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THE ERDOS-KO-RADO BASIS FOR A LEONARD
SYSTEM

HAJIME TANAKA

ABSTRACT. We introduce and discuss an Erdds—Ko—Rado basis of the
vector space underlying a Leonard system & = (A; A {Ei}?:o; {E;‘}ﬁlzo)
that satisfies a mild condition on the eigenvalues of A and A*. We de-
scribe the transition matrices to/from other known bases, as well as the
matrices representing A and A* with respect to the new basis. We also
discuss how these results can be viewed as a generalization of the linear
programming method used previously in the proofs of the “Erdés—Ko—
Rado theorems” for several classical families of Q-polynomial distance-
regular graphs, including the original 1961 theorem of Erdés, Ko, and
Rado.

1. INTRODUCTION

Leonard systems [23] naturally arise in representation theory, combina-
torics, and the theory of orthogonal polynomials (see e.g. [25, 28]). Hence
they are receiving considerable attention. Indeed, the use of the name
“Leonard system” is motivated by a connection to a theorem of Leonard
[12], [2, pp. 263—274], which involves the g-Racah polynomials [1] and some
related polynomials of the Askey scheme [10]. Leonard systems also play a
role in coding theory; see [11].

Let & = (A; A B} o {Er ;1:0) be a Leonard system over a field K,
and V' the vector space underlying ® (see Section 2 for formal definitions).
Then V = @?:0 E*V and dim EV =1 (0 <i < d). We have a “canonical”
(ordered) basis of V' associated with this direct sum decomposition, called
a standard basis. There are 8 variations for the standard basis. Next, let
Ur = (Ciso BfV) N (-, E;V) (0 < £ < d). Then, again it follows that

V = @LO U and dimU; = 1 (0 < ¢ < d). We have a “canonical” basis
of V associated with this split decomposition, called a split basis. The split
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decomposition is crucial in the theory of Leonard systems,! and there are 16
variations for the split basis. Altogether, Terwilliger [24] defined 24 bases of
V and studied in detail the transition matrices between these bases as well
as the matrices representing A and A* with respect to them.

In the present paper, we introduce another basis of V', which we call an
Erdés-Ko-Rado (or EKR) basis of V', under a mild condition on the eigen-
values of A and A* (see below). As its name suggests, this basis arises in con-
nection with the famous Erdds—Ko-Rado theorem [6] in extremal set theory.
Indeed, Delsarte’s linear programming method [4], which is closely related
to Lovéasz’s ¥-function bound [13, 16] on the Shannon capacity of graphs,
has been successfully used in the proofs of the “Erdés—Ko-Rado theorems”
for certain families of Q-polynomial distance-reqular graphs® [29, 7, 17, 20]
(including the original 1961 theorem of Erdés et al.), and constructing ap-
propriate feasible solutions to the dual programs amounts to describing the
EKR bases for the Leonard systems associated with these graphs; see Section
4. It seems that the previous constructions of the feasible solutions depend
on the geometric/algebraic structures which are more or less specific to the
family of graphs in question. Our results give a uniform description of such
feasible solutions in terms of the parameter arrays of Leonard systems.

The contents of the paper are as follows. Section 2 reviews basic terminol-
ogy, notation and facts concerning Leonard systems. In Section 3, we first
study the subspaces W = (E§V + Y04y BfV) N (BoV + Y0, E;V)
(0 <t < d). We show that dim W; = 1 (0 < ¢ < d), and that V = @7, W,
if and only if ¢ #% —1, or ¢ = —1 and d is even, where ¢ denotes a base
of ® (which is determined by the recurrence satisfied by the eigenvalues of
A and A*). Assuming that this is the case, we then define an EKR basis
associated with this direct sum decomposition. We describe the transition
matrices to/from 3 bases out of the 24 bases mentioned above (2 standard,
1 split), as well as the matrices representing A and A* with respect to the
EKR basis. Our main results are Theorems 3.9, 3.12, and 3.13. Section 4 is
devoted to discussions of the connections and applications of these results
to the Erdés—Ko—Rado theorems.

2. LEONARD SYSTEMS

Let K be a field, d a positive integer, &/ a K-algebra isomorphic to the
full matrix algebra Matg11(K), and V' an irreducible left </-module. We
remark that V is unique up to isomorphism, and that V' has dimension d+1.
An element A of &7 is said to be multiplicity-free if it has d + 1 mutually
distinct eigenvalues in K. Let A be a multiplicity-free element of &/ and

1n some cases, V has the structure of an evaluation module of the quantum affine al-
gebra Uy (5:\[2), and the split decomposition corresponds to its weight space decomposition;
see e.g. [9].

