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COLOURING ISONEMAL FABRICS WITH MORE THAN

TWO COLOURS BY THICK STRIPING

ROBERT S. D. THOMAS

Abstract. Perfect colouring of isonemal fabrics by thin and thick strip-
ing of warp and weft with more than two colours is introduced. Con-
ditions that prevent perfect colouring by striping are derived, and it
is shown that avoiding the preventing conditions is sufficient to allow
perfect colouring. Examples of thick striping in all possible species are
given.

1. Introduction

This paper intends to introduce the topic of weaving with more than two
colours into the mathematical literature, and to derive some initial general
results. The second section introduces weaving and striping, the third sec-
tion discusses colouring without restriction on the number of colours, the
fourth section considers restriction to the same finite number of colours in
both directions, the fifth section examines the example of thick striping with
three colours, and the last considers the same with four and six colours.

All depends on the perfectness of the fabric colouring. What has to be
arranged is that the colouring of the strands of the fabric be compatible
with the symmetry group of the fabric, so that every symmetry operation
of the underlying fabric’s topology is a coherent mapping of the colours of
the strands. The colours need not be preserved but may be permuted.

The first result (Lemma 3.1) shows what restrictions are needed for thick
striping with all stripes of different colours. No restrictions (Lemma 3.2)
allow perfect colouring by the assignment of different colours to all single
strands (thin striping) with all stripes of different colours. All sorts of fab-
rics (Theorem 3.3) can be perfectly coloured by thin striping or, with the
exception of fabrics in genus I or II, assignment of different colours to all
adjacent pairs of strands (thick striping). Section 4 considers only finitely
many colours and finds a couple of necessary conditions on the colour choice
for perfect colouring, which jointly are sufficient (Theorem 4.3). The colours
of the warps must be either the same as the colours of the wefts or they
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must all be different (Lemma 4.4). More detailed results state that in cer-
tain species of fabrics, it is possible to colour warps and wefts perfectly by
thick striping with an odd number of colours (Theorem 5.1), and in certain
species of fabrics, it is possible with an even number of colours (Theorem
6.1).

2. Background

Weaving was introduced into the mathematical literature by Grünbaum
and Shephard [4], and satins and twills are a good place to begin. First, a
fabric is a woven structure that is sufficiently coherent that it does not fall
apart. Without that constraint it is called a prefabric [7]. Basic definitions
are in [4] or as indicated. The weaving patterns of interest to mathematicians
so far have been those that Grünbaum and Shephard introduced: periodic
in the plane with strands perpendicular, and with symmetry groups G1

transitive on strands, making them isonemal. The symmetry groups to
which reference will be made here are the wallpaper groups G1 of [9], rather
than the full three-dimensional symmetry group G of the prefabric. Each
symmetry operation of G1 will be combined with a reflection in the plane E
of the fabric (or not), represented by τ . In the standard diagram, called the
design of a weaving pattern, the vertical strands, called warps, are coloured
dark and the horizontal strands, called wefts, are coloured pale so that the
visual appearance indicates which strand is over which in the places where
they cross. The places where they cross are all that is of interest, and so
they are taken to be square cells without boundary tessellating the plane,
infinite for convenience. So much is square here that the term “cell” was
introduced in [12]. The requirement of periodicity means that there are
fundamental blocks of the pattern whose translates cover the plane [11].
The requirement of transitivity of the symmetry group/isonemality of the
fabric means that every strip of cells (strand) can be transformed into every
other strip of cells, vertical or horizontal, by a symmetry operation, perhaps
with the reversal of dark and pale, effected by τ [9]. The standard colouring
of the strands of an isonemal weaving structure is a perfect colouring in
the standard sense that every symmetry operation preserves the colouring.
The definition of perfect colouring allows reversal of dark and pale; it needs
to preserve the colouring rather than the colours. The operation τ cannot
itself be a symmetry operation, although it is involved in many symmetry
operations (see next paragraph); reversing dark and pale it leaves nothing
invariant but undoes reversals produced by reflections, glide reflections, and
quarter-turns. I illustrate these ideas with a few examples.

The simplest examples are twills in which each line (vertical or horizontal)
of the pattern is formed from the line beside it by an offset of one cell. There
are two examples in Figure 1. It is obvious that parallel lines are the same,
and it is not hard to see that warps reflect to wefts. In those diagrams, as
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(a) (b)

Figure 1. Examples of twills to be used later: (a) 2/1 twill,
(b) 4/1 twill.

in Figure 2, the broad black lines indicate mirrors of that symmetry in per-
pendicular directions. Something to note about an oblique reflection is that
it reverses which strands are vertical and which are horizontal; so the design
as simply reflected has its colours reversed by the colouring convention (ver-
tical dark, horizontal pale). In order to restore the colours to the original, it
is necessary to reverse the colours again with τ . The broad dashed lines in
Figures 1 and 2 (four in each; four are very short) represent glide-reflections
that reverse warp and weft like mirrors and so must be combined with τ ;
so each dark diagonal band of Figures 1 and 2 is glide-reflected to the next
diagonal band. Obviously reflections and glide-reflections with horizontal or
vertical axes do not reverse warp and weft, but we have none of them in the
fabrics we are considering here.

What are in a way the second-simplest examples are satins, where there is
very little dark in the pattern (as in the twill examples of Figure 1, one cell
per one-dimensional period, called order [12]) but where the offset is greater
than one moving from strand to adjacent strand. The examples of Figure 2

(a) (b)

Figure 2. Rhombic satins: (a) The (8, 3) satin, (b) The
(15, 11) satin.



MULTICOLOURED ISONEMAL FABRICS BY THICK STRIPING 41

are rhombic satins because the dark cells are at the corners of rhombs that
are not square. The first example (Figure 2a) has offset to the left of three
from row to next row up and order 8, and the second (Figure 2b) has offset
four to the left and order 15. To make the fabric isonemal, the offset has to
be relatively prime to the order [4].

