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CHROMATIC POLYNOMIALS OF SOME SUNFLOWER

MIXED HYPERGRAPHS

JULIAN A. ALLAGAN

Abstract. The theory of mixed hypergraph coloring was first intro-
duced by Voloshin in 1993 and has been growing ever since. The proper
coloring of a mixed hypergraph H = (X, C,D) is the coloring of the ver-
tex set X so that no D-hyperedge is monochromatic and no C-hyperedge
is polychromatic. A mixed hypergraph with hyperedges of type D, C or
B is commonly known as a D, C, or B-hypergraph respectively where
B = C = D. D-hypergraph colorings are the classic hypergraph colorings
which have been widely studied. The chromatic polynomial P (H, λ) of
a mixed hypergraph H is the function that counts the number of proper
λ-colorings, which are mappings f : X → {1, 2, . . . , λ}. A sunflower
(hypergraph) with l petals and a core S is a collection of sets e1, . . . , el
such that ei ∩ ej = S for all i 6= j. Recently, Walter (see [14]) published
some results concerning the chromatic polynomial of some non-uniform
D-sunflower. In this paper, we present an alternative proof of his re-
sult and extend his formula to those of non-uniform C-sunflowers and
B-sunflowers. Some results for a new but related member of sunflowers
are also presented.

1. Definitions and notations

For basic definitions of graphs and hypergraphs we refer the reader to
[1, 4, 12, 15]. A hypergraph H of order n is an ordered pair H=(X, E) where
|X| = n is a finite nonempty set of vertices and E is a collection of not
necessarily distinct nonempty subsets of X called hyperedges. H is said to
be k-uniform if the size of each of its hyperedges is exactly k. A hypergraph
is said to be linear if each pair of hyperedges has at most one vertex in
common.

If the alternating sequence of vertices and distinct hyperedges v0, e1, v1,
. . . , el, vl is a hyperpath of length l ≥ 2, then the hypergraph induced by
the sequence of hyperedges e1, . . . , el when v0 = vl is called a hypercycle of
length l. A hypergraph in which no set of hyperedges induce a hypercycle is
said to be acyclic. In this paper all hypergraphs are assumed to be connected
and acyclic.
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The concept of mixed hypergraph colorings has been studied extensively
by Voloshin [12]. A mixed hypergraph H with vertex set X is a triple
(X, C,D) such that C and D are elements of E , called C-hyperedges and
D-hyperedges, respectively. Elements of C ∩ D are called B-hyperedges. A
proper coloring of H is a coloring of X such that each C-hyperedge has at
least two vertices with a common color and each D-hyperedge has at least
two vertices with distinct colors. When the vertices of a hyperedge are all
colored with the same color, the hyperedge is said to be monochromatic. In
the event the vertices are all colored differently, the hyperedge is said to be
polychromatic. Given the mixed hypergraph H = (X, C,D), when C = ∅,
we write H = (X,D) and H is often called a D-hypergraph. In the case
when D = ∅, we write H = (X, C) and call the resulting hypergraph a C-
hypergraph. In the case when C = D, we write H = (X,B) and call H a
B-hypergraph.

The chromatic polynomial P (H, λ) of a mixed hypergraph H is the func-
tion that counts the number of proper λ-colorings, which are mappings,
f : X → {1, 2, . . . , λ} with the condition that no C-hyperedge is polychro-
matic and no D-hyperedge is monochromatic.

We note that while D-hyperedges may be of size 2, hyperedges of types
C or B are of size at least size 3 since every C-hyperedge of size 2 may be
contracted to a single vertex and every B-hyperedge of size 2 is uncolorable.
We encourage the reader to refer to [5, 6, 13, 10, 12] for detailed infor-
mation about chromatic polynomials, research, and applications of mixed
hypergraph colorings.

For simplicity, throughout this paper, we denote the falling factorial

λt = λ(λ− 1)(λ− 2) . . . (λ− t+ 1).

2. Chromatic polynomial of some linear mixed hypergraphs

We begin this section with some known results ([2]) concerning the chro-
matic polynomials of some linear acyclic mixed hypergraphs also known as
(linear) mixed hypertrees. We denote by Hl = (X, E), a hypergraph of
length l, where |E|=l.

Theorem 2.1. Let Hl = (X,D) be any D-hypertree. Then

P (Hl, λ) = λ
∏
e∈D

(
λ|e|−1 − 1

)
.

