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2L-CONVEX POLYOMINOES: DISCRETE

TOMOGRAPHICAL ASPECTS

KHALIL TAWBE AND LAURENT VUILLON

Abstract. This paper uses the theoretical material developed in a pre-
vious article by the authors in order to reconstruct a subclass of 2L-
convex polyominoes. The main idea is to control the shape of these
polyominoes by combining 4 types of geometries. Some modifications
are made in the reconstruction algorithm of Chrobak and Dürr for HV -
convex polyominoes in order to impose these geometries.

1. Introduction

The present paper uses the theoretical material developed in a previous
article by the authors [14] in order to reconstruct a sub-class of 2L-convex
polyominoes. Indeed, 2L-convex polyominoes are the first difficult class of
polyominoes in terms of tomographical reconstruction in the hierarchy of kL-
polyominoes and in this article we design an algorithm of reconstruction for
a sub-class of 2L-convex which is the first step in the whole comprehension
of the hierarchy of kL-polyominoes.

One main problem in discrete tomography consists on the reconstruction
of discrete objects according to their horizontal and vertical projection vec-
tors. In order to restrain the number of solutions, we could add convexity
constraints to these discrete objects. There are many notions of discrete
convexity of polyominoes (namely HV -convex [2], Q-convex [3], L-convex
polyominoes [6]) and each one leads to interesting studies. One natural
notion of convexity on the discrete plane is the class of HV -convex poly-
ominoes, that is, polyominoes with consecutive cells in rows and columns.
Following the work of Del Lungo, Nivat, Barcucci, and Pinzani [2], we are
able to use discrete tomography to reconstruct polyominoes that are HV -
convex according to their horizontal and vertical projections. In addition
to that, for any HV -convex polyomino P , every pair of cells of P can be
reached using a path included in P with only two kinds of unit steps (such
a path is called monotone). A polyomino is called kL-convex if for every
two cells we find a monotone path with at most k changes in direction.
Obviously a kL-convex polyomino is an HV -convex polyomino. Thus, the
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set of kL-convex polyominoes for k ∈ N forms a hierarchy of HV -convex
polyominoes according to the number of changes in direction of monotone
paths. This notion of L-convex polyominoes has been considered from sev-
eral points of view. In [4], combinatorial aspects of L-convex polyominoes
are analyzed, giving the enumeration according to the semi-perimeter and
the area. In [5], we are given an algorithm that reconstructs an L-convex
polyomino from the set of its maximal L-polyominoes. Similarly in [6], we
are given another way to reconstruct an L-convex polyomino from the size
of some special paths, called bordered L-paths.

In fact 2L-convex polymoninoes are more geometrically complex and there
was no result for their direct reconstruction. We could notice that Duchi,
Rinaldi, and Schaeffer are able to enumerate this class in an interesting and
technical article (see [9]), but the enumeration technique gives no idea for
the tomographical reconstruction.

The first subclass that creates the link with 2L-convex polyominoes is
the class of HV -centered polyominoes. In [14], it is shown that if P is an
HV -centered polyomino, then P is 2L-convex. Note that the tomographical
properties of this subclass have been studied in [7], and its reconstruction
algorithm is well known.

The main contribution of this paper is an O(m3n3)-time algorithm for
reconstructing a subclass of 2L-convex polyominoes using the geometrical
properties studied in [14], and the algorithm of Chrobak and Dürr (see
[7]). In particular, we add well chosen clauses to the original construction
of Chrobak and Dürr in order to control the 2L-convexity using a 2SAT
satisfaction problem.

This paper is divided into 5 sections. After basics on polyominoes, section
3 talks about the geometrical properties of a subclass of 2L-convex polyomi-
noes (see [14]). In section 4, the algorithm of Chrobak and Dürr for the
reconstruction of the HV -convex polyominoes is given ([7]). Section 5 de-
scribes the reconstruction of different subclasses of 2L-convex polyominoes
starting by the classes γ and =0,0

2L , and ending by the other classes using an
horizontal reflexion called SH .

