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EXPANDING POLYNOMIALS OVER FINITE FIELDS OF

LARGE CHARACTERISTIC, AND A REGULARITY

LEMMA FOR DEFINABLE SETS

TERENCE TAO

Abstract. Let P : F × F → F be a polynomial of bounded degree
over a finite field F of large characteristic. In this paper we estab-
lish the following dichotomy: either P is a moderate asymmetric ex-
pander in the sense that |P (A,B)| � |F| whenever A,B ⊂ F are such

that |A||B| ≥ C|F|2−1/8 for a sufficiently large C, or else P takes the
form P (x, y) = Q(F (x) + G(y)) or P (x, y) = Q(F (x)G(y)) for some
polynomials Q,F,G. This is a reasonably satisfactory classification
of polynomials of two variables that moderately expand (either sym-
metrically or asymmetrically). We obtain a similar classification for

weak expansion (in which one has |P (A,A)| � |A|1/2|F|1/2 whenever

|A| ≥ C|F|1−1/16), and a partially satisfactory classification for almost
strong asymmetric expansion (in which |P (A,B)| = (1 − O(|F|−c))|F|
when |A|, |B| ≥ |F|1−c for some small absolute constant c > 0).

The main new tool used to establish these results is an algebraic
regularity lemma that describes the structure of dense graphs generated
by definable subsets over finite fields of large characteristic. This lemma
strengthens the Szémeredi regularity lemma in the algebraic case, in that
while the latter lemma decomposes a graph into a bounded number of
components, most of which are ε-regular for some small but fixed ε, the
former lemma ensures that all of the components are O(|F|−1/4)-regular.
This lemma, which may be of independent interest, relies on some basic
facts about the étale fundamental group of an algebraic variety.

1. Introduction

1.1. Expanding polynomials. Let F be a finite field, let k ≥ 1 be an
integer, and let P : Fk → F be a polynomial of k variables defined over F.
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Hrushovski, Anand Pillay, and Van Vu for corrections and comments. The author was
also partially supported by a Simons Investigator award from the Simons Foundation and
by NSF grant DMS-0649473.

c©2015 University of Calgary

22



EXPANDING POLYNOMIALS AND A REGULARITY LEMMA 23

We will be interested in the regime when the order |F| of F is large1, but k
and the degree of P remains bounded; one could formalise this by working2

with a sequence Fn of fields whose order is going to infinity, and a sequence
Pn : Fk

n → Fn of polynomials of uniformly bounded degree on each of these
fields, where k is independent of n. But in the discussion that follows we
will suppress the dependence on the sequence parameter n to simplify the
exposition. (Later on, we will use the formalism of nonstandard analysis to
make this suppression of n more precise.) Given k subsets A1, . . . , Ak of F,
we may form the set

P (A1, . . . , Ak) := {P (a1, . . . , ak) | a1 ∈ A1, . . . , ak ∈ Ak}.

One of the main objectives of this paper is to study the expansion prop-
erties of P , which informally refers to the phenomenon that for “typical”
polynomials P and “non-trivial” A1, . . . , Ak, the set P (A1, . . . , Ak) tends to
be significantly larger than any of the A1, . . . , Ak. We will focus in particu-
lar on the following five concepts in increasing order of strength, essentially
following the notation from [35]:

(1) We say that P is a weak expander if there are absolute constants
c, C > 0 such that |P (A, . . . , A)| ≥ C−1|A|1−c|F|c whenever A ⊂ F
and |A| ≥ C|F|1−c.

(2) We say that P is a moderate expander if there are absolute constants
c, C > 0 such that |P (A, . . . , A)| ≥ C−1|F| whenever A ⊂ F and
|A| ≥ C|F|1−c.

(3) We say that P is a almost strong expander if there are absolute
constants c, C > 0 such that |P (A, . . . , A)| ≥ |F|−C|F|1−c whenever
A ⊂ F and |A|, . . . , |A| ≥ C|F|1−c.

(4) We say that P is a strong expander if there are absolute constants
c, C > 0 such that |P (A, . . . , A)| ≥ |F| − C whenever A ⊂ F and
|A|, . . . , |A| ≥ C|F|1−c.

(5) We say that P is a very strong expander if there are absolute con-
stants c, C > 0 such that P (A, . . . , A) = F whenever A ⊂ F and
|A|, . . . , |A| ≥ C|F|1−c.

As noted previously, these notions are trivial in the setting of a fixed field
F and polynomial P , but acquire non-trivial meaning when these objects
are allowed to depend on some parameter n. It is certainly also of interest
to understand expansion when the sets A1, . . . , Ak are small (as opposed to
having cardinality at least C|F|1−c), but we have nothing new to say about
this case and will not discuss it further here, and refer the interested reader
to [35] and [7] for a survey of the situation.

1In fact, the new results of this paper will be restricted to the regime in which the
characteristic of F is large, and not just the order.

2This is analogous to how the concept of an expander graph does not, strictly speaking,
apply in any non-trivial sense to a single (standard) graph, but should instead be applied
to a sequence of such graphs, or to a single nonstandard graph.
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In this paper, we will also consider the asymmetric case when the sets
involved are distinct:

(1) We say that P is a weak asymmetric expander if there are absolute
constants c, C > 0 such that |P (A1, . . . , Ak)| ≥ C−1 min(|A1|, . . . ,
|Ak|)1−c|F|c whenever |A1|, . . . , |Ak| ≥ C|F|1−c.

(2) We say that P is a moderate asymmetric expander if there are ab-
solute constants c, C > 0 such that |P (A1, . . . , Ak)| ≥ C−1|F| when-
ever |A1|, . . . , |Ak| ≥ C|F|1−c.

(3) We say that P is a almost strong asymmetric expander if there
are absolute constants c, C > 0 such that |P (A1, . . . , Ak)| ≥ |F| −
C|F|1−c whenever |A1|, . . . , |Ak| ≥ C|F|1−c.

(4) We say that P is a strong asymmetric expander if there are absolute
constants c, C > 0 such that |P (A1, . . . , Ak)| ≥ |F| − C whenever
|A1|, . . . , |Ak| ≥ C|F|1−c.

(5) We say that P is a very strong asymmetric expander if there are
absolute constants c, C > 0 such that P (A1, . . . , Ak) = F whenever
|A1|, . . . , |Ak| ≥ C|F|1−c.

Clearly, any of the asymmetric expansion properties implies the sym-
metric counterpart; for instance, moderate asymmetric expansion implies
moderate expansion.

When k = 1, P cannot be an expander in any of the above senses, thanks
to the trivial inequality |P (A)| ≤ |A|. For k ≥ 2, there are some obvious
examples of non-expanders. For instance, when k = 2, the polynomial
P (x, y) := x+ y is not an expander in any of the above senses (in the limit
when |F| goes to infinity), as can be seen by setting A1 = A2 equal to an
arithmetic progression. In a similar vein, P (x, y) := xy is not an expander
as one can set A1 = A2 equal to a geometric progression. More generally, if
P takes the additive form

(1.1) P (x1, x2) = Q(F1(x1) + F2(x2))

or the multiplicative form

(1.2) P (x1, x2) = Q(F1(x1)F2(x2))

for some polyomials Q,F1, F2 : F → F of bounded degree, then P will not
be an expander in any of the asymmetric senses, as can be seen by taking
Ai = F−1

i (Ei) for i = 1, 2, where E1, E2 are randomly chosen arithmetic
(resp. geometric) progressions of fixed length L of equal spacing (resp.
ratio). By setting instead A := F−1

1 (E1) ∩ F−1
2 (E2), we see from the first

moment method that we can find length L progressions E1, E2 of equal
spacing with |A| ≥ L2/|F| (resp. |A| ≥ L2/(|F| − 1)) in the additive (resp.
multiplicative) case; taking L close to |F|, we conclude that such polynomials
cannot be moderate expanders (although this argument is not strong enough
rule out weak expansion, unless F1 = F2). A construction in [32] also shows
that no polynomial of two variables can be a strong expander.
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On the other hand, by using estimates related to the sum-product phe-
nomenon, there are several results in the literature establishing various sorts
of expansion for certain classes of polynomials. We will only give a sample
of the known results here (focusing exclusively on the regime of large sub-
sets of F), and refer the reader to [35] and [7] for a more comphensive
survey of results. Solymosi [60] used graph-theoretic methods to estab-
lish weak expansion for polynomials of the form P (x1, x2) = f(x1) + x2

when f was a nonlinear polynomial of bounded degree; his results also show
weak asymmetric expansion for polynomials of the form P (x1, x2, x3) =
f(x1) + x2 + x3. These results were generalised in [35] (by a Fourier-
analytic method), establishing for instance weak expansion for P (x1, x2) =
f(x1) + g(x2) for non-constant polynomials f, g whose degrees are distinct
and less than the characteristic of F, with a similar result for polynomials of
the form P (x1, x2) = f(x1)g(x2). In [59], Shkredov established very strong
expansion for the polynomial P (x1, x2, x3) = x2

1 + x1x2 + x3, and moder-
ate expansion for P (x1, x2) = x1(x1 + x2), while in [22] weak expansion
for P (x1, x2) := x1(x2 + 1) in fields of prime order was established. As a
consequence of their results on the finite field distinct distances problem,
Iosevich and Rudnev [41] established the strong expansion of polynomials

of the form P (x1, . . . , xd, y1, . . . , yd) :=
∑d

i=1(xi− yi)2 for any d ≥ 2, and in
a similar spirit Vu [69] established3 the moderate expansion of polyomials
of the form P (x1, x2, y1, y2) = f(x1 − y1, x2 − y2) for any symmetric poly-
nomial f of bounded degree which was non-degenerate in the sense that f
is not of the form f(x1, x2) = Q(ax1 + bx2) for some polynomial Q and
constants a, b. In [38], moderate expansion for polynomials of the form
P (x1, x2) = f(x1) + xk1g(x2) was established when f(x1) is affinely inde-
pendent of xk1, improving upon earlier work of Bourgain [3]. In [7], it was
shown that any polynomial P (x1, x2) that is not of the form F1(x1)+F2(x2)
or F1(x1)F2(x2), is monic in each of the two variables x1, x2, and is non-
composite in that it is not of the form P = Q ◦ R for some polynomials

functions Q : F → F, R : F
2 → F over the algebraic completion of F with

Q non-linear, then P is a weak asymmetric expander.
We can now present our first set of new results regarding expansion, in the

context of polynomials of two variables in a field of large characteristic. We
first give the formulation that pertains to moderate asymmetric expansion.

Theorem 1 (Moderate asymmetric expansion). For any degree d, there
exists a constant C such that the following statement holds. Let F be a finite
field of characteristic at least C, and let P : F× F→ F be a polynomial of
degree at most d. Then at least one of the following statements hold:

(i) (Additive structure) One has

(1.3) P (x1, x2) = Q(F1(x1) + F2(x2))

3In fact, the result in [69] yields a stronger lower bound on expressions such as |A +
A|+ |f(A,A)|.
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(as a polynomial identity in the indeterminates x1, x2) for some poly-
nomials Q,F1, F2 : F→ F.

(ii) (Multiplicative structure) One has

(1.4) P (x1, x2) = Q(F1(x1)F2(x2))

for some polynomials Q,F1, F2 : F→ F.
(iii) (Moderate asymmetric expansion) One has

|P (A1, A2)| ≥ C−1|F|
whenever A1, A2 are subsets of F with |A1||A2| ≥ C|F|2−1/8.

The degree of Q,F1, F2 is not specified in (i), (ii), but it is easy to see that
one can restrict to the case when Q,F1, F2 have degree at most d with no
loss of generality, since (except in degenerate cases when one of Q,F1, F2 is
constant) it is not possible to have either (i) or (ii) hold if Q, F1, or F2 has
degree greater than d. The exponent 1/8 appearing in the above theorem
is an artefact arising from the number of times we were forced to apply the
Cauchy-Schwarz inequality in our arguments, and we do not believe it to
be optimal. When option (iii) occurs, we are also able to obtain additional
bounds on the set {(a1, a2, a3) ∈ A1 ×A2 ×A3 : P (a1, a2) = a3} for various
sets A1, A2, A3; see Remark 39 below.

Thus, we see that in the large characteristic case, the only polynomials in
two variables that are not moderate asymmetric expanders are the polyno-
mials given by the examples (1.1), (1.2), which as discussed previously are
not weak asymptotic expanders or moderate expanders. In particular, this
shows that there is no distinction between moderate asymmetric expansion,
moderate expansion, and weak asymmetric expansion, at least for polyno-
mials of two variables in the large characteristic case. This result partially
addresses a conjecture of Bukh and Tsimerman [7, §9] and of Vu [69, Prob-
lem 4], at least in the case of large characteristic and reasonably dense sets
A, and it seems likely that the methods here could be used to make further
progress on these conjectures. We remark that some analogous results, in
which the finite field F was replaced by the real field R, the complex field
C, or the rationals Q were obtained in [16], [17], and [61] respectively, us-
ing very different methods (related to the Szemerédi-Trotter theorem) from
those used here.

Theorem 38 will be established at the end of Section 7. By combining the
above results with the Fourier-analytic arguments in [35], we can obtain a
similar criterion for weak expansion:

Theorem 2 (Weak expansion). For any degree d, there exists a constant C
such that the following statement holds. Let F be a finite field of character-
istic at least C, and let P : F×F→ F be a polynomial of degree at most d.
Then at least one of the following statements hold:

(i) (Additive structure) One has

P (x1, x2) = Q(aF (x1) + bF (x2))
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for some polynomials Q,F : F→ F, and some elements a, b ∈ F.
(ii) (Multiplicative structure) One has

P (x1, x2) = Q(F (x1)aF (x2)b)

for some polynomials Q,F : F→ F, and some natural numbers a, b
with a, b ≤ C.

(iii) (Weak expansion) One has

|P (A,A)| ≥ C−1|F|1/2|A|1/2

whenever A ⊂ F with |A| ≥ C|F|1−1/16.

Again, this is a reasonably good classification of the polynomials which
weakly expand, except that in the case (i) of additive structure, some further
information on the ratio b/a of the two elements should be obtained (this
ratio should be “low complexity” in some sense). We will not pursue this
issue here; it boils down to the expansion properties of A + αA for various
values of α, an issue studied in [44], [6], [11] in the case when A lies in the
integers Z rather than in F (see also [52] for some initial results in the finite
field setting). Theorem 2 will be established in Section 8.

We now turn to the analogue of the above results for almost strong asym-
metric expansion, where our results are unfortunately somewhat less sat-
isfactory. The situation here is necessarily more complicated, as can be
seen by the following simple observation: if a polynomial P is an almost
strong asymmetric expander, then its square P 2 is automatically4 a moder-
ate asymmetric expander, but not an almost strong asymmetric expander,
because P 2 is clearly restricted to the quadratic residues. More generally, if
P obeys a polynomial identity of the form

(1.5) P (f(x1), g(x2)) = h(Q(x1, x2))

for some polynomials f, g, h : F → F and Q : F × F → F with h nonlinear
and f, g non-constant, then it is likely that P will not be an almost strong
asymmetric expander, because P (f(F), g(F)) ⊂ h(F) and h(F) is not, in
general, equal5 to all of F and is instead usually just a dense subset of F.

4This observation technically answers the question posed at the end of [35, §1] as to
whether there are moderate expanders which are not strong expanders; for instance one
can take the square (x21+x1x2+x3)2 of the strong expander of Shkredov [59]. However, this
is something of a “cheat”, and the interesting question remains of whether there exists a
non-composite polynomial P which is a moderate expander but not a strong expander. In
view of Theorem 3 below, this basically reduces (in the large characteristic case, at least)
to the task of locating a non-composite polynomial that obeys an algebraic constraint
(1.7) without having additive or multiplicative structure.

5One can however construct some examples of nonlinear polynomials h that are bijective
on a certain finite field, for instance x 7→ x3 is bijective on a field Fp of prime order p
whenever p− 1 is coprime to 3.
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An example of such a polynomial identity6 is

(1.6) P (xn1 , x
n
2 ) = P (x1, x2)n

when P is a monomial of the form P (x1, x2) = xa1x
b
2 and a, b, n are arbitrary

natural numbers, which shows that P maps nth powers to nth powers.
Our next main result is an attempt to assert that this is the only ad-

ditional obstruction to almost strong expansion, beyond the obstructions
already identified in Theorem 38. Unfortunately, due to limitations in our
arguments, we will be forced to generalise the above example, in which the
polynomials f, g, h,Q are defined over the algebraic closure F of F, and for
which the domains of f, g,Q are constructed using affine algebraic curves
(possibly of positive genus) instead of the affine line. More precisely, we
have:

Theorem 3 (Almost strong asymmetric expansion). For any degree d, there
exists a constant C such that the following statement holds. Let F be a finite
field of characteristic at least C, and let P : F× F→ F be a polynomial of
degree at most d. Then at least one of the following statements hold:

(i) (Additive structure) One has

P (x1, x2) = Q(F1(x1) + F2(x2))

for some polynomials Q,F1, F2.
(ii) (Multiplicative structure) One has

P (x1, x2) = Q(F1(x1)F2(x2))

for some polynomials Q,F1, F2.
(iii) (Algebraic constraint) There exist irreducible affine curves V ⊂ F

m
,

W ⊂ F
n

of complexity7 at most C and definable over an extension
of F of degree at most C, as well as polynomial maps f : F

n → F,
g : F

m → F, Q : F
n×F

m → F, h : F→ F of degree at most C, and
whose coefficients lie in an extension of F of degree at most C, such
that the restrictions of f, g to V,W respectively are non-constant,
and h has degree at least two, and one has the identity

(1.7) P (f(x1), g(x2)) = h(Q(x1, x2))

for all x1 ∈ V and x2 ∈W .
(iv) (Almost strong asymmetric expansion) One has

|F\P (A1, A2)| ≤ C|F|
(
|A1||A2|
|F|2−1/8

)−1/2

6Admittedly, this is also an example of a polynomial P that obeys the multiplica-
tive structure (1.4). Udi Hrushovski (private communication) provided the additional
example P (x1, x2) := x1x2P0(x1, x2)n − 1 for a generic polynomial P0, which has no
multiplicative structure but obeys the constraint P (xn1 , x

n
2 ) = Q(x1, x2)n − 1 where

Q(x1, x2) := x1x2P0(xn1 , x
n
2 ).

7We will review algebraic geometry notation such as “irreducible”, “affine”, “curve”,
and “complexity” in the next section.
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whenever A1, A2 are non-empty subsets of F.

We establish this result in Section 9. While this theorem in principle
gives a purely algebraic description of the polynomials P that are not al-
most strong asymmetric expanders, it is not fully satisfactory, due to the
excessively complicated form of (iii). It would be of interest to simplify this
constraint8, in order to make this theorem more useful in applications (and
in particular, to allow one to exhibit explicit examples of strong expander
polynomials in two variables).

It is likely that one can iterate the above results to obtain some classifi-
cation of various types of expanding polynomials in three or more variables,
but we will not pursue this question here.

1.2. An algebraic regularity lemma. The main new tool that we intro-
duce to establish the above results is an algebraic regularity lemma which
improves upon the Szemerédi regularity lemma [64] in the case of dense
graphs that are definable in the language of fields over a field of large char-
acteristic; this lemma seems to be of independent interest. To describe this
new lemma, let us first give a formulation of the usual regularity lemma:

Lemma 4 (Szemerédi regularity lemma). [64] If ε > 0, then there exists
C = Cε > 0 such that the following statements hold: whenever V,W are
non-empty finite sets and E ⊂ V × W , then there exists partitions V =
V1 ∪ . . . ∪ Va, W = W1 ∪ . . . ∪ Wb into non-empty sets, and a set I ⊂
{1, . . . , a} × {1, . . . , b} of exceptional pairs, with the following properties:

(i) (Low complexity) a, b ≤ C.
(ii) (Few exceptions)

∑
(i,j)∈I |Vi||Wj | ≤ ε|V ||W |.

(iii) (ε-regularity) For all (i, j) ∈ {1, . . . , a} × {1, . . . , b}\I, and all A ⊂
Vi, B ⊂Wj, one has

||E ∩ (A×B)| − dij |A||B|| ≤ ε|Vi||Wj |

where dij :=
|E∩(Vi×Wj)|
|Vi||Wj | .

The dependence of Cε on ε is notoriously poor (tower exponential in
nature); see [24].

8For instance, it is conceivable that one could eliminate the cases when the curves V,W
have positive genus, so that they could be replaced by the affine line F, thus reducing the
constraint (1.7) back to the simpler constraint (1.5). Also, it might be possible (perhaps
by utilising some Galois theory) to reduce to the case where the curves V,W and maps

f, g,Q, h are defined over F rather than over F. Finally, it may be possible to get some
more effective bounds on the degrees of V,W, f, g,Q, h in terms of the degree of P , although
the example (1.6) indicates that one may have to make some “minimality” assumptions
on these objects before an effective degree bound can be obtained. We were unable to
achieve any of these goals, but believe that they are all worthwhile to pursue. Some
variant of Ritt’s theory of decomposition into prime polynomials (see e.g. [72]) may
be relevant for this purpose. Since the initial release of this preprint, Udi Hrushovski
(private communication) has showed that the curves V,W and maps f, g,Q, h can indeed
be assumed to be defined over F.
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Now we restrict attention to definable sets. If F is a field, and n ≥ 0 is a
natural number, a definable subset of Fn is defined to be any set of the form

(1.8) {(x1, . . . , xn) ∈ Fn | φ(x1, . . . , xn) is true}

where φ() is any formula involving n variables x1, . . . , xn and a finite number
of additional constants c1, . . . , cm ∈ F and bound variables y1, . . . , yl, as well
as the ring operations9 +,×, parentheses (, ), the equality sign =, the logical
connectives ¬,∧,∨, =⇒ , and the quantifiers ∀, ∃ (where the quantification
is understood to be over the field F). Thus, for instance, the F-points

V (F) = {(x1, . . . , xn) ∈ Fn | P1(x1, . . . , xn) = . . . = Pm(x1, . . . , xn) = 0}

of an algebraic variety V defined over F, where P1, . . . , Pm : Fn → F are
polynomials with coefficients in F, form a definable set. A bit more generally,
the F-points of any constructible set in Fn (i.e. a boolean combination of
a finite number of algebraic varieties in Fn) is a definable set. As is well
known, in the case when F is algebraically closed, the constructible sets
are the only definable sets, thanks to the presence of quantifier elimination
(or Hilbert’s nullstellensatz) in this setting; but for non-algebraically closed
fields, other definable sets also exist. For instance, the set

(1.9) Q := {x ∈ F | ∃y ∈ F : x = y2}

of quadratic residues in F is definable, but is usually not constructible.
Now we specialise to the case where F is a finite field. Strictly speaking,

the theory of definable sets on such fields is trivial, since every subset of
Fn is finite and thus automatically definable. However, one can recover
a more interesting theory by limiting the complexity of the definable sets
being considered. Let us say that a subset E of Fn is a definable set of
complexity at most M if the ambient dimension n is at most M , and E can
be expressed in the form (1.8) for some formula φ of length at most M ,
where we consider all variables, constants, operations, parentheses, equality
symbols, logical operations, and quantifiers to have unit length. One is then
interested in the regime where M stays bounded, but the cardinality or
characteristic of F goes to infinity.

We can now give the algebraic regularity lemma.

Lemma 5 (Algebraic regularity lemma). If M > 0, then there exists C =
CM > 0 such that the following statements hold: whenever F is a finite
field of characteristic at least C, V,W are non-empty definable sets over F
of complexity at most M , and E ⊂ V × W is another definable set over
F of complexity at most M , then there exists partitions V = V1 ∪ . . . ∪ Va,
W = W1 ∪ . . . ∪Wb, with the following properties:

9One could also, if one wished, also include the inversion operation ()−1 (after handling
somehow the fact that 0−1 is undefined), but of course any formula involving this operation
can be replaced with an equivalent (albeit slightly longer) formula involving the operations
+,−,× and some additional variables and existential quantifiers.
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(i) (Largeness) For all i ∈ {1, . . . , a} and j ∈ {1, . . . , b}, one has |Vi| ≥
|V |/C and |Wj | ≥ |W |/C. In particular, a, b ≤ C.

(ii) (Bounded complexity) The sets V1, . . . , Va,W1, . . . ,Wb are definable
over F with complexity at most C.

(iii) (|F|−1/4-regularity) For all (i, j) ∈ {1, . . . , a} × {1, . . . , b}, and all
A ⊂ Vi, B ⊂Wj, one has

(1.10) ||E ∩ (A×B)| − dij |A||B|| ≤ C|F|−1/4|Vi||Wj |

where dij :=
|E∩(Vi×Wj)|
|Vi||Wj | .

Comparing this lemma with Lemma 4, we see that one has substan-
tially more regularity (a power gain in |F|), and no exceptional pairs (i, j),
thanks to the bounded complexity of the set E. Furthermore, the cells
V1, . . . , Va,W1, . . . ,Wb are not arbitrary, but are themselves definable with
bounded complexity. Let us illustrate this lemma with two simple examples:

Example 6. Let V = W = F\{0}, and let E be the set of all pairs (v, w)
such that vw is a quadratic residue; this is clearly a definable set of bounded
complexity. Then we can regularise E by partitioning V = W into the
quadratic residues and the non-quadratic residues, with the set E having
density either zero or one in each of the four pairs Vi ×Wj created by this
partition.

