

(1) p1 6= p2

(2) both edges have distinct directions (that is, the vectors p1− p2−m1

and p1 − p2 −m2 are independent). See Figure 6 (D).

Figures 6 (B) and 6 (C) depict (〈G,m〉, p) on T 2
0 and (〈Gm, L0〉, pm) in R2

respectively.

There are a number of simple observations which we record here for future
reference.

Corollary 4.11. A periodic orbit framework (〈G,m〉, p), where G has |E| <
d|V | − d, is not infinitesimally rigid on T d0 .

A collection of edges E′ ⊂ E of the periodic orbit framework (〈G,m〉, p)
is called independent if the corresponding rows of the rigidity matrix are
linearly independent. For each set of multiple edges ei1 = ei2 = · · · = eit
in E, we can have at most d independent copies. If a framework (〈G,m〉, p)
has edges corresponding to dependent rows in the rigidity matrix, we say
that the edges are dependent. We may also refer to a framework (〈G,m〉, p)
as being independent or dependent, and for clarity we will at times write
dependent on T d0 to differentiate this setting from the finite case (frameworks
which are not on a torus).

Corollary 4.12. Any periodic orbit framework (〈G,m〉, p), where G has
|E| > d|V | − d, is dependent on T d0 .

We sometimes call such a framework over-counted. A periodic orbit frame-
work (〈G,m〉, p) whose underlying gain graph satisfies |E| = d|V | − d and is
infinitesimally rigid on T d0 will be called minimally rigid. In other words, a
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minimally rigid framework on T d0 is one that is both infinitesimally rigid and
independent. In fact, such a framework is maximally independent – adding
any new edge will introduce a dependence among the edges. If a periodic
orbit framework is minimally rigid, then the removal of any edge will result
in a framework that is not infinitesimally rigid.

We observe a periodic analogue of the extension of Maxwell’s rule, which
provides simple combinatorial necessary conditions for rigidity.

Corollary 4.13. Let (〈G,m〉, p) be a minimally rigid periodic orbit frame-
work. Then

(1) |E| = d|V | − d, and
(2) for all subgraphs G′ ⊆ G, |E′| ≤ d|V ′| − d.

Corollary 4.14. Any loop edge in the d-periodic orbit framework (〈G,m〉, p)
is dependent on T d0 .

The following useful result is a direct consequence of the fact that the row
rank of a matrix is equal to its column rank.

Corollary 4.15. A d-periodic framework (〈G,m〉, p) whose underlying gain
graph satisfies |E| = d|V | − d is independent on T d0 if and only if it is
infinitesimally rigid on T d0 . Moreover, the vector space of non-trivial in-
finitesimal motions of (〈G,m〉, p) is isomorphic to the vector space of row
dependencies of R0(〈G,m〉, p).

We also now confirm that if (〈G,m〉, p) is infinitesimally rigid, then all
frameworks that are T d0 -congruent to (〈G,m〉, p) are also infinitesimally
rigid. The proof is a straightforward application of the definition of T d0 -
congruence.

Proposition 4.16. Let (〈G,m〉, p) and (〈G,n〉, q) be T d0 -congruent. Then

rankR0(〈G,m〉, p) = rankR0(〈G,n〉, q).
The rows of R0(〈G,m〉, p) corresponding to edges with zero gains can be

viewed as rows in the rigidity matrix of a finite framework, as described in
any introduction to rigidity; see [10] or [30], for example. Since at most

d|V | −
(
d+1

2

)
rows can be independent in the finite matrix, we have the

following proposition.

Proposition 4.17. Let 〈G,m〉 be a d-periodic orbit graph with all edges

having zero gains, that is m = 0. If |E| > d|V | −
(
d+1

2

)
, then the edges of

(〈G,m〉, p) are dependent for any configuration p.