These examples have perpendicular mirrors and axes of glide-reflection
and so inevitably centres of half-turns where they intersect, represented
by diamonds that are hollow because they do not need τ to be symmetries.
There are a number of ways in which the four examples so far are anomalous.
Their lattice units, that is fundamental blocks whose vertices are images
of one another under symmetry translations [11], are all rhombs (outlined
in the figures), whereas most species of isonemal fabrics have rectangular
(Figure 3b) or square (Figure 3a) lattice units. And so far nothing has
had quarter-turn symmetries, and even some satins have that feature, the
so-called square satins where the dark cells are the corners of squares. For

(a) (b)

Figure 3. (a) The square (5, 3) satin with alternative G1

lattice units outlined, (b) Roth’s example of species 1m, a
twillin.

example, the satin of Figure 3a has offset 2 to the right ascending and order
5. The diagram illustrates two different square lattice units, one centred on
a dark cell, the other with dark-cell corners. It also illustrates centres of
quarter-turns that need τ to make them symmetries, represented by filled
square boxes [13]. In this diagram, as in Figures 1 and 2, thin lines outline
lattice units.

Now that you have seen the attractive pictures to which I have referred
and perhaps some others, I define some technical terms. The fabric designs
shown so far have as a symmetry translating a row to the adjacent row and
offsetting it by one (a twill) or more cells (a satin or, with more dark cells
as in Figure 3b, a twillin). Prefabrics with those symmetries are said to
be of genus I [5]. Genus II has translation to each adjacent row as for I
but combined with τ . These genera can overlap, as can the remaining three.
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Genus III has rotation to each adjacent row by a half-turn without τ . Genus
IV has rotation to each adjacent row by a half-turn with τ . Genus V has
rotation to the row adjacent in one direction by a half-turn without τ and
to the row adjacent in the opposite direction by a half-turn with τ . You
may notice that the overlap of these is illustrated by plain weave, that with
diagram a chess board, which lies in all five genera.

As the matter of genera illustrates, the symmetry of weaving patterns can
be rather complex. So much so that in the first few years of work on the
subject no one took the trouble to sort them out entirely. This was finally
done by Richard Roth [9], followed up by a paper [10] on the two-colouring of
the strands not necessarily according to the convention. Roth found that the
types of the symmetry groups could be represented well by the pair consisting
of the crystallographic type of the group G1 of all the symmetry operations
with or without reversal of dark and pale, and the crystallographic type
of the group H1 of the symmetry operations without reversal of dark and
pale. These pairs represent the types of groups, the latter group H1 being
the side-preserving subgroup of the full symmetry group G1. (In Figure 3,
the lattice units of H1 and of G1 coincide.) He writes the pair with the
types separated by a stroke as though it represented a factor group. When
the side-preserving subgroup is the whole group, he writes p4/− so that
p4/p4 means that the subgroup is of the same type p4 as the group but
is a proper subset. I’m not going to list them all but, for fabrics of order
more than four, there are 39 allowable combinations and so 39 Roth types
of symmetry groups of isonemal prefabrics (falling apart doesn’t matter to
symmetry). The 39 types can be divided into three broad categories. Types
1–10 have only parallel axes of symmetry (Figure 3b) [12]. Types 11–32 have
perpendicular axes of symmetry (Figures 1, 2, 4) [14], and types 33–39 have
no axes of symmetry but only quarter-turns and half-turns (Figures. 3a, 5,
10b) [13]. The reason for excluding prefabrics of order 2, 3, and 4 is that,
while there are only a few of them, they are mostly exceptions that don’t
fit into the general schemes. For instance, some of them have vertical and
horizontal axes of symmetry. Accordingly their symmetry groups are called
exceptional, and so I’ll be discussing what is not exceptional.

I have illustrated most of the possible symmetry operations and their
symbols in diagrams. It would be a good idea to finish, since the inter-
est in this material lies mainly in how attractive fabric designs often are.
The genus-I twillin 12-183-11 in Figure 3b illustrates axes of side-preserving
glide-reflection represented by hollow dashed lines. The reversal of dark and
pale in the glide-reflection is allowed to stand. Not illustrated is the other
of the two positions that glide-reflection axes can have. In Figure 3b they
pass through the centres and corners of cells, the position that a mirror

112-183-1 is the catalogue number of this fabric in the second catalogue of isonemal
fabrics [6]. The first catalogue [5] listed non-twill designs up to order 8 plus 13. Prefabrics
that fall apart were catalogued up to order 16 in [8].
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always has, but they can be differently situated in the only other possi-
ble position with respect to cells—through mid-sides, half way between the
other positions. Their position in Figure 3b is called mirror position [12].
The genus-II twillin of Figure 4 illustrates the point that side-reversing and

(a) (b)

Figure 4. (a) Design of a species-22 fabric of order 24 with
symmetry group partly displayed, (b) Thick striping with
three colours, obverse (and reverse).

side-preserving glide-reflections can be combined, and furthermore can be
combined with mirrors. It also illustrates the possibility of half-turns that
are not side-preserving. Their centres are represented by filled diamonds.
The term reverse indicates the side of the prefabric opposite to the arbi-
trarily chosen obverse side, but displayed as though a mirror were held up
behind the fabric. This device, which is not original, but used in Figures 185
and 186 of [3], allows one to see how cells are arranged on both sides sim-
ilarly oriented. You have seen in Figure 3a quarter-turns that required τ ,
but quarter-turns do not always require that. Roth’s example 10-55-2 in
Figure 5a, of genus III, illustrates quarter-turns without τ , so that the re-
versal of dark and pale attendant on a quarter-turn is allowed to stand.
Roth’s example 20-19437 in Figure 5b, of genus IV and V, illustrates that
the two sorts of quarter-turns can both appear in a symmetry group but
that, when they do, the half-turns at mid-sides of the square lattice units
are of the side-reversing type represented by the filled diamonds. Dashed
lines in Figure 5 will be explained next.