Example 7 (Paley graph). Let V = W = F, and let E be the set of all
pairs (v, w) such that v − w is a quadratic residue. Standard Gauss sum
estimates then show that

|E ∩ (A×B)| = 1

2
|A||B|+O(|F|2−1/2)

for any A,B ⊂ F, thus giving (1.10) with the exponent 1/4 improved to
1/2, and with a = b = 1. (It may be that this improvement of 1/4 to 1/2 is
in fact true in all cases; our method is unable to show this due to the fact
that it invokes the Cauchy-Schwarz inequality at one point, which halves
the exponent gain that one expects in bounds such as (1.10).)

As a very rough first approximation, one can interpret Lemma 5 as an
assertion that any definable subset of V ×W behaves like some combination
of the two basic examples listed above.

Remark 8. A result in a somewhat similar spirit to Lemma 5 was estab-
lished by Kowalski [45]. In our notation, the main result is as follows: if E
is a definable subset of complexity at most M over a finite field F of prime
order p, f, g : F → F are non-constant polynomials of degree at most M ,
and χ : F→ C is any multiplicative character, then

|
∑
x∈E

χ(g(x))e2πif(x)/p| ≤ CM
√
p

for some quantity CM depending only on M . This allows for a substantial
generalisation of Example 7 to definable Cayley graphs, and also allows for
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some “twisting” of such graphs by multiplicative characters. It is concievable
that one could similarly twist the algebraic regularity lemma by allowing
some “twisted” generalisation of the notion of definable set, but we will not
pursue this issue here.

Remark 9. A recent paper of Malliaris and Shelah [49] links the absence
of exceptional pairs in the regularity lemma with the concept of stability
from model theory (roughly speaking, the inability to definably create large
induced copies of the half-graph). The algebraic regularity lemma can thus
be viewed as asserting a (somewhat exotic) form of model-theoretic stability
for the language of finite fields of large characteristic10.

Actually, in applications we will use an iterated form of the regularity
lemma in which one works not with a dense definable subset E ⊂ V ×W
of the product of two definable sets, but a subset E ⊂ V1 × . . . × Vk of
a bounded number of definable sets (for our application to expansion, we
will take k = 4); see Theorem 35. This lemma is to the k = 2 case as the
Chung hypergraph regularity lemma [10] (see also [20]) is to the Szemerédi
regularity lemma. It seems of interest to obtain stronger hypergraph reg-
ularity lemmas, analogous to those in [26], [54], [53], [66], but we will not
pursue this matter here. (See [47] for a discussion of the general poset of
hypergraph regularity.)

The regularity lemma is not directly applicable to the expansion problem,
basically because the graph {(x1, x2, P (x1, x2)) | x1, x2 ∈ F} of the polyno-
mial is too sparse a subset of F3 for this lemma to be useful. However, as
observed in [6], if one applies the Cauchy-Schwarz inequality a few times (in
the spirit of [25]), one can effectively replace the above graph by the set

{(P (x1, x2), P (x1, y2), P (y1, x2), P (y1, y2)) | x1, x2, y1, y2 ∈ F},

which for “generic” P will be a dense subset of F4 to which the (iterated) al-
gebraic regularity lemma can be applied. (It is these applications of Cauchy-
Schwarz that reduce the exponents in our final expansion results to be 1/8
or 1/16 instead of 1/4.) There will be some exceptional cases in which this
set fails to be Zariski dense, but we will be able to show (using a Riemann
surface11 argument!) that those cases only arise when one has additive or
multiplicative structure, giving rise to the trichotomies and tetrachotomies
in Theorems 1, 2, 3.

10Subsequently to the initial release of this paper, a derivation of the regularity lemma
from the stability result in [39, Proposition 2.25] was given independently by Hrushovski
and Pillay-Starchenko (private communications).

11This argument is closely related to the classical fact that the only one-dimensional
algebraic groups over the complex numbers are (up to isomorphism) the additive group
(C,+), the multiplicative group (C×, ·), and the elliptic curves. The elliptic curve case
will eventually be eliminated because the underlying map P is polynomial rather than
merely rational.
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Our proof of the regularity lemma will use two somewhat exotic ingredi-
ents. The first is the use of nonstandard analysis (or the model-theoretic12

tool of ultraproducts), in order to convert a quantitative problem involving
finite fields of large characteristic into an equivalent qualitative problem in-
volving pseudo-finite fields of zero characteristic. The main reason for using
the nonstandard formalism is so that we may deploy the second ingredient,
which is the theory of the étale fundamental group of algebraic varieties
over fields of characteristic zero13. The reason that the étale fundamental
group comes into play is because it plays a key role in counting the number
of connected components of certain algebraic varieties that will arise in the
argument, and this in turn is needed to count the number of F-points on
those varieties thanks to the Lang-Weil estimates [46]. Some special cases of
this general theme are already visible in the work of Bukh and Tsimerman
[7] on polynomial expansion; the étale fundamental group is not explicitly
mentioned in their paper, but is implicitly present in some of the algebraic
geometry lemmas used in that paper (e.g. [7, Lemma 21]).

As a byproduct of our reliance on nonstandard methods, we do not obtain
any quantitative bounds in our main theorems; in particular, we cannot ex-
plicitly give values for the constants C in those theorems. In principle such
bounds could eventually be extracted from suitable finitisations of the argu-
ments here, but this would require (among other things) effective versions
of results on the étale fundamental group (in the case of sufficiently large
characteristic, rather than in zero characteristic), which seems feasible but
only after an enormous amount of effort, which we will not expend here.

Remark 10. Throughout this paper we shall freely use the axiom of choice.
However, thanks to a well known result of Gödel [23], any result that can be
formalized in first-order arithmetic (and the main results of this paper are
of this type) and is provable in Zermelo-Frankel set theory with the axiom
of choice (ZFC), can also be proven in Zermelo-Frankel set theory without
the axiom of choice (ZF).

12The use of ultraproducts to analyse finite fields is a well-established technique in
model theory; see e.g. [40].

13One can also define the étale fundamental group in positive characteristic, but the
theory is significantly less favorable for our purposes; in particular, one cannot guarantee
that this group is topologically finitely generated. This is one of the main reasons why our
results are limited to the large characteristic setting. We will also take advantage of char-
acteristic zero to use the theory of Riemann surfaces in order to analyse algebraic curves,
although this is largely for reasons of convenience, as many of the Riemann surface facts
we will use have purely algebraic counterparts that are also valid in positive characteristic.
Since the initial release of the preprint, Hrushovski, and independently Pillay-Starchenko
(private communications), have removed the large characteristic hypothesis from the regu-
larity lemma, and also from most of the expansion results stated above, by use of stability
theory.
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2. Algebraic geometry notation

In this section we lay out the basic algebraic geometry notation that we
will need throughout this paper.

Definition 11 (Algebraic varieties). Let n be a natural number, and let
k be an algebraically closed field. An affine variety (or more precisely, an
algebraic set) in kn over k is a set V of the form

(2.1) V = {x ∈ kn | P1(x) = . . . = Pm(x) = 0}

for some polynomials P1, . . . , Pm : kn → k. Similarly, we define the projective
space Pn(k) to be the space of equivalence classes [x1, . . . , xn+1] of tuples
(x1, . . . , xn+1) ∈ kn+1\{0} after quotienting out by dilations by k, and define
a projective variety in Pn(k) to be a set V of the form

(2.2) V = {x ∈ Pn(k) | P1(x) = . . . = Pm(x) = 0}

for some homogeneous polynomials P1, . . . , Pm : kn+1 → k (note that the
constraint P1(x) = . . . = Pm(x) = 0 is well-defined in Pn(k)). We embed kn

in Pn(k) in the usual manner, identifying (x1, . . . , xn) with [x1, . . . , xn, 1];
thus for instance every affine variety can be viewed as a subset of an asso-
ciated projective variety.

A subset of Pn(k) is said to be a quasiprojective variety if it is the set-
theoretic difference of two projective varieties in Pn(k). Thus for instance
the set-theoretic difference of two affine varieties in kn is a quasiprojective
variety. A constructible set in kn is a boolean combination of finitely many
affine varieties in kn. As noted in Section 1.2, constructible sets are definable
over k (indeed, as k is algebraically closed, the two concepts coincide in this
setting), and so we can inherit the notion of complexity for such sets.

We define the Zariski topology on Pn(k) by declaring the projective va-
rieties to be the closed sets; thus, for instance, the Zariski closure E of a
subset E of Pn(k) is the intersection of all the projective varieties which con-
tain that set. One can then induce the Zariski topologies on other varieties
by restriction. For instance, in the affine space kn, the Zariski closed sets
are given by the affine varieties.

An affine (resp. projective) variety is geometrically irreducible, or irre-
ducible for short, if it is non-empty and cannot be expressed as the union
of two strictly smaller affine (resp. projective) varieties. We say that a
quasiprojective variety (or more generally, a constructible set) is irreducible
if its Zariski closure is irreducible. It is well known (see e.g. [51, Proposi-
tions I.5.2, I.5.3]) that any affine (resp. projective) variety can be uniquely
decomposed into finitely many irreducible subvarieties, no two of which are
contained in each other.

The dimension dim(V ) of a non-empty affine (resp. projective) variety V
is the largest natural number d for which there is a chain

∅ 6= V0 ( V1 ( . . . ( Vd ⊂ V
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of irreducible affine (resp. projective) varieties V0, . . . , Vd; this is always a
finite natural number. We adopt the convention that the empty set has
dimension −∞. The dimension of a quasiprojective variety (in kn or Pn(k))
is defined to be the dimension of its Zariski closure in the indicated ambient
space. A variety will be called a curve if it has dimension one.

If V,W are two varieties with V ⊆ W , we say that V is a subvariety of
W . If V (W , we say that V is a strict subvariety of W .

Let F be a subfield of k. We say that an affine (resp. projective) variety
is defined over F if one can find polynomials P1, . . . , Pm with coefficients in
F for which (2.1) (resp. (2.2)) holds. A quasiprojective variety is defined
over F if it is the set-theoretic difference of two affine varieties defined over
F. If V ⊂ kn is a quasiprojective variety, we define V (F) := V ∩ Fn to be
the F -points of V ; note that this is a definable subset over F.

Let V be a quasiprojective variety. If V ⊂ kn, a regular function on
V is a function f : V → k which, at every point p in V , agrees with
a rational function from (an open dense subset of) kn to k on an open
neighbourhood of p in V . If instead V ⊂ Pn(k), a regular function on V
is a function which is regular when restricted to the n + 1 affine subsets
{[x1, . . . , xn+1] ∈ Pn(k) | xi 6= 0}, i = 1, . . . , n+ 1 that cover Pn(k), each of
which can be identified with the affine space kn in the obvious manner. The
ring of regular functions on V is denoted k[V ], and its fraction field (which is
well defined for irreducible V ) is denoted k(V ). A map φ : V →W between
two quasiprojective varieties is a regular morphism if every regular function
on W pulls back by φ to a regular function on V . A regular isomorphism is
an invertible regular morphism whose inverse is also regular.

In most of this paper, we will only need to work with constructible subsets
of affine space kn, such as affine varieties. However in Section 9 we will also
need to work with projective varieties (in order to use the theory of compact
Riemann surfaces).

If V is an affine variety, then k[V ] is just the restriction of the polynomials
on kn to V ; see [36, Theorem 3.2]. If V is an irreducible projective variety,
then k[V ] consists only of the constant functions; see [36, Theorem 3.4].

We recall some basic facts about dimension. Firstly, we have dim(kn) = n
for any n, and dim(V ×W ) = dim(V ) + dim(W ) for any constructible sets
V,W ; see e.g. [51, §I.7]. We clearly also have dim(V ) ≤ dim(W ) when-
ever V ⊂ W , with strict inequality when W is an irreducible affine (resp.
projective) variety and V is a strict affine (resp. projective) subvariety. By
construction, all affine or projective varieties of finite non-zero cardinality
have dimension zero, and all such varieties of infinite cardinality have di-
mension greater than zero, and so the same is also true for constructible
sets. We also have the following basic fact:

Proposition 12 (Projections). Let k be an algebraically closed field, and
let π : V → W be a regular map between two quasiprojective varieties V,W
with V irreducible. Then π(V ) is an irreducible constructible set, and there
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is a subvariety Σ of π(V ) of dimension at most dim(π(V )) − 1 such that
π−1({x})∩V has dimension dim(V )− dim(π(V )) for all x ∈ π(V )\Σ. Fur-
thermore, the set π−1(Σ) ∩ V has dimension at most dim(V )− 1.

Proof. See [4, Lemma A.8]. �

This has the following consequence. If V is an irreducible constructible
set, we say that a property P (x) of points in V holds for generic x ∈ V if
there is a subvariety Σ of V of dimension at most dim(V )−1 such that P (x)
holds for all x ∈ V \Σ.

Lemma 13 (Generic Fubini-type theorem). Let V,W be constructible sets,
and let E be a constructible subset of V ×W . Then the following are equiv-
alent:

(i) For generic v ∈ V , one has (v, w) ∈ E for generic w ∈W .
(ii) For generic w ∈W , one has (v, w) ∈ E for generic v ∈ V .
(iii) For generic (v, w) ∈ V ×W , one has (v, w) ∈ E.

Proof. By symmetry, it suffices to show the equivalence of (i) and (iii).
Write Σ := (V × W )\E. If (iii) holds, then Σ has dimension at most
dim(V ) + dim(W ) − 1. Writing π : Σ → V for the projection map and
using Proposition 12, we see that the generic fibre of π has dimension at
most dim(W )− 1, giving (i).

Conversely, if (iii) fails, then Σ has dimension dim(V ) + dim(W ), and
so contains at least one of the components V i × W j where V i is a top-

dimensional irreducible component of V , and similarly for W j . The comple-

ment of Σ in V i ×W j then has dimension at most dim(V ) + dim(W ) − 1,

and so by the previous arguments, we see that for generic v ∈ V i, one has
w ∈ Σ for generic w ∈W j , which contradicts (i) as required. �

3. Nonstandard formulation

As discussed in the introduction, it will be convenient to pass to a non-
standard analysis formalism in order to take full advantage of the existing
literature in algebraic geometry and on the étale fundamental group, as well
as to be able to use some tools from the theory of Riemann surfaces which
are only available for varieties when the characteristic is zero. In this sec-
tion, we set up this formalism, and give the nonstandard version of the main
theorems.

We will assume the existence of a standard universe U which contains all
the objects and spaces that one is interested in (such as the natural numbers
N, the real numbers R, finite fields F, constructible sets or varieties defined
over F or F, maps between such spaces, etc.). The precise construction
of this universe is not particularly important for our purposes, so long as
it forms a set in our external set theory. We refer to objects and spaces
inside the standard universe as standard objects and standard spaces, with
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the latter being sets whose elements are in the former category. Thus, for
instance, we refer to elements of N as standard natural numbers.

For the rest of the paper, we fix a non-principal ultrafilter α ∈ βN\N on
the natural numbers, that is to say a collection of subsets of N obeying the
following axioms:

(1) If E,F ∈ α, then E ∩ F ∈ α.
(2) If E ⊂ F ⊂ N and E ∈ α, then F ∈ α.
(3) If E ⊂ N, then exactly one of E and N\E lies in α.
(4) No finite subset of N lies in α.

The existence of such a non-principal ultrafilter follows easily from Zorn’s
lemma.

Throughout the paper, we fix a non-principal ultrafilter α. A property
P (n) depending on a natural number n is said to hold for n sufficiently
close to α if the set of n for which P (n) holds lies in α. A set of natural
numbers lying in α will also be called an α-large set.

Once we have fixed this ultrafilter, we can define nonstandard objects and
spaces.

Definition 14 (Nonstandard objects and functions). Given a sequence
(xn)n∈N of standard objects in U, we define their ultralimit limn→α xn to
be the equivalence class of all sequences (yn)n∈N of standard objects in U
such that xn = yn for n sufficiently close to α. Note that the ultralimit
limn→α xn can also be defined even if xn is only defined for n sufficiently
close to α.

An ultralimit of standard natural numbers is known as a nonstandard
natural number, an ultralimit of standard real numbers is known as a non-
standard real number, and so on.

For any standard object x, we identify x with its own ultralimit limn→α x.
Thus, every standard natural number is a nonstandard natural number, etc.

Any operation or relation on standard objects can be extended to non-
standard objects in the obvious manner. Indeed, if O is a k-ary operation,
we define

O( lim
n→α

x1
n, . . . , lim

n→α
xkn) := lim

n→α
O(x1

n, . . . , x
k
n)

and if R is a k-ary relation, we define R(limn→α x
1
n, . . . , limn→α x

k
n) to be

true iff R(x1
n, . . . , x

k
n) is true for all n sufficiently close to α. One easily

verifies that these nonstandard extensions of O and R are well-defined.

Example 15. The sum of two nonstandard real numbers limn→α xn,
limn→α yn is the nonstandard real number

lim
n→α

xn + lim
n→α

yn = lim
n→α

xn + yn,

and the statement limn→α xn < limn→α yn means that xn < yn for all n
sufficiently close to α.

We will use the usual asymptotic notation from nonstandard analysis:
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Definition 16 (Asymptotic notation). A nonstandard real number x ∈ ∗R
is said to be bounded if one has |x| ≤ C for some standard C > 0, and
unbounded otherwise. Similarly, we say that x is infinitesimal if |x| ≤ c
for all standard c > 0; in the former case we write x = O(1), and in the
latter x = o(1). For every bounded real number x ∈ ∗R there is a unique
standard real number st(x) ∈ R, called the standard part of R, such that
x = st(x) + o(1), or equivalently that st(x) − ε ≤ x ≤ st(x) + ε for all
standard ε > 0. Indeed, one can set st(x) to be the supremum of all the
real numbers y such that x > y (or equivalently, the infimum of all the real
numbers y such that x < y).

We write X = O(Y ), X � Y , or Y � X if we have X ≤ CY for some
standard C; and we write X = o(Y ), X ≪ Y , or Y ≫ X if we have
X ≤ εY for every standard ε > 0.

Definition 17 (Ultraproducts). Let (Xn)n∈N be a sequence of standard
spaces Xn in U indexed by the natural numbers. The ultraproduct

∏
n→αXn

of the Xn is defined to be the space of all ultralimits limn→α xn, where
xn ∈ Xn for all n. We refer to the ultraproduct of standard sets as an
nonstandard set ; in a similar vein, an ultraproduct of standard finite sets
is a nonstandard finite set, and an ultraproduct of standard finite fields is
a nonstandard finite field. We refer to ∗X :=

∏
n→αX as the ultrapower

of a standard set X; the identification of x with limn→α x causes X to be
identified with a subset of ∗X. We will refer to the ultrapower ∗U of the
standard universe U as the nonstandard universe.

In a similar spirit, if fn : Xn → Yn is a collection of standard functions
between standard sets Xn, Yn, we can form the ultralimit f := limn→α fn
to be the function from X :=

∏
n→αXn to Y :=

∏
n→α Yn defined by the

formula

f( lim
n→α

xn) := lim
n→α

fn(xn).

We refer to such functions as nonstandard functions (also known as internal
functions in the nonstandard analysis literature).

As with nonstandard objects, any operation or relation on standard spaces
can be converted to a nonstandard analogue in the usual manner. For in-
stance, the nonstandard cardinality of a nonstandard finite setX =

∏
n→αXn

is the nonstandard natural number

|X| := lim
n→α
|Xn|.

Note that this is a different concept from the usual (or external) cardi-
nality of X; indeed, nonstandard finite sets usually have an uncountable
external cardinality. Similarly, if f : X → ∗R is a nonstandard function
f = limn→α fn defined on a nonstandard finite set X =

∏
n→αXn, we can

define the nonstandard sum
∑

x∈X f(x) to be the nonstandard real number∑
x∈X

f(x) := lim
n→α

∑
xn∈Xn

fn(xn).
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A fundamental property of ultralimits is that they preserve first-order
statements and predicates, a fact known as  Los’s theorem:

Theorem 18 ( Los’s theorem with parameters and ultraproducts). Let m, k
be standard natural numbers. For each 1 ≤ i ≤ m, let xi = limn→α xi,n
be a nonstandard object, and for each 1 ≤ j ≤ k, let Aj =

∏
n→αAj,n be

a nonstandard set. If P (y1, . . . , ym;B1, . . . , Bk) is a predicate over m ob-
jects and k sets, with the sets A1, . . . , Ak only appearing in P through the
membership predicate x ∈ Bj for various j and various objects Bj, then
P (x1, . . . , xm;A1, . . . , Ak) is true (as quantified over the nonstandard uni-
verse ∗U) if and only if P (x1,n, . . . , xm,n;A1,n, . . . , Ak,n) is true for all n
sufficiently close to α (as quantified over the standard universe U).

Proof. See e.g. [5, Theorem A.6]. �

Another fundamental property is that of countable saturation:

Lemma 19 (Countable saturation). Let k be a standard natural number,
and let X1, . . . , Xk be nonstandard spaces. For each standard natural number
n, let Pn(x1, . . . , xk) be predicates defined for xi ∈ Xi, using some finite
number of nonstandard objects and spaces as constants, and quantified over
the nonstandard universe. Suppose that for any standard natural number
N , there exists x1 ∈ X1, . . . , xk ∈ Xk such that Pn(x1, . . . , xk) holds for
all (standard) n ≤ N . Then there exists x1 ∈ X1, . . . , xk ∈ Xk such that
Pn(x1, . . . , xk) holds for all n ∈ N.

Proof. Write Xi =
∏

n→αXi,n and Pn = limn→∞ Pn,n. By  Los’s theorem,
we see that for every standard natural number M , there exists an α-large
set EM and elements xi,n,M ∈ Xi,n for n ∈ EM and i = 1, . . . , k such that
Pn,n(x1,n,M , . . . , xk,n,M ) holds for all n ∈ EM and n = 1, . . . ,M . By shrink-
ing the EM if necessary, we may assume that the EM are non-increasing in
M . We then define Mn for any n ∈ E1 to be the largest integer in {1, . . . ,n}
for which n ∈ EMn . If we then set xi := limn→α xi,n,Mn for i = 1, . . . , k, we
see from  Los’s theorem that xi ∈ Xi for all i = 1, . . . , k, and Pn(x1, . . . , xk)
holds for all standard n, as required. �

A typical application of countable saturation is the following: if f : X →
∗R is a nonstandard function with the property that f(x) is bounded for
every x ∈ X, then there is a uniform bound |f(x)| ≤ M for some standard
M (for otherwise the predicates |f(x)| ≥ n would form a counterexample to
Lemma 19). This automatic uniformity is one advantage of the nonstandard
framework: one does not need to make as many careful distinctions between
the order of various quantifiers in one’s arguments (but one instead has to
carefully distinguish between standard and nonstandard quantities). In this
paper we will not use countable saturation very often, however, because in
our applications such uniform bounds are also often obtainable directly from
algebraic geometry methods (e.g. bounding the degree of various varieties
or maps).
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We will be working extensively with nonstandard finite fields F =
∏

n→α Fn

in this paper, which are examples of what are known as pseudo-finite fields
in the model theory literature, because (by  Los’s theorem) they obey all the
first-order sentences in the language of fields that hold for all finite fields.
By  Los’s theorem, the algebraic closure F of a nonstandard finite field F is
contained in the ultraproduct of the algebraic closures Fn of the associated
finite fields; indeed, it is the space of ultralimits limn→α xn, where for all n
sufficiently close to α, xn lies in an extension of Fn of degree at most C for
some C independent of n. The nonstandard finite field F has a nonstan-
dard Frobenius endomorphism FrobF : F→ F, defined as the restriction to
F ultralimit of the standard Frobenius endomorphism FrobFn : Fn → Fn

defined by

FrobFn(xn) := x
|Fn|
n .

(Note that FrobFn preserves every finite extension of Fn, and so FrobF is
well-defined on F.) Note (again by  Los’s theorem) that F can be viewed as
the set of fixed points of FrobF in F, since Fn is the set of fixed points of
FrobFn in Fn for all n. Later on, we will use this Frobenius endomorphism
to determine which varieties over F are actually defined over F.

Ultraproducts interact well with definable sets. From  Los’s theorem, we
see that if F =

∏
n→α Fn is a nonstandard field and d is a standard natural

number, then a set E ⊂ Fd is definable over F if and only if E can be
expressed as an ultraproduct E =

∏
n→αEn, where for all n sufficiently

close to α, En ⊂ Fd
n is definable over Fn with complexity at most M , for

some M independent of n.
In a similar vein, a function P : F → F on a nonstandard field F =∏
n→α Fn is an external14 polynomial (that is, a polynomial in the usual

sense) if and only if it is an ultralimit P = limn→α Pn of (standard) polyno-
mials Pn : Fn → Fn of uniformly bounded degree.

