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ALGORITHMS FOR CLASSIFYING REGULAR

POLYTOPES WITH A FIXED AUTOMORPHISM GROUP

DIMITRI LEEMANS AND MARK MIXER

Abstract. In this paper, various algorithms used in the classifications
of regular polytopes for given groups are compared. First computational
times and memory usages are analyzed for the original algorithm used in
one of these classifications. Second, a possible algorithm for isomorphism
testing among polytopes is suggested. Then, two improved algorithms
are compared, and finally, results are given for a new classification of
all regular polytopes for certain alternating groups and for the third
Conway group, Co3.

1. Introduction

In order to gain insight into the structure of a group, one natural method
is to study some geometric and combinatorial objects on which the group
acts. Abstract regular polytopes are highly symmetric combinatorial struc-
tures with distinctive geometric, algebraic, or topological properties, and
thus work well for this purpose. Additionally, using the correspondence
between abstract regular polytopes and string C-groups, finding abstract
regular polytopes for a group gives a presentation of the group as generated
by a set of involutions with many nice properties.

In 2006, D. Leemans and L. Vauthier published “An atlas of polytopes
for almost simple groups” [12], classifying all regular polytopes for almost
simple groups as large as the automorphism group of a simple group with
900,000 elements. Similarly in 2006, M. Hartley published “An atlas of small
regular polytopes” [8], where he classified all regular polytopes for all groups
of order at most 2000 (not including orders 1024 and 1536). More recently
in [9], M. Hartley and A. Hulpke classified all polytopes for the sporadic
groups as large as the Held group (of order 4,030,387,200).

These atlases, and other computational data alike, have lead to many
conjectures (and eventually many recent theorems) in the field of abstract
polytopes. For example, one can observe that, for small q, there are only 2
polytopes of rank 4 and no polytopes of rank greater than 4 for the groups
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isomorphic to PSL(2, q). In [10], starting from this observation, the com-
plete classification was determined for polytopes of rank at least 4, with
automorphism group isomorphic to a PSL(2, q) group. Similar work was
done in [11], for the groups of types G ∼= PGL(2, q), and in [2] for groups
G, PSL(3, q) ≤ G ≤ PGL(3, q).

Additionally, the computational data lead to conjectures about the sym-
metric groups which were proved in [4], and conjectures about the alternat-
ing groups proved in [6] and [5]. In these papers regarding the alternating
groups, patterns in the data were not clear for groups of small degree, thus
better computational data were needed to understand the structure in these
cases. This provided a motivation to improve the algorithms of [12], and to
make available better computational data for groups too large for previous
techniques.

The improvements in this computational approach were already useful
in proving theorems about the alternating groups, and should prove to be
helpful for others studying other series of groups which grow quickly in size.

The main result of our paper is the verification of the classifications of
Hartley and Hulpke using algorithms written independently in Magma [1]
(rather than GAP [7]). Another result is the classification of all polytopes
for Conway’s third group Co3 (of order 495,766,656,000) and for alternating
groups of degree up to 14. Finally, we also give a possible approach for test-
ing isomorphism on polytopes using CPR-graphs. This isomorphism-test,
although not needed by the algorithms as they ensure that non-isomorphic
polytopes are constructed, may well turn to be very useful if we want to
check that two given polytopes are isomorphic.

In Section 2 we give an overview of abstract regular polytopes and string
C-groups. Next in Section 3, we breakdown how much time and memory is
used in the algorithms of [12]. In Section 4, we consider a possible approach
for testing isomorphism of polytopes using CPR-graphs. In Section 5, we
present the breadth-first and depth-first search algorithms described in [9],
and compare their efficiency. Then in Sections 6 and 7, we summarize a new
classification of the regular polytopes with automorphism group an alternat-
ing group An for 10 ≤ n ≤ 14, and regular polytopes with automorphism
group the sporadic simple group Co3.