QQ—polynomial distance-regular graphs are thought of as finite/combinatorial analogues
of compact symmetric spaces of rank one; see [2, pp. 311-312].
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{6;}4_, an ordering of the eigenvalues of A. Let E; : V — V(6;) (0 < i < d)
be the projection map onto V' (6;) with respect to V = @?:0 V(0;), where
V() ={u €V : Au = 6;u}. We call E; the primitive idempotent of A
associated with 6;. Notice that the E; are polynomials in A.

A Leonard system in o7 ([23, Definition 1.4]) is a sequence

(1) @ = (A A (B (BT}
satisfying the following axioms (LS1)-(LS5):
(LS1) Each of A, A* is a multiplicity-free element in 7.3
(LS2) {E;}L, is an ordering of the primitive idempotents of A.
(LS3) {E7}%, is an ordering of the primitive idempotents of A*.
(L.S4) 0 if |i —j] > 1
£0 ifli—j =1

0 if i —j|>1
#0 ifli—jl=1
We say that ® is over K. We refer the reader to [23, 26, 28] for background
on Leonard systems.

Throughout the paper, ® = (A; A B} {Er }gl:o) shall always denote
the Leonard system (1). Notice that the following are Leonard systems:

0" = (A5 BN (B
b = (4 A4 B (B ),
o = (4 A% {Ba Mot (B Heo)

Viewing *, |, | as permutations on all Leonard systems,

2=2=1P=1, Y=l Lx=xl, W=l
The group generated by the symbols %, ], |} subject to the above relations is

the dihedral group D4 with 8 elements. We shall use the following notational
convention:

LS4) EfAE; = (0<i,j <d).

(LS5) E;A*E; = { (0<14,j<d).

Notation 2.1. For any g € D, and for any object f associated with ®, we let
f9 denote the corresponding object for @9_1; an example is Ef (®) = E;(9*).

It is known ([26, Theorem 6.1]) that there is a unique antiautomorphism
t of o7 such that AT = A and A*' = A*. From now on, let (-,-) : VxV — K
be a nondegenerate bilinear form on V' such that (26, Section 15])
(Xuy,ug) = (uy, XTup) (ur,up €V, X € ).

We shall write
ul* = (u,u) (uweV).

3t is customary that A* denotes the conjugate transpose of A. It should be stressed
that we are not using this convention.
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Notation 2.2. Henceforth we fix a nonzero vector v9 in EgV for each
g € Dy. We abbreviate v = v! where 1 is the identity of D4. For conve-
nience, we also assume v9* = v92 whenever EJ'V = E*V (g1, g2 € D4). We
remark that ||v9]|2, (v9,v*9) are nonzero for any g € Dy; cf. [26, Lemma
15.5].

We now recall a few direct sum decompositions of V, as well as (or-
dered) bases of V' associated with them. First, dim EV =1 (0 < i < d)
and V = @, EfV. By [26, Lemma 10.2], Efv # 0 (0 < i < d), so
that {E7v}d , is a basis of V, called a ®-standard basis of V. Next, let
Uy = (Zf:o EV)n (E?:z E;V) (0 < £ < d). Then, again dimU; = 1
(0<l<d)yand V = @?:0 Uy, which is referred to as the ®-split decomposi-
tion of V' [28]. We observe Uy = EjV and Uy = E4V. For 0 < i < d,
let 8; be the eigenvalue of A associated with FE;. Then it follows that
(A —6,0)U; = Upyq and (A* — ;1)U = Up—q for 0 < £ < d, where
U_1 = Ugy1 = 0 [23, Lemma 3.9]. For 0 < ¢ < d, let 7;,7; be the fol-
lowing polynomials in K]z]:

i—1 i—1
7i(2) = [[(z=0n), mi(2) =7' () = [[ (2 = ba-n).
h=0 h=0

From the above comments it follows that 7,(A)v* € Uy (0 < ¢ < d) and
{me(A)v*}_, is a basis of V, called a ®-split basis of V. Moreover, there
are nonzero scalars ¢; (1 <14 < d) in K such that A*my(A)v* = ;7 (A)v* +
wem—1(A)v* (1 <0< d).

Let ¢; = g@? (1 < i< d). The parameter array of ® is

p(@) = ({0 Mo {07 Vg {oibni {0 ) -

Terwilliger [23, Theorem 1.9] showed that the isomorphism class® of ® is
determined by p(®) and gave a classification of the parameter arrays of
Leonard systems; cf. [27, Section 5]. In particular, the sequences {6;}%_,
and {07}, are recurrent in the sense that there is a scalar 8 € K such that

Oi—2— 01 07 5 — 074 .
2 - —B+1 (2<i<d-1).
(2) P— T B+1 (2<i<d-1)

It also follows that

(3) i = 019 + (0] — 605)(Oq—it1 —0o) (1<i<d),
where
i—1
On — Oa—p
; = 1<i1<d
hzzo 0o — 04 i<d)

4A Leonard system W in a K-algebra &£ is isomorphic to ® if there is a K-algebra
isomorphism v : @ — % such that ¥ = & := (A7; A™; {E] Yl {E:W}‘fzo).
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Notice that %1 = ¥4 = 1. Moreover,
(4) Vg_iv1 =%, U7 =19; (1<i<d).
The parameter array behaves nicely with respect to the D4 action:

Lemma 2.3 ([23, Theorem 1.11]). The following hold.
(1) () = ({07 Hoi {0 Mg Lot {0aini Moy )
(it) p(®¥) = <{€i}§i:o§ {05} os {¢d—i+1}§i:1§{<Pd—z'+1}§i:1>-
(i) p(®¥) = <{9d—i}§i:0§{9%k Loi{oi g:l?{soi}?ﬂ)
The following can be easily read off [24, 26].
Lemma 2.4 ([24, 26]). The following hold.

