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DISTINGUISHING HOMOMORPHISMS OF INFINITE

GRAPHS

ANTHONY BONATO AND DEJAN DELIĆ

Abstract. We supply an upper bound on the distinguishing chromatic
number of certain infinite graphs satisfying an adjacency property. Dis-
tinguishing proper n-colourings are generalized to the new notion of
distinguishing homomorphisms. We prove that if a graph G satisfies the
connected existentially closed property and admits a homomorphism
to H, then it admits continuum-many distinguishing homomorphisms
from G to H join K2. Applications are given to a family of universal
H-colourable graphs, for H a finite core.

1. Introduction

The distinguishing number is a widely studied graph parameter, first in-
troduced by Albertson and Collins [1]. Given a graph G, its distinguishing
number, written D(G), is the least positive integer n such that there ex-
ists an n-colouring of V (G) (not necessarily proper) so that no non-trivial
automorphism preserves the colours. The distinguishing chromatic number,
written χD, is a variant of the distinguishing number which requires that
the n-colouring be proper (so the set of vertices of a given colour forms an
independent set). The distinguishing chromatic number was introduced by
Collins and Trenk [7] in 2006 (see also [6, 12]).

The distinguishing number of infinite graphs was first considered in [11].
In particular, it was proved there that the distinguishing number of the in-
finite random (or Rado) graph, written R, is 2. (See [5] for background on
R.) This result was generalized first in [13] and then in [4]; in the latter
paper it was shown that graphs satisfying a certain adjacency property have
distinguishing number 2. As the chromatic number of R and many of its
relatives (such as the Henson universal homogeneous Kn-free graphs) are
infinite, their distinguishing chromatic numbers are also infinite. We find
bounds on the distinguishing chromatic numbers of certain infinite, symmet-
ric graphs of bounded chromatic number: the universal pseudo-homogeneous
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H-colourable graphs, where H is a finite core graph (see [2, 14]). This family
will be discussed in detail in Section 3.

We prove our results in the new and general setting of distinguishing ho-
momorphisms (defined in the next section). Distinguishing homomorphisms
generalize distinguishing proper colourings, and some of their properties are
outlined in Lemma 1 in Section 2. Our main result is Theorem 2, which
demonstrates that for a graph G satisfying a certain adjacency property
(called c.e.c.) which admits a homomorphism to H, there are continuum-
many distinct distinguishing homomorphisms from G to H join K2. In par-
ticular, for such graphs we derive the bound χD(G) ≤ χ(G) + 2. We apply
this result to the universal pseudo-homogeneous H-colourable graphs.

Throughout, all graphs we consider are undirected, simple, and countable
(that is, either finite or countably infinite). For background on graph theory,
the reader is directed to [8, 15]. The cardinality of the continuum (that is,
the set of real numbers) is denoted by 2ℵ0 . For a function f : X → Y and
S ⊆ X, we use the notation f � S for the restriction of f to S. We use
the notation 1X for the identity function on X. If G is a graph, then its
automorphism group is denoted Aut(G).

2. Distinguishing homomorphisms

The chromatic distinguishing number is defined in terms of proper n-
colourings which are distinguishing : no non-trivial automorphism preserves
the colours. A proper n-colouring may be viewed as a homomorphism into
Kn, which allows us to generalize this notion to the setting of graph homo-
morphisms.

Fix a finite graph H. For a graph G, a homomorphism from G to H is a
mapping f : V (G) → V (H) such that xy ∈ E(G) implies that f(x)f(y) ∈
E(H). We abuse notation and write f : G → H, or even G → H if the
mention of f is not important. We say thatG isH-colourable. For additional
background on graph homomorphisms, see [10].

A distinguishing homomorphism from G to H is a homomorphism
f : G → H so that for all α ∈ Aut(G), if

(1) αf−1 = f−1

then α = 1. We write G
D→ H if there is some distinguishing homomorphism

from G to H. If f : G → H is any homomorphism and α satisfies (1),
then we say it is preserving relative to f . Note that if α is preserving,
then for x ∈ V (H) it permutes the elements of f−1(x) (we may think of
each independent set f−1(x) as the vertices all of one colour). Hence, a
distinguishing proper n-colouring is just a distinguishing homomorphism to
Kn. For an example, see Figure 1. Note that an injective homomorphism is
necessarily distinguishing (in particular, we usually consider only the case
when f−1 is a relation). Hence, every homomorphism from a core graph
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(that is, a graph with the property that every homomorphism from H to
itself is an automorphism) to itself is distinguishing.