The result follows from the fact that there are λ|e| − λ = λ(λ|e|−1 − 1)
ways to properly color each hyperedge e ∈ D. Similar arguments as in the
previous theorem are used in [2] to obtain the next two results.

Theorem 2.2. Let Hl = (X, C) be any C-hypertree. Then

P (Hl, λ) = λ
∏
e∈C

(
λ|e|−1 − (λ− 1)|e|−1

)
.
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Theorem 2.3. Let Hl = (X,B) be any B-hypertree. Then

P (Hl, λ) = λ
∏
e∈B

(
λ|e|−1 − (λ− 1)|e|−1 − 1

)
.

The next corollaries concern uniform mixed hypertrees and they follow
respectively from Theorems 2.1, 2.2 and 2.3 when |e| = k for each e ∈ E .

Corollary 2.4. Let Hl = (X,D) be a k-uniform D-hypertree. Then

P
(
Hl, λ) = λ(λk−1 − 1

)l
.

Corollary 2.5. Let Hl = (X, C) be a k-uniform C-hypertree. Then

P (Hl, λ) = λ
(
λk−1 − (λ− 1)k−1

)l
.

Corollary 2.6. Let Hl = (X,B) be a k-uniform B-hypertree. Then

P (Hl, λ) = λ
(
λk−1 − (λ− 1)k−1 − 1

)l
.

3. Chromatic polynomial of some (strong) sunflowers

A sunflower (hypergraph) Hl = (X, E) (also known as a ∆-system in
[7]) with l petals and a core S is a collection of sets e1, . . . , el such that
ei ∩ ej = S for all i 6= j. The elements of the core are called seeds. A Venn
diagram of these sets would look like a sunflower. Observe that any family
of pairwise disjoint sets is a sunflower (with an empty core) and a hyperstar
is a sunflower with a core of size 1. Figure 1 is an example of a 5-uniform
sunflower with a core S of size 3 having e1, e2 and e3 as petals.

e1

e2

e3

Figure 1: A 5−uniform sunflower

S

The Erdos–Rado sunflower lemma gives a necessary condition for the
existence of a sunflower given any collection of uniform sets. This condition



38 JULIAN A. ALLAGAN

is a lower bound for the cardinality of the collection; it is not known if the
bound is the best possible [7]. We restate the lemma without proof, which
can be proven by induction on k.

Lemma 3.1 (Sunflower Lemma). Given any collection of n distinct sets of
size k (from a universal set) with n > k!(l − 1)k, there is a subcollection of
l-sets that forms a sunflower.

Our results assume sunflower mixed hypergraphs with a core S and petals
{e1, . . . , el} such that |S| ≤ |ei| − 1 for 1 ≤ i ≤ l. We begin with a recent
result of Walter [14] about sunflowers with petals of type D. Note that when
|S| = 1, it is easy to verify that we obtain the formula of a D-hypertree. In
particular, the chromatic polynomial of a D-hyperstar.

Theorem 3.2. [14] Let Hl = (X,D) be any D-sunflower. Then

P (Hl, λ) = λn − λn−|S|+1 + λ
∏
e∈D

(
λ|e|−|S| − 1

)
.

Proof. Suppose the core is monochromatic. Then there are λ|e|−|S|− 1 ways
to color the remaining vertices of each petal so that no petal is monochro-
matic, giving λ

∏
e∈D

(
λ|e|−|S| − 1

)
proper colorings. Otherwise, there are

λ|S|−λ ways to color the core. For each such coloring there are λ|e|−|S| ways
to color the remaining vertices of each petal e ∈ D, giving

∏
e∈D λ

|e|−|S|(λ|S|−
λ) proper colorings. Furthermore, since n = |S|+

∑
e∈D(|e|−|S|), the result

gives all proper colorings. �

As mentioned earlier, the previous result was first established by Walter
as the chromatic polynomial of non-uniform D-sunflowers (albeit using a
substantially different argument) to extend Tomescu’s result for uniform D-
sunflowers [9]. We present Tomescu’s result in the following corollary with
a slightly different notation by assuming that |S| = k − p for 2 ≤ k < p.
This result follows from Theorem 3.2 when |e| = k for each e ∈ D.

Corollary 3.3. Let Hl = (X,D) be a k-uniform D-sunflower. Then

P (Hl, λ) = λn − λn−k+p+1 + λ(λp − 1)l.

Results similar to Theorem 3.2 and Corollary 3.3 have been recently es-
tablished by White in the form of multivariate polynomials using a deletion-
contraction-extraction recurrence. For detailed results of his technique and
proofs, see [16]. Our next results address sunflower mixed hypergraphs with
petals of the same type C or B. A similar counting argument as in Theorem
3.2 is used to prove the next theorem.