We can now give the nonstandard version of the main theorems stated in
the introduction. We first give the nonstandard version of Theorem 1:

Theorem 20 (Moderate asymmetric expansion, nonstandard formulation).
Let F be a nonstandard finite field of (external) characteristic zero, and let
P : F × F → F be an (external) polynomial. Then at least one of the
following statements hold:

(i) (Additive structure) One has

P (x1, x2) = Q(F1(x1) + F2(x2))

(as a polynomial identity in the indeterminates x1, x2) for some (ex-
ternal) polynomials Q,F1, F2 : F→ F.

14Taking the ultralimit of polynomials whose degree goes to infinity instead of being
uniformly bounded will lead to a function which is a nonstandard polynomial, but not
an external one. For instance, the nonstandard Frobenius endomorphism FrobF is a
nonstandard polynomial, but is not external if the characteristic of the Fn goes to infinity.
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(ii) (Multiplicative structure) One has

P (x1, x2) = Q(F1(x1)F2(x2))

for some (external) polynomials Q,F1, F2 : F→ F.
(iii) (Moderate asymmetric expansion) One has

|P (A1, A2)| � |F|
whenever A1, A2 are nonstandard subsets of F with |A1||A2| ≫
|F|2−1/8.

Let us now see why Theorem 20 implies Theorem 1. Suppose for contra-
diction that Theorem 20 was true, but Theorem 1 failed. Carefully negating
the quantifiers (and using the axiom of choice), we conclude that there is a
standard natural number d such that, for every standard natural number n,
one can find a finite field Fn of characteristic at least n, and a polynomial
Pn : Fn × Fn → Fn of degree at most d, such that Pn is not expressible in
the form (1.3) or (1.4) for any polynomials Qn, F1,n, F2,n, and such that
there exist subsets A1,n, A2,n of Fn with

|A1,n||A2,n| ≥ n|Fn|2−1/8

but

|Pn(A1,n, A2,n)| ≤ n−1|Fn|.
We now take ultralimits, giving the nonstandard finite field F :=

∏
n→α Fn

with nonstandard subsets Ai :=
∏

n→αAi,n for i = 1, 2 and the map P :=
limn→α Pn. For any standard natural number k, Fn has characteristic
greater than k for all but finitely many n, so by  Los’s theorem, F does not
have characteristic k for any positive k, and thus has characteristic zero.
Because the Pn are polynomials of degree at most d, P is an (external)

polynomial also. From  Los’s theorem, we have |A1||A2| ≫ |F|2−1/18 and
|P (A1, A2)|≪ |F|, and P cannot be expressed in either of the two forms
(1.3), (1.4). This gives a counterexample to Theorem 20, and the claim
follows.

It is also not difficult to show that Theorem 1 implies Theorem 20, but
we will not need this implication here and so will leave it to the interested
reader.

In a similar vein, Theorem 2 and Theorem 3 follow from these nonstandard
counterparts:

Theorem 21 (Weak expansion, nonstandard formulation). Let F be a non-
standard finite field of (external) characteristic zero, and let P : F×F→ F
be an (external) polynomial. Then at least one of the following statements
hold:

(i) (Additive structure) One has

P (x1, x2) = Q(aF (x1) + bF (x2))

for some polynomials Q,F : F→ F, and some elements a, b ∈ F.
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(ii) (Multiplicative structure) One has

P (x1, x2) = Q(F (x1)aF (x2)b)

for some polynomials Q,F : F → F, and some standard natural
numbers a, b.

(iii) (Weak expansion) One has

|P (A,A)| � |F|1/2|A|1/2

whenever A ⊂ F is a nonstandard subset with |A|≫ |F|1−1/16.

Theorem 22 (Almost strong asymmetric expansion, nonstandard formula-
tion). Let F be a nonstandard finite field of (external) characteristic zero,
and let P : F × F → F be an (external) polynomial. Then at least one of
the following statements hold:

(i) (Additive structure) One has

P (x1, x2) = Q(F1(x1) + F2(x2))

for some polynomials Q,F1, F2.
(ii) (Multiplicative structure) One has

P (x1, x2) = Q(F1(x1)F2(x2))

for some polynomials Q,F1, F2.
(iii) (Algebraic constraint) One has irreducible affine curves V,W defined

over F and the constraint

P (f(x1), g(x2)) = h(Q(x1, x2))

for all x1 ∈ V, x2 ∈W and some polynomials f : V → F, g : W → F,
h : F → F, Q : V ×W → F defined over F, with f, g non-constant
and h having degree at least two.

(iv) (Almost strong asymmetric expansion) One has

|F\P (A1, A2)| � |F|
(
|A1||A2|
|F|2−1/8

)−1/2

whenever A1, A2 are non-empty nonstandard subsets of F.

The derivations of Theorem 2, 3 from Theorem 21, 22 are closely analo-
gous to the derivation of Theorem 1 from Theorem 20 and are omitted.

Finally, Lemma 5 also follows from a nonstandard counterpart:

Lemma 23 (Algebraic regularity lemma, nonstandard formulation). Let
F be a nonstandard finite field of (external) characteristic zero, let V,W be
non-empty definable subsets over F, and let E ⊂ V ×W be another definable
set. Then there exists partitions V = V1 ∪ . . .∪ Va, W = W1 ∪ . . .∪Wb into
a (standard) finite number of definable sets, with the following properties:

• (Largeness) For all i ∈ {1, . . . , a} and j ∈ {1, . . . , b}, one has |Vi| �
|V | and |Wj | � |W |.
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• (|F|−1/4-regularity) For all (i, j) ∈ {1, . . . , a} × {1, . . . , b}, and all
A ⊂ Vi, B ⊂Wj, one has

||E ∩ (A×B)| − dij |A||B|| � |F|−1/4|Vi||Wj |

where dij :=
|E∩(Vi×Wj)|
|Vi||Wj | .

Again, we omit the derivation, as it is closely analogous to the previous
derivations.

It remains to establish Theorem 20, Theorem 22, Theorem 21, and Lemma
23. This will be the focus of the remainder of the paper, with the latter
lemma being used as a crucial tool to prove the first three theorems.

As mentioned previously, there are two main reasons why we move to a
nonstandard framework. The first is that one no longer has to explicitly
keep track of the complexity of various definable sets or algebraic varieties
that one will shortly encounter in the argument. This allows one to use
many existing results from algebraic geometry without modification, as these
results are usually phrased qualitatively rather than quantitatively, and so
do not come with explicit bounds on complexity. The other reason is that
now that we have passed to a field of characteristic zero, many aspects of
algebraic geometry become simpler; in particular, varieties are generically
smooth, and étale fundamental groups are topologically finitely generated.
Furthermore, we can take advantage of embeddings into the complex field C
(Lefschetz principle) in order to exploit the theory of Riemann surfaces. It
would be rather difficult (though not entirely impossible) to replicate these
facts in the original setting of finite fields of large characteristic.

4. Definable sets and Lang-Weil type bounds

In order to prove the algebraic regularity lemma, we will need some results
in the model theory literature [2], [42], [21], [8], [9], [45] on definable subsets
of nonstandard finite fields.

We will need the fact that definability over a nonstandard finite field F
can be detected using the Frobenius map:

Lemma 24. Let F be a nonstandard finite field, with algebraic closure F,
and let V ⊂ F

n
be a quasiprojective variety. Then V is defined over F if and

only if it is invariant with respect to the action of the nonstandard Frobenius
map FrobF (which acts componentwise on F

n
).

Proof. The “only if” part is clear, so we focus on the “if” part. First suppose
that V is an affine variety that is invariant under FrobF. Then the ideal I(V )
of polynomials that vanish on V is also FrobF-invariant (where FrobF acts
on each coefficient of a given polynomial separately). If we let P1, . . . , Pm be
the reduced Gröbner basis of I(V ) with respect to lexicographical ordering
(see e.g. [13]), then this basis is unique, and is thus also FrobF-invariant,
that is to say the coefficients of the Pi lie in F. Thus V is defined over F as
claimed.
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Now suppose V is a quasiprojective variety that is invariant under FrobF.
The Zariski closure V of V in F

n
is then also invariant under FrobF, and

by the preceding discussion is thus defined over F; similarly for the affine
variety V \V . The claim follows. �

We will also need the fact that definable sets over nonstandard finite
fields are projections of the F-points of varieties, and their cardinality is
comparable to a power of |F|. More precisely, we have

Theorem 25 (Almost quantifier elimination). Let F be a nonstandard finite
field, and let E be a subset of Fn for some (standard) natural number n.
Then E is a definable set if and only if it can be expressed as the intersection
of finitely many sets, each of the form

(4.1) {x ∈ Fn | ∃t ∈ F : P (x, t) = 0}
for some polynomial P : Fn × F→ F with coefficients in F.

Furthermore, if E is definable, the Zariski closure E of E in F
n

is the
union of finitely many geometrically irreducible affine varieties defined over
F, and the nonstandard cardinality |E| of E is given by

(4.2) |E| = (σ +O(|F|−1/2))|F|dim(E)

for some standard positive rational number σ (with the convention that
|F|−∞ = 0). In particular, we have

(4.3) |F|dim(E) � |E| � |F|dim(E).

Proof. These are the main results of [9]. The fact that E consists only of
varieties defined over F follows from Lemma 24, since E and hence E is
Frobenius-invariant. The fact that the exponent of F is the dimension of
the Zariski closure of E is [9, Proposition 4.9]. �

We illustrate the almost quantifier elimination (25) with some simple ex-
amples. The space of quadratic residues of F that include 0 can be expressed
as

{x ∈ F | ∃t ∈ F : x− t2 = 0},
while the set of non-zero elements of F can be expressed as

{x ∈ F | ∃t ∈ F : xt− 1 = 0},
the singleton set {0} can be expressed as

{x ∈ F | ∃t ∈ F : x = 0},
and the set of nonquadratic residues of F (again including 0) can be ex-
pressed as

{x ∈ F | ∃t ∈ F : ax− t2 = 0},
where a is an invertible quadratic non-residue. By intersecting these sets
together, we can then create other definable sets, such as the set of all
non-zero quadratic residues. These examples also show that the quantity
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σ appearing in (4.2) need not be an integer (for instance, in the case of
quadratic residues, σ is 1/2 when the characteristic is not equal to 2).

Theorem 25 gives the order of magnitude on the cardinality |E| of a
definable set, but does not specify exactly what the rational constant σ in
the asymptotic (4.2). The following bound computes this constant in the
case of a quasiprojective variety.

Lemma 26 (Lang-Weil bound). Let F be a nonstandard finite field, and let

V ⊂ F
n

be a quasiprojective variety defined over F. Then one has

|V (F)| = (c+O(|F|−1/2))|F|dim(V )

where c are the number of top-dimensional geometrically irreducible compo-
nents of V (i.e. components of dimension exactly dim(V )) which are defined
over F.

Proof. By Theorem 25 (or by cruder estimates, such as [46, Lemma 1]), any

affine variety of dimension strictly less than dim(V ) has at mostO(|F|dim(V )−1)
F-points. Thus, by replacing V by its Zariski closure and then removing all
lower dimensional components, we may assume without loss of generality
that V is a geometrically irreducible affine variety.

If V is not defined over F, then by Lemma 24, FrobF(V ) is a different
variety from V , and so V ∩FrobF(V ) has dimension strictly less than dim(V ).
But this variety contains all the F points of F, and so V only has at most
O(|F|dim(V )−1) F-points, and the claim follows in this case (with c = 0).

Finally, if V is geometrically irreducible and defined over F, the claim
follows from [46, Theorem 1]. �

5. Proof of regularity lemma

We now prove Lemma 23. The first step is to pass from the set E to a
more tractable counting function (essentially the “square” of E), as follows.

Proposition 27 (First reduction). Let F be a nonstandard finite field of
characteristic zero, let V,W be definable sets over F with V ,W geometrically
irreducible, and let E be a definable subset of V ×W . Let µ : W ×W → ∗N
denote the nonstandard counting function defined by the formula

(5.1) µ(w,w′) := |{v ∈ V (F) | (v, w), (v, w′) ∈ E}|
for all w,w′ ∈W . Then one can partition W into a (standard) finite number
of definable subsets W1, . . . ,Wm such that, for any 1 ≤ i, j ≤ m, there is a
standard rational cij such that µ(w,w′) = (cij +O(|F|−1/2))|V | for all15 but

O(|F|−1/2|W |2) of the pairs (w,w′) ∈Wi ×Wj.

Let us now see how Proposition 27 implies Lemma 23. This will be an
application of the “TT ∗ method” from harmonic analysis (see e.g. [62,
Chapter VII]). Let F, V,W,E be as in Lemma 23. By decomposition we

15In fact, with a little more effort one can show that the exceptional set here has
cardinality O(|F|−1|W |2), but we will not need this sharper statement.
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may take V ,W to be geometrically irreducible. We use Proposition 27 to
partition W into finitely many definable components Wi with the stated
properties. Observe that at least one of the Wi must have a Zariski closure
of dimension dim(W ) (and thus equal to W , by the irreducibility of W );
and if any component has Zariski closure with dimension strictly less than
dim(W ), it may be safely absorbed into one of the other components without
affecting the conclusion of the proposition (thanks to (4.3)). Thus we may
assume that all Wi have the same Zariski closure as W , which among other
things implies that |Wi| � |W |, thanks to (4.3). Next, by passing to just
one of these components, we may assume that m = 1, thus we may reduce
without loss of generality to the case where

(5.2) µ(w,w′) = (c+O(|F|−1/2))|V |
for all but O(|F|−1/2|W |2) pairs (w,w′) ∈ W × W , and some standard
rational c. We can of course assume that W is non-empty, as the claim is
vacuously true otherwise.

Now let f : W → ∗R be any nonstandard function of mean zero and
bounded in magnitude by 1, and consider the nonstandard sum∑

v∈V (F)

|
∑
w∈W

1E(v, w)f(w)|2.

We may rewrite this expression as∑
w,w′∈W

f(w)f(w′)µ(w,w′).

Applying (5.2), we have µ(w,w′) = (c+O(|F|−1/2))|V | for all but O(|F|−1/2

|W |2) pairs (w,w′). For these exceptional pairs, we use the crude estimate
µ(w,w′) = O(|V |) = (c+O(1))|V |. We conclude that∑
v∈V (F)

|
∑
w∈W

1E(v, w)f(w)|2 =
∑

w,w′∈W
f(w)f(w′)c+O(|F|−1/2|V ||W |2).

But as f was assumed to have mean zero, the first sum vanishes, and so∑
v∈V (F)

|
∑
w∈W

1E(v, w)f(w)|2 � |F|−1/2|V ||W |2.

In particular ∑
v∈V
|
∑
w∈W

1E(v, w)f(w)|2 � |F|−1/2|V ||W |2.

Next, we apply Proposition 27 again, but with the roles of V andW reversed,
to partition V into finitely many definable components V1, . . . , Vm such that,
for any 1 ≤ i, j ≤ m, there is a standard rational cij such that

|{w ∈W | (v, w), (v′, w) ∈ E}| = (cij +O(|F|−1/2))|W |
for all (v, v′) ∈ Vi×Vj outside of a subvariety of V ×V of dimension strictly

less than 2 dim(V ). As before, we may assume that each Vi has Zariski
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closure of dimension dim(V ), so that |Vi| � |V | thanks to (4.3). By arguing
as above, we conclude that∑

w∈W
|
∑
v∈Vi

1E(v, w)g(v)|2 � |F|−1/2|V |2|W |

whenever 1 ≤ i ≤ m and g : Vi → ∗R is a nonstandard function of mean
zero bounded in magnitude by 1. By Cauchy-Schwarz, we conclude that

|
∑
v∈Vi

∑
w∈W

g(v)f(w)1E(v, w)| � |F|−1/4|V ||W |

whenever 1 ≤ i ≤ m and f : W → ∗R, g : Vi → ∗R are nonstandard functions
bounded in magnitude by 1, with at least one of f, g having mean zero. If
we now let A, B be arbitrary nonstandard subsets of Vi,W respectively,
we can decompose 1A into a constant component |A|/|Vi| and a mean zero
component 1A − |A|/|Vi|, and similarly decompose 1B into |B|/|W | and
1B − |B|/|W |; applying the above estimate to three of the four resulting
terms, we conclude that∑

v∈Vi

∑
w∈W

1A(v)1B(w)1E(v, w) = θi|A||B|+O(|F|−1/4|V ||W |)

where θi := |E ∩ (Vi ×W )|/|Vi||W | is the density of E in Vi ×W . Lemma
23 follows.

It remains to establish Proposition 27. To do this, we will (after some
basic reductions) use the Lang-Weil bound (Lemma 26) to compute µ(w,w′)
in terms of a counting function c(w,w′) that counts the number of top-
dimensional geometrically irreducible components of a certain variety Uw×V
U ′w′ that are defined over F.

We turn to the details. Observe that any component E′ of E that lies in
a proper subvariety of V ×W has cardinality at most O(|F|−1|V ||W |) by
Theorem 25. By Chebyshev’s inequality, we thus see that

|{v ∈ V (F) | (v, w) ∈ E′}| = O(|F|−1/2|V |)

for all but O(|F|−1/2|W |) elements w ∈ W . From this, we see that E′ has
a negligible impact on the conclusions of Theorem 27. Thus we may freely
delete any strict subvariety of V ×W from E if we wish (i.e. we may work
with generic subsets of V ×W ).

By Theorem 25, we may write E in the form
(5.3)
E = {(v, w) ∈ V (F)×V (F) | ∃t1, . . . , tm ∈ F : Pi(v, w, ti) = 0, ∀i = 1, . . . ,m}

for some finite collection of polynomials P1, . . . , Pm : V ×W×F→ F defined
over F. For any one of these polynomials Pi, consider the set of pairs (v, w)
for which the one-dimensional polynomial ti 7→ Pi(v, w, ti) vanishes. This
is a subvariety of V ×W defined over F. If it is all of V ×W , then the
polynomial Pi is redundant in (5.3) and can be deleted, so we may assume
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that it is a strict subvariety of V ×W . Thus, by deleting all such varieties
as discussed previously, we may assume that E actually takes the form
(5.4)
E = {(v, w) ∈ Ω(F) | ∃t1, . . . , tm ∈ F : Pi(v, w, ti) = 0 for all i = 1, . . . ,m}

where Ω is a Zariski-dense subvariety of V × W defined over F, and the
polynomials ti 7→ Pi(v, w, ti) are non-vanishing for any (v, w) ∈ Ω. If we
then define

U := {(v, w, t1, . . . , tm) ∈ Ω× F
m | Pi(v, w, ti) = 0 for all i = 1, . . . ,m}

then U is a quasiprojective subvariety of Ω × Fm defined over F, and we
have

(5.5) E = π(U(F))

where π : Ω × Fm → Ω is the projection map, which is quasi-finite in the
sense that the fibres π−1({(v, w)}) of π are finite (hence zero dimensional)
for all (v, w) ∈ Ω. In particular, U has dimension at most dim(V )+dim(W ),
thanks to Lemma 12.

For any w ∈W , we may form the quasiprojective variety

Uw := {(v, t) ∈ V × F
m | (v, w, t) ∈ U},

and for any w,w′ ∈W we may then form the fibre product

Uw ×V Uw′ := {(v, t, t′) ∈ V × F
m × F

m | (v, t) ∈ Uw, (v, t′) ∈ Uw′}.

These are quasiprojective varieties which are quasi-finite over V and so have
dimension at most dim(V ). We form the counting functions

νw,w′(v) := |{(t, t′) ∈ Fm × Fm | (v, t, t′) ∈ Uw ×V Uw′}|.

Then νw,w′(v) is finite for all v ∈ V (F), and thus (by countable saturation16,
see Lemma 19) is uniformly bounded. On the other hand, from (5.5) we have
νw,w′(v) 6= 0 if and only if (v, w), (v, w′) ∈ E. Thus by (5.1), we have

µ(w,w′) =
∑

v∈V (F)

1νw,w′ (v)6=0.

As νw,w′(v) is uniformly bounded, we can express 1cw,w′ (v)6=0 as a standard

linear combination of νw,w′(v)k for finitely many standard natural num-
bers k, and so µ(w,w′) is a standard linear combination of the moments∑

v∈V (F) νw,w′(v)k. Thus, to prove Proposition 27, it suffices (by Theorem

25) to show that for each standard natural number k, we can partition W
into a (standard) finite number of definable subsets W1, . . . ,Wm such that,
for any 1 ≤ i, j ≤ m, there is a standard rational cijk such that∑

v∈V (F)

νw,w′(v)k = (cijk +O(|F|−1/2))|F|dim(V )

16One can also use bounds on the degrees of the algebraic varieties involved here, if
desired.
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for all but O(|F|−1/2|W |2) of the pairs (w,w′) ∈Wi ×Wj .
Observe that ∑

v∈V (F)

νw,w′(v)k = |(Uw,k ×V Uw′,k)(F)|

where Uw,k is the k-fold fibre product of Uw over V ,

Uw,k := {(v, t1, . . . , tk) ∈ V × (F
m

)k | (v, w, ti) ∈ U for all i = 1, . . . , k},
and

Uw,k×V Uw′,k := {(v, t, t′) ∈ V×(F
m

)k×(F
m

)k | (v, t) ∈ Uw,k, (v, t′) ∈ Uw′,k}.
By Lemma 26, we conclude that∑

v∈V (F)

νw,w′(v)k = (c(w,w′) +O(|F|−1/2))|F|dim(V )

where c(w,w′) are the number of geometrically irreducible components of
Uw,k×V Uw′,k which are defined over F. To establish Proposition 27, it thus
suffices to establish the following claim:

Proposition 28 (Second reduction). Let F be a nonstandard finite field of
characteristic zero, and let V,W,W ′ be definable sets over F. Let m be a
standard natural number, let U be a subvariety of V ×W×F

m
defined over F

which is quasi-finite over V ×W , and let U ′ be a subvariety of V ×W ′×F
m

defined over F which is quasi-finite over V × W ′. For any w ∈ W and
w′ ∈W ′, set

Uw := {(v, t) ∈ V × F
m | (v, w, t) ∈ U},

U ′w′ := {(v, t′) ∈ V × F
m | (v, w′, t′) ∈ U ′}

and

Uw ×V U
′
w′ := {(v, t, t′) ∈ V × F

m × F
m | (v, t) ∈ Uw, (v, t′) ∈ U ′w′}

and let c(w,w′) be the number of dim(V )-dimensional geometrically irre-
ducible components of Uw ×V U ′w′ that are defined over F. Then one can
partition W into a (standard) finite number of definable subsets W1, . . . ,Wm

and W ′ into a (standard) finite number of definable subsets W ′1, . . . ,W
′
m′

such that, for any 1 ≤ i ≤ m and 1 ≤ i′ ≤ m′, there is a standard natural
number cii′ such that c(w,w′) = cii′ for all but O(|F|−1/2|W ||W ′|) of the
pairs (w,w′) ∈Wi ×W ′i′.

Indeed, after replacing U and U ′ with the k-fold fibre product

Uk := {(v, w, t1, . . . , tk) ∈ Ω× (Fm)k | (v, w, ti) ∈ U for all i = 1, . . . , k}
and applying the above proposition once for each k (and with W = W ′),
we obtain the required structural decomposition of

∑
v∈V νw,w′(v)k (after

intersecting together all the partitions obtained).
It remains to establish Proposition 28. The next reduction is to remove

the requirement that the sets W1, . . . ,Wm and W ′1, . . . ,W
′
m′ in the partitions
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of W,W ′ are themselves definable or even nonstandard, at the slight cost of
upgrading the O(|F|−1/2|W ||W ′|) error to O(|F|−1|W ||W ′|). In other words,
we will deduce Proposition 28 from the following assertion.

Proposition 29 (Third reduction). Let F, V,W,W ′m,U,U ′, c be as in Propo-
sition 28. Then one can partition W into a (standard) finite number of
subsets W1, . . . ,Wm, and W ′ into a (standard) finite number of subsets
W ′1, . . . ,W

′
m′, such that, for any 1 ≤ i ≤ m and 1 ≤ i′ ≤ m′, there

is a standard natural number cii′ such that c(w,w′) = cii′ for all17 but
O(|F|−1|W ||W ′|) of the pairs (w,w′) ∈Wi ×W ′i′.

The freedom to allow the partitions of W,W ′ to not be definable or non-
standard will be of technical importance later in the argument, when we
will use the axiom of choice to force a “coordinate system” on various rele-
vant objects needed to compute c(w,w′); such coordinate systems will not
necessarily be “definable” or even “nonstandard”, but thanks to the above
reduction, this will not be an issue.