1

3

2

4

5

1

5

1

3

2

4

5

Figure 1. A distinguishing homomorphism from C7 to C5.
The labels on C7 describe the homomorphism.

We prove the following lemma which collects some facts on distinguishing
homomorphisms. A graph G is uniquely H-colourable if it is H-colourable,
any homomorphism from G to H is onto, and for two homomorphism f, g :
G → H, there is an automorphism α ∈ Aut(H) such that f = αg. For
example, each core graph H is uniquely H-colourable. Note that a uniquely
K2-colourable graph is precisely a connected bipartite graph.

Lemma 1.

(1) For a fixed homomorphism f : G → H, the preserving automor-
phisms relative to f form a subgroup of Aut(G).

(2) Distinguishing homomorphisms do not compose, in general.
(3) If f : G → H is a homomorphism and β ∈ Aut(H), then f is a

distinguishing homomorphism if and only if βf is a distinguishing
homomorphism.

(4) If G is uniquely H-colourable, then either all or no homomorphisms
f : G → H are distinguishing.

(5) Let G1 and G2 be connected, non-isomorphic graphs with disjoint
vertex sets. If f1 : G1 → H and f2 : G2 → H are distinguishing
homomorphisms, then so is f1 ∪ f2 : G1 ∪G2 → H.

Proof. For (1), suppose that α1 and α2 are preserving automorphisms of G.
Then we have that

α1α2f
−1 = α1f

−1 = f−1.

It is clear that the identity 1 is a preserving automorphism relative to f.
Further, note that α1f

−1 = f−1 implies that α−1
1 f−1 = f−1, and so item

(1) follows.
For (2), consider the graphs and homomorphisms displayed in Figure 2.

The notation i, j on vertices of the leftmost graph denotes two homomor-
phisms: the first number i is a homomorphism from the leftmost graph to
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Figure 2. Distinguishing homomorphisms which do not compose.

C5 (which is distinguishing), and the second letter j is the composed homo-
morphism to K3. The reader can verify that the composition of these two
distinguishing homomorphisms is not distinguishing.

For (3), suppose that f is distinguishing (the reverse direction is similar
and so is omitted). Fix α ∈ Aut(G). Suppose that

α (βf)−1 = (βf)−1 .

Then αf−1β−1 = f−1β−1. Fix x ∈ V (H). Then there is a y ∈ V (H) such
that β−1y = x. Hence, αf−1β−1(y) = f−1β−1(y) implies that αf−1(x) =
f−1(x). As x was arbitrary we have that α is preserving relative to f, and
so α = 1.

Item (4) follows immediately from (3). For (5), suppose that

(2) α(f1 ∪ f2)
−1 = (f1 ∪ f2)

−1,

for α ∈ Aut(G1 ∪ G2). As G1 and G2 are not isomorphic, connected, and
have disjoint vertex sets, we must have that αi = α � Gi are automorphisms
of Gi, for i = 1, 2. By (2), we have that αif

−1
i = f−1

i , which implies for
i = 1, 2 that αi = 1, and so α = 1. �

3. Main results

A graph satisfies the connected existentially closed or c.e.c. adjacency
property if for all non-joined vertices u and v (which may be equal) and
finite sets of vertices T not containing u or v, there is a path P of length
at least 2 connecting u and v with the property that no vertex of P\{u, v}
is joined to a vertex of T. (Note that if u = v, then P is a closed path
connected to u with at least one vertex not equalling u.) See Figure 3. In
particular, the internal vertices of P are distinct from and not joined to a
vertex of T.