Theorem 3.4. Let Hl = (X, C) be any C-sunflower. Then

P (Hl, λ) = λn − λ|S|
∏
e∈C

λ|e|−|S| + λ|S|
∏
e∈C

(λ|e|−|S| − (λ− |S|)|e|−|S|).
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Proof. Suppose the core is polychromatic. There are λ|S| ways to color its

seeds. For each such coloring, there are λ|e|−|S| − (λ − |S|)|e|−|S| ways to
color the remaining vertices of each petal so that no petal is polychromatic,

giving the last term. Otherwise, there are λ|S|− λ|S| ways to color the core,
giving the first two terms after an expansion. �

Observe that when |S| = 1, the previous result gives the chromatic poly-
nomial of a C-hyperstar.

In the next theorem, we assume |S| ≥ 2. When |S| = 1, we refer the reader
to the result of Theorem 2.3, which is equivalent to that of a B-hyperstar.

Theorem 3.5. Let Hl = (X,B) be any B-sunflower. Then

P (Hl, λ) = λn − (λ|S| + λ)
∏
e∈B

λ|e|−|S|+

λ
∏
e∈B

(λ|e|−|S| − 1) + λ|S|
∏
e∈B

(λ|e|−|S| − (λ− |S|)|e|−|S|).

Proof. Given any proper coloring of Hl, one of the following is true:

(1) The core is polychromatic giving λ|S| colorings. For each such col-

oring, there are λ|e|−|S|− (λ− |S|)|e|−|S| ways to color the remaining
vertices of each petal so that no petal is polychromatic, giving the
last term. The condition that |S| ≥ 2 ensures that no hyperedge of
Hl is monochromatic in this case.

(2) The core is monochromatic giving λ colorings. For each such color-

ing, there are λ|e|−|S|−1 ways to color the remaining vertices of each
petal so that no petal is monochromatic, giving the third term.

(3) The core is neither polychromatic nor monochromatic giving λ|S| −
λ|S| − λ colorings. For each such coloring, there are λ|e|−|S| ways to
color the remaining vertices of each petal, giving the first two terms
after an expansion.

�

The following corollaries follow respectively from Theorems 3.4 and 3.5
when for each e ∈ E , |e| = k and |S| = k − p with k ≥ 3. We note that
n = k − p+ pl.

Corollary 3.6. Let Hl = (X, C) be a k-uniform C-sunflower. Then

P (Hl, λ) = λn + λk−p
(
(λp − (λ− k + p)p)l − λpl

)
.

Corollary 3.7. Let Hl = (X,B) be a k−uniform B-sunflower. Then

P (Hl, λ) = λn + λk−p
(
(λp − (λ− k + p)p)l − λpl

)
− λpl+1 + λ(λp − 1)l.

We define a µ-linear set to be a collection of nonempty sets such that the
intersection of any pair of its member is either trivial or µ. Thus, a sunflower
with core size µ is a µ-linear set (or hypergraph). When µ = 1, a 1-linear
hypergraph is simply called a linear hypergraph. On the other hand, we
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define a set to be µ-nonlinear when the cardinality of the intersection of
any pair of its members is at most µ > 1. Simply put, any collection of sets
is either µ-linear or µ-nonlinear for some µ.

The problem of finding the chromatic polynomial of µ-linear or µ-nonlinear
hypergraphs of arbitrary length when µ > 1 is NP hard [3]. Currently we
are unaware of any known formulae for either family besides the ones we
presented or quoted in this paper so far. To encourage further work in this
direction, in the following section we introduce an acyclic hypergraph whose
chromatic polynomial we explicitly obtained when µ = 1 and 2.

4. Chromatic polynomial of some weak sunflowers

A transversal (or blocking set) of F = {e1, . . . , el} is a set which intersects
every member of F (obviously, F can have more than one transversal). A
transversal of F with the least number of elements is often referred to as
a covering set and its cardinality is called a covering number (or blocking
number). The core S of a sunflower is a transversal and S is a covering
set if |S| = 1. Let F = {e1, . . . , el} be a collection of pairwise disjoint sets
and we denote by S a transversal of the collection. We call S the core of
the collection and its elements are the seeds. The members of the collection
will be referred to as petals. Thus, it is natural to refer to the hypergraph
Hl = (X, E) with E = S ∪F as a weak sunflower with l-petals. Figure 2 is a
representation of a 4-uniform weak sunflower with a core S of size 6 having
petals e1, e2 and e3.