The last two examples illustrate the only other feature of the diagrams
that I need to mention. Square lattice units are highly constrained in their
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(a) (b)

Figure 5. (a) Roth’s example of species 333, 10-55-2 with
G1 outlined and lattice units of levels 1 and 2 dashed (Fig-
ure 11b of [13]), (b) Roth’s species-38 example 20-19437 (Fig-
ure 8 of [9]) with one lattice unit of G1 and of (larger) H1

outlined and lower-level lattice units dashed (Figure 12a of
[13]).

sizes. At what I call the first level, their sloping sides are the hypotenuses
of right triangles with horizontal and vertical sides odd and even and rel-
atively prime. The smaller dashed squares in Figure 5 are such level-one
lattice units with triangle of sides with length 1 and 2, but the fabrics do
not have level-one lattice units. Level-two lattice units are twice that size,
and also dashed in these diagrams; I draw them origami-style2 so that the
corners of the smaller are mid-sides of the next larger. The G1 lattice units
of these designs are at level three, twice the size of the level-two dashed
squares inside them. Level four is illustrated in Figure 5b, with the lattice
unit of the side-preserving subgroup, the outermost square. Figure 10b is a
design with a larger lattice unit at level four for its symmetry group; it is its
own side-preserving subgroup. In the side-preserving subgroup of 20-19437
(Figure 5b), because the filled diamonds and filled boxes of the symmetry
group, involving τ , cannot appear in the side-preserving subgroup, the dia-
monds simply disappear and the filled boxes at mid-sides should appear as
hollow diamonds, since the composition of two side-reversing quarter-turns
is a side-preserving half-turn. What’s left is the side-preserving quarter-
turns and the half-turns where the other quarter-turns used to be. The
lattice unit is bigger than that for G1. Finally in this discussion of lattice
units, the centre of a square lattice unit can be either at corners of cells as in
Figures 3a (upper) and 5, or at the centre of a cell, as in the lower example

2To take a square piece of paper and produce a square of half the area is a puzzle one
can use teaching geometry. The standard origami move is to determine the centre with
diagonal folds and then fold in the four corners to the centre.
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in Figure 3a. In the former case, lattice-unit levels can go only as far as
four, and in the latter case only as far as two [13].

Once one knows what the groups are, one knows the sizes of the lattice
units, and it’s a matter of filling in the blanks to determine all of the isonemal
fabrics with lattice units of any particular size. I found in [12], [14], and [13]
that I had to refine Roth’s taxonomy of groups somewhat to produce a
taxonomy of fabrics. So where he has types of group numbered from 1 to
39 with many inclusions—groups that are subgroups of other groups, I have
species and subspecies of prefabrics that do not overlap numbered 1m, 1o,
1e, 2m, 2o, 2e, 3, 4o, 4e, 5o, 5e, 6, . . . , 353, 354, 361, 362, 36s, 37, 38, 39,
where the group of a prefabric of species nx is of type n, and x indicates a
disjoint subdivision, if any. For example, 1m indicates that glide-reflection
axes are in mirror position as in Figure 3b, whereas 1o and 1e, while different
from each other, both have axes not in mirror position. Numerical subscripts
indicate levels of square lattice units, and s indicates a subset of the level-two
designs containing, inter alia, the square satins of even order. The square
satins of odd order (Figure 3a) fall in subspecies 361.

Before the weaving of cubes was considered in [13], and their 2-colouring in
[16], the analogous weaving of tori should have been mentioned. A standard
weaving design is a 2-colour tessellation of the plane, and such a 2-colour
tessellation can be interpreted as a weaving design for a flat torus in several
ways, although not arbitrarily. The locus classicus of flat torus tessellation
is [2], building on [1]. It makes no sense to identify as opposite sides of the
map to the torus what is not identical in the planar design. For a design of
order n, the simplest thing to do is to use an n-by-n square of cells as the
2-dimensional period parallelogram and map it to the torus. For example,
a quarter of Figure 1a. There are then n strands in the vertical and the
horizontal directions; isonemality makes sense and is preserved. If an n-
by-2n rectangle of cells were used, opposite sides could be identified, but
horizontal and vertical strands could not be interchanged by an isometry.
On the other hand, an mn-by-mn square would do as well as making m = 1.
An example with m = 2 is the whole of Figure 1a. Perhaps more interesting
is to use an H1 lattice unit as the period parallelogram or, when it is a
rhomb, the rectangle containing it as within Figure 1a. The number of
strands in each direction, now oblique, will be reduced by the identification;
to a single strand in the case of Figure 1a. The reduction in the number of
strands occurred also in the weaving of cubes in [13], where a design of order
10 required only 6 strands to weave the cube using an oblique G1 lattice unit
for each face, and the order-20 design of Figure 16b required only 8 strands.
The latter design (topological, not visual) is used in Figures 14 and 15 of
[16] to 2-colour a woven cube. This is not the place to discuss what the
definition of an isonemal weaving of a torus or Klein bottle should be.
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3. Unlimited colours

The visual appearance of a coloured fabric from the obverse side I refer
to as a pattern. Such a pattern, when it consists of an array of dark and
pale congruent cells tessellating the plane, is given a topological meaning;
the design of a fabric. As we shall be considering patterns different from
the design of a fabric, the distinction is important; a design is the pattern
of a fabric that is normally coloured. So a two-colour pattern can be in-
terpreted as a design or not. A normal colouring has a consequence that
other colourings of the strands need not have. Because at every point not
on the boundary of a strand the two strands preferentially ranked are of two
different colours, a design’s colour complement (switching dark and pale) is
the appearance of the fabric from behind, its reverse, as though viewed from
the obverse side in a mirror set up behind E, the plane of the fabric. When
a fabric is coloured normally, the reverse pattern is the colour complement
of the obverse pattern.

To this point, colours (dark and pale) have been used for their topological
meaning. They are now going to be used more generally. I adopt a device
due to Roth, to indicate, when not obvious, how strands are coloured, thinly
in Figure 6 and thickly in Figure 7.

(a) (b) (c)

Figure 6. (a) Design of plain weave and one choice of
colours for a thin striping, (b) Obverse view of colouring (a),
(c) Reverse view of colouring (a).

A symmetry operation of a fabric with coloured strands is called a colour
symmetry [10] “if it permutes the colors consistently”. All the strands of one
colour must be mapped either to strands of that colour or to strands of some
other colour, and correspondingly the strands of each colour. If all of the
weave symmetries of a fabric with coloured strands are colour symmetries,
then the choice of the strand colours is said to be perfect or symmetric,
where I shall use exclusively the former term. The interaction of design and
pattern is important because the weave symmetry group is that of the fabric
represented by the two-colour pattern that is its design, but the permutation
(identity or other) of colours occurs only in the pattern that represents the
colouring of the strands, identical to the design only with normal colouring
of the strands. There is potential for confusion, especially when colouring
with two colours.