A Epv|* <~ 77067 . ,
(i) Efv = ”@ U”) 'Zh”“‘)” (0<i<d).
’ =0

(i) 7 (A)v* = (v, V™) - @1... 0y

E * *
nd—é(ei) 1 *
X o~ s v (0 < d).
=0 (07) I vl[?
* ndfé(ej) * .
iii) Ejv* = —————7(A)v* (0<j<d).
) £ = 7i(0;)na-;(0;)
d
(iv) Te(A)o* =) 7(6;)Ejo* (0<L<d)
j=t
| .
(V) Ejv” _ <va > . ¢d*]+1 "‘édEjU* (0 <] < d)

<U,’U*> PL---¥j
Finally, it follows that ([26, Lemma 9.2, Theorem 17.12])

P Qb1 Pa—i
05(06)7i(0i)na—i(0:)
from which it follows that

5 Fro|? = Pl $idil - Pd 2 0<i<d),
(5) || 27| 77d((go)n*(9:)7724(9;)|| = ( )

by virtue of Lemma 2.3 (i).

EiEE; = E; (0<i<d),
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45

Let Fy: V — Uy (0 < £ < d) be the projection map onto U, with respect

to the ®-split decomposition V = EB?:O Uy.

Lemma 3.1 (cf. [8, Lemma 5.4]). The following hold.
() FEF =0if 0> (0<i,0<d).
(i) FpE; =0 if0<j (0<j,0<d).
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Proof. Immediate from EV C 22:0 U; and E;V C Z?:j Up. O

We shall mainly work with the ®¥-split decomposition V = @gzo U Ei , where

d d
Uy = ( > E;V) N (ZEjv> (0 <0< d).
i=d—{ j=¢

7

We now “modify” the Uj and introduce the subspaces W; (0 <t < d) of V
defined by®

d d
Wi = <E§V+ > E;*V) N <E0V+ > Eﬂ/) (0<t<d).

i=d—t+1 j=t+1
Observe Wy # 0 (0 <t < d), Wy = EjV, and W, = EyV. Notice also that
(6) WE=Wyy (0<t<d).

Our aim is to show dim Wy =1 (0 < t < d), and then to determine precisely

when V = @, W;. Pick w € W;. Then from Lemma 3.1 (applied to &)
it follows that

d—? l
Flw=> F/Efw=> F/Ew (0<(<d).
i=0 §=0

Hence
F'E if0<0<t,
(7) Flw={ 5"
FyEqw if t </ <d,
from which it follows that
¢ d d
®) w=)Y FEw+ Y F/Ew=Ew+ Y F/(E - Ew.
=0 I=t+1 (=t+1

By Lemma 2.4 (i) and Lemma 2.3 (ii), we have
(9) FyEjw = F}Ej w
|| Eq o]
{ Liptd
B O
<’U¢7 'U*¢> gO‘lL N goi
(W Ew)  ni(6)
(v, ) a—rt1... ¢a

Tg(A)v*i

5The subscript t is chosen in accordance with the concept of t-intersecting families in
the Erdés—Ko—-Rado theorem; see Section 4.
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for 0 < ¢ < d. Likewise, by Lemma 2.4 (iii) and Lemma 2.3 (ii), we have
(10) F/Eyw = F}Ejw
_ <w,EéU*l’> dmdo k)
BT S RIS e
|| Ego]]
Eqv* _e(6
[[Eov™* ][> na(bo)
for 0 < ¢ < d. Since FtiESw = Fng'w by (7), we have in particular:

(w, Egv) nr(03)  (w,Eov™) na_¢(0o)

11 . _ . .
) (v, ) Ba—gs1.--Ba  |[EovH® nalfo)
Combining these comments, it follows from (8), Lemma 2.4 (iv) and (v) that

(w, Egv*™)  14-4(f0)
[Eov*H 2 na(fo)n; (65)
% Z ( n; (65) . n?(%)nd_e(@o))TZ(A)vw

S \Pd—t1 - bay Na—t(0o)

w:E0w+

(w, Egv*)  n4—¢(6o) Gd—j4+1 - - - Pd
= Fow + . K Ya—g+l---%a
TBov' P mal60); 03) Z; T
J *(O* * [ )k
n; (65) ; (eo)nd—2(90)> .
X 7e(0; - Ev*.
Z t J)<¢d—€+1 o Gd—t Na—t(6o) J