Figure 2: A 4-uniform weak sunflower

S

e1

e2
e3

Just as the Erdos–Rado sunflower lemma gives a necessary condition for
the existence of a (strong) sunflower, it will be interesting to find a condition
on the existence of a weak sunflower given a collection of n distinct k-uniform



CHROMATIC POLYNOMIALS OF SOME SUNFLOWER MIXED HYPERGRAPHS 41

sets. We assume |ei∩S| = µ and discuss the chromatic polynomials of some
weak sunflowers when µ = 1 and 2. When µ = 1, we obtain the formulae for
linear acyclic mixed hypergraphs of length l + 1 in the following theorems.
We assume |S| = 2 and each petal e1, . . . , el is of the same type, D, C or B.
When the petals are of type D, we assume |ei| ≥ 2. When the petals are of
type B or C, we assume |ei| ≥ 3.

Theorem 4.1. Let Hl = (X,D) be a linear weak D-sunflower. Then for all
l ≥ 1,

P (Hl, λ) = (λ|S| − λ)
∏
e∈D

(λ|e|−1 − 1).

Proof. There are λ|S| − λ ways to color the seeds of the core such that they
are not monochromatic. For each such coloring, there are λ|e|−1− 1 ways to
color the remaining |e| − 1 vertices of each disjoint petal so that no petal is
monochromatic as well. �

The next two results follow a similar counting argument as in Theorem
4.1 when considering petals of types C and B respectively.

Theorem 4.2. Let Hl = (X, C) be a linear weak C-sunflower. Then for all
l ≥ 1,

P (Hl, λ) =
(
λ|S| − λ|S|

)∏
e∈C

(
λ|e|−1 − (λ− 1)|e|−1

)
.

Proof. There are λ|S| − λ|S| ways to color the seeds so that they are not

polychromatic. For each such coloring, there are λ|e|−1 − (λ − 1)|e|−1 ways
to color the remaining |e| − 1 vertices of each disjoint petal so that no petal
is polychromatic. �

Theorem 4.3. Let Hl = (X,B) be a linear weak B-sunflower. Then for all
l ≥ 1,

P (Hl, λ) =
(
λ|S| − λ|S| − λ

)∏
e∈B

(
λ|e|−1 − (λ− 1)|e|−1 − 1

)
.

Proof. There are λ|S| − λ|S| − λ ways to color the seeds so that they are
neither monochromatic nor polychromatic. For each such coloring, there

are λ|e|−1 − (λ − 1)|e|−1 − 1 ways to color the remaining |e| − 1 vertices of
each disjoint petal. �

Suppose Hl = (X, E) is a weak sunflower mixed hypergraph with a set
of petals {e1, . . . , el} such that |e| = k for every e ∈ E . If |S| = k then
Hl is said to be k-uniform. The case when S is a covering set (i.e., when
|S| = l), we simply let l = k. The following corollaries follow respectively
from Theorems 4.1, 4.2 and 4.3 when |S| = |e| = k for each e ∈ E .

Corollary 4.4. Let Hl = (X,D) be a linear k-uniform weak D-sunflower.
Then for all l ≥ 1,

P (Hl, λ) = λ(λk−1 − 1)l+1.
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Corollary 4.5. Let Hl = (X, C) be a linear k-uniform weak C-sunflower.
Then for all l ≥ 1,

P (Hl, λ) = λ
(
λk−1 − (λ− 1)k−1

)l+1
.

Corollary 4.6. Let Hl = (X,B) be a linear k-uniform weak B-sunflower.
Then for all l ≥ 1,

P (Hl, λ) = λ
(
λk−1 − (λ− 1)k−1 − 1

)l+1
.

The arguments previously used in finding the chromatic polynomials of
linear weak sunflowers cannot be extended to find the chromatic polynomial
of any 2-linear weak sunflower. We use an inductive argument to establish
the recursion in the next theorem. The result assumes that each hyperedge
and core is of type D. Although the argument can be extended to each
hyperedge and core of type C or B as well.

Theorem 4.7. Suppose Hl = (X,D) is a 2-linear weak sunflower. Then
for all l ≥ 1,

P (Hl, λ) =
(
λ|el|−2 − 1

)
P (Hl−1, λ) + λ2λ|el|+|S|−4

l−1∏
i=1

(
λ|ei| − λ

)
.