2. Regular polytopes and string C-groups

An abstract d-polytope P is a ranked partially ordered set of faces with
the following four defining properties (see [13] for more details). First, P
contains two improper faces, a least face F−1 of rank −1, and a greatest face
Fd of rank d; in general, an element F ∈ P with rank(F ) = i is called a i-
face. Second, each flag (maximal totally ordered subset) of P contains d+ 2
faces (including the two improper faces). Third, P is strongly connected,
in the sense defined below. Finally, P must have a homogeneity property;
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whenever F < G with rank(F ) = i−1 and rank(G) = i+1, there are exactly
two i-faces H with F < H < G; this is called the diamond property.

For any two faces F and G of P with F ≤ G, we call G/F := {H | H ∈
P, F ≤ H ≤ G} a section of P; this is a polytope in its own right. If P is a
partially ordered set satisfying the first two properties, then P is said to be
connected if either d ≤ 1 or d ≥ 2, and for any two proper faces F and G of
P (meaning any faces other than F−1 and Fd) there is a sequence of proper
faces F = H0, H1, . . . ,Hk−1, Hk = G such that Hi and Hi−1 are comparable
for i = 1, . . . , k. We say that P is strongly connected if each section of P
(including P itself) is connected.

Two flags of a d-polytope P are said to be adjacent if they differ by
exactly one face. If Φ is a flag of P, the diamond property tells us that for
i = 0, 1, . . . , d − 1 there is exactly one flag that differs from Φ in its i-face.
This flag is denoted Φi and is i-adjacent to Φ. Note that (Φi)i = Φ for each
i, and (Φi)j = (Φj)i if |i − j| > 1. A d-polytope (d ≥ 2) is called equivelar
if for each i = 1, 2, ..., d − 1, there is an integer pi so that any section G/F
defined by an (i−2)-face F and an (i+1)-face G is a pi-gon. If P is equivelar
we say that it has (Schläfli) type {p1, p2, . . . , pd−1}.

The automorphism group of a d-polytope P is denoted by Γ(P). A
d-polytope P is called regular if its automorphism group Γ(P) has ex-
actly one orbit on the flags of P, or equivalently, if for some flag Φ =
{F−1, F0, F1, . . . , Fd} and each i = 0, 1, . . . , d − 1 there exists a (unique in-
volutory) automorphism ρi of P such that ρi(Φ) = Φi. If P is regular, then
in fact the latter property holds for any flag Φ, and so we are free to choose
any fixed, or base, flag as a reference flag.

For a regular d-polytope P with base flag Φ, its group Γ(P) is generated by
the involutions ρ0, . . . , ρd−1 described above. These distinguished generators
satisfy the Coxeter-type relations

(1) (ρiρj)
pij = ε (0 ≤ i, j ≤ d− 1),

where pii = 1 for all i, 2 ≤ pji = pij ≤ ∞ if j = i−1, and with the additional
property that

(2) pij = 2 for |i− j| ≥ 2.

Any group 〈ρ0, . . . , ρd−1〉 satisfying properties 1 and 2 is called a String
Group Generated by Involutions or an sggi. Here the pi’s are given by the
type {p1, p2, ..., pd−1} of P. Moreover, Γ(P) and its generators satisfy the
following intersection property :

(3) 〈ρi | i ∈ I〉 ∩ 〈ρi | i ∈ J〉 = 〈ρi | i ∈ I ∩ J〉 for I, J ⊆ {0, . . . , d− 1}.

Any group generated by involutions that has this intersection property is
called a C-group (see [13, Ch. 2]). Thus the group Γ(P) of a regular polytope
P is always a C-group from what was mentioned above. However, not all
C-groups are Coxeter groups as there can be other, independent relations
amongst the generators. Note that property 2 implies that the underlying
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Coxeter diagram for Γ(P) is a string diagram; thus Γ(P) is always what is
called a string C-group.