The coefficient of the last sum is equal to (6; — 6p) ! times

Zj: (0 — 0 + 0 — o) - Tg(ej)< G 772‘(96‘)77”(90))

P Gd—t41 - - - Pd—t nd—t(6o)
j—1
n; (65) 77?(%)%5(%))
_ 0. _
Z:tz+1 mer1(05) <¢de+1 c Pd—t Nd—¢(6o)

7 (65) (00 — 60) 17 (8)na—e41(60)
— 70(6;) %o N y
> o) )

P Pd—t+1 - - - Pd—t Nd—t(6o)

=3 ()=t

Qd—t42 - - Pd—t  Pd—t+1 -+ - Pd—t

7 0 * 0*
_ Z W(di_m — (05 — 0;_p11) (60 — 60))

041+ Pd—

J
_ Z ¢d(9 )77[ 1(90) 019,

041+ Pd—t
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where we have used (3) and (4). Hence

Proposition 3.2. Let w € W;. Then the following hold.

(w, Egv™)  na—t(bo)
|| Eov*||? 77d(90)772k(‘9*)

Z ¢d J+1 Z Ny 90)19 Ejv".
Pt (6, —90 S <Z5d 041 Pd—t

(w, Ejv) n; (05)
|E5oll? n5(05)na—(60)
d

61 i L (0)me 1 (00)00 .
% Z --~<pi(92‘—96‘)< Z e )Ez‘”-

imd—t+1 P2 t=d—t+1 Pd—t+1

(i) w = Eo’w +

(i) w= Ejw +

In particular, EgW; # 0, EgW; # 0, and dim W; = 1.

Proof. (i): Clear.

(ii): By virtue of (6), the result follows from (i) above, together with
Lemma 2.3 (i) and (4).

The last line follows by noting that each of Eyw, Ejw determines w. [

Notation 3.3. Henceforth we let ¢ be a nonzero scalar in the algebraic
closure K of K such that ¢ + ¢~ = 3, where the scalar 3 is from (2). We
call ¢ a base for ®.° By convention, if d < 3 then ¢ can be taken to be any
nonzero scalar in K.

Lemma 3.4 (cf. [18, (6.4)]). For 1 <i < d, we have ¥; = 0 precisely when
qg=—1, d is odd, and i is even.

From Proposition 3.2 and Lemma 3.4, it follows that

Lemma 3.5. Let q be as above. Then for 1 <t < d—1, the following hold.

(i) Suppose q # —1, or ¢ = —1 and d is even. Then Ej_, W; # 0
and Et+1Wt 75 0.

(ii) Suppose ¢ = —1 and d is odd. Then Ej_, Wy # 0 (resp.
E 1W; #0) if and only if t is odd (resp. even).

Corollary 3.6. Let q be as above. Then the following hold.

(i) Suppose q # —1, or ¢ = —1 and d is even. Then V = @fzo Wr.
Moreover,

d

h
> Wi=EV+ > EV
t=0

i=d—h+1

6we may remark that if d > 3 then ® has at most two bases, i.e., g and ¢~ 1.
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and
d d
dDWi=EV + Y EV
t=h j=h+1

for 0 < h <d.
(ii) Suppose q =
1<s<|d/2].

Proof. (i): Immediate from Lemma 3.5 (i).
(ii): It follows from Lemma 3.5 (ii) that

d d
Wos 1 = <E5V+ > E;V) N <E0V+ > EjV> = Was

i=d—2s5+2 j=2s+1
for 1 < s < [d/2]. O

—1 and d is odd. Then Wos_1 = Was for

By virtue of Corollary 3.6, we make the following assumption.

Assumption 3.7. With reference to Notation 3.3, for the rest of the paper
we shall assume ¢ # —1, or ¢ = —1 and d is even.”

We are now ready to introduce an Erdés—Ko—Rado basis of V.

Definition 3.8. With reference to Assumption 3.7, for 0 < ¢t < d let wy
be the (unique) vector in W; such that Fow; = Egv*. We call {w;}L, a
(®-)Erdds—Ko—Rado (or (P-)EKR) basis of V.

Notice that the basis {w;}%_, linearly depends on the choice of v* € E;V.
In particular, we have wg = v* and wy = Epv*. Our preference for the
normalization Fow; = Eyv* comes from the applications to the Erdés—Ko—
Rado theorem; see Section 4. The following theorem gives the transition
matrix from each of the ®+-split basis {7y(A)v**+}¢_, the ®*-standard basis
{Ejv }J _o, and the ®-standard basis {E*v}l 0, to the EKR basis {w;}¢ .