Let us assume Proposition 29 for now and see how it implies Proposi-
tion 28. The key observation is that the level sets {(w,w′) ∈ W × W ′ |
c(w,w′) = c0} of the function c are themselves definable subsets over F, as
the property of a set cut out by a number of polynomial equations being
geometrically irreducible and definable over F can be expressed as a first-
order sentence in the coefficients of these equations. (Note from countable
saturation that that the complexities of all the irreducible varieties involved
in a decomposition of a given variety of bounded complexity is necessarily
bounded, and so the first-order sentence involved is finite in length.) Next,
we apply Proposition 29 to partition W and W ′ into finitely many pieces
W1, . . . ,Wm and W ′1, . . . ,W

′
m′ , not necessarily definable or nonstandard. By

hypothesis, we can find a nonstandard subset Σ of W ×W ′ of cardinality
O(|F|−1|W ||W ′|) with the property that whenever 1 ≤ i ≤ m, 1 ≤ i′ ≤ m′

and (w,w′) ∈ (Wi ×W ′i′)\Σ, we have c(w,w′) = cii′ .
By Markov’s inequality, we see that outside of a exceptional subset E′

of W ′ of cardinality O(|F|−1/2|W ′|), we have (w, w′) 6∈ Σ for all but

O(|F|−1/2|W |) elements of w ∈ W . For any 1 ≤ i′ ≤ m, we set w′i′ to
be an arbitrarily chosen element of W ′i′\E′ if this set is non-empty, or an
arbitrarily chosen element of W otherwise. By construction, we see that for
all w′ ∈W ′\E′, there exists 1 ≤ i′ ≤ m such that

c(w,w′) = c(w,w′i′)

for
c(w,w′i′) = c(w,w′)

17Because Wi and W ′i′ are not assumed to be nonstandard sets, one has to be careful
about what this means, since Wi and W ′i′ need not have a well-defined cardinality. What
we mean here is that the set of exceptions (w,w′) ∈Wi×W ′i′ for which c(w,w′) 6= cii′ has
an outer cardinality of O(|F|−1|W ||W ′|), in the sense that it is contained in a nonstandard
set of cardinality O(|F|−1|W ||W ′|).
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for all but O(|F|−1/2|W |) values of w ∈W .
For each 1 ≤ i′ ≤ m′ and natural number c0, the level sets {w ∈ W |

c(w,w′i′) = c0} is a definable set. These definable sets generate a partition

of W into finitely many definable subsets W̃1, . . . , W̃m̃. By construction,
we see that for all but O(|F|−1/2|W ′|) values of w′ ∈ W ′, the function

w 7→ c(w,w′) is constant outside of a set of cardinality O(|F|−1/2|W |) on

each of the W̃1, . . . , W̃m̃. By symmetry, we may also partition W ′ into
finitely many definable subsets W̃ ′1, . . . , W̃

′
m′ with the property that for all

but O(|F|−1/2|W |) values of w ∈W , the function w′ 7→ c(w,w′) is constant

outside of a set of cardinality O(|F|−1/2|W ′|) on each of the W̃ ′1, . . . , W̃
′
m′ .

By Theorem 25, the definable sets W̃i either have cardinality � |W | or
O(|F|−1|W |). Any sets of the latter form can be harmlessly absorbed into

one of the sets of the former form, so we may assume that all sets W̃i have
cardinality � |W |. Similarly we may assume that all the sets W̃ ′i′ have
cardinality � |W ′|.

Now we double-count. for any 1 ≤ i ≤ m̃ and 1 ≤ i′ ≤ m̃′, we see that

|{(w1, w2, w
′
1, w

′
2) ∈ W̃i × W̃i × W̃ ′i′ × W̃ ′i′ | c(w1, w

′
1) 6= c(w2, w

′
1)}|

� |F|−1/2|W |2|W ′|2

(because of the constancy properties of w 7→ c(w,w′1) for most w′1) and

|{(w1, w2, w
′
1, w

′
2) ∈ W̃i × W̃i × W̃ ′i′ × W̃ ′i′ | c(w2, w

′
1) 6= c(w2, w

′
2)}|

� |F|−1/2|W |2|W ′|2

(because of the constancy properties of w′ 7→ c(w2, w
′) for most w2) and

thus

|{(w1, w2, w
′
1, w

′
2) ∈W ′i′ ×W ′i′ ×W ′′i′′ ×W ′′i′′ |

c(w1, w
′
1) = c(w2, w

′
1) = c(w2, w

′
2)}| = |W̃i|2|W̃ ′i′ |2 −O(|F|−1/2|W |4

and thus by the pigeonhole principle we can find w2, w
′
2 such that

|{(w1, w
′
1) ∈ W̃i × W̃ ′i′ | c(w1, w

′
1) = c(w2, w

′
2)}|

= |W̃i||W̃ ′i′ | −O(|F|−1/2|W ||W ′|)

and so c is constant on W̃i × W̃ ′i′ outside of a set of cardinality O(|F|−1/2

|W ||W ′|), and the claim follows.
It remains to establish Proposition 29. We can now remove all references

to definability by passing to Zariski closures, and reduce to establishing the
following fact:

Proposition 30 (Fourth reduction). Let F be a nonstandard finite field of
characteristic zero, and let V,W,W ′ be affine varieties defined over F. Let

d be a natural number, and let U,U ′ be subvarieties of V × W × F
d

and

V × W ′ × F
d

respectively which are defined over F and quasi-finite over
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V ×W and V ×W ′ respectively. For any w ∈W and w′ ∈W ′, set

Uw := {(v, t) ∈ V × F
d | (v, w, t) ∈ U},

U ′w′ := {(v, t′) ∈ V × F
d | (v, w′, t′) ∈ U ′},

Uw ×V U ′w′ := {(v, t, t′) ∈ V × F
d × F

d
: (v, t) ∈ Uw, (v, t′) ∈ U ′w′},

and let c(w,w′) be the number of dim(V )-dimensional geometrically irre-
ducible components of Uw ×V U ′w′ that are defined over F. Then one can
partition W into a (standard) finite number of subsets W1, . . . ,Wm (not nec-
essarily definable or nonstandard) and W ′ into a (standard) finite number
of subsets W ′1, . . . ,W

′
m′ such that, for any 1 ≤ i ≤ m and 1 ≤ i′ ≤ m′,

the function c is generically constant on Wi × W ′i′ (i.e. it is constant in
Wi ×W ′i′ outside of a subvariety of W ×W ′ of dimension strictly smaller
than dim(W ) + dim(W ′)).

Indeed, Proposition 29 follows from Proposition 30 by specialising to a
definable subset over F and using Lemma 26 to control the (outer cardinality
of the) exceptional set.

Now we prove Proposition 30. Our strategy is to work generically and
improve the nature of the varieties Uw, U

′
w′ lying above V , until they become

finite étale covers of certain Zariski-dense subvarieties of V . At that point,
we can use the theory of the étale fundamental group (Appendix A) to
obtain the required local generic constancy of the counting function c.

We turn to the details. First, we may decompose V into geometrically
irreducible components. Any component which has dimension less than
dim(V ), or which is not defined over F, gives a zero contribution to c. Thus
we may discard these components, and reduce to the case when V is a single
geometrically irreducible affine variety defined over F. For similar reasons,
we may also reduce to the case where W,W ′ are geometrically irreducible
affine varieties defined over F.

Next, we observe that we may freely delete any closed subvariety from U
of dimension at most dim(V )+dim(W )−1 without affecting the conclusion
of the proposition. Indeed, for generic w ∈W , this deletion will only remove
a set of dimension at most dim(V )− 1 from Uw and hence from Uw ×V U ′w′
for any w′ ∈W ′, and hence will not affect c(w,w′) for generic w. Similarly,
we may delete any closed subvariety from U ′ of dimension at most dim(V )+
dim(W ′)− 1.

Next, we work to make U smooth. Given an affine variety V ⊂ kn and
a point p in V , define the tangent space TpV of V at p to be the vector
space m/m2, where m is the space of polynomials in k[V ] that vanish at p.
We say that p is a smooth point of V if TpV has dimension dim(V ), and a
singular point otherwise. A quasiprojective variety U is said to be smooth
if every point of U is a smooth point of U . Note that a point that lies in two
or more components of an affine variety cannot be a smooth point of that
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variety, so the irreducible components of a smooth quasiprojective variety
are necessarily disjoint.

The variety U has dimension at most dim(V )+dim(W ). As is well known,
the set of singular points of U must have dimension strictly less than this
(see e.g. [67, Theorem 5.6.8]); here is one place where we crucially use the
hypothesis that F has characteristic zero. By deleting these points, we may
thus assume that U is smooth and has dimension exactly dim(V )+dim(W );
in particular, the irreducible components of U are now disjoint. Similarly,
we may assume that U ′ is smooth and has dimension dim(V )+dim(W ′). In
particular, the projections of U and U ′ to V ×W and V ×W ′ respectively
are now dominant maps, in the sense that their images are Zariski dense.

By again using the hypothesis that F has characteristic zero, the set of
points u ∈ U where the derivative dπ(u) of the projection map π : U → V ×
W does not have full rank, has dimension strictly less than dim(V )+dim(W )
(see e.g. [36, III 10.7]), so by deleting these points we may assume that dπ
is everywhere non-singular, or in other words that π : U → V ×W is an
étale map. Similarly, we may assume that the projection π′ : U ′ → V ×W ′
is also étale.

The projections π, π′ are currently quasi-finite and étale. We will need to
upgrade the quasi-finiteness property to the stronger property of finiteness.
We quickly review the relevant definitions:

Definition 31. Let V ⊂ kn be quasiprojective variety over an algebraically
closed field k. A quasiprojective variety is abstractly affine if there is a
regular isomorphism between it and an affine variety. A regular morphism
φ : V →W is finite if one can cover W by open, abstractly affine subvarieties
Wi, such that φ−1(Wi) is also abstractly affine, and the ring k[φ−1(Wi)] is
a finite k[Wi]-algebra (where we use φ to pull k[Wi] back into k[φ−1(Wi)] in
the obvious manner).

Example 32. The inclusion of k\{0} into k is quasi-finite and étale, but
not finite, because the ring k[k\{0}] = k[x, 1

x ] is not finite over k[k] = k[x].
A finite morphism in algebraic geometry is analogous to the notion of a
covering space (with finite fibres) in topology; note for instance that the
inclusion of C\{0} into C is also not a covering space.

We have the following basic fact:

Lemma 33. Let φ : U → V be a quasi-finite regular morphism between two
quasiprojective varieties U, V which is dominant. Then there exists an open
dense subvariety V ′ of V such that the restricted map φ : φ−1(V ′) → V ′ is
finite.

Proof. We adapt the proof of [58, Theorem I.5.3.6]. By passing to an open
dense abstractly affine variety of V (such as V with a codimension one closed
subvariety removed) we may assume that V is abstractly affine. Let k(V )
denote the field of fractions of k[V ] (i.e. the rational functions on V ), and
similarly define k(U). By the hypotheses on φ, k(U) is an algebraic extension
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of k(V ) (pulled back by φ, of course), and so on clearing denominators one
can find a finite set of generators for k[U ] that become integral over k[V ]
after multiplying by a non-zero regular function f in k[V ]. Removing the
zeroes of f from V (thus adding 1/f to k[V ], and keeping V abstractly
affine), and removing the corresponding preimage from U , we obtain the
claim. �

Applying this lemma to the map π : U → V × W , we can remove a
lower-dimensional piece from U and assume without loss of generality that
π : U → π(U) is not just étale, but is finite étale, thus the smooth variety
U is a finite étale cover of π(U). Similarly, we may make π′ : U ′ → π′(U ′) a
finite étale covering map.

Since π : U → π(U) is a finite étale covering map of smooth varieties, the
restriction πV : Uw → πV (Uw) is also a finite étale map of smooth varieties
for any w ∈W , where πV : V ×Fm → V is the projection onto V . Similarly,
πV : U ′w′ → πV (U ′w′) is finite étale for any w′ ∈ W ′, which implies that the
fibre product πV : Uw×V U ′w′ → πV (Uw×V U ′w′) is also finite étale. (Here we
have used the fact that finiteness and the étale property are both preserved
with respect to base change and composition; see e.g. [50, Propositions I.1.3,
I.3.3].)

The set φ(U) is a Zariski-dense subvariety of V ×W . Applying Lemma 13,
we conclude that for generic v ∈ V , one has (v, w) ∈ φ(U) (or equivalently,
v ∈ φV (Uw)) for generic w ∈ W . Similarly, for generic v ∈ V , one has
v ∈ φV (U ′w′) for generic w′ ∈ W ′. Thus, we may find a point p ∈ V such
that p ∈ φV (Uw ×V U ′w′) = φV (Uw) ∩ φV (U ′w′) for generic w ∈ W and
w′ ∈W ′. Indeed, by Lemma 26, we may take p to be an F -point of V .

Fix this point p. For generic w ∈W and w′ ∈W ′, the fibre of of Uw×V U ′w′
over p is non-empty, and may be identified with the Cartesian products
Sw × S′w′ , where Sw, S′w′ are the finite sets

Sw := {t ∈ F
d | (v, w, t) ∈ U}

and

S′w′ := {t ∈ F
d | (v, w′, t) ∈ U ′}.

As U,U ′ are defined over F, and p is an F -point of V , Sw and S′w′ are defined
over F. In particular, the nonstandard Frobenius map FrobF acts on Sw and
S′w′ , and thus also acts on the product Sw × S′w′ by the diagonal action.

As φV : Uw×V U ′w′ → φV (Uw)∩φV (U ′w′) is a finite étale covering, the étale
fundamental group π1(φV (Uw)∩φV (U ′w′), p) acts on the fibre Sw×S′w′ , by a
product of its actions on the individual fibres Sw and S′w′ ; see Appendix A.
As noted in that appendix, each orbit of this action is the fibre of exactly
one of the irreducible components of Uw×V U ′w′ . Thus, the number c(w,w′)
of such components that are defined over F is equal to the number of orbits
of this action that are invariant with respect to the nonstandard Frobenius
action.
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We view this number as a combinatorial quantity, which currently de-
pends (for generic w,w′) in a rather entangled fashion on several objects:
the variety φV (Uw) ∩ φV (U ′w′) (and more specifically, its étale fundamental
group over p); the fibres Sw and S′w′ ; the action of the étale fundamental
group on these fibres; and the action of the Frobenius map on these fibres.
Our goal is to decouple the role of w and w′ in forming c(w,w′), so that
(after partitioning W and W ′ into finitely many subsets, and working on a
single subset of W and a single subset of W ′), the quantity c(w,w′) becomes
generically constant.

We achieve this as follows. The first step is to (crudely) “trivialise the
bundles” of U over V ×W and U ′ over V ×W ′ in a set-theoretic sense. Ob-
serve that for generic w, the fibre Sw has constant cardinality M for some
standard natural number M (indeed, M is just the degree of U divided
by the degree of V ×W ). Thus, by the axiom of choice, we may enumer-
ate Sw = {tw,1, . . . , tw,M}. By fixing such an enumeration, we can thus
(non-canonically) identify Sw with {1, . . . ,M} for generic w. Similarly, we
may non-canonically identify S′w′ with {1, . . . ,M ′} for generic w′ and some
standard natural number M ′ by using the axiom of choice to select an enu-
meration S′w′ = {t′w′,1, . . . , t′w′,M ′}. Note that as we appeal to the axiom of
choice here to build this enumeration, we do not claim or expect these iden-
tifications to be definable, or even nonstandard; but thanks to our reduction
of Proposition 28 to Proposition 29, such definability and nonstandardness
properties will not be needed18.

We now fix the above enumerations of Sw and S′w′ . For generic w, the
action of the nonstandard Frobenius map FrobF on Sw ≡ {1, . . . ,M} is
now given by a permutation σw in the symmetric group Sym(M) on M
elements. This permutation depends on w, so by partioning W into finitely
many subsets (which need not be definable or nonstandard), we can ensure
that the map w 7→ σw is constant on each such subset. We now pass to one
of these subsets of W ; thus for generic w in this subset, the action of FrobF

on Sw ≡ {1, . . . ,M} is now independent of w, when viewed in coordinates.
Similarly, by partitioning W ′ into finitely many subsets and passing to any
one of these subsets, we may assume that for generic w′ in this subset,
the action of FrobF on S′w′ ≡ {1, . . . ,M ′} is independent of w′. Thus, for
generic w,w′ in the respective subsets of W,W ′, the product action of FrobF

on Sw × S′w′ ≡ {1, . . . ,M} × {1, . . . ,M ′} is independent of both w and w′.
To obtain the desired local constancy of c(w,w′), it thus suffices to show
(perhaps after further finite partition of W and W ′) that for generic w,w′

18One could avoid the appeal to the axiom of choice here by working with all enu-
merations at once, and quotienting out the objects constructed at the end of the day the
equivalence relation given by all possible relabelings; similarly for some further invocations
of the axiom of choice later in this argument. However, we will not choose this “coordinate-
free” route here as it requires the use of more complicated notation, opting instead for a
less elegant, but more direct “coordinate-heavy” approach, which is more unnatural from
an algebraic geometry perspective, but more convenient from a combinatorial one.
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in their respective subsets of W,W ′, the set of orbits of the étale fundamental
group π1(φV (Uw) ∩ φV (U ′w′), p) on Sw × Sw′ ≡ {1, . . . ,M} × {1, . . . ,M ′} is
actually independent of the choice of w and w′.

The main difficulty here, of course, is that the group π1(φV (Uw)∩φV (U ′w′),
p) depends on both w and w′ in a coupled fashion. To decouple the role of w
and w′ here, we would like to use the étale van Kampen theorem (Theorem
50), but first we must understand how the sets φV (Uw) and φV (U ′w′) intersect
each other.

The set φ(U) is an open dense subvariety of V × W , and can thus be
written as φ(U) = (V ×W )\Σ for some closed subvariety Σ of V ×W of
dimension at most dim(V ) + dim(W ) − 1. We split Σ = (Σ0 ×W ) ∪ Σ1,
where Σ0 ×W is the union of all the irreducible components of Σ that are
of the form H ×W for some closed subvariety H of V , and Σ1 is the union
of all the other irreducible components of Σ. Informally, Σ0 represents the
portion of Σ that does not depend on the w ∈ W coordinate, while Σ1

represents the portion which is non-trivially dependent on this coordinate.
Note that Σ0 has dimension at most dim(V )− 1, and Σ1 has dimension at
most dim(V ) + dim(W )− 1. We then have

φV (Uw) = V \(Σ0 ∪ Σ1,w)

for any w ∈W , where

Σ1,w := {v ∈ V | (v, w) ∈ Σ1}
is a slice of Σ1. Similarly, we may write

φV (U ′w′) = V \(Σ′0 ∪ Σ′1,w′)

for all w′ ∈ W ′, where Σ′0 is a closed subvariety of V of dimension at most
dim(V ) − 1, Σ′1 is a closed subvariety of V × W ′ of dimension at most
dim(V ) + dim(W ′)− 1 consisting entirely of components that are not of the
form H ×W ′ for any H, and

Σ′1,w′ := {v ∈ V | (v, w′) ∈ Σ′1}

is a slice of Σ′1.
We now have

φV (Uw) ∩ φV (U ′w′) = V ′\(Σ1,w ∪ Σ′1,w′)

where V ′ is the open dense subvariety of V defined by

V ′ := V \(Σ0 ∪ Σ′0).

We can now apply the étale van Kampen theorem (Theorem 50) and con-
clude that for generic w,w′, π1(φV (Uw)∩φV (U ′w′), p) surjects onto the fibre
product of π1(V ′\Σ1,w, p) and π1(V ′\Σ′1,w′ , p) over π1(V ′\(Σ1,w ∩ Σ′1,w′), p)

(with respect to the obvious homomorphisms between these groups).
Next, we make the crucial observation that for generic w,w′, the set

Σ1,w ∩ Σ′1,w′ has dimension at most dim(V ) − 2 (i.e. it has codimension at

least 2 in V ). Indeed, for generic w, Σ1,w has dimension at least dim(V )−1.
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Given a top dimensional component Hw of Σ1,w, Hw will not be a component
of Σ′1,w′ for generic w′ unless Hw×W ′ is contained in Σ′1, which contradicts

the construction of Σ′1. Thus the intersection of Hw with any component
of Σ′1,w′ will generically have dimension at most dim(V )− 2, and the claim

follows19.
Because the codimension of Σ1,w ∩Σ′1,w′ is generically at least 2, we may

invoke Lemma 47 and conclude the isomorphism

π1(V ′\(Σ1,w ∩ Σ′1,w′), p) ≡ π1(V ′, p)

for generic w,w′, using the obvious homomorphism from the former group
to the latter. We conclude that for generic w,w′, π1(φV (Uw) ∩ φV (U ′w′), p)
surjects onto the fibre product of π1(V ′\Σ1,w, p) and π1(V ′\Σ′1,w′ , p) over

π1(V ′, p), with respect to the obvious homomorphisms between these groups.
On the other hand, observe that π1(V ′\Σ1,w, p) acts on Sw (as Uw is a
finite étale covering over V ′\Σ1,w), and π1(V ′\Σ′1,w′ , p) acts on S′w′ , and so

the fibre product of π1(V ′\Σ1,w, p) and π1(V ′\Σ′1,w′ , p) over π1(V ′, p) acts

on Sw × S′w′ by the product action. From the compatibility of the étale
fundamental group actions on fibres (see Appendix A) we see that the action
of π1(φV (Uw)∩φV (U ′w′), p) on Sw×S′w′ factors through this product action.
From the surjectivity mentioned earlier, we conclude an important fact:

Proposition 34. For generic w,w′, the set of orbits of π1(φV (Uw)∩φV (U ′w′),
p) on Sw×S′w′ is equal to the set of orbits of the fibre product of π1(V ′\Σ1,w, p)
and π1(V ′\Σ′1,w′ , p) over π1(V ′, p).

In view of this proposition, the only remaining task needed to establish
Proposition 30 (and thus Lemma 23) is to show that, after further finite
subdivision of W and W ′ into subsets, and for generic w,w′ in respective
subsets of W,W ′, the set of orbits of the fibre product of π1(V ′\Σ1,w, p)
and π1(V ′\Σ′1,w′ , p) over π1(V ′, p) on Sw × S′w′ ≡ {1, . . . ,m} × {1, . . . ,m′}
is independent of both w and w′.

At first glance, it may seem that one would need a rather precise under-
standing of the nature of the étale fundamental group π1(V ′\Σ1,w, p), how it
sits over π1(V ′, p) by the obvious surjective homomorphism, and how it acts
on Sw. Fortunately, however, we only need a small amount of information
on this group and this action. Namely, let Hw be the kernel of the surjective
homomorphism from π1(V ′\Σ1,w, p) to π1(V ′, p). This normal subgroup of
π1(V ′\Σ1,w, p) acts on Sw ≡ {1, . . . ,M}; let ∼w be the equivalence relation
on {1, . . . ,M} induced by this action (so that two elements of {1, . . . ,M} are
equivalent by ∼w if there is an element of Hw that moves one to the other).
There are only finitely many possibilities for this equivalence relation, so by
partitioning W further into finitely many subsets and passing to one of these

19Here we have used the obvious fact that the set of pairs (w,w′) for which Σ1,w∩Σ′1,w′

has dimension more than dim(V )− 2 is a constructible set, so that we may apply Lemma
13.
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subsets, we may assume that ∼w=∼ is independent of w for generic w in this
subset. Similarly, letting H ′w′ denote the kernel of the homomorphism from
π1(V ′\Σ′1,w′ , p) to π1(V ′, p), we may assume that the equivalence relation ∼′
on {1, . . . ,M ′} ≡ Sw′ induced by H ′w′ is generically independent of w′, after
passing to one of the finitely many subsets partitioning W ′.

For generic w, the action of π1(V ′\Σ1,w, p) on {1, . . . ,M} now descends to
an action ρw of the quotient group π1(V ′, p) on {1, . . . ,M}/ ∼, and similarly
for generic w′ we have an action ρ′w′ of π1(V ′, p) on {1, . . . ,M ′}/ ∼′. An
orbit of the fibre product π1(V ′\Σ1,w, p) and π1(V ′\Σ′1,w′ , p) over π1(V ′, p)

in {1, . . . ,M} × {1, . . . ,M ′} can now be written in the form⋃
g∈π1(V ′,p)

Π−1(ρw(g)x)× (Π′)−1(ρ′w′(g)y)

where x is a point in {1, . . . ,M}/ ∼, y is a point in {1, . . . ,M ′}/ ∼′, and
Π : {1, . . . ,M} → {1, . . . ,M}/ ∼ and Π′ : {1, . . . ,M ′} → {1, . . . ,M ′}/ ∼′
are the quotient maps. Such orbits are almost independent of w and w′, save
for the need to specify the actions ρw, ρ′w′ of π1(V ′, p) on {1, . . . ,M}/ ∼
and {1, . . . ,M ′}/ ∼′. But now we use the crucial fact (see Proposition 46)
that π1(V ′, p) is topologically finitely generated, so that in order to specify
an action such as ρw on a finite set such as {1, . . . ,M}/ ∼, it suffices to
specify the action of a finite number of topological generators. There are
only finitely many such possibilities for such actions, so after partitioning
W further into finitely many subsets and passing to one of these subsets,
we may assume that ρw is in fact independent of w for generic w in these
subsets; similarly we may assume that ρ′w′ is independent of w′ for generic
w′ in one of the finitely many subsets partitioning W ′. Now, the orbits in
{1, . . . ,M} × {1, . . . ,M ′} are completely independent of w,w′ for generic
w,w′ in their respective subsets, giving Proposition 30 and hence Lemma
23.