Perfect colouring with two colours is one subject of Roth’s second weaving
paper [10]. The so-called normal colouring that produces designs of woven
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 7. Plain weave doubled. (a) Colouring by thick
striping to preserve the blocks of four, (b) Obverse view,
(c) Reverse view. (d) A second colouring by thick striping,
(e) Obverse view, (f) Reverse view. (g) A third colouring by
thick striping, (h) Obverse view, (i) Reverse view.

fabrics is a perfect colouring. When one seeks other perfect two-colourings
[8], one finds that one can colour the strands only alternately in both direc-
tions in the two colours or one can colour the strands in adjacent pairs in
both directions in the two colours. These are called thin and thick striping
of the warp and weft. In his paper Roth determines which fabrics—actually
prefabrics—can be perfectly coloured by striping warp and weft with two
colours but not in terms of his taxonomy. It has been done in those terms
and some further results deduced in [15] and [16]. This paper is intended to
extend that determination to colouring with more than two colours.

Thin stripes overlap in individual cells—all cells—of the fabric, but thick
stripes overlap in square blocks of four cells, which will be referred to as
blocks. The natural unit of measurement in the fabric is the side of a cell,
in which the diagonal of the square cells have the length

√
2, which will be

abbreviated δ. We begin by exploring thick striping without limiting the
number of colours.
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Lemma 3.1. The assignment of all different colours to a thick striping of a
non-exceptional isonemal fabric is a perfect colouring of the fabric provided
that the thick stripes are preserved by the symmetries of the fabric, i.e. that

(1) components of translations, both horizontal x and vertical y are even
in cell widths,

(2) centres of quarter-turns are confined to corners and centres of blocks,
(3) centres of half-turns are confined to corners of cells,
(4) diagonal glide-reflections have either

(a) axes through block centres and glides an even number of δs long,
or

(b) axes through the centres of cells but not through block centres
and glides an odd number of δs long,

(5) diagonal axes of reflection pass through block centres.

Proof. The restrictions on the symmetries of the fabric are just those that
preserve the configuration of blocks. Since all of the stripes have different
colours, any symmetry operation that preserves the blocks will be a colour
symmetry. Colour simply does not enter into consideration beyond defining
the blocks. �

The restrictions of Lemma 3.1 are an easing of the restrictions for thick
striping with two colours because with duplication of warp and weft colours
there are redundant blocks where stripes of the same colour cross. Perfect
two-colouring requires not only the preservation of the configuration of the
blocks but the preservation of the configuration of redundant blocks, which
form a checkerboard with their complement, the irredundant blocks.

Specifically, the additional restrictions for 2-colourings rule out operations
that exactly interchange the redundant and the irredundant blocks:

(1) the even x and y must not be congruent to 0 and 2 or 2 and 0 (mod
4),

(2) centres of half-turns must not be at mid-sides of blocks,
(3) centres of quarter-turns must not be at corners of blocks,
(4) diagonal glide-reflection axes must not miss block centres ((4a) of

Lemma 3.1 is allowed, while (4b) is not).

There are no further restriction on mirrors.
Even for arbitrarily many colours, the translation constraint immediately

eliminates strand-to-adjacent-strand translations (genera I and II), taking
with them species 1–10, 12, 14, 16, 18, 20, 23, 24, 26, 28, 31, 32, 34, 36, and
39. Call this the twillin ban. On the other hand, we know from [16] that
fabrics of species 17, 19, 21, 25, 27, 29, 33, 35, and 37 can be thickly striped
with only two colours, a more tightly constrained task. We need to examine
only species 11, 13, 15, 22, 30, and 38 to see which can have strands striped
thickly if the number of colours is unrestricted.

In order to ignore differences that do not make a difference, it is neces-
sary to introduce a new group that ignores reflections τ in the plane of the
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fabric. Every element of a symmetry group is of the form (t, r), where t is
a transformation in the plane and r is either τ or the corresponding iden-
tity e. For the present purpose we need the projection G1 → G2 onto the
group G2 consisting of elements of the form (t, e) for all (t, r) ∈ G1 whether
r = τ or r = e. H1 is quite different for some fabrics, being the subgroup of
elements of G1 that are of that form; when H1 = G1, G2 is also G1. When
H1 differs from G1, it will also differ from G2 since each element of G1 not
in H1 will appear in G2 stripped of its τ . In the example of Figure 1a, the
reflections and glide-reflections, including τ as they do, are omitted from
H1 and so appear differently in G2, where they are side-reversing reflections
and glide-reflections rather than side-preserving.

Species 11, 13, and 15 with perpendicular glide-reflection axes differ only
in the use of τ , the reflection in the plane E, not within the side-preserving
G2; so they can be discussed together. Subspecies 11o, 13o, and 15o have
all of their glides odd and present no difficulty in positioning glide-reflection
axes with respect to the blocks. An example of a perfect colouring of Roth’s
example 12-111-2 of subspecies 11o with three colours (a more constrained
task than with all stripes different colours) is shown in Figure 8.

(a) (b) (c)

Figure 8. (a) 12-111-2 of subspecies 11o, (b) Thickly striped
with 3 colours, obverse, (c) Reverse.

Species 22 has odd glides perpendicular to its mirrors. The glide-reflection
axes must, by 4b of Lemma 3.1, not pass through block centres, and so the
centres of half-turns, lying on the glide-reflection axes, must fall at mid-sides
of blocks. This species’ constraints present no difficulty in fitting axes to
blocks. Again a 3-colour example illustrates the point in Figure 4b with a
design made up for the purpose (Figure 4a). Because of the mirror symme-
try, which on account of involving τ appears only in the relation between
obverse pattern and reverse pattern, one needs to see both sides to check the
mirror symmetry. On the other hand, its presence makes the reverse have
the same pattern as the obverse, and so be of no distinct visual interest.
Only the diagonal lines of redundant blocks are identical on the two sides
of the fabric; the reverse has horizontal stripes approximately where the
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obverse has vertical stripes, and vice versa—only approximately because, as
is easily seen, the stripes do not end exactly at the redundant blocks. Such
reverse patterns will not be illustrated.