Theorem 3.9. The following hold for 0 <t < d.
. (0.0") [~ maeB)
= A)v*
(i) wy ey ez: o) T¢(A)v

< 1l
d
nNa—t(6o) n;(05) .l
— — (A .
1a(00)nt (05) 57, Pd—tr1 -~ bas (4)
. . na—t(6o)
i) wy = Bgpv" + —————~—
() o = Bov™ o (69)
Z ¢d ]+10 7 ( Z 77@ 1 90)79£>E .
j=t41 7 — %)\ S, (bd 41 Pt

"The Leonard systems with d > 3 that do not satisfy this assumption are precisely
those of Bannai/Ito type [27, Example 5.14] with d odd, and those of Orphan type [27,
Example 5.15].
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(v.0") { MO8 )1ae00)

(iii) w; =

HUH2 ¢1- - P17 (05)

<Z>d 1 D ! 7, (07 )1e—1(600)0¢ P
+ Z %9* 93)( Z oY) ) e

imd—tt+1 ¥ (=d—t+1 Pd—t+1

Proof. (i): By Lemma 2.4 (v) and since Eyw; = Eyv*, we have
(wtvEOU*¢> _ <'I.Ut,E0’U*> (’U,’U > _ <’U,’U >

(12)

[Eov >~ [[Eov*[? (v,0%)  (v,07)
Combining this with (11), it follows that
* <wt7E*v> *

(13) Ejw, :7||E§v(|)|2 Ejv

(v, v (wy, Egv*t) Pd—t41 - -¢d77d—t(90)E*v

Bl Pl Eov]? na(Go)u; (05)  °

_ (0, v")  Paty1 . ~¢>d77d—t('90)E*v

| EGvl |2 na(0o)n; (65) o

from which it follows that
(we, Egv) _ (v,v")  Gg—i41 - - ana—i(bo)
<v7 U*¢> a <’U, IU*J'> 77d(00>77;5k (68)
Now the result follows from (8)—(10), (12), and (14).
(

(ii): Immediate from Proposition 3.2 (i) and Eqw; = Egv*.
(iii): Follows from Proposition 3.2 (ii), (5), and (13). O

(14)

Corollary 3.10. Let {w;}_, be the ®*-EKR basis of V normalized so that
Ejw; = Ejv (0<t<d). Then
. (v,v*) nalbo)n;_,(65)
wt — ¥ 2 * w
[o*|[* g1 @am(bo)
Proof. By (6), w{ is a scalar multiple of w,_, and the scalar is found by
looking at the coefficient of Ejv in wgy_; as given in Theorem 3.9 (iii), and
by noting that (v,v*)?||v*||™* = ||Egv|[* = ¢1... dana(fo) ~"n;(05) vl
in view of (5). O

it (0<t<d).

Our next goal is to compute the transition matrix from the EKR basis
{w}¢_, to each of the three bases {ry(A)v**}¢_ . {E;v* J o, and {Efv}d
Let G¢ : V. — Wy (0 < t < d) be the projection map onto W; with respect
to V = @@L, Ws.

Lemma 3.11. The following hold.
(i) GiEf =0ift>d—i+1, ort>0andi=0 (0<1i,t<d).
(i) GiEj=0ift<j—1, ort<dand j=0 (0<j,t<d).

Proof. Immediate from Corollary 3.6 (i). O
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For the moment, we write u = uy = 7,(A)v* € Uj . Then it follows that

d d
Gtu: Z GtE:(’u:ZGtEJU (0<t

< d).
i=d—¢ j=¢

Hence it follows from Lemma 3.11 that

G.E G.E ift=1¢
(15) Gou = eLpu 4+ Golugu 1 )

Go_1Emu ift=4¢-1,

0 ft<l—2o0rt >0+ 2.
In particular:
(16) u =G ju+ Gou+ Gypu.

By Lemma 2.4 (iv) and (v), we have

(v, Pari1 ... Gare(br)

v
17 Eg’u, =Ty Hg E‘g'v*i = . Eg’U*,
) @) (v,v%) 1.1
(v,9") day. . Gare(0e11) x
18 Eg 1U =Ty 9@ 1 Eg 1’U>k¢ = . Ez 1v .
(18) i Be1) B (v,v%) D1 - Per1 -
Likewise, by Lemma 2.4 (ii) and Lemma 2.3 (ii),
(19) Ej_ju=Elu
ool
T
7 (0 Ep o]
* ¢d—€+1 cee d)d *
= (v,v ¢> C - E;_v.
My (9d7€)||Ed4’U||2
Notice that the transition matrix from the basis Eiv*, ..., Egqv*, Egv* to
the EKR basis wy,...,wy is lower triangular. Hence, for fixed ¢ with

0<t<d—2,if we write

(Ety1 + Br2)wy = aBp 10" 4 bEy 20",
(Ety1 + Epp2)wi1 = cBipav”,

then it follows that

(20) (Gt + Gey1)Erp1v* = a twy — a e bwyy g,
(21) (Gt + Gt+1)Et+2’0* = cil'wtﬂ.
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By Theorem 3.9 (ii), we routinely obtain