Conversely, in [13], it is proved that a regular d-polytope can be con-
structed uniquely from a string C-group Γ = 〈ρ0, . . . , ρd−1〉. To see how this
is accomplished we need further notation. Let Γi := 〈ρj |j 6= i〉, that is for

each i, Γi is the group generated by all but the ith generator. The faces
of P and the partial order are defined in terms of cosets of these groups.
First set Γ−1 := Γd := Γ := Γ(P). Next, for all ranks j, take the set of
j-faces of P to be the set of all right cosets Γjϕ in Γ, with ϕ ∈ Γ. Finally,
define the partial order by Γjϕ ≤ Γkψ if and only if −1 ≤ j ≤ k ≤ d and
Γjϕ ∩ Γkψ 6= ∅. This construction identifies P as a particular kind of thin
diagram geometry (see [3]).

3. First Results

In the following table we compare how much time and memory is re-
quired to find all regular polytopes for a given group G using the algorithms
from [12] that classify all polytopes up to isomorphism and duality. The
first column contains the name of the group considered, the second column
gives its order and the third column gives the number of polytopes found, up
to isomorphism and duality. The “Time 1” column gives the time taken by
our Magma implementation of the algorithms to classify these polytopes.
In “Time 2”, we slightly modify those algorithms to remove the isomor-
phism/duality test. The last two columns give us the memory usage of each
implementation. Thus, in “Time 2” some polytopes may be found multiple
times and some isomorphism check still needs to be performed to finish the
task. This gives us an approximation of how much time/memory was used
to find the polytopes, and how much time/memory was used to test for
isomorphisms and dualities.

Group Order Polytopes Time 1 Time 2 Memory 1 Memory 2

Alt(5) 60 2 0.17s 0.18s 0.01MB 0.01MB
Alt(5)× C2 120 8 0.22s 0.29s 0.01MB 0.01MB
PΓL(2, 9) 1440 12 1.22s 1.86s 1.04MB 0.01MB
Sym(7) 5040 44 5.4s 5.95s 3.51MB 1.04MB

PSL(2, 25) 7800 17 6.27s 0.39s 20.92MB 0.01MB
PΣU(3, 3) 12096 31 10.82s 4.62s 8.73MB 1.29MB
PGL(2, 27) 19656 98 87.83s 4.38s 39.64MB 1.04MB
Sz(8) 29120 7 10.45s 0.44s 60.64MB 1.29MB
M12 95040 37 224.59s 12.19s 126.2MB 2.32MB
J1 175560 150 550.85s 54.36s 120.17MB 3.95MB

Alt(9) 181440 47 654.65s 37.12s 245.64MB 2.32MB
Sym(9) 362880 182 8152.22s 2193.75s 261.72MB 10.26MB

As a technical note, the memory data in this table have been adjusted by
subtracting the 9.03MB of memory required to load the current version of
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Magma, and the time data are the differences in CPU time from start to
end of the calculations.

From this data we observe that, as the groups get larger, much of the time
and memory for finding polytopes for a given group comes in the check for
isomorphisms and dualities. This leads us to try and find a more efficient
test to check whether two polytopes are equivalent or not.

4. CPR graphs and isomorphisms of polytopes

In this section we define CPR graphs for regular polytopes, introduced
by Pellicer in [14]. A CPR graph of a regular d-polytope P is a permutation
representation of Γ(P) = 〈ρ0, . . . , ρd−1〉 represented on a graph as follows.
Let φ be an embedding of Γ(P) into the symmetric group Sn for some n.
The CPR graph G of P determined by φ is the multigraph with n vertices,
and with edge labels in the set {0, . . . , d − 1}, such that any two vertices
v, w are joined by an edge of label j if and only if (v)(ρj)φ = w. These
representations are faithful since φ is an embedding.

The value of n for which we choose an embedding into Sn is not unique.
We prove that one can test for isomorphism of two regular polytopes by
testing for isomorphisms of their CPR graphs given an appropriate embed-
ding. Whether a test finds only isomorphisms or also dualities, depends on
the definition of an isomorphism between two edge labeled multigraphs. If
we consider the edge labels with an order, and for example, only allow an
edge of label 1 to be mapped to another edge of label 1, then we have a test
for isomorphism. If we allow that the labels be permuted, then we have a
test for isomorphism and duality. We use the first idea of isomorphism in
our proof, and test for duality by testing for isomorphism with the order of
the labels reversed.