6. Extension to higher dimensions

We can iterate Lemma 23 to obtain a higher dimensional version:

Theorem 35 (Regularity lemma, higher dimensional version). Let F be a
nonstandard finite field of characteristic zero, let d, k ≥ 1 be a standard
natural number, let V1, . . . , Vd be definable sets over F, and let E1, . . . , Ek
be definable subsets of V1 × . . . × Vd. Then for each 1 ≤ i ≤ d, one can
partition Vi into a finite number of definable sets Vi,1, . . . , Vi,ai for some
standard natural number ai, with the following property: for any natural
numbers j1, . . . , jd with 1 ≤ ji ≤ ai for each 1 ≤ i ≤ d and 1 ≤ l ≤ k, there
exists a standard rational number 0 ≤ σl,j1,...,jd ≤ 1 with the property that

(6.1) |El ∩ (A1× . . .×Ad)| = σl,j1,...,jd |A1| . . . |Ad|+O(|F|−1/4|V1| . . . |Vd|).

for all nonstandard sets A1, . . . , Ad with Ai ⊂ Vi,ji for all 1 ≤ i ≤ d.
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Furthermore, we may ensure that |Vi,j | � |Vi| for all 1 ≤ i ≤ d and
1 ≤ j ≤ ai.

Remark 36. We stress that this lemma is not analogous to the full “hyper-
graph regularity lemma” that generalises the Szemerédi regularity lemma
[53], [54], [26], [66], but is instead more analogous to the earlier hypergraph
regularity lemma of Chung [10] (see also [20]); see the recent paper [47] for
some discussion of the hierarchy of different hypergraph regularity.

Proof. We first remark that the final conclusion |Vi,j | � |Vi| can be ob-
tained “for free” as follows: by Lemma 26, we have either |Vi,j | � |Vi| or
|Vi,j | � |F|−1|Vi| for each i, j. Any Vi,j that obeys the latter bound instead
of the former can be absorbed without difficulty into one of the sets Vi,j in
the partition that obeys the former bound (and, by the pigeonhole principle,
at least one of the Vi,j will obey that bound), without affecting the regu-
larity property (6.1). Thus, to prove Theorem 35, we may ignore the final
requirement that |Vi,j | � |Vi| for all i, j.

We now induct on d. The case d = 1 is trivial, so suppose d ≥ 2, and the
claim has already been proven for d− 1.

Next, we observe that to prove the theorem for a given d, it suffices to do
so when k = 1, as the higher k case follows by applying the theorem to each
El separately and then intersecting together all the definable subsets Vi,j of
Vi produced by this theorem. Thus we may assume k = 1, and abbreviate
E1 as E. Applying Lemma 23 with V and W set equal to V1 × . . . × Vd−1

and Vd, we may partition

V1 × . . .× Vd−1 = E′1 ∪ . . . ∪ E′k′

and

Vd = Vd,1 ∪ . . . ∪ Vd,ad
where k′, ad are standard natural numbers and the E′j , Vd,j are definable

sets with the property that for each 1 ≤ j′ ≤ k′ and 1 ≤ jd ≤ ad there exists
a standard rational number 0 ≤ σj′,jd ≤ 1 such that

(6.2) |E ∩ (A′ ×Ad)| = σj′,jd |A
′||Ad|+O(|F|−1/4|V1| . . . |Vd|)

for all nonstandard sets A′ ⊂ E′j′ and Ad ⊂ Vd,j .
Next, we apply the induction hypothesis to the E′1, . . . , E

′
k′ to obtain

partitions Vi = Vi,1 ∪ . . . ∪ Vi,ai for i = 1, . . . , d − 1 into definable sets with
the property that for any j1, . . . , jd−1 with 1 ≤ ji ≤ ai for each 1 ≤ i ≤ d−1,
and each 1 ≤ j′ ≤ k′, there exists a standard rational 0 ≤ σj′,j1,...,jd−1

≤ 1
such that
(6.3)

|E′j′∩(A1×. . .×Ad−1)| = σj′,j1,...,jd−1
|A1| . . . |Ad−1|+O(|F|−1/4|V1| . . . |Vd−1|)

whenever A1, . . . , Ad−1 are nonstandard sets with Ai ⊂ Vi,ji for all 1 ≤ i ≤
d− 1.
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Now suppose that 1 ≤ ji ≤ ai for i = 1, . . . , d, and let A1, . . . , Ad are
nonstandard sets with Ai ⊂ Vi,ji for all 1 ≤ i ≤ d. We compute the quantity

|E ∩ (A1 × . . .×Ad)|.
Intersecting A1 × . . . × Ad−1 with each of the E′j′ and using (6.2), we can
write this expression as

k′∑
j′=1

σj′,jd |E
′
j′ ∩ (A1 × . . .×Ad−1)||Ad|+O(|F|−1/4|V1| . . . |Vd|).

Applying (6.3), we can simplify this to

σj1,...,jd |A1| . . . |Ad|+O(|F|−1/4|V1| . . . |Vd|)
where

σj1,...,jd :=
k′∑
j′=1

σj′,jdσj′,j1,...,jd−1

and the claim follows (note that σj1,...,jd can be adjusted if necessary to not
exceed 1, since |E∩(A1× . . .×Ad)| is trivially bounded by |A1| . . . |Ad|). �

For computational purposes, it is convenient to rephrase (6.1) as follows.

Corollary 37. Let the notation, hypotheses, and conclusion be as in Theo-
rem 35. Then for any nonstandard functions fi : Vi → ∗C for i = 1, . . . , d
with |fi(x)| � 1 for all x ∈ Vi, and any 1 ≤ l ≤ k, the expression∑

(x1,...,xd)∈V1×...×Vd

1El
(x1, . . . , xd)f1(x1) . . . fd(xd)

is equal to

a1∑
j1=1

. . .

ad∑
jd=1

σl,j1,...,jd

d∏
i=1

(
∑

xi∈Vi,ji

fi(xi)) +O(|F|−1/4|V1| . . . |Vd|).

Proof. By decomposing each fi, we may assume that fi is real, non-negative,
and bounded by 1, and supported on a single set Vi,ji for some 1 ≤ ji ≤ ai.
Our task is then to show that∑

(x1,...,xd)∈V1,j1×...×Vd,jd

1El
(x1, . . . , xd)f1(x1) . . . fd(xd)

is equal to

σl,j1,...,jd

d∏
i=1

(
∑

xi∈Vi,ji

fi(xi)) +O(|F|−1/4|V1| . . . |Vd|).

By expressing each fi as a (nonstandard) integral fi =
∫ 1

0 1fi≥t dt of (non-
standard) indicator functions, we may reduce to the case where each fi is
an indicator function. But the claim then follows from (6.1). �
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6.1. Expanding definable maps. We now apply the above regularity
lemma to establish the following dichotomy for definable maps. Given two
definable sets V,W over a field F , call a function f : V →W definable if its
graph {(v, f(v)) | v ∈ V } is a definable set.

Theorem 38 (Expansion dichotomy). Let F be a nonstandard finite field of
characteristic zero, and let V,W,U be geometrically irreducible quasiprojec-
tive varieties defined over F. Let P : V ×W → U be a regular map defined
over F. Then at least one of the following statements hold:

(i) (Algebraic constraint) The set

{(P (v, w), P (v, w′), P (v′, w), P (v′, w′)) | v, v′ ∈ V ;w,w′ ∈W}

is not Zariski dense in U4.
(ii) (Moderate expansion) There exists a partition of U(F) into finitely

many definable subsets U(F) = U1 ∪ . . . ∪ Um with |Ui| � |U(F)|
for all 1 ≤ j ≤ m, with the property that for any nonstandard sets
A ⊂ V (F), B ⊂W (F), there exists 1 ≤ j ≤ m with

|Uj\P (A,B)| � |F|−1/16(|V (F)|/|A|)1/2(|W (F)|/|B|)1/2|Uj |.

In particular, we have the following moderate expansion property: if
|A||B|≫ |F|−1/8|V (F)||W (F)|, then |P (A,B)| � |U(F)|.

Proof. Assume that conclusion (i) of that theorem fails. We consider the set

Σ := {(v, v′, w, w′, P (v, w), P (v, w′), P (v′, w), P (v′, w′)) | v,v′ ∈ V ;w,w′ ∈W}
⊂ V 2 ×W 2 × U4.

This is a graph of a regular map from V 2 × W 2 to U4 and is thus (by
Proposition 12) an irreducible constructible set of dimension 2 dim(V ) +
2 dim(W ). By hypothesis, the projection of this set to U4 is Zariski dense,
and thus the projection map π from Σ to U4 is dominant. Thus, outside of

a subvariety Λ of U
4

of dimension strictly less than 4 dim(U), the fibres of
π are 2 dim(V ) + 2 dim(W ) − 4 dim(U)-dimensional. Furthermore, π−1(Λ)
has dimension strictly less than 2 dim(V ) + 2 dim(W ).

By Lemma 26, for any F -point x ∈ U(F)4 that does not lie in Λ, the
F -points π−1({x})(F) of the fibre at x have cardinality

(6.4) |π−1({x})(F)| = (c(x) +O(|F|−1/2))|F|2 dim(V )+2 dim(W )−4 dim(U),

where c(x) is the number of top-dimensional geometrically irreducible com-
ponents of the fibre π−1({x}) which are defined over F. As this is finite
for every x, we see from countable saturation (or from degree considera-
tions) that c(x) is uniformly bounded in x. Also, from the definition of
c(x), it is clear that the level sets Ec0 := {x ∈ U(F)4\Λ(F) | c(x) = c0}
are definable sets for each standard natural number c0 (and, by the pre-
ceding discussion, are empty for sufficiently large c0). Applying Theorem
35 (and combining the four partitions of U obtained by that theorem), we
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may thus find a partition U(F) = U1 ∪ . . . ∪ Um into finitely many de-
finable subsets with |Ui| � |U(F)| for all 1 ≤ i ≤ m, such that for any
1 ≤ j1, j2, j3, j4 ≤ m and natural number c0, there exists a standard ratio-
nal number 0 ≤ σc0,j1,j2,j3,j4 ≤ 1 such that

|Ec0∩(A1×A2×A3×A4)| = σc0,j1,j2,j3,j4 |A1||A2||A3||A4|+O(|F|−1/4|U(F)|4)

for all nonstandard subsets A1, A2, A3, A4 of Uj1 , Uj2 , Uj3 , Uj4 respectively.
From Corollary 37 we see that∑

(u1,u2,u3,u4)∈Ec0

f1(u1)f2(u2)f3(u3)f4(u4)

= σc0,j1,j2,j3,j4

4∏
i=1

(
∑
ui∈Uji

fi(ui)) +O(|F|−1/4|U(F)|4)

(6.5)

whenever, for each i = 1, 2, 3, 4, fi : U(F) → ∗R is a nonstandard function
supported on Uji bounded in magnitude by 1.

Fix the partition U(F) = U1 ∪ . . . ∪ Um, let 1 ≤ j ≤ m be an index, and
let f : U(F) → R+ be a nonstandard function bounded in magnitude by 1
that is supported on Uj and has mean zero. We consider the quantity

(6.6) |
∑
v∈A

∑
w∈B

f(P (v, w))|.

By the Cauchy-Schwarz inequality, we may bound this expression by

|A|1/2(
∑

v∈V (F)

|
∑
w∈B

f(P (v, w))|2)1/2

which we can rewrite as

|A|1/2|
∑

w,w′∈B

∑
v∈V (F)

f(P (v, w))f(P (v, w′))|1/2.

By a second application of Cauchy-Schwarz, we can bound this expression
by

|A|1/2|B|1/2(
∑

w,w′∈W (F)

|
∑

v∈V (F)

f(P (v, w))f(P (v, w′))|2)1/4

which we can rearrange as

|A|1/2|B|1/2|
∑

(v,v′,w,w′)∈
V (F)2×W (F)2

f(P (v, w))f(P (v, w′))f(P (v′, w))f(P (v′, w′))|1/4

or equivalently

|A|1/2|B|1/2|
∑

s∈Σ(F)

f⊗4(π(s))|1/4

where the tensor power f⊗4 : U(F)4 → R+ of f is defined by the formula

f⊗4(u1, u2, u3, u4) := f(u1)f(u2)f(u3)f(u4)

for u1, u2, u3, u4 ∈ U(F).
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Since π−1(Λ) has dimension strictly less than 2 dim(V ) + 2 dim(W ), we

see from Lemma 26 that at most O(|F|2 dim(V )+2 dim(W )−1) of the points
s ∈ Σ(F) lie in π−1(Λ). Thus, by the boundedness of f , we may bound (6.6)
by

|A|1/2|B|1/2|
∑

s∈Σ(F)\π−1(Λ)

f⊗4(π(s)) +O(|F|2 dim(V )+2 dim(W )−1)|1/4

which we can rewrite as

|A|1/2|B|1/2|
∑

(u1,u2,u3,u4)∈U(F)4\Λ

|π−1({(u1, u2, u3, u4)})(F)|×

× f(u1)f(u2)f(u3)f(u4) +O(|F|2 dim(V )+2 dim(W )−1)|1/4.

Applying (6.4) (and Lemma 26 to bound |U(F)|), we can bound this by

|A|1/2|B|1/2||F|2 dim(V )+2 dim(W )−4 dim(U)
∑

(u1,u2,u3,u4)∈U(F)4\Λ

c(u1, u2, u3, u4)f(u1)f(u2)f(u3)f(u4) +O(|F|2 dim(V )+2 dim(W )−1/2)|1/4.

We can rewrite this as

|A|1/2|B|1/2||F|2 dim(V )+2 dim(W )−4 dim(U)
∑
c0≤C0

c0∑
(u1,u2,u3,u4)∈Ec0

f(u1)f(u2)f(u3)f(u4) +O(|F|2 dim(V )+2 dim(W )−1/2))|1/4.

(6.7)

where C0 is the largest value of c0 for which Ec0 is non-empty (as mentioned
previously, C0 is a standard natural number). Applying (6.5), we can bound
the above expression by

|A|1/2|B|1/2|O(|F|2 dim(V )+2 dim(W )−1/4)|1/4,

and thus (by Lemma 26)

|
∑
v∈A

∑
w∈B

f(P (v, w))| � |F|−1/16|A|1/2|V (F)|1/2|B|1/2|W (F)|1/2

whenever f : U(F) → ∗R is a nonstandard function supported on Uj ,
bounded in magnitude by 1 and of mean zero.

For each u ∈ U(F), define the multiplicity function

µ(u) := |{(v, w) ∈ A×B | P (v, w) = u}|,

then the above bound can be rewritten as

|
∑
u∈Uj

f(u)µ(u)| � |F|−1/16|A|1/2|V (F)|1/2|B|1/2|W (F)|1/2
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whenever 1 ≤ j ≤ a and f : U(F)→ ∗R is a nonstandard function supported
on Uj , bounded in magnitude by 1 and of mean zero. In particular, one has

(6.8)
∑
u∈Uj

|µ(u)− µj | � |F|−1/16|A|1/2|V (F)|1/2|B|1/2|W (F)|1/2

for all 1 ≤ j ≤ a and µj ∈ ∗R is the average value of µ(u) on Uj , as can be
seen by taking f to be the signum function of µ(u)−µj , normalised to have
mean zero and bounded in magnitude by 1.

On the other hand, by double counting we have

|A||B| =
∑
u∈U

µ(u) =

m∑
j=1

|Uj |µj .

By the pigeonhole principle, we can find 1 ≤ j ≤ m such that

(6.9) µj � |Uj |−1|A||B|.
From this and (6.8) we see that
(6.10)

|{u ∈ Uj | µ(u) = 0}| � |F|−1/16(|V (F)|/|A|)1/2(|W (F)|/|B|)1/2|Uj |.
Since {u ∈ Uj | µ(u) = 0} = Uj\P (A,B), the claim follows. �

Remark 39. From (6.8) (and bounding µj crudely by |A||B|/|Uj |), we
conclude the additional bound

|{(a, b) ∈ A×B | P (a, b) ∈ C}| � |A||B||C|
|U(F)|

+ |F|−1/16|A|1/2|V (F)|1/2|B|1/2|W (F)|1/2

whenever A ⊂ V (F), B ⊂ W (F), C ⊂ U(F) are nonstandard sets and con-
clusion (i) of Theorem 38 fails. A variant of the above argument gives the
more general bound

|(A×B × C) ∩ S| � |A||B||C|
|U(F)|

+ |F|−1/16|A|1/2|V (F)|1/2|B|1/2|W (F)|1/2

whenever S is a subvariety of V ×W × U with the property that the fibres
{u ∈ U : (v, w, u) ∈ S} are finite for all v ∈ V,w ∈W , and such that the set

{(u1, u2, u3, u4) ∈ U4 | ∃v, v′ ∈ V ;w,w′ ∈W :(u1, v, w), (u2, v, w
′),

(u3, v
′, w), (u4, v

′, w′) ∈ S}

is Zariski dense in U4, by replacing (6.6) with the more general expression

|
∑
v∈A

∑
w∈B

∑
u∈U :

(v,w,u)∈S

f(u)|.

We leave the details of the above generalisation to the interested reader.
Such bounds, in the context of subsets of C rather than of F, were studied
in [17]. It is likely that one could use the techniques in this paper to then
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establish analogues of the main results of [17] in the context of large subsets
of finite fields of large characteristic, but we will not pursue this issue here.

We also have a variant that gives stronger expansion provided that one
can rule out a second constraint:

Theorem 40 (Second expansion dichotomy). Let F be a nonstandard finite
field, let V,W,U be geometrically irreducible quasiprojective varieties defined
over F. Let P : V ×W → U be a regular map defined over F. Then at least
one of the following statements hold:

(i) (Algebraic constraint) The set

{(P (v, w), P (v, w′), P (v′, w), P (v′, w′)) | v, v′ ∈ V ;w,w′ ∈W}
is not Zariski dense in U4.

(ii) (Second algebraic constraint) There exist geometrically irreducible
quasiprojective varieties V ′,W ′, U ′ defined over F with the same di-
mensions as V,W,U respectively, and dominant regular maps f :
V ′ → V , g : W ′ → W , h : U ′ → U defined over F such that the
variety

{(v′, w′, u′) ∈ V ′ ×W ′ × U ′ | P (f(v′), g(w′)) = h(u′)}
is not irreducible.

(iii) (Strong expansion) For any non-empty nonstandard sets A ⊂ V (F),
B ⊂W (F), one has the strong expansion property

|U(F)\P (A,B)| � |F|−1/16(|V (F)|/|A|)1/2(|W (F)|/|B|)1/2|U |.

Proof. Now we use a variant of the previous argument. We repeat all the
construction and argument in the proof of Theorem 38. If we have (6.9) for
all 1 ≤ j ≤ m, then we have conclusion (iii) by summing (6.10) in j. Thus
we may assume that

µj = o(|Uj |−1|A||B|)
for some j. Thus, for this j, we have∑

v∈A

∑
w∈B

1Uj (P (v, w)) = o(|A||B|).

Write E := {(v, w) ∈ V (F) ×W (F) | P (v, w) ∈ Uj}, then E is a definable
subset of V (F)×W (F) and

(6.11) |E ∩ (A×B)| = o(|A||B|).
By Lemma 23, we can partition V (F) into a finite number of definable sets
V1, . . . , Va and W (F) into a finite number of definable sets W1, . . . ,Wb, such
that for any 1 ≤ i ≤ a and 1 ≤ i′ ≤ b, there exists a standard rational
number 0 ≤ σii′ ≤ 1 with the property that

(6.12) |E ∩ (A′ ×B′)| = σii′ |A′||B′|+O(|F|−1/4|V (F)||W (F)|).
for all nonstandard sets A′ ⊂ Vi and B′ ⊂Wi′ ; by concatenating the Vi,Wi′

if necessary we may assume that |Vi| � |V (F)| and |Wj | � |W (F)|.
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Specialising to A′ := A ∩ Vi and B′ := B ∩Wi′ and using (6.11) we see
that

σii′ |A′||B′| � |F|−1/4|V (F)||W (F)|+ o(|A||B|).
By the pigeonhole principle we can find i, i′ such that

|A ∩ Vi| � |A|

and

|B ∩Wi′ | � |B|,
and for this choice of i, i′ we thus have

σii′ � |F|−1/4(|V (F)|/|A|)(|W (F)|/|B|) + o(1).

We may assume that (|V (F)|/|A|)(|W (F)|/|B|)� |F|1/8, otherwise conclu-
sion (iii) is vacuously true; and so σii′ � o(1). Since σii′ is standard rational,
we conclude σii′ = 0. Going back to (6.12) and now setting A′ := Vi and
B′ := Wi′ , we conclude that

|E ∩ (Vi ×Wi′)| � |F|−1/4|V (F)||W (F)|,

or in other words that∑
v∈V

∑
w∈W

1Vi(v)1Wi′ (w)1Uj (P (v, w))� |F|−1/4|V (F)||W (F)|.

Using Theorem 25, we can write Vi = f(V ′(F)) for some variety V ′ defined
over F with the same dimension as V , and some dominant map f from V ′

to V , also defined over F;. Similarly Wi′ = g(W ′(F)) and Uj = h(U ′(F));
thus∑
v∈V

∑
w∈W

1f(V ′(F))(v)1g(W ′(F))(w)1h(U ′(F))(P (v, w))� |F|−1/4|V (F)||W (F)|.

From Proposition 12, we can find an open dense subvariety V ′′ of V ′ such
that f is quasi-finite on V ′′, and thus (by countable saturation, or degree
considerations) one has a uniform bound |f−1({v})| ≤ C for all v ∈ f(V ′′).
By intersecting V ′′ with its Galois conjugates, we may assume that V ′′ is
defined over F. Similarly we can find open dense subvarieties W ′′, U ′′ of
W ′, U ′ respectively defined over F′ such that g, h are quasi-finite on W ′′, U ′′

respectively. Then∑
v∈V

∑
w∈W

1f(V ′′(F))(v)1g(W ′′(F))(w)1h(U ′′(F))(P (v, w))� |F|−1/4|V (F)||W (F)|

and hence

|{(v′, w′, u′) ∈ V ′′(F)×W ′′(F)× U ′′(F) | h(u′) = P (f(v′), g(w′))}|
� |F|−1/4|V (F)||W (F)|.

In particular, the variety

{(v′, w′, u′) ∈ V ′′ ×W ′′ × U ′′ | h(u′) = P (f(v′), g(w′))}
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has o(|V (F)||W (F)|) = o(|F|dim(V )+dim(W )) F-points. On the other hand,
this variety is quasi-finite over {(v′, w′, P (f(v′), g(w′))) | v ∈ V ′′, w ∈ W ′′}
and thus has dimension dim(V ) + dim(W ). The only way this is consistent
with Lemma 26 is if the variety is not irreducible, and the claim follows. �

7. Solving the algebraic constraint

In this section we solve the algebraic constraint that emerges in Theorem
38, in the case when V = W = k is just an affine line and P is polynomial.
More precisely, we show

Theorem 41. Let k be an algebraically closed field of characteristic zero.
Let P : k2 → k be a polynomial with the property that the set

(7.1) {(P (a, c), P (a, d), P (b, c), P (b, d)) | a, b, c, d ∈ k}
is not Zariski dense in k4. Then one of the following statements hold:

(i) (Additive structure) There exist polynomials Q,F,G : k → k such
that P (x, y) = Q(F (x) +G(y)) for all x, y ∈ k.

(ii) (Multiplicative structure) There exist polynomials Q,F,G : k → k
such that P (x, y) = Q(F (x)G(y)) for all x, y ∈ k.

This is not quite what we need for Theorem 20 because the polynomials
obtained here are defined over an algebraically closed field k, rather than
over the nonstandard finite field F; we address this issue at the end of this
section.

The strategy of proof of Theorem 41 will be to use the Lefschetz principle
to reduce to the complex case k = C, and then use complex analytic methods
to analyse certain Riemann surfaces associated with P .

We begin with the reduction to the complex case k = C. This will be
a standard “Lefschetz principle” argument. We first observe that to prove
Theorem 41, it suffices to verify the case when k has finite transcendence
degree over the rationals Q, as can be seen by passing to the field of definition
of P . In particular, we may identify k with a subfield of C. If the set (7.1)
is not Zariski dense in k4, then it is contained in a proper subvariety of k4,
and hence

{(P (a, c), P (a, d), P (b, c), P (b, d)) | a, b, c, d ∈ C}
is contained in the complexification of that variety and is thus also not
Zariski dense. Applying Theorem 41 with k = C, we conclude that we may
find polynomials Q0, F0, G0 : C→ C such that P (x, y) = Q0(F0(x) +G0(y))
or P (x, y) = Q0(F0(x)G0(y)) for all x, y ∈ C. For sake of discussion let us
work with the additive case P (x, y) = Q0(F0(x) +G0(y)), as the multiplica-
tive case is analogous. We are not quite done yet, because Q0, F0, G0 have
coefficients in C rather than in k. We claim however that we may find poly-
nomials Q,F,G : k → k of the same degree as Q0, F0, G0 respectively and
with coefficients in k such that P (x, y) = Q(F (x) + G(y)) for all x, y ∈ k.
Indeed, this can be viewed as an algebraic constraint satisfaction problem
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in the coefficients of Q,F,G, where the constraints are defined over k. If
this problem has no solutions over the algebraically closed field k, then by
Hilbert’s nullstellensatz we see that the problem has no solution over any
extension of k either, and in particular has no solutions in C, contradict-
ing the existence of the factorisation P (x, y) = Q0(F0(x) + G0(y)). This
concludes the reduction to the k = C case.