The infinite random graph is c.e.c. as it is e.c. The infinite random bipar-
tite graph is also c.e.c. To see this, note that if u and v are the same colour,
then they have infinitely many common neighbours, and so they must have
one outside T . This gives a path of length 2 connecting u and v with the
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Figure 3. The c.e.c. property.

desired properties. If u and v are different colours, then consider a neigh-
bour w1 of u distinct from v and any element of T. We may find a common
neighbour w2 of v and w1 not equalling u or a vertex of T. Then the path
P = uw1w2v has the desired properties.

We now state our main result. Given graphs X and Y, define their join,
written X ∨ Y, by adding all edges between disjoint copies of X and Y.

Theorem 2. If G → H and G is c.e.c., then there are 2ℵ0 distinct distin-
guishing homomorphisms from G to H ∨K2.

We defer the proof of Theorem 2 to Section 4, and first focus on applica-
tions to certain infinite graphs with bounded chromatic number.

Let H be a finite, non-trivial, connected graph. As studied in [2] and later
in [14], there is a certain class of countable universal graphs admitting a
homomorphism into H; these are defined in terms of uniquely H-colourable
graphs. For each core graph H, there is a uniquely H-colourable graph
M(H) which is unique up to isomorphism with the following properties.

(M1) Each finiteH-colourable graph is isomorphic to an induced subgraph
of M(H).

(M2) Each finite induced subgraph X of M(H) is contained in a finite
uniquely H-colourable subgraph X ′ of M(H).

(M3) If X is a uniquely H-colourable induced subgraph of M(H), and X
is an induced subgraph of a uniquely H-colourable graph Y , then
there is an isomorphic copy Y ′ of Y in M(H) and an isomorphism
α : Y → Y ′ such that α � X = 1X .

Property (M3) is sometimes referred to as amalgamating Y into M(H)
over X, and it can be viewed as a certain kind of adjacency property for
M(H). The graph M(H) is sometimes called universal pseudo-homogeneous
(since every isomorphism of finite uniquely H-colourable induced subgraphs
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of M(H) extends to an automorphism; for more on such graphs see Chap-
ter 11 of Fräıssé [9]).

We note that each H-colourable graph is an induced subgraph of a
uniquely H-colourable graph via the following construction. Assume G and
H are disjoint. Fix a homomorphism f : G → H and define G(f) to be the
graph with vertices V (G) ∪ V (H) and edges:

E(G) ∪ E(H) ∪ {xy : x ∈ V (G), y ∈ V (H), f(x)y ∈ E(H)}.
The graph G(f) is the fixation of G by f relative to H; see Figure 4. We
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Figure 4. A fixation of C7 by C5. The C5-colouring of C7

is shown as the labelling of the vertices of C7.

restate the following result from [3].

Theorem 3 ([3]). Suppose that H is a core graph, and if f : G → H is a
homomorphism, then G(f) is uniquely H-colourable, and f∪1G : G(f) → H
is a homomorphism.

From Theorem 2 we have the following result.

Corollary 4. For all non-trivial, connected graphs H, M(H)
D→ H ∨K2. In

particular, χD(M(H)) ≤ χ(M(H)) + 2.

Proof. As M(H) → H, it is sufficient to show that M(H) is c.e.c. Fix non-
joined vertices u and v and a finite set of vertices T in M(H) not containing
u or v. Let X be the subgraph of M(H) induced by {u, v} ∪ T ; by (M2),
there is a finite uniquely H-colourable graph X ′ in M(H) containing X. Fix
a homomorphism f : X ′ → H.

Suppose that f(u) = f(v). As H is connected and non-trivial, there is a
vertex i of H joined to f(u). We then add a new vertex z to X ′ joined to
u and v, to form the path Q. The resulting graph X ′′ is H-colourable by
mapping X ′ via f and sending z to i.

If f(u) 6= f(v), then fix a path Q′ connecting f(u) and f(v) in H. We
may add a path Q (the same length as Q′ and so that no internal vertex
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is joined to a vertex of X ′) to X ′ connecting f(u) and f(v), so that each
vertex of Q is mapped to the corresponding vertex of Q′. Let X ′, along with
the path Q form the graph X ′′.