Theorem 4.1. Let G be any group, and let G and Aut(G) be embedded as
subgroups of Sym(n) for some n. Then two regular polytopes P and P ′ with
automorphism group G are isomorphic if and only if their CPR graphs (with
the trivial embedding) are isomorphic as edge labeled graphs.

Proof. Let P = 〈ρ0, . . . , ρr−1〉, P ′ = 〈ρ′0, . . . , ρ′r−1〉 for the group G, and let
X1 be the CPR graph for P and X2 be the CPR graph for P ′.

(⇒) Let P and P ′ be isomorphic regular polytopes for the group G. Then
there exists an α ∈ Aut(G) such that ρiα = ρ′i for all i ∈ {0, . . . , r − 1}.
Since G and Aut(G) are considered as subgroups of Sym(n) we know that
ρi and ρ′i have the same cycle type, as the action of Aut(G) on G is by
conjugation. Also, since ρi and ρ′i are involutions, we can see α as acting on
the transpositions in the cycle decomposition of ρi. Each such transposition
gives an edge in X1, and thus α sends edges of label i in X1 to edges of label
i in X2. Therefore X1 and X2 are isomorphic as edge labeled graphs.

(⇐) Let X1
∼= X2. This implies that there exists a permutation g ∈

Sym(n) such that X1g = X2 (like above we are thinking of g acting on the
edges of the graphs). Therefore ρig = ρ′i, and since the ρi’s generate G, we
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have (G)g = G. Since g stabilizes G, this implies that g ∈ Aut(G), and
therefore P and P ′ are isomorphic polytopes. �

Remark 4.2. Observe that in Theorem 4.1, we asked for G and Aut(G) to
be embedded as subgroups of Sym(n). This is needed for instance, for the
group Sym(6) that has an outer automorphism. Indeed, the 5-simplex can
be either generated by the five transpositions

(1, 2), (2, 3), (3, 4), (4, 5), (5, 6)

or by the five 3-transpositions

(1, 4)(2, 3)(5, 6), (1, 2)(3, 6)(4, 5), (1, 3)(2, 4)(5, 6),

(1, 6)(2, 3)(4, 5), (1, 2)(3, 4)(5, 6).

In this case, the corresponding CPR graphs will not be isomorphic. It suffices
then to embed Sym(6) and its automorphism group PΓL(2, 9) in Sym(10)
to check that the corresponding CPR graphs are indeed isomorphic.

To relate isomorphisms of a polytope to isomorphisms of its CPR graph
as in the theorem, we must embed both the group G and Aut(G) into a
symmetric group on the same number of points. This is always possible by
embedding into Sym|G|, but this is not practical as the CPR graphs would
be large and testing for isomorphism of the graphs would be challenging.

For the efficiency test in the next sections, we embed G and Aut(G) into
Sym(n) with n as small as possible. We give two notable examples to see
how this is done.

Example 4.3. Let G be the symmetry group of the regular icosahedron.
The icosahedral group G is isomorphic to Alt(5)×C2, and the automorphism
group of G is isomorphic to Sym(5). Thus to proceed as in the theorem, we
need to embed both Alt(5)×C2 and Sym(5) into Sym(n) for some n. This
can be done by embedding both groups into Sym(10) as follows.

Let G be the subgroup of Sym(10) generated by (1, 2, 3)(6, 7, 8),
(3, 4, 5)(8, 9, 10), and (1, 6)(2, 7)(3, 8)(4, 9)(5, 10), and let Aut(G) be the sub-
group of Sym(10) generated by (1, 2, 3)(6, 7, 8), (3, 4, 5)(8, 9, 10), and
(1, 2)(6, 7). Then we can test for isomorphism of polytopes in this group
by considering isomorphisms of graphs with 10 vertices.