3 ©2 - - ry114(60)
Bd—t41 - - PaT41(Or41)Nd—t—1(00) Ve 41
(23) -1 _ _ @2 .- - pr2ma(bo)
Ga—t - - - Pati42(0r+2)Nd—1—2(00)Vey2’
02 .. pr41m4(00) (00 — Ory1)
Gd—t - - - PaTi+1(0t41)Na—1—1(00)

o ( Pd—t—1 . fo — 6dt>'
(042 — 0111)0¢42 (]
From (15), (17), (18), and (20)—(24), it follows that

(v, 9™)  Ga—ps1 - - Gare(00)

(22) at =

(24) —a telh =

(25) Gg_lu = Gg_lEgU*
(v, v*) O1---Pp
_ (v, 0™ Gaer1nal6o) (9 — HO)wz X
(v, v*) ©1Md—e+1(60) Ve B
when 1 < ¢ < d, and that
*
(26) Gou = <Ua v > <¢d—f+1 e d)dTg(@g) G(E[’U*
(v, v*) P10
... 0
N Pt - - - daTi( £+1)G5Eg+1’v*)
(Y2 R 903_;,_1
(v, v na(6o) (cbd—f (6o — 0,)(65 — 92—z+1)>
= - —+ wy
(v,v*)  ©1na—e(0o) \ Vo1 Yy

(v, v na(6o) (cbd—z Pd—r+1 901)1%

= . +
(v,v*)  1M4—e(00) \Ves1 vy

when 1 < £ < d — 1, where the last line follows from (3) and (4). When
¢ =0 or ¢ =d, we interpret ¢g/V3+1 = dg+1/P%0 = 1 in (26). Indeed, when
¢ =0, since GoEpup = 0 by Lemma 3.11 (ii), it follows from (15), (18), (20),
and (22) that

GOUO = GOEluo = <U’U *> : @GoEl'D* = (’U,’U *> . @wo‘
When ¢ = d, since

@2 ... pana(fo)
(Eq + Eo)wq = Egv*

by Theorem 3.9 (ii), it follows that

- pana(fo)

* P2 -
Gi1+GHEv = 1=——"=>"~ -~
(Ga-1+ Ga)Ea b2 ... dq7a(0a)

(—wg—1 + wq),
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so that by (15) and (17) we have
) b1l oo 00 Gt
<U7U*> P1---Pd <’U,’U*> ®1

Notice that the transition matrix from the basis Ejv, Ejv, ..., Efv to the
EKR basis wy, ..., wy is upper triangular. Hence, for 1 < ¢ < d, since

(v,v%) ] T;—t+1(92—t+1)7ld—t(90)19t
10l w2 pat41 (051 — 05)
by Theorem 3.9 (iii) and (4), it follows that

GiE v = |[v]|? 2. d—t+1(0 41 — HS)wt
—t+1% — * * * )
* (v,v%) Td_t+1(‘9d—t+1)nd—t(90)ﬁt

so that by (15), (19), and (5), we have

Gdud = wy.

* *
Eq ipiwe = Eq v

* ¢d—€+1 cee ¢d *
(27) Griiu = (v,0™) - e . Gy By v
* Ug(ed_z)HEd_g'vHZ it

_ <U,v*i> ' nd(eo)(ejH *96) )
(v,v*)  ©1Ng—e—1(00)V041
when 0 </ <d— 1.

+1

Theorem 3.12. Setting w_; = wgy1 = 0, the following hold.3
) 1na(b0) Pd—r
i TA’U*J’:<v’U _Nd 0{_ d—t+1
W 7(d) (v,v) ¢ na-e(00)0¢

1 Gi—t  Pd—t+1 )
+ - w
Nd—e(6o) <19z+1 7 L A

030 — 05 }
b0,
Na—e—1(00)0 041 e

for 0 < £ < d, where we interpret ¢o/Vq11 = Par1/P0 = ¢1.

.. . w2 - - pna(0o) { Ga—j+1Ma—j(0;)
Ejv* = - .
(i) Ejv Ga—jr1- - baTi(05)na—;(05) Na—j(00)V; i

d—1 ‘
(-0 nd—t—l(gi) <¢dt

= Na—(6o) \ Ve
T (ej - 9t+1)§§2—t+1 - 98)>wt
¢

o+ (67 - 63)(6; — 60w
for 1 <j <d, and Egv* = wy.

8We also interpret the coefficients of w_1 and w4y, as zero (or indeterminates), when-
ever these terms appear.
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_ (w0 o pina(fo)ng(65) {801 + (61 — 60)(6; — 6F)
[o*[12 1~ - @it (67 ) (6]) 14(6o)

d—1
- n;—1(0F) <¢d—t+1
+ 0 -0
( 0) — Ga—t+1- - Pana—(6o) \ Ve

N (07 =63 141)(0r1 — 90)>wt
Vi1
ML) —6)
Git1 - Pani—1(00)V; wd_l“}
for 1 <i<d, and Ejv = (v,v*)||v*||2wy.