Proof. When l = 1 we let S ∩ e1 = {u, v}. We count the cases when f(u) =
f(v) and when f(u) 6= f(v) separately as follows:
Case 1 : f(u) = f(v).

We identify u and v as a new vertex giving λ
(
λ|e1|−2 − 1

)(
λ|S|−2 − 1

)
colorings.

Case 2 : f(u) 6= f(v).
We connect u and v with an edge. In this case, having satisfied the

necessary condition for a proper coloring of both S and e1, we proceed to
color their remaining vertices with no restriction to obtain λ2λ|S|+|e1|−4

colorings. Thus, the number of colorings when l = 1 is given by

(4.1) P (H1, λ) = λ(λ|e1|−2 − 1)(λ|S|−2 − 1) + λ2λ|S|+|e1|−4.

This formula is supported by the expression in the theorem when l = 1
since P (H0, λ) = λ(λ|S|−2 − 1).

For l ≥ 2, we let S ∩ el = {u, v} and assume that P (Hl−1, λ) counts the
number of proper colorings of a weak sunflower with l − 1 petals. Similar
to the base case, in any proper coloring of H l, one of the following must be
true:
Case 1 : f(u) = f(v).

We identify u and v by a new vertex w as the intersection of both el
and S. For each coloring f of the P (Hl−1, λ) proper colorings of Hl−1,

there exists λ|el|−2 − 1 colorings of V (el) \ w, giving the first term.
Case 2 : f(u) 6= f(v).



CHROMATIC POLYNOMIALS OF SOME SUNFLOWER MIXED HYPERGRAPHS 43

For any proper coloring of the remaining |el|+ |S| − 4 vertices of both

S and el, we have λ|ei| − λ ways to color the vertices of each disjoint
petal e1, . . . , el−1, giving the second term. The result follows.

�

The next corollary follows from Theorem 4.7 when equation (4.1) is used
as the standard basis for the recursion.

Corollary 4.8. Let Hl = (X,D) be a 2-linear weak sunflower. Then

P (Hl, λ) = λ
(
λ|S|−2 − 1

) ∏
1≤i≤l

(
λ|ei|−2 − 1

)
+
∑
1≤i≤l

Φ(λ, i)
∏

i+1≤j≤l
1≤k≤i−1

(
λ|ej |−2 − 1

)(
λ|ek| − λ

)
for all l ≥ 1 where

Φ(λ, i) = λ|ei|+|S|−2i − λ|ei|+|S|−2i−1.

When |ei| = |S| = k for all i = 1, . . . , l, we obtain from Corollary 4.8 the
next result.

Corollary 4.9. Let Hl = (X,D) be a k-uniform 2-linear weak sunflower.
Then

P (Hl, λ) = λ
(
λk−2−1

)l+1
+
∑
1≤i≤l

(
λ2k−2i−λ2k−2i−1

)(
λk−λ

)i−1(
λk−2−1

)l−i
for all l ≥ 1.

Further chromatic polynomial formulae can be derived using similar ar-
guments as in the previous theorems by considering the core of a sunflower
to be of a different type (D, C or B) when compared to its petals.

Two mixed hypergraphs H1 and H2 are chromatically equivalent or sim-
ply χ-equivalent if P (H1, λ) = P (H2, λ) and we write H1 ∼ H2. A mixed
hypergraphH is χ-unique ifH′ ∼ H implies thatH′ is isomorphic toH. The
chromaticity of a mixed hypergraph studies whether a mixed hypergraph H
is χ-unique. In other words, does P (H, λ) provide enough information so
that H is uniquely determined? Attempting to answer this question for
µ-(non)linear mixed hypergraphs is not easy, although Tomescu [8, 9] had
shown that D-sunflowers are chromatically unique in general. Further work
still needs to be done with regard to the chromaticity of mixed sunflowers
with hyperedges of type C or B. Although it is not too difficult to see that
acyclic mixed hypergraphs are not χ-unique in general, it remains unclear
what can be said about the class of mixed hypergraphs that are chromati-
cally equivalent to µ-(non)linear acyclic mixed hypergraphs. Indeed, a weak
sunflower with l petals is isomorphic to a µ-linear hyperpath of length l ≤ 3
and a strong sunflower with l petals is isomorphic to a µ-linear hyperpath
of length l ≤ 2. We also hope that further work can be done to compare the
chromatic polynomial of some 2-linear acyclic hypergraph of length l > 3 to
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that of a 2-linear weak sunflower with the goal of finding the formulae for
other members of both µ-linear and µ-nonlinear mixed hypergraphs when
µ > 1.
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