Example 4.4. Let G be Sym(6) and Aut(G) ∼= Sym(6) o C2 where C2 is
generated by an odd permutation. To embed bothG andAut(G) into a small
Sym(n) we use the isomorphisms G ∼= PΣL(2, 9) and Aut(G) ∼= PΓL(2, 9),
which both naturally embed into Sym(10). Thus we can classify polytopes
for Sym(6) by considering graphs with 10 vertices.

We point out that a nondeterministic version of our algorithm still works if
we embed G into Sym(n), but do not embed Aut(G) into the same Sym(n).
For example if we tried to classify all polytopes for G = Sym(6) by consider-
ing CPR graphs with only 6 vertices, we would get two non-isomorphic CPR
graphs that come from the same isomorphism class of polytopes. Thus we
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cannot hope to completely classify polytopes up to isomorphism this way.
However, we can still use the algorithm to reduce the number of isomorphism
classes of polytopes considerably.

5. Comparison of Algorithms

In this section, we present two possible rewrites of the old search algo-
rithm, one depth-first search (which we denote by the letter ‘D’ in Table 1)
and one breadth-first search (denoted by the letter ‘B’ in Table 1), and com-
pare their efficiencies to the adjusted old algorithm of “Method 2”. These
algorithms were given by Hartley and Hulpke in [9].

In both of the algorithms, we will be concerned with classifying all regular
polytopes with automorphism group G up to isomorphism. In other words,
we will be looking for all nonisomorphic ways of representing G as a string
C-group 〈ρ0, . . . , ρr〉.

Both the breadth search and the depth search start out the same way.
Step 0: Find the automorphism group of G. Represent this group Aut(G)

as a permutation group acting on the set L of all involutions ofG, as these are
the possible generators in the string C group. Construct a list L0 consisting
of one representative of each orbit under the action of Aut(G) on L. This
gives the candidates for ρ0.

5.1. Breadth-first algorithm for classifying polytopes.

(1) Given Lk construct Lk+1 as follows. Let Kt be the stabilizer of a
(k + 1)-tuple t = [r0, . . . , rk] in Lk under the action of Aut(G).

(2) Pick a set R of representatives of the orbits of the action of Kt on
L.

(3) For each element r of R, check if the group 〈t, r〉 := 〈r0, . . . , rk, r〉 is
a string C-group.
(a) If it is a string C group and generates the whole group, add it

to the list P .
(b) If it is a string C-group but generates a proper subgroup of G,

then add the (k + 2)-tuple [r0, . . . , rk, r] to the set Lk+1.
(4) Stop when Lk+1 is empty.

5.2. Depth-first algorithm for classifying polytopes. This algorithm
gives a recursive approach for finding all polytopes up to isomorphism.

(1) For each element ti = [r0, . . . , ri] of Li, find the stabilizer Sti of ti
under the action of S[r0,...,ri−1] on L.

(2) Construct a list Rt,ri of representatives of the orbits of this action.
This will give you candidates for ρi+1.

(3) For each element ri+1 of Rt,ri , check if the group 〈t, ri+1〉 is a string
C-group.
(a) If it is a string C group and generates the whole group then add

it to the list P .
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(b) If it is a string C-group but generates a proper subgroup of G
then repeat the algorithm on ti+1 = [r0, . . . , ri, ri+1].

5.3. Comparison of algorithms. In general the depth-first search algo-
rithm has two clear advantages. First, we saw in the breadth-first search
algorithm that the entire list L1 is constructed, then the entire list L2 is
constructed before calculating L3, and so on. These lists can be very large,
so storing them can become very memory intensive for large groups. For
this reason, the depth first search is usually less memory intensive.

Second, in the breadth-first search algorithm, you are computing the sta-
bilizer of a tuple of elements tk = [r0, . . . , rk] under the action of a large
group Aut(G). By comparison, in the depth-first search algorithm, you sim-
ply consider the stabilizer of the rk under the action of a much smaller group
which is Sti−1 which you have stored from the previous step. These two ap-
proaches yield the same stabilizing subgroup, but dealing with the action of
a smaller group will usually make the depth first search faster.