Because loop edges are always dependent by Corollary 4.14, we restrict
our attention to frameworks (〈G,m〉, p) that do not have loop edges. On the
flexible torus, however, loops may be independent, but we do not consider
that case here.
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Remark 4.18. The derived periodic framework corresponding to the periodic
orbit framework in Example 4.3 would not be considered minimally rigid as
an infinite framework in the sense of being both independent and rigid. That
is, disregarding the periodic qualities of the graph and recording an infinite
dimensional rigidity matrix, it is not true that row rank equals column rank,
and hence Corollary 4.15 is no longer true. Further details on this problem
can be found in Guest and Hutchinson, [12].

Remark 4.19. We can define a d-periodic rigidity matroid R0(〈G,m〉, p) on
the edges of the d-periodic orbit framework: A set of edges is independent in
the rigidity matroidR0(〈G,m〉, p) if the corresponding rows are independent
in the periodic rigidity matrix R0(〈G,m〉, p).
Remark 4.20. We can also use the structure we have developed to define a
periodic rigidity matrix R for frameworks on the flexible torus. In this case,
the rigidity matrix has dimension |E| × d|V | +

(
d+1

2

)
, with one additional

column for each variable entry in L(t). Recall that there are
(
d+1

2

)
non-zero

entries in a d × d lower triangular matrix. Since the only trivial motions
are the infinitesimal translations (that is, we don’t get any new trivial mo-
tions on the flexible torus), we obtain the following flexible torus version of
Theorem 4.9.

Theorem 4.21. A periodic orbit framework (〈G,m〉, p) is infinitesimally
rigid on the flexible torus T d if and only if the rigidity matrix R(〈G,m〉, p)
has rank d|V |+

(
d
2

)
.

This result is confirmed in the work of Borcea and Streinu [3]. Further-

more it is possible to consider intermediate cases, where only some k <
(
d+1

2

)
of the entries of the lattice matrix L(t) are variable. The consideration of
this case is left to [20].

4.5. Stresses and independence. A row dependence among the rows of
the rigidity matrix can be thought of as a stress on the edges of the periodic
orbit matrix, or equivalently a periodic stress on the edges of a periodic
framework. This topic has been considered by Guest and Hutchinson [12].
The minimally rigid graphs are therefore the graphs that do not have any
infinitesimal motions, or any stresses among their edges. In finite rigidity,
this state is called isostatic, but we avoid this terminology here for the
reasons outlined in [12]. Borcea and Streinu also define stresses for d-periodic
frameworks with a flexible lattice in [3].

4.6. The unit torus and affine transformations. In this section we
show that frameworks on the unit torus can be used to model all d-periodic
orbit frameworks, since Theorem 4.22 will demonstrate that infinitesimal
rigidity of periodic orbit frameworks is affinely invariant.

An affine transformation is a map A : Rd −→ Rd, with x 7−→ xB + t,
where B is an invertible d×d matrix, and t ∈ Rd. The next result concerning
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(a) (b)

Figure 7. The framework pictured in (A) is infinitesimally
rigid on the fixed torus T 2

0 . The affine transformation of
the framework shown in (B), without a corresponding affine
transformation of T 2

0 , is not infinitesimally rigid, as indicated.

the affine invariance of independence on T d0 was shown independently in [3],
and we omit the proof, which is straightforward.

Theorem 4.22. Let (〈G,m〉, p) be a d-periodic orbit framework on T d0 .
Let L0 be the d × d lattice matrix whose rows are the generators of T d0 .
Let A be an affine transformation of Rd, with A(x) = xB + t, and where

A(p) = (A(p1), . . . , A(p|V |)) ∈ Rd|V |. Then the edges of (〈G,m〉, A(p)) are

independent on Rd/L0BZd if and only if the edges of (〈G,m〉, p) are inde-
pendent on T d0 = Rd/L0Zd.