In either case, the resulting graph X ′′ contains X ′ as an induced subgraph
and admits a homomorphism, say f ′′, to H. Now form the fixation X ′′(f ′′) =
Y. By Theorem 3, Y is uniquely H-colourable, and so by (M3) we may find
an induced subgraph Y ′ of M(H) and an isomorphism α : Y → Y ′ such
that α � X ′ = 1X′ . In particular, α(Q) is a path connecting u and v whose
internal vertices are disjoint from the set T. �

An open problem is whether M(G)
D→ H ∨K1. In the case M(K2), which

is isomorphic to the infinite random bipartite graph, this would imply that
χD(M(K2)) = 3 (it is not 2, since by Theorem 2.4 of [6] a connected graph
G with χD(G) = 2 has an automorphism group that has order 1 or 2).

4. Proof of Theorem 2

Consider the tree T∞ in Figure 5 formed by adding a path of each finite
length to the root vertex of infinite degree. Label the branch (that is, a path

Figure 5. The tree T∞.

connected to the root) of this tree with length i by bi. Let Z be the set of
infinite-co-infinite subsets of the positive integers. Note that |Z| = 2ℵ0 . For
S ∈ Z, form the sequence s listing the elements of S in increasing order.
Note that s is unbounded. We define a tree Ts to be the induced subgraph
of T∞ by deleting each branch bi where i is not listed in s. Note that each
Ts has a trivial automorphism group.

We first prove the following lemma.

Lemma 5. Fix s ∈ Z. If G is c.e.c., then there is a partition A,B of V (G)
such that the subgraph induced by B is isomorphic to Ts, and for all distinct
vertices x and y in A, there is a z ∈ B such that z is joined to exactly one
of x or y.

Proof. Let G[2] be the set of all unordered pairs of vertices from G, We will
define sets of vertices Bt such that Bt ⊆ Bt+1 for all t ≥ 1. Each pair in G[2]



DISTINGUISHING HOMOMORPHISMS 51

will be exactly one of processed or unprocessed, and exactly one of good or
bad. We proceed over an infinite sequence of time-steps to process pairs. In
a given time-step t, let PROC(t) be the set of processed pairs, and GOOD(t)

be the set of good pairs. We set GOOD(0) = G[2], and let PROC(0) and

B0 be empty. Order the pairs in G[2] as ({xi, yi} : i ∈ N+). The idea of
the proof is to process all pairs so that vertices in the processed good pairs
form the set A, and the vertices of B are chosen from vertices in bad pairs.
Further, we ensure that for processed good pairs {x, y} there is a z ∈ B such
that z is joined to exactly one of x or y. The subgraph induced by B will
be isomorphic to Ts.

By the c.e.c. property with u = v = x1 and T = {y1}, there is a vertex z1
joined to x1 and neither joined nor equal to y1. Let B1 = {z1}. The vertex
z1 will play the role of the root in Ts. The pair {x1, y1} is now processed.

A pair in G[2] containing z1 is bad and processed; all remaining pairs form
GOOD(1). Let PROC(1) be the set of processed pairs so far, and note that
PROC(1) ∩GOOD(1) contains the single element {x1, y1}.

For some t ≥ 0 assume that GOOD(t), PROC(t) and Bt are defined with
the following properties.

(1) {{xi, yi} : 1 ≤ i ≤ t} ⊆ PROC(t), and PROC(t) ∩ GOOD(t) ⊆
{{xi, yi} : 1 ≤ i ≤ t}.

(2) If {xi, yi} ∈ PROC(t) ∩ GOOD(t), then there is a z ∈ Bt joined to
exactly one of xi or yi.

(3) The subgraph induced byBt is finite, and contains the first t branches
of Ts (and possibly other branches).

(4) A pair containing a vertex in Bt is bad; all other pairs are in
GOOD(t).

(5) Vertices in Bt are not equal to any vertex in a pair in PROC(t) ∩
GOOD(t).