We also note that there are many more ways that could be used to improve
the memory use of our algorithms. For example, currently we consider
Aut(G) as a permutation group acting on the list L of all involutions. Instead
of acting on L, one could instead view Aut(G) as acting on the set of indices
of each involution in this list. It is easy to convert back and forth from an
index to an involution, and storing and working with these indices can be
more efficient than working in the original group. This approach was in fact
used in [12].

We conclude this section by giving a quantitative comparison of the 3
algorithms in the form of the following table comparing time and memory
usage in the classification of all non-isomorphic polytopes for a given group.

Group Time 2 Time B Time D Memory 2 Memory B Memory D

Alt(5) 0.18s 0.16s 0.17s 0.01MB 0.01MB 0.01MB
Alt(5)× C2 0.29s 0.19s 0.17s 0.01MB 0.01MB 0.01MB
PΓL(2, 9) 1.86s 0.35s 0.29s 0.01MB 0.01MB 0.01MB
Sym(7) 5.95s 0.66s 0.45s 1.04MB 0.01MB 0.01MB

PSL(2, 25) 0.39 s 0.27s 0.22s 0.01MB 0.01MB 0.01MB
PΣU(3, 3) 4.62 s 0.63s 0.35s 1.29MB 1.29MB 1.29MB
PGL(2, 27) 4.38s 1.27s 0.36s 1.04MB 1.04MB 0.01MB
Sz(8) 0.44s 0.26s 0.26s 1.29MB 1.29MB 1.29MB
M12 12.19s 1.49s 1.02s 2.32MB 2.32MB 1.29MB
J1 54.36s 9.04s 2.78s 3.95MB 27.32MB 4.82MB

Alt(9) 37.12s 2.86s 1.68s 2.32MB 1.82MB 0.01MB
Sym(9) 2193.75s 49.42s 26.77s 10.26MB 4.54MB 1.45MB
Alt(10) 851.78s 41.53s 19.57s 16.36MB 8.07MB 1.57MB
HS - 301.86s 97.75s - 90.45MB 16.39MB

Table 1. Comparison of algorithms
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6. Polytopes for the alternating groups

In [12], all polytopes were classified for the alternating groups An with
n ≤ 9. Using the algorithms which helped create the atlas [12], conjectures
about the structure of possible regular polytopes for the alternating groups
led to obtaining the classification of such regular polytopes for the group A10

as well. In order to understand larger alternating groups, the algorithms dis-
cussed in this paper were implemented. The result was the classification of
all regular polytopes with automorphism group A11, A12, A13, and A14. The
number of regular polytopes of each rank (up to isomorphism) is summarized
in Table 2.

Group Rank Number of polytopes

A11 3 122
A11 6 4
A12 3 375
A12 4 173
A12 5 43
A13 3 3021
A13 4 202
A13 5 50
A13 6 20
A14 3 8531
A14 4 255
A14 5 90
A14 6 18

Table 2. Number of polytopes for An, with 11 ≤ n ≤ 14

Remark 6.1. Two nice observations come out of this data. First, the group
A11 is the only group (of any kind) known to the authors with the property
that it has regular polytopes of at least two different ranks i, j with |i−j| ≥ 2,
but is not the automorphism group of any regular polytope of rank k with
i < k < j. On the contrary, in [4] it is proven that no symmetric group
has this property. Second, for 11 < n < 15, the group An has polytopes of
each rank 3 ≤ r ≤ bn−12 c := Mn. In [5], we have proven the existence of the
polytopes of rank Mn for An, for all n > 11, and we conjecture that this is
in fact the maximal rank, and that regular polytopes of rank d exist for all
3 ≤ d ≤Mn.