Corollary 4.23. Let F = (〈G,m〉, p) be a d-periodic orbit framework on
T d0 , where L0 is the d × d matrix of generators of T d0 . Let F ′ be the image
of F under the unique affine transformation of Rd which maps L0 to the
d-dimensional identity matrix Id×d. Then F is infinitesimally rigid on T d0 if
and only if F ′ is infinitesimally rigid on the d-dimensional unit torus, Ud.
Remark 4.24. It is essential that the affine transformation of Corollary 4.23
act on both the points of the framework, and the generators of the torus
(the rows of L0). In other words, it is not true that a framework (〈G,m〉, p)
is infinitesimally rigid on T d0 if and only if an affine image of the framework
(〈G,m〉, p) is infinitesimally rigid on T d0 . The framework pictured in Figure
7 is an example.

4.7. Generic frameworks. Let V be a finite set of vertices, and let p be a
realization of these vertices on to the d-dimensional unit torus Ud = [0, 1)d.
Let k ∈ Z+ be given, and let K be the set of all edges between pairs of
vertices of V with gains me = (me,1,me,2, . . . ,me,d) where |me,i| ≤ k for
i = 1, . . . d. Then K is the set of all edges with bounded gains.

Consider a set of edges E ⊂ K such that, for some realization p, the
rows of R0 corresponding to E are independent. The determinants of the
|E| × |E| submatrices of these rows will either be identically zero or will

define an algebraic variety in Rd|V | (by setting these determinants equal to
zero, and taking the pi’s as variables). The collection of all such varieties,
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corresponding to all such subsets E will define a closed set of measure zero
(this set is a finite union of closed sets of measure zero). Let this set be

denoted by Xk. The complement of Xk in Rd|V | is an open dense set in Rd|V |,
and hence its restriction to the subspace of realizations p of the vertices V
on the unit torus, [0, 1)d|V | is also open and dense.

Any realization p of the vertex set V where p /∈ Xk will be called k-generic
(recall that k was the upper bound on the gain assignments). More generally,
we may consider graphs that are k-generic for any k. By the Baire Category
Theorem, the countable intersection⋂

k∈Z

(
Rd|V | −Xk

)
is dense in Rd|V |, as the intersection of open dense sets in the Baire space
Rd|V | [16]. We refer to a realization in this set as simply generic, and it is
this definition that we use throughout the remainder of this paper.

Corollary 4.25. (to Theorem 4.22) Let A be an affine transformation of Rd
which maps L0 to the identity matrix Id×d, and let 〈G,m〉 be a periodic orbit
graph. A(p) is a generic realization of 〈G,m〉 on the unit torus, Ud = [0, 1)d

if and only if p is a generic realization of 〈G,m〉 on T d0 .

As a consequence of this result, from this point forward we assume that
all frameworks are realized on the unit torus. That is, p : V −→ [0, 1)d,
and L0 = Id×d, the identity matrix. We continue to write T d0 , but drop the
matrix “L0” from expressions involving gains, since meL0 = meId×d = me.

The following result states that for a given d-periodic orbit graph, all
generic realizations share the same rigidity properties. Compare Lemma
2.2.1 in [30].

Lemma 4.26 (Special Position Lemma). Let 〈G,m〉 be a d-periodic or-
bit graph, and suppose that for some realization p0 of 〈G,m〉 on T d0 the
framework (〈G,m〉, p0) is infinitesimally rigid. Then for all generic realiza-
tions p of 〈G,m〉 on T d0 , the framework (〈G,m〉, p) is infinitesimally rigid.

Proof. Since the framework (〈G,m〉, p0) is infinitesimally rigid on T d0 , the
rigidity matrix for (〈G,m〉, p0) has maximum rank, rankR0(〈G,m〉, p0) =
d|V | − d (Theorem 4.9). By definition of generic, any framework (〈G,m〉, p)
with p generic will have

rankR0(〈G,m〉, p) ≥ rankR0(〈G,m〉, p0)

It follows that rankR0(〈G,m〉, p) = d|V | − d, and the framework (〈G,m〉, p)
is infinitesimally rigid. �

The following modification of the Special Position Lemma states that the
coordinates of p0 need not be on the unit torus, but can in fact be taken
anywhere in Rd|V |.
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Corollary 4.27 (Modified Special Position Lemma). Let 〈G,m〉 be
a d-periodic orbit graph, and suppose that for some realization p0 : V →
Rd|V | the rigidity matrix R0(〈G,m〉, p0) has rank d|V | − d. Then for all
generic realizations p of 〈G,m〉 on T d0 = [0, 1)d, the framework (〈G,m〉, p)
is infinitesimally rigid.