We now let {xi, yi} be the first good pair in G[2] \ PROC(t). Note that
i ≥ t+1 by property (1), and such a pair exists by (3) and (4). We will add
to Bt the shortest branch of Ts that does not already appear there; without
loss of generality, say it is branch bk, with k ≥ t+ 1 by (3). To accomplish
this, let T ′ be the vertices in a pair in PROC(t) ∩ GOOD(t), along with
vertices in Bt ∪ {xi, yi} (note that by (1) and (3), T ′ is finite). By the c.e.c.
property applied as when t = 1, there is a vertex z1 joined to z1, and not
joined and not equal to any vertex in T ′. Iterate this process so that there
is an induced path P k = z1z2 · · · zk joined to z1, and so vertices of the path
are not joined nor equal to a vertex in T ′. Note that we have now added a
new branch of length k in Ts to Bt, and vertices in this branch are not joined
to any other vertex at time t except z1. We refer to this construction for
brevity as adding a branch of length k to z1 (observe that k was arbitrary,
so we could add any length branch).

We next process {xi, yi}. Let T ′′ be the vertices in P k union T ′. By the
c.e.c. property, there is a vertex z′1 joined to z1 and to no vertex in T ′′.
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In particular, z′1 is not joined to xi. Let T (3) be T ′′ minus the vertices in
PROC(t)∩GOOD(t) equalling one of xi (which may happen since PROC(t)∩
GOOD(t) contains unordered pairs). Let T = T (3) ∪ {yi}. By the c.e.c.
property, there is a path P joining z′1 to xi, whose internal vertices are not
joined nor equal to a vertex in T. Note that the vertex xi is joined to a
vertex z in P with z not joined nor equal to yi.

Observe that the path P ′ = z1z
′
1P may not have the length of a branch

in Ts, or it may be the length of a branch already added. However, we can
add a branch of appropriate length at z to lengthen P ′ to a path Q which
is a branch in Ts, so that the branch has length different than k and has
length different from any branch in Bt. Let Bt+1 be Bt along with vertices
of P k union Q. Any pair in G[2] containing a vertex from P k or Q becomes
bad and processed; let all remaining pairs form GOOD(t + 1). Note that
none of the good pairs in PROC(t) ∩ GOOD(t) become bad; furthermore,
{xi, yi} remains good. We change the status of {xi, yi} to processed, and
add all newly processed pairs to PROC(t) to form PROC(t+ 1). Note that
PROC(t+ 1), GOOD(t+ 1), and Bt+1 satisfy items (1)–(5).

As t tends to infinity, every pair becomes processed and exactly one of
good or bad. Now let A be the vertices that are in some good pair. Define
B to be the union of all the sets Bt. Then A and B partition V (G), the
subgraph induced by B is isomomorphic to Ts, and for all distinct vertices
x and y in A, there is a z ∈ B such that z is joined to exactly one of x or
y. �

With Lemma 5 we may now complete the proof of Theorem 2.

Proof of Theorem 2. Fix s ∈ Z, and consider a partition A and B of V (G)
as in Lemma 5 so that the subgraph induced by B is isomorphic to Ts. As
|Z| = 2ℵ0 , it is sufficient to find distinguishing homomorphisms gs from G
to H ∨K2 such that s 6= s′ implies gs 6= gs′ . We can accomplish the latter
assertion by ensuring that gs maps A to H and B to K2 (observe that the
preimage of K2 induces a subgraph isomorphic to Ts).

Fix f : G → H a homomorphism, and label the vertices of K2 (that is,
the K2 outside H) by 1 and 2. Let fA be the restriction of f on A. Define a
homomorphism fB : B → K2 such that each odd distance vertex from the
root of B is labelled 2, and the remaining vertices are labelled 1. Define

gs = fA ∪ fB : G → H ∨K2

and note that this mapping is a homomorphism. Suppose that some au-
tomorphism of G, say α, is preserving relative to gs. It is easy to see that
gs � B is the identity on B. Suppose that for some distinct vertices x and
y in A, gs(x) = y. By the properties of A and B, there is a vertex z in B
joined to x (say) and not y. But this contradicts the fact that gs fixes z. �
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13. C. Laflamme, L. Nguyen Van Thé, and N.W. Sauer, Distinguishing number of count-

able homogeneous relational structures, The Electronic Journal of Combinatorics 20
(2010), #R20.
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