7. Polytopes for the sporadic group Co3

In [9], all polytopes were classified for the sporadic groups with no more
than 4,030,387,200 elements; this computation was done using algorithms
written in GAP. Using our programs independently written in Magma,
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we were able to verify the results of Hartley and Hulpke for all such spo-
radic groups. Also, we succeeded in classifying all polytopes for Conway’s
third group Co3 of order 495,766,656,000. In this section we summarize the
Schläfli types of all 22908 possible regular polytopes for this group. Note
that this group has polytopes of rank at most 5.

7.1. 3-polytopes. There are 21118 3-polytopes of type {p, q} summarized
in the following table with p giving the row and q giving the column.

3 4 5 6 7 8 9 10 12 14 15 18 21 24 30

3 0 0 0 0 0 0 1 2 2 3 4 1 1 4 2
4 0 0 0 0 0 0 4 2 2 2 11 11 8 6 8
5 0 0 0 7 3 14 13 24 26 16 43 22 23 40 21
6 0 0 7 76 30 82 70 177 125 125 246 130 147 266 95
7 0 0 3 30 18 26 29 53 47 26 81 60 57 84 52
8 0 0 14 82 26 72 99 160 156 128 291 191 188 322 143
9 1 4 13 70 29 99 34 109 89 47 117 58 56 104 54
10 2 2 24 177 53 160 109 276 203 138 344 204 221 362 155
12 2 2 26 125 47 156 89 203 192 123 282 175 162 304 138
14 3 2 16 125 26 128 47 138 123 58 145 84 81 168 66
15 4 11 43 246 81 291 117 344 282 145 329 185 183 352 171
18 1 11 22 130 60 191 58 204 175 84 185 97 102 180 96
21 1 8 23 147 57 188 56 221 162 81 183 102 100 194 97
24 4 6 40 266 84 322 104 362 304 168 352 180 194 326 172
30 2 8 21 95 52 143 54 155 138 66 171 96 97 172 74

7.2. 4-polytopes. There are 1746 4-polytopes of type {p, q, r} summarized
in the following nine tables, one for each value of p, with q giving the row
and r giving the column.

p = 3 3 4 5 6 7 8 9 10 12

4 0 0 0 0 1 2 0 0 0
5 0 0 0 1 0 3 0 0 0
6 0 1 4 13 2 22 1 2 8
7 0 1 0 0 0 3 0 2 0
8 2 7 4 18 5 19 2 4 10
9 0 1 0 0 0 1 0 0 0
10 2 6 1 12 3 14 0 1 5
12 0 3 5 13 1 3 0 0 1
14 0 2 0 0 0 5 0 3 0
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p = 4 3 4 5 6 7 8 9 10 12

3 0 0 0 0 0 2 0 2 0
4 0 0 0 2 2 4 0 1 2
5 0 0 0 7 0 8 0 0 0
6 1 0 11 27 7 40 2 2 3
7 1 0 0 0 0 0 0 0 0
8 7 6 8 29 9 24 1 1 9
9 1 0 0 0 0 0 0 0 0
10 6 2 3 8 2 9 0 0 0
12 3 4 6 11 2 7 0 0 0
14 2 0 0 0 0 0 0 0 0

p = 5 3 4 5 6 7 8 9 12

4 0 0 0 1 1 2 0 2
5 0 0 0 3 0 2 0 0
6 4 11 6 21 6 14 1 5
8 4 8 2 14 1 6 2 3
10 1 3 0 1 1 5 0 4
12 5 6 0 5 1 0 0 0

p = 6 3 4 5 6 7 8 9 10 12

3 0 0 0 0 0 1 0 1 0
4 0 2 1 4 3 5 2 0 3
5 1 7 3 18 1 4 1 0 1
6 13 27 21 88 7 57 4 4 9
8 18 29 14 42 3 30 3 0 5
9 0 0 0 0 0 0 0 1 0
10 12 8 1 6 1 5 0 0 1
12 13 11 5 16 0 9 0 2 1

p = 7 3 4 5 6 8 10

4 1 2 1 3 1 0
5 0 0 0 1 0 0
6 2 7 6 7 0 1
8 5 9 1 3 1 0
10 3 2 1 1 0 0
12 1 2 1 0 0 0
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p = 8 3 4 5 6 7 8 9 10 12