Proof. Recall that the set of generic realizations of a vertex set V is dense
in Rd|V |, and that the set of generic realizations on the torus is simply the
restriction of this larger set to [0, 1)d|V |. By the arguments of the proof of

Lemma 4.26, if R0(〈G,m〉, p0) = d|V | − d for some realization p0 ∈ Rd|V |,
then R0(〈G,m〉, p) = d|V | − d for all generic realizations in Rd|V |, which

includes all generic realizations on [0, 1)d|V |. �

This result should be understood to mean that we can pick any representa-
tives of a vertex, provided that the edge representatives are the same, in the
sense that the corresponding rows of the rigidity matrix are unchanged. In
light of these results, we may say that a periodic orbit graph 〈G,m〉 is gener-
ically rigid on T 2

0 , meaning that the periodic orbit framework (〈G,m〉, p) is
rigid for all generic realizations p of the vertices of G.

4.8. Infinitesimal rigidity implies rigidity. It is possible to prove a pe-
riodic version of the Asimow and Roth result which demonstrates that for
generic frameworks, infinitesimal rigidity and rigidity are equivalent [1]. The
central ideas of their proof carry over to the periodic context, since we are
working with a finite matrix corresponding to a finite graph on a torus. The
full development of this idea can be found in [20].

It is more straightforward to show that infinitesimal rigidity always im-
plies rigidity for periodic orbit frameworks. In [20] we use the averaging
technique to do this (see also [4]); however there are a number of proofs
that could easily be adapted to the periodic setting, and we do not include
the details here.

4.9. T -gain procedure preserves infinitesimal rigidity on T d0 . In sec-
tion 2.3 we described the T -gain procedure for identifying the local gain
group of a graph. We noted that the original gain assignment m and the
T -gain assignment mT can be seen as simply two different ways to describe
the same infinite periodic graph. Most importantly, we now confirm that the
rigidity matrices corresponding to these two periodic orbit graphs have the
same rank. In fact this is a geometric statement, with a generic corollary.

Theorem 4.28. For any framework (〈G,m〉, p),
rankR0(〈G,m〉, p) = rankR0(〈G,mT 〉, p′),

where p′ : V → Rd is given by p′i = pi +mT (vi).

The essence of the following argument is that the T -gain procedure changes
the representatives of the vertices used in the rigidity matrix, which, together
with the new gains, leaves the rows of the matrix unchanged.
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Proof. Let T be a spanning tree in 〈G,m〉. Each vertex vi ofG is labeled with
a T -potential, which we denote m(vi, T ) = mT (i). The edge e = {vi, vj ;me}
has T -gain

mT (e) = mT (i) +me −mT (j).

We know that the derived graphs Gm and GmT are isomorphic by Theorem
2.4. For each vertex v ∈ V , we relabel the indices of the vertices in the fibre
over v according to the rule

z −→ z −mT (v).

In other words, the vertex (vi, z) in Gm, where z ∈ Zd is mapped to the
vertex (vi, z −mT (i)) in GmT .

Suppose that a set of rows is dependent in R0(〈G,m〉, p). Then there
exists a vector of scalars, say ω = [ ω1 · · · ω|E| ] such that

ω ·R0(〈G,m〉, p) = 0.

As in the proof of affine invariance, for a particular vertex we consider the
edges directed into and out from the vertex separately. That is, for a vertex
vi ∈ V , let E+ denote the set of edges directed out from the vertex vi, and
let E− denote the set of edges directed into the vertex vi. For each vertex
vi ∈ V the column sum of R0(〈G,m〉, p) becomes

(8)
∑

eα∈E+

ωeα(pi − (pj +meα)) +
∑

eβ∈E−

ωeβ (pi − (pk −meβ )) = 0.