Henceforth k = C. Let P : C2 → C be a polynomial such that

{(P (a, c), P (a, d), P (b, c), P (b, d)) | a, b, c, d ∈ C}

is not Zariski dense, i.e. it is contained in a proper subvariety of C4. We
conclude that for generic (a, b, c, d) ∈ C4, the derivative of the map

(a, b, c, d) 7→ (P (a, c), P (a, d), P (b, c), P (b, d))

from C4 to C4 is singular. As this is a closed condition, this in fact holds
for all (a, b, c, d) ∈ C4. Taking determinants, we conclude the constraint

det


P1(a, c) 0 P2(a, c) 0
P1(a, d) 0 0 P2(a, d)

0 P1(b, c) P2(b, c) 0
0 P1(b, d) 0 P2(b, d)

 = 0

for all a, b, c, d ∈ C, where P1, P2 are the partial derivatives of P with respect
to the first and second variable respectively. Expanding this out, we conclude
that

P1(a, c)P2(a, d)P2(b, c)P1(b, d) = P2(a, c)P1(a, d)P1(b, c)P2(b, d)

for all a, b, c, d ∈ C.
If one of P1 or P2 is identically zero, then P (x, y) is a function of just one of

the two variables x, y, and one trivially has both additive and multiplicative
structure, so we henceforth assume that P1, P2 are not identically zero. We
can then rearrange the above identity as

P1

P2
(a, c)

P1

P2
(b, d) =

P1

P2
(a, d)

P1

P2
(b, c)

for generic a, b, c, d ∈ C. Fixing a generic choice of b, d, we conclude in
particular (after relabeling c as b) that

(7.2)
P1

P2
(a, b) =

f(a)

g(b)

for generic a, b ∈ C and some rational functions f, g : C ∪ {∞} → C ∪ {∞},
not identically zero or identically infinite.

To motivate the argument that follows, suppose that we could make a
change of variables a 7→ z, b 7→ w such that

dz = f(a)da; dw = g(b)db,
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thus z is a primitive of f applied to a, and w is a primitive of g applied to
b. Then, by the chain rule, the constraint (7.2) simplifies to

∂P

∂z
− ∂P

∂w
= 0

and so P must be a function of z+w. This already resembles the conclusion
of Theorem 41 quite closely (particularly if one formally rewrites the multi-
plicative conclusion P (x, y) = Q(F (x)G(y)) as P (x, y) = Q◦exp(log ◦F (x)+
log ◦G(y))).

Of course, the rational functions f, g may contain simple poles, which by
the residue theorem implies that they do not have single-valued primitives
taking values in C. However, through monodromy one can still define a
primitive taking values in some Riemann surface covering the (punctured)
complex plane. So, it is natural to try to execute the above strategy in
the framework of Riemann surfaces rather than on the complex plane. This
is essentially what we will do next, except that we will not explicitly use
the abstract language of Riemann surfaces and instead work with the more
concrete machinery of paths in the complex plane, in order to more easily
take advantage of the additive structure of C.

We turn to the details. By collecting the residues of the poles of f , we
may write

f(a) =
m∑
j=1

αj
a− aj

+ f̃(a)

for some finite number of distinct simple poles a1, . . . , am ∈ C, some non-
zero complex residues α1, . . . , αm ∈ C, and a rational function f̃(a), such

that all poles of f̃ have zero residue. In particular, f̃ has a primitive F ,
which is a rational function, so that

(7.3) f(a) =
m∑
j=1

αj
a− aj

+ F ′(a)

for all but finitely many a ∈ C. By translation, we may assume without loss
of generality that a1, . . . , am 6= 0, and that F (0) = 0.

Now let γ : [0, 1]→ C\{a1, . . . , am} be a smooth curve avoiding the poles
a1, . . . , am of f that starts at γ(0) = 0. From the fundamental theorem of
calculus, we can evaluate the contour integral

∫
γ f =

∫
γ f(a) da as∫

γ
f =

m∑
j=1

αj Log
γ(1)− aj

aj
+ F (γ(1))

where (by abuse of notation) Log
γ(1)−aj

aj
is one of the logarithms log

γ(1)−aj
aj

of
γ(1)−aj

aj
, with the exact branch of logarithm used depending on the ho-

motopy class of γ in C\{a1, . . . , am}. (Here we adopt the convention that∫
γ f =∞ if γ terminates at a (zero-residue) pole of f , and evaluate contour
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integrals that pass through (zero-residue) poles of f by arbitrarily perturb-
ing the contour around such poles.) In particular, we see that∫

γ
f ∈ cγ(1) + Γ1

where Γ1 ≤ C is the finitely generated subgroup of C generated by 2πiα1, . . . ,
2πiαm, and for any a ∈ C\{a1, . . . , am}, ca + Γ1 denotes the coset

(7.4) ca + Γ1 :=

m∑
j=1

αj log
a− aj
aj

+ F (a);

thus ca is only defined up to an additive error in Γ1. Conversely, for any
given choice of endpoint a ∈ C\{a1, . . . , am}, and any element of the coset
z = ca + Γ1, one can find a smooth curve γ : [0, 1] → C\{a1, . . . , am} from
0 to a with

∫
γ f = z.

We need the following technical lemma, reminiscent of the Picard theorem
on the possible values of entire functions.

Lemma 42 (Almost surjectivity). For all complex numbers z outside of at
most one coset of Γ1, there exists at least one smooth curve γ : [0, 1] →
C\{a1, . . . , am} starting at 0 with

∫
γ f = z. If Γ1 is not trivial and is not a

rank one lattice Γ1 = 2πiαZ, then the caveat “outside of at most one coset
of Γ1” in the previous claim may be deleted.

To see why it is necessary sometimes to exclude a coset of Γ, consider the
case

f(a) :=
1

a− 1
− 1

a− 2
so that Γ is the rank one lattice Γ = 2πiZ and∫

γ
f = Log(1− γ(1))− Log(1− γ(1)

2
).

This quantity can attain all complex values except for those on the coset
log 2 + Γ (this would require γ to terminate at infinity, which is not possible
since γ has to stay inside C\{a1, . . . , am}). Another example is when

f(a) =
1

(a− 1)2

so that Γ = {0} is trivial and∫
γ
f =

γ(1)

1− γ(1)
.

In this case, the coset 1 + Γ = {1} cannot be attained.

Proof. We first dispose of an easy case when Γ1 is trivial (i.e. f has no
residues at any pole). Then

∫
γ f = F (γ(1)); as f is not identically zero,

the rational function F is not constant, and the claim follows from the
fundamental theorem of algebra. (Note that the rational function F − z0
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has a constant numerator for at most one complex number z0.) Thus we
may assume henceforth that Γ1 is non-trivial.

Let Ω denote the set of all z such that z =
∫
γ f for at least one γ as in

the lemma. Clearly Ω contains {0}; by the preceding discussion, Ω is also
the union of cosets of Γ1. Our objective is to show that Ω is either equal
to C, or C with one coset of Γ1 deleted, with the latter case only permitted
when Γ1 is a rank one lattice.

If the rational function F is not identically zero, then it is non-constant
(since F (0) = 0), and thus has a pole somewhere in C ∪ {∞}. In any
neighbourhood of this pole, the quantity (7.4) attains all sufficiently large
finite values in C, thanks to Rouche’s theorem, thus Ω contains the exterior
of a sufficiently large disk. Since Γ1 is a non-trivial (hence unbounded)
subgroup of C, and Ω is invariant with respect to translations by Γ1, we
conclude in this case that Ω = C as required. Thus we may assume without
loss of generality that F = 0.

Next, suppose that the residues α1, . . . , αm do not all lie on a single line
Rα. We work in the neighbourhood of a single pole a1. From (7.4) and
Rouche’s theorem, we see that Ω contains the half-plane {α1z | Re(z) < −C}
for some sufficiently large C. On the other hand, as the α1, . . . , αm do not
all lie in a single line Rα, the group Γ1 is not contained in 2πiα1R, and
so the orthogonal projection onto α1R is unbounded. From this and the
Γ1-invariance of Ω we conclude that Ω = C as desired.

The only remaining case is when all the α1, . . . , αm lie on a single line; by
rotation, we may assume that the α1, . . . , αm are all real. Let us first assume
that the α1, . . . , αm are not all commensurable (i.e. rational multiples of
each other), so that Γ1 is a dense subset of 2πiR. As non-constant analytic
functions are open maps, and f locally has an analytic primitive, we see that
Ω is open; as C is connected, and Ω clearly is non-empty, it thus suffices to
show that Ω is closed. Accordingly, let zn be a sequence in Ω converging to
a finite limit z ∈ C; our task is to show that z also lies in Ω.

By definition, zn =
∫
γn
f for some sequence of smooth curves γn : [0, 1]→

C\{a1, . . . , an}, all starting at 0 but possibly having distinct endpoints γn(1).
By the Bolzano-Weierstrass theorem, we may pass to a subsequence and
assume that a′n := γn(1) converges to some limit a′ ∈ C ∪ {∞}.

If a′ = ai for some pole ai, then from (7.4) and the hypothesis that the αi
are all real, we see that Re(zn)→ − sgn(αi)∞ as n→∞, which contradicts
the convergence of zn to a finite limit. If a′ ∈ C\{a1, . . . , an}, then by
choosing suitable branches of the logarithm, one can make the map a 7→ ca
analytic and non-constant (hence continuous and open) in a neighbourhood
of a′; as zn ∈ ca′n +Γ1 for all n, we conclude on taking limits that z ∈ ca′+Γ;
since a 7→ ca is open, this implies that z ∈ Ω as required.

Next, we consider the case when a′ =∞, thus γn(1)→∞. If α1+. . .+αm
is non-zero, then from (7.4) we see that Re(zn) → sgn(α1 + . . . + αm)∞,
contradicting the convergence of zn to a finite limit. Thus α1 + . . .+αm = 0,
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and so at least two of the αi have opposing signs. Without loss of generality
we may assume that α1 > 0 > α2. From (7.4), the real part of

∫
γ f depends

only on the endpoint γ(1), and goes to −∞ as γ(1) approaches a1 and +∞
as γ(1) approaches a2. By the intermediate value theorem, we may thus
find a smooth curve γ starting at 0 such that Re

∫
γ f = Rez; as Γ is a dense

subgroup of 2πiR, we conclude that Ω contains a dense subset of the line
z+ 2πiR. As Ω is open and Γ1-invariant, we conclude that z ∈ Ω as desired.
This concludes the proof of Ω = C in the case that Γ is a dense subgroup of
2πiR.

Finally, we have to consider the case when Γ1 is a rank one lattice in 2πiR.
If α1 + . . .+αm is non-zero, then we may repeat the previous arguments to
show that Ω = C, so we may assume that α1 + . . . + αm = 0. In this case,
we see from (7.4) that if γn : [0, 1] → C\{a1, . . . , am} is a family of paths
from the origin with a′n := γn(1) going to infinity, and zn :=

∫
γn
f , then

dist(zn, c∞ + Γ1)→ 0

as n→∞, where c∞ + Γ1 is the coset

c∞ + Γ1 := −
m∑
j=1

αj log aj + Γ1.

From this and the previous arguments, we see that any limit point z of Ω
will also lie in Ω unless z lies in c∞+ Γ1. Thus the set Ω\(c∞+ Γ1) is open,
closed, and non-empty in C\(c∞ + Γ1); as the latter set is connected, we
conclude that Ω contains C\(c∞ + Γ1), as required. �

All the above analysis involving the poles and residues of f may similarly
be applied to g. More specifically, we may write

(7.5) g(b) =
n∑
k=1

βk
b− bj

+G′(b)

for all but finitely many b ∈ C, where b1, . . . , bn ∈ C are distinct and non-
zero, β1, . . . , βk are non-zero, and G is a rational function with G(0) = 0.
We let Γ2 be the subgroup of C generated by 2πiβ1, . . . , 2πiβk, and have the
analogue of Lemma 42:

Lemma 43 (Almost surjectivity). For all complex numbers w outside of
at most one coset of Γ2, there exists at least one smooth curve γ : [0, 1] →
C\{b1, . . . , bn} starting at 0 with

∫
γ g = w. If Γ2 is not trivial and is not a

rank one lattice Γ2 = 2πiαZ, then the caveat “outside of at most one coset
of Γ2” in the previous claim may be deleted.

Now, we are able to solve the differential equation (7.2), obtaining a
rigorous version of the heuristic that P is “a function of z + w” in some
sense:
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Proposition 44 (Additive structure in z, w). There exists an entire func-
tion H : C→ C with the property that

(7.6) P (γ1(1), γ2(1)) = H(

∫
γ1

f +

∫
γ2

g)

for all smooth curves γ1 : [0, 1]→ C\{a1, . . . , am} and γ2 : [0, 1]→ C\{b1, . . . ,
bn} with γ1(0) = γ2(0) = 0 and

∫
γ1
f,
∫
γ2
g 6=∞.

Proof. We begin by establishing a preliminary property of P implied by
(7.6), namely that

(7.7) P (γ1(1), b) = P (γ̃1(1), b)

whenever b ∈ C and γ1, γ̃1 : [0, 1]→ C\{a1, . . . , am} are smooth curves with
γ1(0) = γ̃1(0) and

∫
γ1
f =

∫
γ̃1
f 6=∞.

Fix γ1, γ̃1 as above, and let w0 be a complex number to be chosen later. By
perturbing γ1, γ̃1 without moving the endpoints, we may assume that γ1, γ̃1

avoid all the poles of f . By unique continuation, it suffices to establish (7.7)
for all b in some non-empty open subset of C.

By the connectedness of C\{a1, . . . , an}, even after deleting the remaining
poles of f , we can find a smooth homotopy γ∗1 : [0, 1]×[0, 1]→ C\{a1, . . . , an}
with γ∗1(t, 0) = γ1(t) and γ∗1(t, 1) = γ̃1(t) for all t ∈ [0, 1], and γ∗1(0, s) = 0
for all s ∈ [0, 1], and such that γ∗1 avoids all the poles of f .

The quantity
∫
γ∗1 (·,s) f will, in general, not be constant in s; however, it

varies smoothly in s, and thus lies in a ball B(0, R). From Cauchy’s theorem,
we see that ∫

γ∗1 (·,s+ds)
f =

∫
γ∗1 (·,s)

f +

∫
γ∗(1,[s,s+ds])

f

for any 0 ≤ s < s+ ds ≤ 1, and thus

(7.8)
d

ds

∫
γ∗1 (·,s)

f = f(γ∗(1, s))
d

ds
γ∗(1, s)

for all s ∈ [0, 1].

Suppose that we can find a smooth function b̃ : [0, 1] → C\{b1, . . . , bn}
such that b̃(0) = b̃(1) = b, b̃ avoids all the poles of g, and

(7.9) g(b̃(s))
d

ds
b̃(s) = −f(γ∗(1, s))

d

ds
γ∗(1, s).

From (7.2) and the chain rule, we then have

d

ds
P (γ∗(1, s), b(s)) = 0

for all s ∈ [0, 1], and thus by the fundamental theorem of calculus

P (γ1(1), b) = P (γ∗(1, 0), b(0)) = P (γ∗(1, 1), b(1)) = P (γ̃(1), b)

which is (7.7). Thus, it will suffice to construct such a smooth function b̃
for all b in a non-empty open subset of C.
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Suppose that we can find a ball B(w0, 2R + 1) and a complex analytic
local diffeomorphism Φ : B(w0, 2R+ 1)→ C which avoids all the poles and
zeroes of g in its image, and is an inverse primitive of g in the sense that

(7.10) Φ′(w) = g(Φ(w))−1

for all w ∈ B(w0, 2R + 1). Then for any b in the open set Φ(B(w0, 1)), so
that b = Φ(w) for some w ∈ B(w0, 1), we can construct the desired function

b̃ by the formula

b̃(s) := Φ(w +

∫
γ1

f −
∫
γ∗1 (·,s)

f).

Indeed, from the chain rule and (7.8), (7.10) we obtain (7.9), and the con-

dition b̃(0) = b̃(1) = b follows from the hypothesis
∫
γ1
f =

∫
γ̃1
f . Thus,

to finish the proof of (7.7), it suffices to obtain a local diffeomorphism
Φ : B(w0, 2R+ 1)→ C with the stated properties.

Suppose that the function G is not identically zero, and thus has a pole at
some point b∗ ∈ C ∪ {∞}. If b∗ is distinct from b1, . . . , bm. By (7.5), g then

has a meromorphic primitive G̃ in a neighbourhood of b∗ which has a pole at
b∗ but is otherwise holomorphic, and which will be a local diffeomorphism
if the neighbourhood is small enough. In particular, by Rouche’s theorem,
we see that if w0 is a complex number of sufficiently large magnitude, G̃
is a diffeomorphism between some open subset of this neighbourhood and
B(w0, 2R+ 1). Taking Φ to be the inverse of G̃, we obtain the claim.

If the pole b∗ coincides with one of the bi, then we do not have a mero-
morphic primitive in a neighbourhood of b∗ any more, but we still have a
primitive on sufficiently small semi-neighbourhood such as {b ∈ C | |b−b∗| <
ε; Re(b−b∗) > 0} which is still a local diffeomorphism. By Rouche’s theorem
(the point being that the pole of G dominates the logarithmic factors), one
can still find a diffeomorphism from some subset of this neighbourhood and
B(w0, 2R+ 1) for a suitably chosen w0, and we can argue as before.

Now suppose that G is identically zero. As g is not identically zero, we
see from (7.5) that n is non-zero, thus g has a simple pole at b1. From (7.5),
we see that g formally has a primitive in a neighbourhood of b1 that is equal
to the sum of β1 log(b − b1) plus a holomorphic function. This is however
not rigorous because log is multivalued. To get around this difficulty, we
cover a small punctured neighbourhood B(b1, ε)\{b1} of b1 by the half-space
{z | Re(z) < log ε} via the translated exponential map z 7→ b1 +exp(z). The
differential g(b)db on B(b1, ε)\{b1} then pulls back to the differential

g(b1 + exp(z)) exp(z)dz

on the half-space {z | Re(z) < log ε}. For ε small enough, this differential

has a primitive G̃, which is the sum of β1z plus a holomorphic function of b1+
exp(z). In particular, if w0 is a complex number with β−1

1 Re(w0) sufficiently

large and negative, we see from Rouche’s theorem that G̃ is a diffeomorphism
between some open subset of this neighbourhood and B(w0, 2R+1). Taking
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Φ to be the inverse of G̃, composed with the translated exponential map
z 7→ b1 + exp(z) (i.e. Φ(w) := b1 + exp(G̃−1(w))), we obtain the claim. This
concludes the proof of (7.7).

From (7.7), we see that for any two smooth curves γ1 : b[0, 1]→ C\{a1, . . . ,
am} and γ2 : [0, 1]→ C\{b1, . . . , bn} with γ1(0) = γ2(0) and

∫
γ1
f,
∫
γ2
g 6=∞,

the quantity P (γ1(1), γ2(1)) is a function of
∫
γ1
f and γ2(1). Applying

the analogue of (7.7) with the rules of f, g reversed, we conclude that
P (γ1(1), γ2(1)) is a function of

∫
γ1
f and

∫
γ2
g. Thus, there is a function

Q : Ω1 × Ω2 → C such that

(7.11) P (γ1(1), γ2(1)) = Q(

∫
γ1

f,

∫
γ2

g)

where Ω1 is the set of all finite values of
∫
γ1
f for smooth γ1 : [0, 1] →

C\{a1, . . . , am}, and Ω2 is the set of all finite values of
∫
γ2
g for smooth γ2 :

[0, 1] → C\{b1, . . . , bn}. Note from Lemmas 42, (43) that Ω1, Ω2 are equal
to the entire complex plane C with at most one coset of Γ1,Γ2 respectively
deleted.

Since f and g have local primitives which are analytic and non-constant,
and hence open, we see that the function Q is continuous. By further use
of these local primitives, we see that for all (z0, w0) ∈ Ω1×Ω2, the function
Q(z, w0) is holomorphic for z in a sufficiently punctured disk B(z0, ε)\{z0},
and thus (by the continuity of Q at z0 and Morera’s theorem) is holomorphic
on the unpunctured disk B(z0, ε) also. Thus Q(z, w) is holomorphic in the
first variable z, and is similarly holomorphic in the second variable; thus it
is a smooth biholomorphic function on Ω1 × Ω2.

Let (z0, w0) ∈ Ω1 ×Ω2. For z ∈ B(z0, ε)\{z0} and w ∈ B(w0, ε)\{w0} for
ε > 0 small enough, we may use local primitives to find smooth γ1 : [0, 1]→
C\{a1, . . . , am} and γ2 : [0, 1] → C\{b1, . . . , bn} with γ1(0) = γ2(0) = 0,∫
γ1
f = z,

∫
γ2
g = w, and f(γ1(1)), g(γ2(1)) 6= 0. If one then elongates

γ1 by an infinitesimal line segment from γ1(1) to γ1(1) + f(γ1(1))−1dt for
some infinitesimal dt, and simultaneously elongates γ2 by an infinitesimal
line segment from γ2(1) to γ2(1) + g(γ2(1))−1dt, we see from20 (7.11) that

P (γ1(1) + f(γ1(1))−1dt, γ2(1) + g(γ2(1))−1dt) = Q(z + dt, w + dt) + o(dt)

and thus by the chain rule and sending dt to zero

f(γ1(1))−1P1(γ1(1), γ2(1))+g(γ2(1))−1P2(γ1(1), γ2(1)) = Q1(z, w)+Q2(z, w).

By (7.2), the left-hand side vanishes, and thus

Q1(z, w) +Q2(z, w) = 0

for all z ∈ B(z0, ε)\{z0} and w ∈ B(w0, ε)\{w0}; by the smoothness of Q
and the arbitrariness of z0, w0 we conclude that Q1(z, w) + Q2(z, w) = 0

20Note that while (7.11) is stated for smooth curves, it extends automatically to con-
tinuous curves (and in particular to the concatenation of two smooth curves) by a limiting
argument.
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for all (z, w) ∈ Ω1 × Ω2. In particular, for any complex number ζ ∈ C, the
function

z 7→ Q(z, ζ − z),
which is defined outside of a discrete subset of C, has zero derivative and
thus extends to a constant function on C. In other words, we can find a
function H : C→ C such that

Q(z, w) = H(z + w)

for all (z, w) ∈ Ω1 × Ω2. Since Q is biholomorphic and Ω1,Ω2 are comple-
ments of discrete sets, we conclude that H is holomorphic on all of C, and
is thus entire, and the proposition follows. �

We now analyse the entire function H given by the above proposition.
Observe from (7.4) that one can freely modify

∫
γ1
f by any element of Γ1

without affecting the endpoint γ1(1). As a consequence, we conclude that H
must be periodic with respect to translations by Γ1. Similarly it is periodic
with respect to translations by Γ2, and is thus periodic with respect to
the combined subgroup Γ1 + Γ2. If this subgroup contains two non-zero
elements that are not real multiples of each other, then H thus descends
to a holomorphic function on a torus, and is thus constant by Liouville’s
theorem, which makes P constant, in which case Theorem 41 is trivial. Thus
we may assume that Γ1 + Γ2 does not contain two non-zero elements that
are not real multiples of each other, and is thus contained in a line; without
loss of generality we may normalise (after rescaling the a and b variables)
so that Γ1 + Γ2 ≤ 2πiR. If Γ1 + Γ2 is dense in 2πiR, then H is constant
along 2πiR; since non-constant analytic functions have isolated zeroes, we
conclude that H is constant on all of C, so again P is constant and Theorem
41 is trivial in this case. Thus we may assume that Γ1 + Γ2 is discrete;
without loss of generality we may normalise so that either Γ1 + Γ2 = {0} or
Γ1 + Γ2 = 2πiZ. As we shall see shortly, these two cases correspond to the
additive and multiplicative cases21 of Theorem 41.

First suppose that Γ1 + Γ2 = {0}, so that f and g have no poles with
non-zero residues. In this case, we see from (7.4) that∫

γ1

f = F (γ1(1));

∫
γ2

f = G(γ2(1))

21In principle, the case when Γ1 + Γ2 is a rank two lattice would correspond to a
case in which P is given in terms of an elliptic curve group law instead of addition and
multiplication, but such laws can only be expressed in terms of rational functions rather
than by polynomials and so do not actually arise in this analysis. However, if P were
generalised to be a regular map on the product of two curves, rather than a polynomial
map on the product of two affine lines k, then one would have to also consider constructions
arising from elliptic curve group laws; and in higher dimensions one would also have to
consider more general abelian varieties. It seems of interest to extend Theorem 41 to these
settings, but we will not pursue this matter here.
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and hence from Proposition 44

P (a, b) = H(F (a) +G(b))

whenever a, b ∈ C and F (a), G(b) 6= ∞. If F has a pole at some finite
a∗, then by Rouche’s theorem F (a) can take any sufficiently large value
for a in a neighbourhood of a∗, and the above equation then forces the
entire function H to be bounded in a neighbourhood of infinity, and is thus
constant by Liouville’s theorem, in which case Theorem 41 is trivial. Thus
we may assume that the rational function F has no finite poles, and is thus
a polynomial; similarly we may assume that G is a polynomial. By holding b
fixed and sending a to infinity, we conclude that H is of polynomial growth;
being entire, we conclude from the generalised Liouville theorem that H is
itself a polynomial, and we have obtained the additive conclusion of Theorem
41.