Species 30, with the spacing of subspecies 27o and not perfectly 2-colour-
able with thick stripes, has odd glides like 11o, 13o, and 15o and presents no
difficulty to the use of more colours than two. For example, Roth’s example
12-315-4 (Figure 9a) can be thickly striped with three colours (Figure 9b).
This is the first example with interesting motifs having more symmetry

(a) (b)

Figure 9. (a) Design of Roth’s example 12-315-4 of species
30, (b) Pattern of thick striping with three colours and no
mirror symmetry.

than the pattern as a whole; another perfect colouring of this fabric is a
herring-bone pattern like Figure 4b, but of course with shorter stripes. The
symmetry of the pattern of Figure 9b is notable not only because of the
quarter-turn-symmetric houndsteeth linked/separated by dominos. Each
colour as a whole has rotational symmetry—not shared with the other two
colours—with centres of quarter-turns in the centres of that colour’s hound-
steeth, where the half-turn centres marked in Figure 9b apply to the whole
pattern (indeed to the design). As in species 22, the mirror symmetry is
revealed only in the relation between obverse and reverse which, because of
those mirrors and side-reversing half turns, looks just like the obverse.

Species 38 has no symmetry axes, but has level-3 lattice units and both
side-preserving and side-reversing quarter-turns (for example, Figure 5b).
If blocks are centred on one sort of quarter-turn centres, then the level
guarantees that the other sort of quarter-turn centres will fall at the corners
of blocks. The level also guarantees that translation components will be even
as required. While examples with three and four colours are impossible, as
will be shown at the end of the next section (the quarter-turn ban), Roth’s
example 20-19437 (Figure 5b) can be perfectly coloured with five colours
(Figure 10a). The visible (and marked) symmetry of the figure is that of
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(a) (b)

Figure 10. (a) Roth’s 20-19437 of species 38 (Figure 5b)
thickly striped with five colours, (b) Order-20 example (Fig-
ure 13 of [13]) of species 334 with G1 of level 4 outlined.

the design’s H1 at level 4, the side-reversing quarter-turns of G1 appearing
only squared as half-turns, otherwise disappearing from a one-sided point of
view. Because of the side-reversing quarter-turns and half-turns, the reverse
is the same as the obverse and so not illustrated. In contrast with Figure 9b,
the motifs of Figure 10a have less symmetry than the pattern, the symmetry
of which arises from how the motifs are arranged.

The result of the above exploration is that some fabrics in all species not
eliminated by the twillin ban (conflict of their genus with the translation
constraint) are perfectly colourable by thick stripes of all different colours,
indeed even by as few as five colours, which is what has actually been illus-
trated.

Lemma 3.2. The assignment of different colours to all strands of an isone-
mal fabric is a perfect colouring of the fabric by thin striping.

Proof. All of the limitations to preserve thick stripes are automatic in their
thin-stripe analogues. All symmetries preserve cells, hence strands, and that
is all that is needed when all the strands have different colours. �
Theorem 3.3. Some fabrics in all non-exceptional species can be perfectly
coloured by the assignment of different colours to all single strands or, with
the exception of fabrics in genus I or II, to all adjacent pairs of strands.

Proof. Lemma 3.2 for thin striping and the discussion between Lemma 3.1
and Lemma 3.2 for thick striping show this. �

4. A finite number of colours

Lemma 4.1. The assignment of a finite number of colours to weft and
warp stripes of an isonemal fabric can be a perfect colouring only if the
same number of colours are assigned to warps as to wefts.
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Proof. Since the fabric is isonemal, there is a symmetry operation taking
each warp to each weft. Under such an operation, if it is a colour symmetry,
each warp colour is mapped to a weft colour. So the number of colours of
warps is the number of colours of wefts. �
Lemma 4.2. The assignment of a finite number of colours to weft and warp
stripes of an isonemal fabric can be a perfect colouring only if the vertical
and horizontal sequences of the colours of the stripes are periodic with the
same period.

Proof. Parallel stripes of the same colour must be the same distance from
their same-coloured parallel neighbours because each one can be mapped to
each one by a colour symmetry that acts as the identity on their colour. But
since the strands of each colour can also be mapped to the parallel strands
of any other colour also by a colour symmetry, that inter-stripe distance is
constant over the colours horizontally and vertically. And since the warps
can be mapped to the wefts by a colour symmetry, the interstripe distance
or period is common to warps and wefts. �

What makes achieving perfection in colouring by striping difficult rather
than impossible is redundancy — where strands cross strands of the same
colour. Using only a finite number of colours, as Section 3 suggested, is not
a difficulty.

Theorem 4.3. If no colour is common to warps and wefts in the assignment
of a finite number of colours to the striping of an isonemal fabric, then the
necessary conditions of Lemmas 4.1 and 4.2 allow perfect colouring by thin
striping and the necessary conditions of Lemmas 3.1, 4.1, and 4.2 allow
perfect colouring by thick striping.

Proof. Obvious. �
Lemma 4.4. The assignment of a finite number of colours to stripes of an
isonemal fabric can be perfect only if the colours of the warps are the colours
of the wefts or no colour is shared.

Proof. If any colour C is common to warps and wefts, then let colour D
be any other weft colour. Since the colouring is perfect, there is a colour
symmetry mapping the wefts of colour C to wefts of colour D, but also
mapping warps of colour C to warps of colour D. But then there must be
warps of colour D. Each weft colour is also the colour of some warps. And,
since there are the same number of colours of warps and wefts, the colours
are the same. �

While the warp colours, if not all different, must be the same as the weft
colours, examples show that the order of the warp colours need not be the
same as the order of the weft colours. One can see in Figure 10a that there
are red and pale blue wefts adjacent to yellow wefts but not red or pale blue
warps adjacent to yellow warps. When the c colours, say, of the warps are
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the colours of the wefts, then in a c× c square of cells/blocks, for thin/thick
striping respectively, each warp colour crosses each weft colour in exactly
one cell/block. So there are exactly c redundant cells/blocks, one in each
row and column of the c×c square of cells/blocks. In order for the colouring
to be a perfect colouring, the symmetry group of the fabric must leave the
redundant cells/blocks invariant as a whole, and each element of the group
must permute them, if at all, in a consistent way.