Adding and subtracting mT (i) and mT (j) to the first summand of (8),
we obtain∑

eα∈E+

ωe

(
pi − pj +mT (i)−mT (j)− [mT (i) +me −mT (j)]

)
,

which is equivalent to∑
eα∈E+

ωe

(
pi +mT (i)− (pj +mT (j))−mT (e)

)
.

Similarly, the second summand of (8) becomes∑
eβ∈E−

ωe

(
pi +mT (i)− (pj +mT (j)) +mT (e)

)
.

Putting them together, (8) becomes the column sum of the column of
R0(〈G,mT 〉, p′) corresponding to the vertex vi. Hence this set of rows is
dependent in R0(〈G,mT 〉, p). The argument reverses for the converse. �

This geometric result has the following generic corollary, which implies
that if (〈G,m〉, p) is infinitesimally rigid for generic p, then (〈G,mT 〉, p) is
also infinitesimally rigid for the same position p. The graphs pictured in
Figure 8 form an example.

Corollary 4.29. The periodic orbit graph 〈G,m〉 is generically rigid on T d0
if and only if 〈G,mT 〉 is generically rigid on T d0 .
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1 2

3

(1, 0)

(0, 1)

(a) 〈G,m〉

1 2

3

(1, 0)

(0, 1)

(0,−1)

u (0,−1)

(b) T -gain procedure

1 2

3

(0, 1)

(1,−1)

(0, 0)

(c)
〈G,mT 〉

(d)
(〈G,m〉, p)

(e)
(〈G,mT 〉, p)

Figure 8. The T -gain procedure used on a graph 〈G,m〉
to form 〈G,mT 〉 is shown in (A) – (C). The periodic orbit
frameworks on T 2

0 are shown in (D) and (E), corresponding
to the periodic orbit graphs in (A) and (C) respectively.

Proof. Let p be a generic position of 〈G,m〉 on T d0 . Let p′i = pi + mT (vi).

While p : V −→ Ud, p′ : V −→ Rd|V |. By the Modified Special Position
Lemma (4.27), the rank of the matrix R0(〈G,mT 〉, p) is generically the same
as the rank of the matrix R0(〈G,mT 〉, p′), which, by Theorem 4.28, is the
same as the rank of the matrix R0(〈G,m〉, p). �

4.10. Gain assignments and infinitesimal rigidity. The following the-
orem says that given a graph G with certain combinatorial properties, we
can always find an appropriate gain assignment m and geometric realization
p to yield a minimally rigid framework on T d0 .

Theorem 4.30 (Whiteley, [29]). For a multigraph G, the following are
equivalent:

(i) G satisfies |E| = d|V | − d, and every subgraph G′ ⊆ G satisfies |E′| ≤
d|V ′| − d.

(ii) G is the union of d edge-disjoint spanning trees.
(iii) For some gain assignment m and some realization p, the framework

(〈G,m〉, p) is minimally rigid on T d0 .

The proof from [29] constructs some gain assignments which are sufficient
for infinitesimal rigidity (in fact, it produces an infinite space of such gains).
In a nutshell, it says that given any graph satisfying the necessary conditions
of Corollary 4.13, we can define a gain assignment, with basis vector gains,
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that will be infinitesimally rigid on T 2
0 . It is true, however, that these are

not the only infinitesimally rigid frameworks. The question of interest then
becomes:

Question 4.31. When is a periodic orbit graph 〈G,m〉 generically rigid on
T d0 ?

The goal of a subsequent paper will be devoted to broadening the scope
of Theorem 4.30 for periodic orbit frameworks on the two-dimensional fixed
torus, and to characterize more precisely the interactions between combi-
natorics, geometry and topology in defining rigid frameworks. In a recent
paper [2], the authors offer an improvement of 4.30 for the flexible torus.