Now suppose that Γ1 + Γ2 = 2πiZ. Then all the αi, βj are integers, and
from (7.4) we have ∫

γ1

f ∈ F (γ1(1)) + log F̃ (γ1(1))

and ∫
γ2

g ∈ G(γ2(1)) + log G̃(γ2(1))

for some rational functions F̃ , G̃, with at least one of F̃ , G̃ non-constant, and
all γ1, γ2 for which F (γ1(1)), G(γ2(1)) 6= ∞ and F̃ (γ1(1)), G̃(γ2(1)) 6= 0,∞.
From Proposition 44, we conclude that

P (a, b) = H(F (a) +G(b) + log F̃ (a)G̃(b))

whenever F (a), F (b) 6= ∞ and F̃ (a), G̃(b) 6= 0,∞; note that the right-hand
side is well-defined since H is 2πiZ-periodic. We use this periodicity to
write H(z) = H̃(exp(z)) for some holomorphic function H̃ : C\{0} → C,
and conclude that

(7.12) P (a, b) = H̃(exp(F (a) +G(b))F̃ (a)G̃(b)).

If F has a pole at some finite a∗, then for fixed b, exp(F (a)+G(b))F̃ (a)G̃(b)
can take any sufficiently large value in a neighbourhood of a∗, and so by
arguing as in the additive case H̃ and hence P is constant, in which case
the claim is trivial. Similarly if G, F̃ , G̃ have finite poles, so we may assume
that F,G, F̃ , G̃ are all polynomials.

At least one of F̃ , G̃ is non-constant; without loss of generality, assume
that F̃ is non-constant, and so has a zero at some finite a∗. Letting a
approach a∗ while fixing b at some generic value, we see that exp(F (a) +

G(b))F̃ (a)G̃(b) can attain any sufficiently small non-zero value, and conclude

from (7.12) that H̃ remains bounded in a neighbourhood of the origin, so

that the origin is a removable singularity and H̃ can be extended to an entire
function.
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Suppose that F is non-constant. Then, fixing b to be some generic value,
we see from Rouche’s theorem that any sufficiently large complex number
z can be represented as exp(F (a) +G(b))F̃ (a)G̃(b) for some a = O(log |z|).
We conclude that H grows at most like a power of a logarithm (i.e. H(z) =

O(logO(1) |z|)) and so by the generalised Liouville theorem, H is constant and
we are again done. Thus we may assume that F is constant, and similarly
G is constant. We may then absorb the exp(F (a) + G(b)) factor in (7.12)

into F̃ or G̃, and we have obtained the multiplicative conclusion of Theorem
41. The proof of Theorem 41 is now complete.

Now we move from the algebraically closed field setting to the nonstan-
dard finite field setting.

Theorem 45. Let F be a nonstandard finite field of characteristic zero. Let
P : F2 → F be a polynomial with the property that the set

(7.13) {(P (a, c), P (a, d), P (b, c), P (b, d)) | a, b, c, d ∈ F}

is not Zariski dense in F
4
. Then one of the following statements hold:

(i) (Additive structure) There exist polynomials Q,F,G : F → F such
that P (x, y) = Q(F (x) +G(y)) for all x, y ∈ F.

(ii) (Multiplicative structure) There exist polynomials Q,F,G : F → F
such that P (x, y) = Q(F (x)G(y)) for all x, y ∈ F.

Proof. Set k := F. If (7.13) is not Zariski dense, then from Lemma 26 we
see that (7.1) is not Zariski dense either. Thus by Theorem 41, we have
P (x, y) = Q(F (x) +G(y)) or P (x, y) = Q(F (x)G(y)) for some polynomials
Q,F,G : k → k defined over k. The remaining difficulty is to replace these
polynomials by polynomials that are defined over F.

Note that we may assume that F,G are non-constant, as the claim is
trivial otherwise.

Suppose first that we have the additive structure P (x, y) = Q(F (x) +
G(y)). Clearly P (F,F) ⊂ F, and hence |F (F) + G(F)| � |F|. The field of
definition of F,G is a finite extension F′ of F. It will be convenient (particu-
larly when we turn to the more difficult multiplicative case) to coordinatise
this field F′ as follows. Let n := [F′ : F] be the index of the extension F′

over F. Let S : F→ F be a generic monic polynomial of degree n, so that S
is irreducible and the roots t1, . . . , tn ∈ F′ are distinct. We can then identify
F′ with the field

{(R(t1), . . . , R(tn)) | R ∈ F[t]} ⊂ kn

where R ranges over the polynomials of one variable in t, where we give
kn the ring structure of componentwise addition and multiplication. This
can be viewed as an n-dimensional subspace (over F) of kn, with basis
e0, . . . , en−1 given by

ei := (ti1, . . . , t
i
n).

The restriction F,G : F→ F′ of F,G to F can thus be written in components
as F =

∑n−1
i=0 Fiei, G =

∑n−1
i=0 Giei for some polynomials Fi, Gi : F → F
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defined over F. We can then extend these maps to polynomial maps F̃ , G̃ :
k → kn by the same formulae:

F̃ :=

n−1∑
i=0

Fiei; G̃ :=

n−1∑
i=0

Giei.

As F,G are non-constant, F̃ , G̃ are non-constant also.
We then have |F̃ (F) + G̃(F)| � |F|. Since∑

v∈F̃ (F)+G̃(F)

|F̃ (F) ∩ (v − G̃(F))| = |F̃ (F)||G̃(F)| � |F|2

and |F̃ (F) ∩ (v − G̃(F))| ≤ |F|, we conclude that

|F̃ (F) ∩ (v − G̃(F))| � |F|

for� |F| values of v. In particular, F̃ (k)∩(v−G̃(k)) is infinite for infinitely

many v ∈ kn. As F̃ , G̃ are non-constant polynomial maps, F̃ (k), G̃(k) are
irreducible quasiprojective curves in kn, and so

F̃ (k) = v − G̃(k)

for infinitely many v. In particular, the symmetry group H := {v ∈ kn |
F̃ (k) = v + F̃ (k)} is infinite. But this symmetry group is an algebraic
subgroup of the additive group kn of dimension at most 1, and so it is a

line. This implies that F̃ (k) and G̃(k) are translates of the same line, and
so F (x) + G(y) is an affine (over F) function of Fi(x) + Gi(y) for some
0 ≤ i ≤ n− 1. From this it is easy to see that

P (x, y) = Q(F (x) +G(y)) = Qi(Fi(x) +Gi(y))

for some polynomial Qi : F → F defined over F, and conclusion (i) of
Theorem 45 follows.

Now we turn to the multiplicative case P (x, y) = Q(F (x) · G(y)). By
arguing as before we have

|F̃ (F) · G̃(F)| � |F|.

Since F,G have only boundedly many zeroes, F̃ (F) and G̃(F) have all but
boundedly many points in (k×)n, where k× := k\{0} is the multiplicative

group of k. If we define F̃ (F)× := F̃ (F)∩(k×)n and G̃(F)× := G̃(F)∩(k×)n,
then we have

|F̃ (F)× · G̃(F)×| � |F|.
Arguing as in the additive case, we conclude that the symmetry group H :=

{v ∈ (k×)n | F̃ (k)
×

= v · F̃ (k)
×
} is infinite, where F̃ (k)

×
:= F̃ (k) ∩ (k×)n.

This is a algebraic subgroup of the multiplicative group (k×)n that is con-

tained in a dilate of the connected curve F̃ (k)
×

, and is therefore a connected
curve. Using the Lefschetz principle to embed the field of definition of H into
C, we can thus view H as a connected one-dimensional algebraic subgroup
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of (C×)n. From Lie group theory, a one-dimensional connected subgroup of
(C×)n takes the form {(exp(α1z), . . . , exp(αn)z) | z ∈ C} for some complex
numbers α1, . . . , αn. By inspecting the limits as z → ∞, one can check
that such subgroups are algebraic only when α1, . . . , αn are commensurate,
in that they lie in a dilate Q, in which case H can be parameterised as

{(tm1 , . . . , tmn) | t ∈ C×} for some integers m1, . . . ,mn. As F̃ (k)
×

is con-
tained in a dilate of H, we see (after restricting back from C to k) that

F̃ (k) ⊂ {(c1t
m1 , . . . , cnt

mn) | t ∈ k}
for some constants c1, . . . , cn ∈ k. Factoring the components of F̃ into monic
irreducible polynomials, we conclude that

F̃ (x) = (c1F
′(x)a1 , . . . , cnF

′(x)an)

for some monic polynomial F ′ : k → k defined over k, and some natural
numbers a1, . . . , an (a scalar multiple of the m1, . . . ,mn).

The Frobenius endomorphism FrobF generates the Galois group Gal(F′/F)
≡ Z/nZ, which acts transitively on the roots t1, . . . , tn of R. This group

then also acts on the polynomial components ciF
′(x)ai of F̃ , by acting on

the coefficients of these polynomials; by taking degrees, we conclude that
a1 = . . . = an = a, so that F ′ is invariant with respect to the Frobenius
action and is thus defined over F. Thus F is a scalar multiple of a poly-
nomial (F ′)a defined over F. A similar argument shows that G is also a
scalar multiple of a polynomial (G′)b defined over F, and so P can be writ-
ten in the form P (x, y) = Q′((F ′)a(x)(G′)b(y)) for some polynomial Q′;
as P, F ′, G′ are Frobenius-invariant (with F ′, G′ non-constant), Q′ is also
Frobenius-invariant and thus defined over F, giving the required represen-
tation of P . �

Combining Theorem 45 with Theorem 38, we immediately obtain Theo-
rem 20.

8. Weak expansion

Now we prove Theorem 21 (and hence Theorem 2), by combining the
above arguments with the Fourier-analytic arguments from [35]. Suppose
for contradiction that we can find F, P which obey the hypotheses of this
theorem, but do not obey any of the four conclusions (i)-(iv). Applying The-
orem 20 (and noting that moderate asymmetric expansion certainly implies
weak expansion), we see that we must have either additive structure in the
sense that

(8.1) P (x1, x2) = Q(F1(x1) + F2(x2))

for some polynomials Q,F1, F2 : F → F, or multiplicative structure in the
sense that

(8.2) P (x1, x2) = Q(F1(x1)F2(x2))

for some polynomials Q,F1, F2 : F→ F.
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Suppose first that we have additive structure (8.1). As the conclusion (iii)
of Theorem 21 is assumed to fail, we can find a nonstandard subset A ⊂ F
with

(8.3) |A|≫ |F|1−1/16

and

|P (A,A)|≪ |F|1/2|A|1/2.
We can assume that P is non-constant, so that Q is non-constant. We can
also assume F1, F2 non-constant, as the claim is immediate otherwise. In
particular, Q has fibres of bounded cardinality and so |Q(B)| � |B| for all
nonstandard B ⊂ F. We conclude that

(8.4) |F1(A) + F2(A)|≪ |F|1/2|A|1/2.

If we let B := F2(A) × F1(A) ⊂ F2 and C := (F1(A) + F2(A)) × (F1(A) +
F2(A)) ⊂ F2, then we have

(F1(t), F2(t)) +B ⊂ C

for all t ∈ A, and hence

(8.5)
∑
t∈F

∑
(x,y)∈F2

1B(x, y)1C(x+ F1(t), y + F2(t)) ≥ |A||B| � |A|3.

We now use Fourier analysis to expand

(8.6) 1B(x, y) =
∑

χ1,χ2∈F̂

1̂B(χ1, χ2)χ1(x)χ2(y)

where F̂ is the space of nonstandard (additive) characters on F, that is to
say the nonstandard homomorphisms χ : F → ∗S1 from F (viewed as an
additive group) to the unit circle, and 1̂B(χ1, χ2) are the Fourier coefficients

1̂B(χ1, χ2) := Ex,y∈F1B(x, y)χ1(x)χ2(y).

Similarly, we may write
(8.7)

1C(x+ F1(t), y + F2(t)) =
∑

χ1,χ2∈F̂

1̂C(χ1, χ2)χ1(x)χ2(y)χ1(F1(t))χ2(F2(t)).

Multiplying (8.7) by the complex conjugate of (8.6) and summing using the
orthogonality properties of characters, we may expand the left-hand side of
(8.5) as

|F|2
∑

χ1,χ2∈F̂

1̂B(χ1, χ2)1̂C(χ1, χ2)
∑
t∈F

χ1(F1(t))χ2(F2(t)).

Using the trivial bound |χ1|, |χ2| = 1, we see that the contribution of any
given pair (χ1, χ2) to the above sum is

|F|2(|B|/|F|2)(|C|/|F|2)|F|
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which by (8.4) and the trivial bound |B| ≤ |A|2 is o(|A|3). We thus have∑
(χ1,χ2)∈F̂×F̂\E

|1̂B(χ1, χ2)||1̂C(χ1, χ2)||
∑
t∈F

χ1(F1(t))χ2(F2(t))| � |A|3/|F|2

for any subset E ⊂ F̂× F̂ of bounded cardinality. On the other hand, from
the Plancherel identity we have∑

(χ1,χ2)∈F̂×F̂

|1̂B(χ1, χ2)|2 = |B|/|F|2 ≤ |A|2/|F|2

and ∑
(χ1,χ2)∈F̂×F̂

|1̂C(χ1, χ2)|2 = |C|/|F|2 ≪ |A|/|F|

and hence by Cauchy-Schwarz∑
(χ1,χ2)∈F̂×F̂\E

|1̂B(χ1, χ2)||1̂C(χ1, χ2)|≪ |A|3/2/|F|3/2.

By Hölder’s inequality, we conclude the existence of χ1, χ2 ∈ F̂ with (χ1, χ2) 6∈
E such that

|
∑
t∈F

χ1(F1(t))χ2(F2(t))|≫ |A|3/2/|F|1/2;

in particular, from the hypothesis (8.3) we certainly have

(8.8) |
∑
t∈F

χ1(F1(t))χ2(F2(t))|≫ |F|1/2.

(with some room to spare). As E was an arbitrary set of bounded cardinality,
we conclude that (8.8) holds for an unbounded number of pairs (χ1, χ2) ∈
F̂× F̂. In particular, it holds for a pair (χ1, χ2) with (χ1, χ2) 6= (0, 0).

As is well known, the group F̂ of additive characters of F is isomorphic
to F itself, and there exists a non-trivial generator χ0 ∈ F̂ such that any
other character χ ∈ F̂ takes the form χ(x) = χ0(ax) for some a ∈ F.
(Indeed, if F is a standard finite field of characteristic p, one can take χ0 to

be χ0(x) := e2πiφ(x)/p where φ is any linear surjection from F (viewed as a
vector space over Fp) to Fp, and the nonstandard case then follows by  Los’s
theorem.) We may thus write∑

t∈F
χ1(F1(t))χ2(F2(t)) =

∑
t∈F

χ0(aF1(t) + bF2(t))

for some a, b ∈ F, not both zero. On the other hand, from the Weil bound
on character sums (see e.g. [48]) and  Los’s theorem we have

|
∑
t∈F

χ0(P (t))| � |F|1/2

whenever χ0 is a non-trivial additive character and P is a non-constant
(external) polynomial. We conclude that aF1(t) + bF2(t) must be constant,
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and it is then an easy matter to write P in the desired form for Theorem
21(i).

Now we suppose that we are in the case when P has multiplicative struc-
ture (8.2). Arguing as in the additive case, we then can find a nonstandard
subset A ⊂ F obeying (8.3) and

|F1(A) · F2(A)|≪ |F|1/2|A|1/2.
Again, we may assume that Q,F1, F2 are non-constant. By removing a
bounded number of elements from A, we may also assume that 0 6∈ F1(A),
F2(A), thus F1(A)F2(A) take values inside the multiplicative group F× :=
F\{0}.

We now run the same Fourier analytic argument used in the additive
case, but with the underlying abelian group used for Fourier analysis being

the multiplicative group F× rather than the additive group F. Let F̂×

be the space of nonstandard (multiplicative) characters on F, that is to
say the nonstandard homomorphisms ψ : F× → ∗S1 from F× (viewed as a
multiplicative group) to the unit circle. By repeating the previous arguments
with the obvious changes, we conclude that

(8.9) |
∑
t∈F

ψ1(F1(t))ψ2(F2(t))|≫ |F|1/2

for an unbounded number of pairs (ψ1, ψ2) ∈ F̂× × F̂×.
We factor F1, F2 as

F1 = c1P
a1
1 . . . P arr , F2 = c2P

b1
1 . . . P brr

where c1, c2 ∈ F×, P1, . . . , Pr are a bounded number of distinct monic ir-
reducible polynomials, and a1, . . . , ar, b1, . . . , br are standard natural num-
bers. If (a1, . . . , ar) and (b1, . . . , br) are linearly dependent, then P can be
expressed in the desired form for Theorem 21(ii), so suppose that these vec-
tors are linearly independent. We can rewrite the left-hand side of (8.9)
as

|
∑
t∈F

r∏
i=1

ψai1 ψ
bi
2 (Pi(t))|.

By the Weil bound for multiplicative characters (see e.g. [70, Corollary 2.3]),
and the fact that P1, . . . , Pr are distinct monic irreducible polynomials, this
expression is O(|F|1/2) unless ψai1 ψ

bi
2 is trivial for all i = 1, . . . , r. But as

(a1, . . . , ar) and (b1, . . . , br) are linearly independent, this can only occur
if ψ1, ψ2 both have order at most C, for some standard C. On the other
hand, the multiplicative group F×q of a finite field of order q is isomorphic

as a group to the cyclic group Z/(q − 1)Z, and so the dual group F̂×q also
is isomorphic to this group. In particular, for any k, there are at most k

characters in F̂×q of order k. Applying  Los’s theorem, we conclude the same

statement holds for F̂. Thus there are only a bounded number of pairs
(ψ1, ψ2) for which (8.9) holds, giving the desired contradiction.
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9. The second algebraic constraint

We are now ready to establish Theorem 22 (and thus Theorem 3). Sup-
pose for contradiction that we can find F, P which obey the hypotheses of
this theorem, but do not obey any of the four conclusions (i)-(iv). Apply-
ing Theorem 40 and Theorem 45, we see that the only possibility is that
there exist geometrically irreducible one-dimensional quasiprojective vari-
eties V ′,W ′, U ′ defined over F and dominant regular maps f : V ′ → F,
g : W ′ → F, h : U ′ → F defined over F such that the variety

(9.1) {(v′, w′, u′) ∈ V ′ ×W ′ × U ′ | P (f(v′), g(w′)) = h(u′)}

is not irreducible. As F has characteristic zero, the curves U ′, V ′,W ′ are
generically smooth, so by removing a finite number of points from each curve
we may assume that U ′, V ′,W ′ are smooth curves.

Note that if P only depends on the first variable (thus P (x, y) = Q(x) for
some polynomial x) then we have either conclusion (i) or (ii) of Theorem
22, so we may assume that P does not depend purely on the first variable.
Similarly, we may assume that P does not depend purely on the second
variable. In particular, P is non-constant and thus dominant.

We now claim that the varieties

(9.2) {(v′, w′) ∈ V ′ ×W ′ | P (f(v′), g(w′)) = t}

are reducible for generic t ∈ F. Indeed, suppose this were not the case;
then (as the set of c for which (9.2) is reducible is constructible) this implies
that (9.2) is irreducible for generic t ∈ F. Now consider an irreducible
component of the variety (9.1). This can be viewed as the relative product
of the varieties

(9.3) {(v′, w′, t) ∈ V ′ ×W ′ × F | P (f(v′), g(w′)) = t}

and

(9.4) {(u, t) ∈ U × F | h(u′) = t}

over F. As discussed previously, the generic fibres of the first factor (9.3) of
this relative product are irreducible. Hence, any irreducible component of
this relative product must be generically equal to a relative product of (9.3)
with an irreducible component of (9.4). But (9.4) is isomorphic to U and is
thus already irreducible, so that (9.1) is irreducible, a contradiction. Thus
(9.2) is generically reducible.

We may rephrase the previous conclusion in the language of linear systems
as the assertion that the linear system ((v′, w′) 7→ P (f(v′), g(w′)) − t)t∈F
on V ′ × W ′ is reducible. We also observe that this system has no fixed
components, as the varieties (9.2) are disjoint as t varies. We may then
apply (the generalisation of) Bertini’s second theorem (see e.g. [43, Theorem
(5.3)]) to conclude that this system is composite with a pencil, which means
that there is a regular map Q : (V ′ ×W ′\Σ) → C from a dense subvariety
(V ′×W ′)\Σ of V ′×W ′ into an irreducible algebraic curve U ′ and a regular
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map h : U ′ → F of degree d ≥ 2 (in the sense that the fibres k−1({t})
generically have cardinality d) such that

(9.5) P (f(v′), g(w′)) = h(Q(v′, w′))

for generic (v′, w′) ∈ V ′ ×W ′. (Indeed, one can simply take C to be the
curve given by the Chow coordinates of the irreducible components of generic
fibres (9.2), with the obvious generically defined maps Q, h.) Note that as
P, f, g are dominant, the maps h,Q must also be dominant.

We now begin transferring the base field F to the complex field C in
order to use the theory of Riemann surfaces. As in Section 7, we may find
an algebraically closed subfield k of F of finite transcendence degree over Q
such that all the varieties U ′, V ′,W ′,Σ and regular maps P, f, g, h,Q used
above are defined over k, and then embed k into the complex field C, so that
all these varieties can also be viewed as complex varieties (with the regular
maps being complex analytic maps).

Henceforth we will work over the complex field. We will exploit the well-
known fact (see e.g. [36, Corollary 6.10]) that any smooth quasiprojective
algebraic curve over an algebraically closed field k is isomorphic to an open
dense subset of a smooth projective algebraic curve over k, or that is to say
a projective algebraic curve with a finite number of points deleted. Further-
more (see e.g. [36, Proposition 6.8]), any regular map from an open dense
subset of a projective algebraic curve C to a projective variety V can be
uniquely completed to a regular map from C to W . As such, we can view
the algebraic curves U ′, V ′,W ′ in the above discussion as open dense subsets
of smooth projective curves Ũ , Ṽ , W̃ respectively, and we can also view C
as an open dense subset of the projective line P1(C). We can thus complete
the regular maps f : V ′ → C, g : W ′ → C, h : U ′ → C to regular maps
f̃ : V → P1, g̃ : W → P1, h̃ : Ũ → P1(C). Unfortunately, the regular maps
P,Q, being defined on the product of curves rather than on a single curve,
do not automatically extend to the projective completion. However, we may
obtain a regular extension Q̃ : (Ṽ × W̃ )\Σ → Ũ of Q defined outside of a

finite subset Σ of Ṽ × W̃ as follows. Take the graph

{(v, w,Q(v, w)) : v ∈ V,w ∈W,Q(v, w) well defined} ⊂ Ṽ × W̃ × Ũ
which is an irreducible constructible set by Proposition 12. Its closure S is
then an irreducible projective variety22 of dimension two. Projecting S back
down to Ṽ ×W̃ , we see that outside of a subset ∆ of S of dimension at most
one, this projection has zero-dimensional (hence finite) fibres, with the fibres
being at least one-dimensional on ∆. In particular, the projection Σ of ∆ to
Ṽ × W̃ is finite. Outside of Σ, the fibres are finite and generically a single
point; a local connectedness argument (using the fact that every point in

Ṽ × W̃ contains arbitrarily small neighbourhoods which are connected even
when one removes those points in which Q is undefined) then shows that the

22Here we use the fact that the product of projective varieties is (up to isomorphism)
again projective, see e.g. [51, Lemma I.6.3].



86 TERENCE TAO

fibres are a single point everywhere in Ṽ ×W̃\Σ, and so S is a graph of some

function Q̃ : Ṽ × W̃\Σ→ C. This implies that the projection from S\Σ to

Ṽ × W̃\∆ has degree one (because the generic fibre has cardinality equal
to the degree in characteristic zero, see e.g. [33, Proposition 7.16]), thus

k(S\Σ) is isomorphic to k(Ṽ × W̃\∆). As the variety Ṽ × W̃\∆ is smooth,
it is normal (see e.g. [58, Theorem II.5.1]) and so k[S\Σ] is isomorphic to

k[Ṽ ×W̃\∆]. Thus the map (v, w) 7→ (v, w,Q(v, w)) is regular on Ṽ ×W̃\Σ,

and so Q̃ is regular on this domain as well.
Similarly, we have a regular extension P̃ : (P1(C) × P1(C))\Λ → P1(k)

defined outside of a finite subset Λ of P1(C) × P1(C). By enlarging Σ if
necessary, we may assume that (f(v), g(w)) 6∈ Λ whenever (v, w) 6∈ Σ. Using
these regular extensions and (9.5), we see that

(9.6) P̃ (f̃(v), g̃(w)) = h̃(Q̃(v, w))

for all (v, w) ∈ (Ṽ × W̃ )\Σ.