From now on, warps and wefts will be coloured with the same finite
set of colours. For a specific colouring of the wefts, say, as illustrated in
Figure 10a, the positions of the redundant cells must be chosen in accordance
with the consistency requirement so that the symmetry group of the fabric
is appropriately related to the symmetry group of the pattern of redundant
blocks. In this case the doubled (5, 3) satin (10-3-2) is a choice of redundant-
block distribution that works. For the design of Figure 5b and the placement
of redundant blocks surrounding the four centres of quarter-turns (extended
by the four corner blocks), the downward sequence of colours, dark blue,
red, yellow, pale blue, green, (dark blue,) dictates the left-to-right sequence,
dark blue, yellow, green, red, pale blue, (dark blue). This topic cannot be
pursued here.

I now state Roth’s Colouring Theorem.

Theorem 4.5. If the colours of the warp stripes and the colours of the weft
stripes are the same finite set of colours, then, in addition to the necessary
conditions of Lemmas 4.1 and 4.2 for thin striping and in addition to the
necessary conditions of Lemmas 3.1, 4.1, and 4.2 for thick striping, the
redundant cells/blocks must collectively be preserved by G1 of an isonemal
fabric for its colouring to be perfect.

Proof. A symmetry operation is a colour symmetry exactly when it preserves
and permutes the colours of the redundant cells/blocks because each brings
with it its wefts and its warps, which have the same colour. �

This theorem was observed to be the case by Roth [10] for two colours,
but the essence is independent of the number of colours. Colouring the set
of redundant cells/blocks specifies a colouring by striping warps and wefts
with the same colours. The requirement that the symmetry group of the
fabric not affect the redundant cells can be stated by saying that G2 of the
fabric to be striped must be a subgroup of G2 of the pattern of redundant
cells.

Lemma 4.6. The redundant cells/blocks of a perfect colouring of the warps
and wefts of an isonemal fabric by thin/thick striping with c colours are the
dark cells/blocks of an order-c/doubled-order-c derived isonemal fabric with
one/two dark cells per order length, c/2c.

Proof. Since a stretch of c cells/blocks along a strand/pair of some colour
meets strands/pairs of c different colours, only one of the c cells/blocks is
redundant. Let the redundant cells/blocks be the dark cells/blocks of a
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derived fabric. By Lemma 4.2, the colouring is periodic with period c/2c.
The order of the derived fabric is c/2c, which must divide the order of
the coloured fabric. The group G2 of the derived fabric has G2 of the
coloured fabric as a subgroup because that G2 leaves the dark cells invariant
collectively. Since G1 of the coloured fabric maps every warp and weft to
every warp and weft preserving redundant cells/blocks, the derived fabric is
isonemal under the action of the coloured fabric’s group G1, a fortiori under
its own symmetry group. �

For thin striping, the redundant cells may be arranged as (c−1)/1 twills,
and for c ≥ 4, as various other isonemal fabrics, 6-1-1, 8-1-1, 8-1-2, and
including in particular the square satins beginning with 5-1-1. For thick
striping, the redundant cells can be arranged as doubled (c − 1)/1 twills,
6-3-1, 8-3-1, 10-3-1,. . . , and various other doubled fabrics beginning with
10-3-2 (doubled 5-1-1), and the doubles of 6-1-1, 8-1-1, 8-1-2, and so on.

It is easy to see that any rigid motion of a line of twilly redundant cells to
itself is a coherent permutation of their colours whether the motion merely
translates or reverses direction with a cell fixed or not. It is also easy to see
that the effect on the parallel lines of redundant cells has the same colour
consequences.

There is reason to consider mostly unexceptional isomenal fabrics, i.e.,
with order more than four, but in order to consider colourings with three
colours, one needs to begin thin striping with the 2/1 twill as a redundancy
pattern, there being no other choice. Because side-reversing symmetries
(mirrors and side-reversing glide-reflections, half-turns, and quarter-turns)
of a fabric relate its opposite sides and one sees fabrics one side at a time,
fabrics with exclusively side-reversing symmetries are less appealing when
striped. Emphasis will be on fabrics with side-preserving symmetries just
because their symmetries are visible when the fabric is striped.3

For three and four colours, and order greater than four, there is no alter-
native to colouring as one could do with any odd or even number of colours
where the order of the colours is the same for warps as for wefts specified by
a twill arrangement of redundant cells or blocks. It is obvious in both cases
that no fabric with quarter-turn symmetry can have its G2 a subgroup of
the G2 of the 2/1 or 3/1 twill—or of any other (c − 1)/1 twill doubled or
not, since these twills fall into species with no quarter-turns in their G2s.
(The 2/1 twill is of subspecies 28o, the 3/1 twill is of 26e, 6-3-1 is of 27o,
and 8-3-1 is of 25e.) Accordingly, no fabric of species 33–39 can be perfectly
coloured with three or four colours—or, with twilly redundancy, any number
of colours greater than two. Call this the quarter-turn ban to go with the
twillin ban of Section 3.

3While the presence of side-reversing symmetry makes it uninteresting and therefore
unnecessary to look at both sides of such coloured fabrics, the absence of all such symmetry
makes the two sides of such a fabric matters of independent interest. E.g., Figure 8.
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Figure 11. Doubled 2/1 twill as the redundant blocks for
thick striping with three colours.

5. Three colours

As an example of how thick striping can be done to create perfect colour-
ing, the case of three colours will be worked out in this section with twilly re-
dundancy. The redundant doubled twill for thick striping with three colours
6-3-1 (Figure 11) is of subspecies 27o, being of course twill 2/1 doubled.
Species 33–39 having been eliminated by the quarter-turn ban, the twillin
ban (Section 3) reduces the species among which it might be possible to
stripe thickly with any finite number of colours for species 1–32 to 11, 13,
15, 17, 19, 21, 22, 25, 27, 29, and 30. Fabrics for all these species can be
perfectly coloured by thickly striping with three colours.