As previously noted, the approach of Borcea and Streinu [3] does not con-
sider the gains to be part of the combinatorial information of a periodic
framework. Instead they work with the notion of generic edge directions,
which involves both the gain and the position of the vertices. We will con-
sider the gains of a periodic orbit framework to be part of the combinatorial
information of the graph, and will characterize the rigidity of periodic orbit
frameworks for all gains.

Malestein and Theran [15] do consider gain graphs. In their language, our
gain graphs are “coloured graphs”. We now turn to the task of identifying
necessary conditions on the gain assignments for infinitesimal rigidity on the
fixed torus.

5. Necessary conditions on gains for rigidity

5.1. Necessary conditions for infinitesimal rigidity on T d0 . In this
section, we establish necessary conditions on the gains of a periodic orbit
graph 〈G,m〉 for it to be infinitesimally rigid on T d0 . Here is a preliminary
necessary condition for infinitesimal rigidity on T d0 . Recall that for a gain
graph 〈G,m〉 with cycle space C(G), the gain space MC(G) is the vector
space (over Z) spanned by the net gains on the cycles of C(G).

Theorem 5.1. Let 〈G,m〉 be a d-periodic orbit graph with |E| = d|V |−d. If
(〈G,m〉, p) is infinitesimally rigid for some realization p, then every subgraph
G′ ⊆ G with |E′| = d|V ′| − d satisfies |MC(G′)| ≥ d− 1.

Proof. Suppose G′ ⊆ G has |MC(G′)| = k, where k < d− 1. Performing the
T -gain procedure if necessary, the gains of the edges of G′ are zero on at
least two coordinates, say x and y. The basic idea of this proof is that such
a framework is disconnected in the xy-plane, and we can apply a rotation in
this plane. Suppose without loss of generality that all edges of 〈G,m〉 have
gains me = (0, 0,me3, . . . ,med) ∈ Zd. Let p = (p1, p2, . . . , pd) be a point in
T d0 . Let v = (−p2, p1, 0, . . . , 0). Then

v · (pi − (pj +meL0)) = (−p2, p1, 0, . . . , 0) · (pi1 − pj1, pi2 − pj2, . . . ),
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which is a rotation in the plane of the first two coordinates, of a finite
(i.e. not periodic) framework. This corresponds to a non-trivial motion of
(〈G,m〉, p), since it represents a rotation within the unit cell. �

As motivation for the next result, consider an infinitesimally rigid frame-
work (〈G,m〉, p) on the 3-dimensional fixed torus T 3

0 with |E| = 3|V | − 3.
The edges of E are therefore independent. By Theorem 5.1, every fully-
counted subgraph G′ ⊆ G satisfying |E′| = 3|V ′| − 3 has |MC(G′)| ≥ 2.
On the other hand, by Proposition 4.17, any set of edges E′′ ⊂ E with
E′′ > 3|V ′′| − 6 and |MC(E′′)| = 0 is dependent. Therefore, there must be
additional conditions on subsets of edges E′′ ⊂ E with |E′′| = 3|V ′′|− 5 and
|E′′| = 3|V ′′| − 4. The following theorem provides necessary conditions on
these intermediate subsets of edges. This is related to the work of Malestein
and Theran [15] who use a similar “rank-graded sparsity” idea in their char-
acterization of generic rigidity for 2-dimensional frameworks on the flexible
torus.

Theorem 5.2. Let 〈G,m〉 be a minimally rigid framework on T d0 . Then for
all subsets of edges Y ⊆ E,

(9) |Y | ≤ d|V (Y )| −
(
d+ 1

2

)
+

|MC(Y )|∑
i=1

(d− i).

We adopt the convention that
∑0

i=1 = 0. In essence, Theorem 5.2 says
that we can add edges beyond what would normally be independent, pro-
vided that we also add cycles with non-trivial gains. Maxwell’s condition
for finite frameworks in dimension d says that an isostatic framework must
satisfy |E| = d|V |−

(
d+1

2

)
, and |E′| ≤ d|V ′|−

(
d+1

2

)
, for all induced subgraphs

G′ ⊆ G. Analogously, a minimally rigid periodic framework in dimension d
will have |E| = d|V | − d and induced subgraphs will satisfy |E′| ≤ d|V ′| − d
(Corollary 4.13).