The smooth projective curves Ṽ , W̃ , Ũ , when viewed over C, become com-
pact Riemann surfaces, and thus each have a well-defined genus, which is
a natural number; see e.g. [27]. We now split into several cases depending

on the genera gṼ , gW̃ , gŨ of the curves Ṽ , W̃ , Ũ (viewed as curves over C).
The high genus cases will be relatively easy to eliminate, by using existing
theorems in the literature that limit the number of regular maps available
between high genus Riemann surfaces, and once we reduce to the case when
Ũ has genus zero, we will be able to conclude the final option (iii) of Theo-
rem 22, after some normalisation. Unfortunately, we were not able to argue
to similarly reduce the genus of Ṽ or W̃ to zero, which is why Theorem
22(iii) still makes reference to curves of arbitrary genus.

We turn to the details. First suppose that gŨ ≥ 2 and gṼ < 2. In this
case, we use the Riemann-Hurwitz formula (see [27, p. 219]), which among
other things implies that there does not exist a non-constant regular map
from a Riemann surface of genus g to a Riemann surface of genus g′ whenever
g < g′. We conclude that the map (v, w) 7→ Q̃(v, w) is constant in v for all

w (outside of Σ, of course), which implies by (9.5) and the dominance of f̃ , g̃
that P (v, w) is a function of w only, contradicting our previous hypothesis
about P .

Now suppose that gŨ ≥ 2 and gṼ ≥ 2. For this case, we use a classical
theorem of de Franchis [19], that asserts that when two Riemann surfaces

Ũ , Ṽ have genus at least two, then there are only finitely many non-constant
regular maps h1, . . . , hn from Ṽ to Ũ . For each i = 1, . . . , n, the set of w ∈ W̃
such that Q̃(v, w) = hi(v) for all v ∈ Ṽ for which Q̃(v, w) is well-defined

is a closed subset of W̃ , as is the set of w ∈ W̃ for which v 7→ Q̃(v, w) is

constant. As these sets cover W̃ , we conclude that Q̃ is either constant in v
or constant in w (outside of Σ), which implies that P is constant in either
v or w, leading to a contradiction as before.
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Now suppose that gŨ = 1 and gṼ ≥ 2. Here we can use a variant of the
de Franchis theorem, namely the theorem of Tamme [65] that for any fixed

degree d, there are only finitely many non-constant regular maps from Ṽ to
Ũ of degree at most d. The maps v 7→ Q̃(v, w) can easily be seen to have
uniformly bounded degree if they are non-constant, and so by repeating the
previous argument we again obtain a contradiction.

If gŨ = 1 and gṼ = 0, then we can again use the Riemann-Hurwitz

formula to show that there are no non-constant regular maps from Ṽ to Ũ ,
and we can argue as before to reach a contradiction.

If gŨ = 1, then the previous arguments (together with their counterparts

when Ṽ and W̃ are switched) handle all cases except when gṼ = gW̃ = 1;

thus Ũ , Ṽ , W̃ can all be viewed as elliptic curves (after arbitrarily designating

one point on each of Ũ , Ṽ , W̃ as the origin). It is a classical fact (see e.g.
[27, p. 238]) that every elliptic curve over C has the structure of a complex
abelian group, and specifically to a torus C/Γ for some discrete lattice Γ of C.

We can thus form the identifications Ũ ≡ C/ΓŨ , Ṽ ≡ C/ΓṼ , W̃ ≡ C/ΓW̃
on the level of Riemann surfaces (and complex abelian groups) for some
lattices ΓŨ ,ΓṼ ,ΓW̃ . It is then known (see [36, Lemma 4.9]) that any regular

map from Ṽ to Ũ corresponds to a map from C/ΓṼ to C/ΓŨ of the form
z 7→ z0+mz, where z0 ∈ C and m is a complex number such that mΓṼ ⊂ ΓŨ .
In particular, m is constrained to a discrete subgroup of C (the rank of which

depends on whether Ũ , Ṽ are isogenous, and whether they have complex
multiplication). For each suchm, the set of w ∈ W̃ for which (the completion

of) the map v 7→ Q̃(v, w) corresponds to a map of the form z 7→ z0 + mz

for some complex number z0 is a Zariski closed subset of W̃ (this follows
from the fact that the group operations on an elliptic curve are given by a
regular map), and is thus either finite or all of W̃ . As W̃ is uncountable
(when viewed over the complex numbers), we conclude that there is a single

m for which the above statement holds for all w ∈ W̃ . In particular, this
implies that Q̃(v, w) takes the form

(9.7) Q̃(v, w) = R(v)⊕Ũ S(w)

on the domain of definition of Q̃, where R : Ṽ → Ũ corresponds to the map
z 7→ mz, and S : W̃ → Ũ is a map (which is necessarily regular, since Q̃ and
R are regular). Again, we may assume that R,S are non-constant (hence
dominant), as otherwise P depends only on one of v, w, contradicting our
preceding hypothesis.

At this point we could use Theorem 45 to conclude, but we instead give
the following more direct argument. We start using the hypothesis that
P̃ : P1(C) × P1(C) → P1(C) is not just a regular map, but is in fact (the

completion of) a polynomial, which implies that P̃ (x, y) =∞ can only occur
if x =∞ or y =∞. Combining this with (9.6) and (9.7), we conclude that

R(v)⊕ŨS(w) ∈ h̃−1({∞}) can only occur if v ∈ f̃−1({∞}) or w ∈ g̃−1({∞}).
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As h̃, f̃ , g̃, R, S are dominant, we thus conclude that there are finite subsets
A,B of Ũ such that the only pairs (a, b) ∈ Ũ × Ũ with a⊕Ũ b ∈ h̃

−1({∞})
are those with a ∈ A or b ∈ B. But as Ũ is an infinite group, this is only
possible of h̃−1({∞}) is empty. But h̃ : Ũ → P1(C) is a projective morphism,

hence has Zariski closed image (see e.g. [58, Theorem I.5.2]); since h̃ is
non-constant, it is therefore surjective, a contradiction. This concludes the
treatment of the gŨ = 1 case.

The only remaining cases are when gŨ = 0, thus Ũ is isomorphic to P1(C)
(see [36, Example 1.3.5]), and so without loss of generality we can take

Ũ = P1(C). In particular, Q̃ : (Ṽ × W̃ )\Σ→ P1(C) and h̃ : P1(C)→ P1(C)
are now meromorphic functions on Riemann surfaces.

As h̃ is a non-constant meromorphic function, h̃−1({∞}) must contain at

least one point. Suppose first that h̃−1({∞}) contains at least two points,
which after a Möbius transformation we may normalise to be 0 and ∞.
From (9.6) we see that if (v, w) ∈ (Ṽ × W̃ )\Σ is such that Q̃(v, w) = 0 or

Q̃(v, w) =∞, then either g̃(w) =∞ or f̃(v) =∞. Thus, for all but finitely

many w, the meromorphic function that is (the completion of) v 7→ Q̃(v, w)

has all of its zeroes and poles in f̃−1({∞}). The order of these zeroes and
poles is easily seen to be bounded, so there are only finitely many possibilities
for the divisor of v 7→ Q̃(v, w) (the formal sum of the zeroes, minus the
poles). The set of w for which a given divisor occurs is a constructible subset

of W̃ , so there must exist one divisor D which is attained for all but finitely
many w. By Liouville’s theorem, any two meromorphic functions with the
same divisor must differ by a multiplicative constant, so we conclude that
Q̃(v, w) = R(v)S(w) for all but finitely many v ∈ Ṽ , all but finitely many

w̃ ∈W , and some meromorphic functions R : Ṽ → P1(C), S : W̃ → P1(C).
As before, we could use Theorem 45 to conclude at this point, but we

will again give a more direct argument. Now let v, v′ ∈ Ṽ be such that
f̃(v) = f̃(v′). Excluding finitely many exceptional pairs (v, v′) (including
those for which one of R(v), R(v′) is zero or infinite), we conclude from the
above discussion and (9.6) that

h̃(R(v)S(w)) = h̃(R(v′)S(w))

for all but finitely many w; as S is dominant, this implies that

h̃((R(v)/R(v′))z) = h̃(z)

for all but finitely many z ∈ C, and hence for all z ∈ C. Consider the group
G of complex numbers u such that h̃(uz) = h̃(z) for all z ∈ C. As h̃ is
non-constant, this is a finite subgroup of C× and is thus the N th roots of
unity for some natural number N . Then we may write h̃(z) = h̃′(zN ) for

some regular map h̃′ : P1(C)→ P1(C), so by replacing h̃ with h̃′ and Q with
QN if necessary we may assume that N = 1. (Note that this cannot reduce

the degree of h̃ to less than 2, since h̃ will still map both 0 and ∞ to ∞.)

We conclude that for all but finitely many pairs (v, v′), f̃(v) = f̃(v′) implies
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R(v) = R(v′). Thus the irreducible projective variety {(f̃(v), R(v)) | v ∈
P1(C)} is a graph outside of a finite set of a function from P1(C)→ P1(C);
this function is continuous, generically holomorphic and blows up at most
polynomially at any point, and is thus rational, so that R = Y ◦ f̃ for
some rational function Y : P1(C) → P1(C). Similarly we may assume that
S = Z ◦ g̃ for some rational Z : P1(C) → P1(C). But then from (9.6) and

the dominance of f̃ , g̃ we conclude that

P (x, y) = h̃(Y (x)Z(y))

for all but finitely many pairs (x, y) ∈ C2. Since h−1({∞}) contains 0, ∞,
we see that Y, Z cannot have any poles or zeroes on C and are thus constant,
contradicting the non-constant nature of P .

The only remaining case is when h−1({∞}) consists of a single point,
which we may normalise to be ∞. Then the meromorphic function h maps
C to C and is thus a polynomial. We have now almost reached the conclusion
in Theorem 22(iii), with the main thing missing being that the curves Ṽ , W̃
are not yet affine, and the maps f, g,Q are not yet polynomials. To address
this, we use a variant of the argument that treated the case when h̃−1({∞}
contained more than one point. Namely, we observe from (9.6) that for all

but finitely many w ∈ W̃ , the function v 7→ Q̃(v, w) is defined on all of Ṽ ,

and is finite outside of f̃−1({∞}). This function is a meromorphic function

on Ṽ of bounded degree. Applying the Riemann-Roch23 theorem (see [27,
p. 245]), we conclude that there is a finite-dimensional vector space S (over

C) of meromorphic functions that only have poles at f̃−1({∞}), such that

the functions v 7→ Q̃(v, w) lie in S for all but finitely many w ∈ W̃ . Letting

e1, . . . , en : Ṽ \f̃−1({∞})→ C be a basis for this vector space, we thus have
a representation of the form

(9.8) Q̃(v, w) =
n∑
i=1

Zi(w)ei(v)

for all but finitely many w, and all v ∈ Ṽ \f̃−1({∞}). As Q̃ is a regular map
and the ei are linearly independent, we conclude that Zi are regular maps
from W (with finitely many points deleted) to C and are thus meromorphic.

From (9.6), we see that for all but finitely many v, we have w 7→ Q̃(v, w)

defined on all of W̃ , and finite outside of g̃−1({∞}). From this, (9.8), and
the linear independence of the ei we see that the Zi are finite outside of
Q̃(v, w). Also one can easily verify that the Zi have bounded degree. Ap-
plying the Riemann-Roch theorem, we can find a linearly independent set
of regular maps e′1, . . . , e

′
m : W̃\g̃−1({∞})→ C, such that each Zi is a linear

23One does not need the full power of the Riemann-Roch theorem here; the finite
dimensionality of this space can also be established from Laurent expansion at each pole
together with Liouville’s theorem.
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combination of the e′j , thus we have

(9.9) Q̃(v, w) =

n∑
i=1

m∑
j=1

cijei(v)e′j(w)

for all v outside of a finite subset of Ṽ , and all w outside of a finite subset
of W̃ , and some complex coefficients cij .

Now let V ⊂ C1+n,W ⊂ C1+m be the sets

V := {(f(v), e1(v), . . . , en(v)) | v ∈ Ṽ \f̃−1({∞})}
and

W := {(g(v), e′1(w), . . . , e′m(w)) | w ∈ W̃\g̃−1({∞})}.
These are the irreducible projective curves {(f(v), e1(v), . . . , en(v)) | v ∈ Ṽ },
{(g(w), e′1(w), . . . , e′m(w)) | w ∈ W̃} with a finite number of points deleted,
and so are irreducible quasiprojective curves. If we define the polynomial
maps f ′ : C1+n → C, g′ : C1+m → C, Q′ : C1+n × C1+m → C by

f ′(z0, z1, . . . , zn) := z0

g′(w0, w1, . . . , wm) := w0

Q′((z0, . . . , zn), (w0, . . . , wm)) :=
n∑
i=1

m∑
j=1

cijziwj

then f ′, g′ are non-constant on V,W , and we see from (9.5), (9.9) that

P (f ′(v), g′(w)) = j(Q′(v, w))

for all v outside of a finite subset of V , and all w outside of a finite subset
of W . As all functions involved here are polynomials, we may pass to the
affine Zariski closures V ⊂ C1+n, W ⊂ C1+m, which are affine irreducible
curves, and conclude that the above identity in fact holds for all v ∈ V and
w ∈ W . This gives Theorem 22(iii) except for the fact that all polynomials
and curves here are defined over C rather than k; but as P was already
defined over k, we may use the nullstellensatz (or the Lefschetz principle)
as in the proof of Theorem 41 to locate a choice of V ,W, f ′, g′, Q′ obeying
the above properties and also defined over the algebraically closed subfield
k of C. This (finally!) concludes the proof of Theorem 22.

A. The étale fundamental group

Throughout this appendix, k is an algebraically closed field of character-
istic zero. (Some portion of the discussion below can be generalised to the
positive characteristic setting, but several additional technical complications
arise in that case which we do not wish to discuss here.)

Given any smooth irreducible variety W over k, and a point p in W ,
one can define an étale fundamental group π1(W,p) of W at p. The precise
construction of this group is not particularly relevant for this discussion, but
one can for instance define π1(W,p) as the group of automorphisms of the
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fibre functor φ 7→ φ−1({p}) that maps finite étale covers24 φ : V →W of W
to their fibre φ−1({p}) (and is thus a functor from the category of finite étale
covers of W to the category of sets). See [30, Chapter V] or [63, Chapter 5]
for details of this construction. (One can also define the étale fundamental
group for more general connected, locally noetherian schemes, but we will
not need this additional level of generality here.)

In this appendix, we will list some key properties of the étale fundamental
group that are well established in the literature (such as [30]), which we will
use as “black boxes”. Under the running hypothesis that k is algebraically
closed and has characteristic zero, these properties are largely analogous
to properties of the (profinite completion of the) topological fundamental
group of a complex variety. (The situation is more complicated in positive
characteristic, due to the existence of Artin-Schreier coverings, but we will
not need to deal with these difficulties here.)

An important property of the étale fundamental group for us will be
topological finite generation:

Proposition 46 (Topological finite generation). Let W be a smooth variety
over an algebraically closed field k of characteristic zero, and let p be a point
in W . Then étale fundamental group π1(W,p) is a profinite group which
is topologically finitely generated, that is to say there is a finitely generated
subgroup which is dense in the profinite topology.

Proof. The profiniteness of the étale fundamental group follows from con-
struction (see [30, §V.7] or [63, Theorem 5.4.2]). Topological finite genera-
tion is established in [28, Theorem II.2.3.1] (and can also be deduced from
Theorem 48 below). �

Given any finite étale covering φ : V → W of W by a smooth variety
V , the fibre φ−1({p}) is automatically a finite set, and by construction,
the fundamental group π1(W,p) acts on this set, thus each group element
g ∈ π1(W,p) will map a point v in φ−1({p}) to a point gv in φ−1({p}). This
action is natural in the following sense: if one has two finite étale coverings
φ : V →W and φ′ : V ′ →W and a regular map f : V → V ′ with φ = φ′ ◦ f ,
then the actions of π1(W,p) on φ−1({p}) and (φ′)−1({p}) are intertwined by
f in the sense that

gf(v) = f(gv)

for all g ∈ π1(W,p) and v ∈ φ−1({p}); see [30, §V.7] or [63, Theorem 5.4.2].
A particular consequence of importance to us occurs when one has two finite

24A minor technical point here: in the definition of the étale fundamental group of a
general locally connected Noetherian scheme, one needs to consider covers that are also
as general as a locally connected Noetherian scheme. However, it is known that any finite
étale cover of a quasiprojective variety is again a quasiprojective variety [29, Proposition
5.3.2], and so one can work entirely within the category of quasiprojective varieties here.
We thank Antoine Chambert-Loir for pointing out this subtlety.
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étale coverings φ1 : V1 →W , φ2 : V2 →W by smooth varieties V1, V2. Then
we may form the the fibre product φ1 ×W φ2 : V1 ×W V2 →W , where

V1 ×W V2 := {(v1, v2) ∈ V1 × V2 | φ1(v1) = φ2(v2)}
and

φ1 ×V φ2(v1, v2) = φ1(v1) = φ2(v2)

then φ1 ×W φ2 is easily seen to also be a finite étale covering, and the
action of π1(W,p) on the product fibre (φ1 ×W φ2)−1({p}) = φ−1

1 ({p}) ×
φ−1

2 ({p}) is the direct sum of the action of π1(W,p) on the individual fibres

φ−1
1 ({p}), φ−1

2 ({p}), thus

g(v1, v2) = (gv1, gv2)

for all g ∈ π1(W,p), v1 ∈ φ−1
1 ({p}), and v2 ∈ φ−1

2 ({p}).
Givne a finite étale covering φ : V →W by a smooth variety V , we can use

the étale fundamental group π1(W,p) to relate the connected components
of V with the fibre φ−1({p}) (and, for the purposes of this paper, this is
the main reason why need the étale fundamental group in the first place).
Indeed, V is connected if and only if the action of π1(W,p) on φ−1({p}) is
transitive (see [30, §V.7] or [63, Theorem 5.4.2]); from this and functoriality,
we see that in the more general case when V is not necessarily connected,
the orbits of π1(W,p) on φ−1({p}) are nothing more than the fibres over p
of the connected components of V .

Let W be a smooth irreducible variety, let U be a smooth irreducible
subvariety of W , and let p be a point in U . Then there is a canonical
homomorphism η from π1(U, p) to π1(W,p), which is compatible with the
actions of these groups on fibres in the following sense: if φ : V → W
is a finite étale covering of smooth varieties, and φ′ : φ−1(U) → U is the
restriction of φ to φ−1(U), then φ′ is also a finite étale covering, and one has

gv = η(g)v

for all g ∈ π1(U, p) and all v ∈ φ−1({p}) = (φ′)−1({p}); see [30, §V.7].

Lemma 47 (Insensitivity to high codimension sets). Let W be a smooth
irreducible variety, let S be a closed subvariety of W , and let p ∈W\S, and
let η : π1(W\S, p)→ π1(W,p) be the homomorphism described above.

• If S has codimension at least 1 in W , then η is surjective.
• If S has codimension at least 2 in W , then η is an isomorphism.

Proof. See [30, Corollary V.5.6] for the first part, and [30, Corollary X.3.3]
for the second part. (This second part can also be deduced from the Zariski-
Nagata purity theorem [31, Theorem X.3.4].) �

If W is a smooth irreducible variety over k, and p is a point in W , then
(because k has characteristic zero) one can find an algebraically closed sub-
field k′ of finite transcendence degree over Q over which W and p are still
defined (by taking the algebraic closure of the coefficients of the polynomi-
als that cut out W , as well as the coefficients of p). As such, there exists
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an embedding τ : k′ → C of the field k′ to the complex numbers C; note
that in general that this embedding will not be unique. Given such an em-
bedding τ , we can then define a complex variety τ(W ) by applying τ to
all the coefficients of the polynomials defining W . Similarly, by applying τ
to p we have a point τ(p) in τ(W ). As W was smooth, we see that τ(W )
is smooth and irreducible in the algebraic sense, which implies by the in-
verse function theorem that τ(W ) is smooth and connected in the analytic
sense. We can then form the ordinary (i.e, topological) fundamental group

πtop
1 (τ(W ), τ(p)). This group is, in general, not profinite; however, we can

form the profinite completion πtop
1 (τ(W ), τ(p))∧, defined as the Hausdorff

completion (i.e. inverse limit) of all the finite quotients of πtop
1 (τ(W ), τ(p)).

We have the following deep theorem:

Theorem 48 (Equivalence of étale and topological fundamental groups).
Let W be a smooth variety over an algebraically closed field of characteristic
zero, let p be a point in W , and let k′ be a field of finite transcendence
degree over Q, such that W and p are defined over k′. Let τ : k′ → C be an
embedding of the field k′ in C. Then there is a canonical identification

π1(W,p) ≡ πtop
1 (τ(W ), τ(p))∧

between the étale fundamental group π1(W,p) and the profinite completion

of the topological fundamental group πtop
1 (τ(W ), τ(p)). Furthermore one has

the following functorial property: if S is an closed subvariety of W defined
over k′ that has codimension at least 1 and avoids p, then the above identi-
fications intertwine the canonical homomorphism

π1(W\S, p)→ π1(W,p)

of étale fundamental groups described previously, and the profinite comple-
tion

πtop
1 (τ(W\S), τ(p))∧ → πtop

1 (τ(W ), τ(p))∧

of the obvious homomorphism from the topological fundamental group
πtop

1 (τ(W\S), τ(p)) to the topological fundamental group πtop
1 (τ(W ), τ(p)).

(It is easy to see that this profinite completion exists and is well defined).

Proof. The first part of the theorem is [30, Corollary XII.5.2], which fol-
lows directly from the Riemann existence theorem ([30, Theorem XII.5.1]),
which provides an equivalence of categories between finite analytic cover-
ing spaces of τ(W ) and finite étale coverings of W , with π(W,p) being
described completely by its action on fibres over p in the latter category,
and πtop

1 (τ(W ), τ(p))∧ by its action on fibres over τ(p) in the former cat-
egory. The second part of the theorem follows from the obvious fact that
these equivalences of categories for W and for W\S are intertwined by the
restriction maps from W to W\S. (More generally, one can replace the
inclusion map from W\S to W by other smooth maps, but we will not need
to do so here.) �
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Remark 49. Among other things, this shows that up to isomorphism, the
profinite completion of the topological fundamental group πtop

1 (τ(W ), τ(p))∧

is independent of τ . However, the topological fundamental group itself can
be sensitive to the choice of τ ; see [57].

We will use the above equivalence to establish the following result which
is crucial for our analysis:

Theorem 50 (Weak étale van Kampen theorem). Let W be a smooth va-
riety defined over an algebraically closed field of characteristic zero, and
let W1,W2 be closed subvarieties of W of strictly smaller dimension. Let
p be a point in W\(W1 ∪W2). By Lemma 47, we have canonical surjec-
tive homomorphisms from π1(W\(W1 ∪W2), p) to π1(W\W1) and π1(W ∩
W2), as well as canonical surjective homomorphisms from π1(W\W1, p) and
π1(W\W2, p) to π1(W ). Then π1(W\(W1 ∪W2), p) surjects onto the fibre
product π1(W\W1, p)⊕π1(W,p) π1(W\W2, p).

Proof. By Lemma 47, we may remove W1 ∩W2 from W without affecting
any of the fundamental groups, so we may assume that W1 and W2 are
disjoint.

Let k′ be an algebraically closed field of finite transcendence degree over
Q, over which W,W1,W2, p are all defined, and let τ : k′ → C be an em-
bedding of fields. By Theorem 48, it suffices to show that G∧12 surjects
onto the fibre product G∧1 ×G∧ G∧2 , where G,G1, G2, G12 are the topological
fundamental groups

G := π1(τ(W ), τ(p))

G1 := π1(τ(W )\τ(W1), τ(p))

G2 := π1(τ(W )\τ(W2), τ(p))

G12 := π1(τ(W )\(τ(W1) ∪ τ(W2), τ(p)).

On the other hand, by the topological van Kampen theorem (see e.g. [37,
§1.2]), G12 can be canonically identified with the amalgamated free product
of G1 and G2 over G; in particular, G12 surjects onto G1 ×G G2, which
implies that the image of G∧12 in G∧1 ×G∧ G∧2 is dense in the relative product
of profinite topologies. On the other hand, as profinite groups are compact
Hausdorff with respect to the profinite topology, this image must also be
compact, and the surjectivity follows. �

Remark 51. Actually, the above theorem is valid in arbitrary characteristic,
and furthermore π1(W\(W1 ∪W2), p) is the coproduct (in the category of
profinite groups) of π1(W\W1, p) and π1(W\W2, p) over π1(W,p); see [74].
This result can also be deduced from [30, Theorem IX.5.1]; ultimately, it is
equivalent to the fact that finite étale covers over W\W1 and W\W2 which
are isomorphic on W\(W1∪W2) can be glued together to form a finite étale
cover of W if W1,W2 are disjoint. However, we will not need this stronger
version of the étale van Kampen theorem here.
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Marie - 1960-61 - Revêtements étales et groupe fondamental - (SGA 1) (Documents
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