For species 11, 13, and 15, glide-reflection axes that can be an odd multiple
(at least 1) of 3δ apart can be placed on the mirrors in the dark blocks (of
6-3-1) if their glides are even (11e, 13e, 15e) because the blocks along their
line can be related by even glides or half-way between them if their glides
are odd (11o, 13o, 15o) because adjacent line’s blocks are related by odd
glides. Since the fabric’s glides perpendicular to the line of dark blocks
are odd in length, their axes can be placed on the glide-reflection axes δ
apart perpendicular to the dark lines. An example is 12-111-2 of species 11o
coloured by thick striping with 3 colours already shown in Figure 8.

For subspecies 17e and 19e, and species 21, the distance between the
mirrors, which is the glide of the glide-reflections, can be taken to be even.
The axes of the glide-reflections, if an odd multiple (at least 1) of 3δ apart,
can therefore be placed on the dark lines’ mirrors in the dark blocks. The
mirrors of subspecies 25e, if an odd multiple (at least 1) of 3δ apart can, like
the axes of glide-reflections with even glides in 17e, 19e, and 21, go along the
mirrors in the dark blocks. The fabric’s other mirrors can then be placed
on the mirrors (of 6-3-1) perpendicular to them. Examples are a fabric of
species 17e illustrated in Figure 12a and coloured in Figure 12b, a fabric of
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species 19e illustrated in Figure 13a and coloured in Figure 13b, and the
fabric of Figure 14a of species 21 coloured in Figure 14b.

(a) (b)

Figure 12. (a) Order-24 fabric of species 17e, (b) Reverse
of fabric 3-coloured by thick striping. The obverse, being the
reflection, has horizontal stripiness.

(a) (b)

Figure 13. (a) Order-24 fabric of species 19e, (b) Fabric 3-
coloured by thick striping. The middle of the figure makes
the SW-NE period look like 2δ, but the upper left matching
yellow and blue motifs make it clear that it is 4δ.

For subspecies 17o and 19o, and species 22, the distance between mirrors,
which is the glide of the glide-reflections, can be taken to be odd. The
axes of the glide-reflections, if an odd multiple (at least 1) of 3δ apart, can
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(a) (b)

Figure 14. (a) Design of a fabric of species 21 and order 96,
(b) Three-colouring by thick striping with lines of redundant
blocks along axes with positive slope.

therefore be placed half-way between the dark lines’ mirrors along the dark
blocks. The fabric’s mirrors then can be placed on the mirrors perpendicular
to them. Examples are Roth’s example 12-11-2 of species 17o, 12-55-5 of
species 19o, and the fabric of species 22 displayed with its thick 3-colouring
in Figure 4b.

For subspecies 27e and species 29 with the same spacing, glides in both
perpendicular directions are even. Axes that can be an odd multiple (at least
1) of 6δ apart and parallel mirrors can all be placed along the mirrors through
the dark blocks. The fabric’s perpendicular axes and mirrors can then be
placed along the mirrors perpendicular to them. An example from species
29 is the fabric of Figure 15, 3-coloured by thick striping in Figure 16a.

For subspecies 27o and species 30, glides in both perpendicular directions
are odd. Axes that can be an odd multiple (at least 1) of 3δ apart can
be placed along the axes between the dark blocks, and the mirrors can be
placed along the mirrors in the dark blocks. The fabric’s perpendicular axes
and mirrors can then be placed along the perpendicular axes and mirrors
respectively. An example of species 30 is the fabric of Figure 9a, 3-coloured
by thick striping in Figure 9b.

The dimensions 3δ and 6δ for three colours need only be changed to pδ
and 2pδ for any odd number of colours p to specify how thick striping can
be done in each possible species.
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Figure 15. Order-48 fabric of species 29.

(a) (b)

Figure 16. Thick stripings of fabric of Figure 15. (a) With
three colours, (b) With four colours.

Theorem 5.1. In each of the species 11, 13, 15, 17, 19, 21, 22, 25, 27, 29, and
30, there are fabrics that can be perfectly coloured by thick striping with an
odd number 2m + 1 of colours and redundant cells arranged as a doubled
2m/1 twill for m = 1, 2, . . . .
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(a) (b)

Figure 17. (a) The 8-3-1 doubled twill as redundant blocks
for 4-colouring with thick stripes, (b) The 12-3-1 doubled
twill as redundant blocks for 6-colouring with thick stripes.

6. Four and six colours

(a) (b)

Figure 18. (a) Fabric of species 21, (b) Four-colouring by
thick striping.

As remarked in Section 4, the redundant doubled twill for thick striping
with four colours is 8-3-1 of subspecies 25e (Figure 17a). Mirrors are spaced
δ and 2δ apart in perpendicular directions. As for three colours, the twillin
and quarter-turn bans for thick striping reduce the possible species to 11, 13,
15, 17, 19, 21, 22, 25, 27, 29, and 30. Subspecies 11o, 13o, 15o, 17o, 19o, 25o,
27o, and 30 have only odd glides, and even subspecies 11e, 13e, 15e, and 22
have some glides odd in δ, and no such glide-reflection can be accommodated
in the symmetry group of 8-3-1. The remaining subspecies, 17e, 19e, 21, 25e,
27e, and 29 can be thickly striped with four colours. All but 25e combine
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glide-reflections and mirrors, and the mirrors of 25e can be regarded as glide-
reflections with zero glide. All glides, which are inter-mirror distances, must
be even and can be so, provided that the axes of glide-reflection are placed
along mirrors perpendicular to the dark lines and mirrors are placed, say,
on the dark lines. That in turn necessitates those glides’ being multiples
(at least 0) of 4δ. Perpendicular glide-reflections (species 27e, and 29) with
axes intervening between the fabric’s mirrors, spaced out at multiples of 4δ
by the glide-reflections (or without them in the case of 25e), say in the dark
lines, fall on the mirrors parallel to them between the dark lines. Fabrics
of subspecies 27e and 29 have central rectangle twice an odd multiple of δ
by twice an even multiple of δ, and so there is only one way that their axes
can be arranged too. An example of the configuration of species 17e, 19e
and 21 is a fabric of species 21 illustrated in Figure 18a and 4-coloured in
Figure 18b. Examples of species 25e and 29 are the fabrics in Figures 19a
and 15, 4-coloured in Figures 19b and 16b respectively.