In addition, we already showed that for a minimally rigid framework
〈G,m〉 on T d0
(a) all induced subgraphs with |E′| = d|V ′|−d must have |MC(G′)| ≥ d−1

(Theorem 5.1), and

(b) any connected subset of edges Y ⊂ E with |Y | > d|V (Y )| −
(
d+1

2

)
must

have |MC(Y )| > 0 (Proposition 4.17).

Theorem 5.2 extends these results. We make use of the simple fact that

(10)

(
d

2

)
−

k∑
i=1

(d− i) =

(
d− k

2

)
.

Proof of Theorem 5.2. Let 〈G,m〉 be generically minimally rigid on T d0 , and
let Y ⊆ E be a subset of edges. First note that for any subset Y with
|Y | ≤ d|V | −

(
d+1

2

)
, Equation (9) holds trivially. If |Y | = d|V (Y )| − d, then
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the edges of Y are the edges of an induced subgraph, and we must have
|MC(Y )| ≥ d− 1 by (a).

Suppose then that |Y | = d|V (Y )| −
(
d+1

2

)
+ `, where 0 < ` <

(
d
2

)
. Then

for some 0 < k < d− 2,

k∑
i=1

(d− i) ≤ ` <
k+1∑
i=1

(d− i).

Toward a contradiction, suppose that |MC(Y )| < k. We apply the T -gain
procedure to the edges Y , and we obtain gains that are 0 on more than d−k
coordinates. By the arguments of the proof of Theorem 5.1 for each pair zero
coordinates, we can obtain a rotation in that plane. Therefore the space of
non-trivial infinitesimal motions of the subset Y on T d0 is strictly larger than(
d−k

2

)
. Letting Ik(Y ) denote the space of non-trivial infinitesimal motions

of the subset Y , we have shown that

|Ik(Y )| >
(
d− k

2

)
.

However, since |Y | < d|V (Y )| − d, we expect some non-trivial infinitesi-
mal motions of the edges Y on T d0 . Since 〈G,m〉 is generically rigid, these
motions will disappear when more edges are added to the subset Y . How
many non-trivial infinitesimal motions would we expect? An isostatic finite
framework with |E| = d|V | −

(
d+1

2

)
has

(
d
2

)
non-trivial infinitesimal motions

when realized as a periodic orbit framework. Let I(Y ) denote the space
of non-trivial infinitesimal motions we predict based only on the number of
edges. Since 〈G,m〉 is minimally rigid, and |Y | = d|V (Y )| −

(
d+1

2

)
+ `, the

space of non-trivial infinitesimal motions has dimension |I(Y )| =
(
d
2

)
− `.

Now

|I(Y )| =

(
d

2

)
− `

≤
(
d

2

)
−

k∑
i=1

(d− i)

=

(
d− k

2

)
(by (10))

< |Ik(Y )|.
Hence the space of non-trivial infinitesimal motions we expect based on the
deficit of edges is smaller than the space predicted by the deficit in the
dimension of MC(Y ), which is the contradiction. �

5.2. Constructive gain assignments for d-periodic orbit frameworks.

We say that 〈G,m〉 has a constructive gain assignment if the gain assign-
ment m of 〈G,m〉 is such that (9) is satisfied for every subset Y of edges of
〈G,m〉. In a subsequent paper, we will demonstrate that a constructive gain
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1

2

3

4

5

6

7

8 (0, 1, 0)(1, 0, 0) (0, 0, 1)

Figure 9. An example of a generically flexible periodic orbit
graph on T 3

0 with a constructive gain assignment. The black
edges form the 3|V | − 6 “double bananas” graph, and here
we give them gain (0, 0, 0). The three coloured edges provide
the constructive gains. This graph is flexible on T 3