3 0 2 0 1 0 2 0 1 0
4 2 4 2 5 1 6 0 1 1
5 3 8 2 4 0 0 0 2 0
6 22 40 14 57 0 26 1 5 1
7 3 0 0 0 0 0 1 0 0
8 19 24 6 30 1 8 0 0 1
9 1 0 0 0 0 0 0 0 0
10 14 9 5 5 0 4 0 0 0
12 3 7 0 9 0 0 0 0 0
14 5 0 0 0 0 0 0 0 0

p = 9 3 4 5 6 8 10

3 0 0 0 0 0 1
4 0 0 0 2 0 0
5 0 0 0 1 0 0
6 1 2 1 4 1 0
7 0 0 0 0 1 0
8 2 1 2 3 0 0
14 0 0 0 0 0 1

p = 10 3 4 6 7 8 9 12

3 0 2 1 0 1 1 0
4 0 1 0 0 1 0 0
5 0 0 0 0 2 0 0
6 2 2 4 1 5 0 1
7 2 0 0 0 0 0 0
8 4 1 0 0 0 0 0
9 0 0 1 0 0 0 0
10 1 0 0 0 0 0 0
12 0 0 2 0 0 0 0
14 3 0 0 0 0 1 0
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p = 12 3 4 5 6 8 10

4 0 2 2 3 1 0
5 0 0 0 1 0 0
6 8 3 5 9 1 1
8 10 9 3 5 1 0
10 5 0 4 1 0 0
12 1 0 0 1 0 0

7.3. 5-polytopes. There are 44 5-polytopes of type {p, q, r, s} summarized
in the following table.

[p, q, r, s] count [p, q, r, s] count [p, q, r, s] count

[3, 5, 6, 7] 1 [3, 8, 4, 6] 1 [5, 5, 6, 3] 1
[3, 6, 3, 5] 1 [3, 8, 6, 3] 4 [5, 6, 6, 3] 1
[3, 6, 4, 5] 1 [3, 8, 6, 5] 1 [5, 6, 8, 3] 1
[3, 6, 4, 7] 1 [3, 10, 3, 6] 1 [5, 8, 6, 3] 1
[3, 6, 5, 5] 1 [3, 10, 6, 3] 1 [6, 3, 10, 3] 1
[3, 6, 6, 5] 1 [4, 4, 6, 4] 2 [6, 4, 7, 3] 1
[3, 6, 6, 7] 1 [4, 4, 8, 4] 2 [6, 4, 8, 3] 1
[3, 6, 8, 3] 4 [4, 6, 4, 4] 2 [7, 4, 6, 3] 1
[3, 6, 8, 5] 1 [4, 8, 4, 4] 2 [7, 6, 5, 3] 1
[3, 6, 10, 3] 1 [5, 3, 6, 3] 1 [7, 6, 6, 3] 1
[3, 7, 4, 6] 1 [5, 4, 6, 3] 1
[3, 8, 4, 5] 1 [5, 4, 8, 3] 1

8. Future work

We conclude this paper with two points about future work. First, there
are other approaches being developed to be used in these classification type
problems. While we build the string C-group in a “linear” fashion, by con-
structing the generators in their natural order, there is some hope to an im-
proved algorithm that uses the commuting property of generators at distance
at least 2, in order to restrict to analyzing fewer cases than our current al-
gorithms. Constructing the string C-group representation in this non-linear
way, could potentially lead to understanding the structure of new groups.
However, the work on this is out of the scope of this paper.

Second, due to the structure of our algorithms, one can see that they
would work very naturally with parallel computing. As the search trees
split in these searches, there is no need to communicate between branches
of the tree, so it would be natural to allow certain paths to be taken by
different processors. This approach could be a necessary idea to understand
the string C-group representations of some of the much larger groups.
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