(a) (b)

Figure 19. (a) Subspecies-25e example, (b) Four-colouring
by thick striping.

As for three colours, the dimension 4δ for four colours need only be
changed to 4pδ, and for any number of colours, 4p, to specify how thick
striping can be done in each possible species.

The redundant doubled twill for thick striping with six colours is the 5/1
twill doubled, 12-3-1 of subspecies 25o with basic rectangle (quarter lattice
unit) δ by 3δ (Figure 17b). The twillin and quarter-turn bans reduce the
possible colorable species to 11, 13, 15, 17, 19, 21, 22, 25, 27e and 29, 27o
and 30 as for four colours, but the oddness of both dimensions of the ba-
sic rectangle makes it only very slightly easier to fit in symmetry groups.
Glide-reflections that can be imbedded in G2 of 12-3-1 must still have even
glides in both perpendicular directions to take redundant blocks to redun-
dant blocks. Accordingly, species or subspecies 11, 13, 15, 17o, 19o, 22, 27o,
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and 30 are eliminated as all require at least one glide to be odd. The only
difference from the four-colour list (17e, 19e, 21, 25e, 27e, 29) turns out
to be the species 25o of the redundant twill itself. No species is added to
the list, just that subspecies. All of the possibilities can be coloured. Con-
secutive axes of glide-reflection (17e, 19e, 21) that can be an odd multiple
(at least 1) of 3δ apart can be placed on and between dark lines’ mirrors,
their perpendicular mirrors, an even multiple of δ apart falling on mirrors
perpendicular to the dark lines. An example of species 21 is the fabric of
Figure 14a, which is 6-coloured by thick striping in Figure 20. Species 25

Figure 20. Six-colouring by thick striping of the species-21
fabric of Figure 14a.

has only mirrors, and so consecutive mirrors, if an odd multiple of 3δ apart,
can be placed on mirrors along and between the dark lines, the perpendic-
ular mirrors falling on mirrors perpendicular to the dark lines regardless of
subspecies. An example of subspecies 25e is the fabric of Figure 19a, which
is 6-coloured by thick stiping in Figure 21. The glide-reflection axes (17e,
19e, 21) could alternatively be placed along mirrors perpendicular to the
dark lines. That requires the glides’ being multiples (at least 1) of 6δ. Also
requiring these glides are species 27e and 29, where mirrors a multiple of
6δ apart can be placed along the dark lines. Glide-reflections with axes be-
tween those mirrors then fall on the mirrors between the dark lines, and the
glide-reflection axes and mirrors perpendicular to them lie on perpendicular
mirrors. An example of a fabric of species 29 is illustrated in Figure 22 and
6-coloured in Figure 23. The example is more interesting than attractive.
Its comparative unattractiveness results not just from the large number of
colours but also from the fact that so much of the symmetry of the fabric
is lost in the colouring. The translations along the edges of the lattice unit
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Figure 21. Six-colouring by thick striping of the species-25e
fabric of Figure 19a.

Figure 22. Species-29 fabric.

are side-reversing and so disappear in the coloured fabric along with the
side-reversing half-turns and the mirrors.
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Figure 23. Six-colouring by thick striping of the species-29
fabric of Figure 22.

For 4p+2 colours, 3δ and 6δ above need to be replaced by (2p+1)δ and
(4p+ 2)δ.

Theorem 6.1. In each of the species 17, 19, 21, 25, 27, and 29, there are
fabrics that can be perfectly coloured by thick striping with 2m colours and
redundant cells arranged as a doubled (2m− 1)/1 twill for m = 2, 3, . . ..

7. Colouring woven tori

All of the plane fabrics whose colourings are considered in Sections 5 and
6 can be used to weave flat tori as discussed at the end of Section 2. For the
tori to be coloured, the topological constraint that the outline of the torus
must be a period parallelogram of the weaving remains in place, but there is
also the colouring constraint that the torus must be a period parallelogram
of the planar colouring.

Given a perfect c-colouring by thick striping of an order-n isonemal design,
one can consider how the plane can be mapped to a torus, that is, how
a suitable period parallelogram can be chosen. Since the design is given,
with its various period parallelograms, both n-by-n and oblique H1 lattice
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units, the question is how many of each must be combined to form a period
parallelogram of the pattern. In the n-by-n case, the smallest mn-by-mn
choice must have mn be the lowest common multiple of n and 2c, since each
stripe of the colouring is two cells wide. The size of a lattice unit must be
inflated similarly. The smallest period parallelograms of any colouring can
of course be assembled to make others as large as one pleases.

Another approach would take the number of colours c and the species as
given and select the lattice unit appropriate to the species, if any, so that
fabrics based on it are perfectly colourable.

Consider the example of Figure 13b, a 3-coloured species-19e fabric of
order 24. The lattice unit shown in Figure 13a is too small to become a
torus with the colouring of Figure 13b because it has five stripes in each
direction. The rectangle referred to in [14] as basic for species 19e — either
the smallest outlined by glide-reflection axes or with centres of half-turns at
corners — is 2δ by 3δ. It is one quarter of the period parallelogram that is
the H1 lattice unit. In general, the number of stripes is a+b where the basic
rectangle is aδ by bδ. It requires three of these lattice units in the direction
of the even dimension of the basic rectangle to make the colours come out
even. The H1 lattice unit mapping to the torus, 4δ by 6δ, must be tripled
in the SW-NE direction to 12δ by 6δ. In this case, the mn-by-mn square of
the second paragraph back would be 24 by 24 since m can be 1, with area
576 as against 12δ × 6δ = 144 for the oblique rectangle. More interestingly,
the 24 × 24 square/torus has four thick stripes (eight separate strands) of
each colour in each direction, whereas the rectangle/torus has only a single
stripe of each colour in each direction, each crossing the torus three times
on account of the way their ends in the rectangle match up in the torus.
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