0 .

assignment on a periodic orbit framework is also sufficient for generic rigid-
ity when d = 2 (and d = 1). Unfortunately, the same is not true in higher
dimensions. For example, when d = 3, we can realize the “double banana”
graph as part of a 3|V | − 3 graph with a constructive gain assignment, as
seen in Figure 9. This graph is flexible despite having a constructive gain
assignment. The two “bananas” consisting of all the edges without gains can
be rotated independently about the line through vertices 1 and 2. In this
way, the sufficiency of any condition for the rigidity of periodic frameworks
on T d0 depends directly on a characterization of d-dimensional finite rigidity.
This problem is open for d > 2. In the case that d = 1 or d = 2, however,
combinatorial characterizations of finite rigidity exist, and we will show in
a subsequent paper that Theorem 5.2 is both necessary and sufficient for
infinitesimal rigidity when d = 1 or 2.

There are, however, gain assignments on the edges of this graph that
will produce infinitesimally rigid frameworks on T 3

0 . Such frameworks will
involve the “wrapping” of some of the edges of the bananas around the
torus. For example, one possible gain assignment is given by the proof of
Theorem 4.30 (see Section 4.10), in which the edges of each of the 3 edge-
disjoint spanning trees are assigned the gains (1, 0, 0), (0, 1, 0) and (0, 0, 1)
respectively. A similar idea is presented in [2]. Notice also that the partic-
ular gain assignment produced in the proof of Whiteley’s Theorem 4.30 is
constructive.

6. Further work

6.1. Sufficient conditions for rigidity on T 2
0 . We have now seen nec-

essary conditions for the rigidity of frameworks on the fixed torus. As we
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have noted above, these conditions are clearly not sufficient in general, and
moreover, the sufficiency of any condition for the rigidity of periodic frame-
works on T d0 depends directly on a characterization of d-dimensional finite
rigidity. This problem is open for d > 2. In the case that d = 1 or d = 2,
however, combinatorial characterizations of finite rigidity exist, and we show
in a subsequent paper [21] that Theorem 5.2 is both necessary and sufficient
for infinitesimal rigidity on the fixed torus when d = 1 or 2. Furthermore,
we prove a version of Henneberg’s theorem for periodic graphs, demonstrat-
ing that all infinitesimally rigid orbit frameworks on T 2

0 can be built up
inductively from a sequence of smaller graphs.

6.2. Incidentally periodic frameworks. Throughout this paper, we have
been concerned with the topic of forced periodicity. That is, we have con-
sidered periodic frameworks and asked about their rigidity with respect to
periodicity-preserving motions. A natural question is about relaxing this
restriction to consider incidentally periodic frameworks, which are infinite
frameworks which happen to be periodic, but where we do not require that
the periodicity be preserved by infinitesimal motions of the structure. A
question of interest thus becomes: When is a periodic framework flexible,
where the flexes may or may not preserve the periodicity of the structure?

We present a conjecture pertaining to incidentally periodic frameworks:

Conjecture 6.1. If a framework (〈G,m〉, p) is infinitesimally rigid on the
flexible torus, then it is infinitesimally rigid as an incidentally periodic (in-

finite) framework (G̃, p̃).

6.3. Periodic bar-body frameworks. One natural extension of the work
in this paper is to periodic bar-body frameworks. The generic rigidity of finite
bar-body frameworks is completely characterized in d-dimensions with poly-
nomial time algorithms [27], and a recent proof of the Molecular Conjecture
expands this characterization to molecular frameworks [14]. That is, unlike
bar-joint frameworks for d ≥ 3, the generic rigidity of bar-body frameworks
for all d can be understood through combinatorial methods alone.

In particular, Theorem 5.2 can be translated to the bar-body setting,
where we conjecture that it also provides sufficient conditions for the generic
rigidity of periodic bar-body orbit frameworks on T d0 . The conjecture has
been verified when d ≤ 3 [22].
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