Proof. (i): Immediate from (16), (25), (26), and (27).
(ii): By (i) above, Lemma 2.4 (iii) and (v), and Lemma 2.3 (ii), we have

(iii) Ejv wo

e ) e N ma(6)) Dot
B = 100 0) Tyt -0 2 Oy @)

©2 ... 0n4(0o) Z - {¢d —e41(0p — 9o)w€_1

 Pa—jt1 - - ¢dTJ )Nd—; (0 Nd—e+1(60)9¢

Pd—t ¢d4+1 it~ %
e e(00) (19“1 T, S01>W " 77d—£—1(90)19£+1w€+1}
for 1 < j < d. Now simplify the last line using (3) and (4).
(111). Apply “x” to (ii) above with respect to the ®*-EKR basis {w}},
with Ejw; = Ejv (0 <t < d), and then use Corollary 3.10, Lemma 2.3 (i),
and (4). O

Finally, we shall describe the matrices representing A and A* with respect
to the EKR basis {w;}¢_,. We use the following notation:

5 (05) (07 g 1 — 06) 0541 — (65, — 05)0s)

A —
Gd—s+1 - - - PaNd—s—1(00)0s41

(I1<s<d-1).

Notice that
A — Ns—1(00) ((0dg—s+1 — 00)0s 41 — (Ba—s — 00)Vs)
’ P1-- - Osny_ g 1(05) V51
by virtue of Theorem 2.3 (i) and (4).

Theorem 3.13. With the above notation, the following hold.

(I1<s<d-1),

' . (0
(i) Awy = 0wy + (¢d AR n*((gf;w il O)At-i-l — (011 — 90)>wt+1
HCH
d—1
. (8
+ Pt *(Zf;?d ! 0){ Z (As — As—1)ws —Ad—1'wd}
Mt \Yo s=t+2

fOT‘O <t < d—2, Awd_l = ded_l—(ﬁd—ﬁo)wd, and Awd = Oo’wd.
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i) A*w = AY w
(i) ' ?7d(90) =170
(b ¢d 5775 9 * *
Py A (- 8
o—1 Ta— s 0
o1 '¢d—t+17lt—1(96k) ¢d—t+1>
4 AY L — T
( Na—t+1(6o) A=t g gy ) !
+ 0441wt

for2 <t <d, A'wy = w; — (0 — 05)wo, and A*wy = Ojwo.
Proof. (i): By Theorem 3.9 (i), (3), (4), and since Am(A) = 1r41(A) +
0o7e(A), we obtain

A = <<§ ’:3 { nd%ﬁ?elff)eo)wm)v*i 30 M0t gyt
’ 1

nai(00) = (05
na(00)n; (05) S| Pa—tv2 - - Pa—t

d
14—t (%) m; (65)0: .l
il Te(A)v
nd(9o)772<(9*)€ 7 Qa1 ba “4)

(v, 'v*¢ { Av

Nd— (90)90 d
na(0o)ni (65)

d * *
<P177d—t*(902 774—1(90)79d—e+1n (A
na(0o)n; (65) Pd—t+1 - - - Pd—t

(v,v")  1n4-1(6o) L (95)0
(v, ) ng(Bo)n; (6F) Pd—t41 - - - Pa—t

Now apply Theorem 3.12 (i) and simplify the result using (3) and (4).

To(A)v*

77;(%) Tg(A)’U*‘L

+ L TR N LA
Gd—t41 - - - Pd—t

l=t+1

{=t+1

= Qow; + 7'@(14)11*¢

{=t+1

(ii): Apply “s” to (i) above with respect to the ®*-EKR basis {w}}L,
such that Ejw; = EO’U (0 < t < d), and then use Corollary 3.10, Lemma
2.3 (i), and (4). O

We end this section with an attractive formula for A,.
Lemma 3.14. For 1< s <d—1, we have
(Og—s41 — 00)Vs41 — (Ba—s — 60) Vs

_ Oatsa) = 016/2) B s-1y/2) = Opistnyya)).
0q — o
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Proof. This is verified case by case using [23, Lemma 10.2]. O
Corollary 3.15. For1 < s<d—1, we have

17;‘_1(95)(927@/% - 0>‘[s/2j)(927L(571)/2J - 0>[(s+1)/2j)
Pd—st1** PaNd—s—1(00) (0 — 05)Vst1 '
Proof. Immediate from Lemma 3.14 and (4). O

As =

4. APPLICATIONS TO THE ERDOS-KO-RADO THEOREMS

The Erd6s—Ko—Rado type theorems for various families of ()-polynomial
distance-regular graphs provide one of the most successful applications of
Delsarte’s linear programming method [4].”

Let T be a @Q-polynomial distance-regular graph with vertex set X. (We
refer the reader to [2, 3, 21] for background material.) Pick a “base vertex”
x € X and let & = ®(I') be the Leonard system (over K = R) afforded
on the primary module of the Terwilliger algebra T'(z); cf. [19, Example
(3.5)].1% The second eigenmatrix Q = (Qij)g,j:o of T is defined by!!

As summarized in [20], every “t-intersecting family” Y C X is associated
with a vector e = (eg,...,eq) (called the inner distribution of V') satisfying

60:17 81207"'7€d7t>07 ed7t+1:'”:ed:o7
Y] = (eQ)o, and (eQ)1>0,...,(eQ)s=0

Viewing these as forming a linear programming maximization problem with

objective function (eQ)g, we are then to construct a vector f = (fo,..., fq)
such that
(28) fo=1, fi=--=fi=0, and (FQN)1=-=(fQNa-t=0,

which turns out to give a feasible solution to the dual problem with objective
value (fQT)o, provided that f;11 >0,...,f; > 0.
Set w = Z?:o [iEjv*. Then

d d *

d
Z (FQT)iE}w
=0

Hence it follows that f satisfies (28) if and only if w = w;. In particular,
such a vector f is unique and is given by Theorem 3.9 (ii).

9See, e.g., [, 15] for more applications as well as extensions of this method.
10We remark that ® is independent of x € X up to isomorphism.
HThe matrix Q is denoted P* in [26, p. 264].
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We now give three examples. First, suppose ® is of dual Hahn type [27,
Example 5.12], i.e.,
0; =0+ hi(i+1+s), 07 =05+ s"i
for 0 <7< d, and
pi=hs"i(i—d—-1)(i+r), ¢;=hs"i(i—d—1)i+r—s—d—1)
for 1 < i < d, where h, s* are nonzero. Then it follows that
(1= )G+ s+ 2)(s—r+1);(—1)7"
(t—r+s+1)(s+2)t(r+2)_1

t—j+Lt+j+s+21
X3F2< b1t — 74542 ’1)

fi=

fort+1<j<d, and

Ty _ (—d—s—1)4—¢
(fFQ o= s —d.,

If T is the Johnson graph J(v,d) [3, Section 9.1], then @ is of dual Hahn
type withr =d—v—1, s = —v —2, and s* = —v(v — 1)/d(v — d); cf. [22,
pp. 191-192]. In this case, the vector f was essentially constructed by Wilson
[29] and was used to prove the original Erdés-Ko-Rado theorem [6] in full
generality.

Suppose ® is of Krawtchouk type [27, Example 5.13], i.e.,

0; =060+ si, 07 =05+ s

for 0 <7< d, and

pi=ri(it—d—1), ¢ =(r—ss")i(i—d—1)
for 1 < ¢ < d, where r, s, s* are nonzero. Then it follows that

(1—g)e (1 —ss\/ " t—j+1,1] ss*

fi= I
t! T t+1 ss* —r

fort+1<j<d, and

ss* =t
Ty _
(fQ")o= <ss*—7‘> .
If T is the Hamming graph H(d,n) [3, Section 9.2], then ® is of Krawtchouk
type with r = n(n — 1) and s = s* = —n; cf. [22, p. 195]. In this case, the
vector f coincides (up to normalization) with the weight distribution of an
MDS code [14, Chapter 11], i.e., a code attaining the Singleton bound.!?
Finally, suppose @ is of the most general ¢- Racah type [27, Example 5.3],
i.e.,

0;=00+h(1—q")(1—s¢ )", 0f=05+h"(1—q)1—s"¢)g"

121 this regard, one may also wish to call {wt}fzo an MDS basis or a Singleton basis.
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for 0 <7< d, and
pi = hh*q" (1= ¢)(1 = ¢~ = 11g") (1 = r2q"),
b = hh* 72 (1 — ¢)(1 — ¢~ Y (r1 — s%¢) (2 — 5°¢") /5"
* d+1

for 1 < ¢ < d, where h,h*,r1,79,s,5", g are nonzero and riro = ss*q
Then it follows that the f; are expressed as balanced 4¢3 series:

s gH D=V (g1=3: )4 (sq?72; q)e(sq/r15 9);(sa /T2 ) 5
(1= s¢"*1/r)(1 = s¢ 1 /m2) (45 @)e(56%5 @) (r14?5 @) j—1(r2q?; @) j—1

t—jt1 o tj42 t—d—1 ) ok
q ,5q . q /s%q |
X 4(153( qt+17 sqt+2/r1, Sqt+2/r2 ‘ q; Q>

fort+1<j<d, and

fi=

(FQT)o = (56" @)a-t(s*0%; @)a-t
rd=tgd=t (sqt*1 fr1; @)t (5°q/71; Q) dt
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