2. Definition and notation

A planar discrete set is a finite subset of the integer lattice N2 defined
up to translation. A discrete set can be represented either by a set of cells,
i.e. unitary squares of the cartesian plane, or by a binary matrix, where
the 1’s determine the cells of the set (see Figure 1). A polyomino P is a
finite connected set of adjacent cells (in the sequel, we use a 4-neighborhood,
that is two cells are adjacent if they are sharing a segment), defined up to
translation, in the cartesian plane. A polyomino is said to be column-convex
(resp. row-convex ) if every column (resp. row) is connected (see [8, 13]).
Finally, a polyomino is said to be convex (or HV -convex) if it is both column
and row-convex (see Figure 2).
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Figure 1. A finite set of N × N, and its representation in
terms of a binary matrix and a set of cells.

Figure 2. A column convex and an HV -convex polyomino.

To each discrete set S, represented as a m×n binary matrix, we associate
two integer vectors H = (h1, . . . , hm) and V = (v1, . . . , vn) such that, for
each 1 ≤ i ≤ m, and 1 ≤ j ≤ n, hi and vj are the number of cells of S
(elements 1 of the matrix) which lie on row i and column j, respectively.
The vectors H and V are called the horizontal and vertical projections of
S, respectively (see Figure 3). Moreover if S has H and V as horizontal and
vertical projections, respectively, then we say that S satisfies (H,V ). Using
the usual matrix notations, the element (i, j) denotes the entry in row i and
column j.

For any two cells A and B in a polyomino, a path
∏

AB, from A to B, is
a sequence (i1, j1), (i2, j2), . . . , (ir, jr) of adjacent disjoint cells belonging in
P , with A = (i1, j1), and B = (ir, jr). For each 1 ≤ k ≤ r − 1, we say that
the two consecutive cells (ik, jk), (ik+1, jk+1) form

• an east step if ik+1 = ik and jk+1 = jk + 1,
• a north step if ik+1 = ik − 1 and jk+1 = jk,
• a west step if ik+1 = ik and jk+1 = jk − 1,
• a south step if ik+1 = ik + 1 and jk+1 = jk.

Finally, we define a path to be monotone if it is entirely made of only two
of the four types of steps defined above.

Proposition 2.1 (Castiglione, Restivo [5]). A polyomino P is HV -convex
if and only if every pair of cells is connected by a monotone path.
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Figure 3. A polyomino P with H = (2, 4, 5, 4, 5, 5, 3, 2) and
V = (2, 3, 6, 7, 6, 4, 2).

Let us consider a polyomino P . A path in P has a change of direction in
the cell (ik, jk), for 2 ≤ k ≤ r − 1, if

ik 6= ik−1 ⇐⇒ jk+1 6= jk.

Definition 2.2. We call an HV -convex polyomino kL-convex if every pair
of its cells can be connected by a monotone path with at most k changes of
direction.

In [5], a hierarchy is proposed on convex polyominoes based on the number
of changes of direction in the paths connecting any two cells of a polyomino.
For k = 1, we have the first level of hierarchy, i.e. the class of 1L-convex
polyominoes, also denoted as L-convex polyominoes for the typical shape
of each path having at most one single change of direction. In the present
study, we focus our attention on the next level of the hierarchy, i.e. the
class of 2L-convex polyominoes, whose tomographical properties turn out
to be more interesting and substantially harder to investigate than those of
L-convex polyominoes (see Figure 4).

Figure 4. The convex polyomino on the left is 2L-convex,
while the one on the right is L-convex. For each polyomino,
two cells and a monotone path connecting them are shown.
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3. 2L-convex polyominoes

Let H,V be two projection vectors and let P be an HV -convex poly-
omino that satisfies (H,V ). By a classical argument P is contained in
a rectangle R (called the minimal bounding box) where in this box no
projection gives a zero. Let [min(S),max(S)] (resp. [min(E),max(E)],
[min(N),max(N)], [min(W ),max(W )]) be the intersection of the bound-
ary of P with the lower (resp. right, upper, left) side of R (see [2]). By
abuse of notation, we call min(S) (resp. min(E), min(N), min(W )) the cell
at the position (m,min(S)) [resp. (min(E), n), (1,min(N)), (min(W ), 1)]
and max(S) (resp. max(E), max(N), max(W )) the cell at the position
(m,max(S)) (resp. (max(E), n), (1,max(N)), (max(W ), 1)) (see Figure 5).

Definition 3.1. The segment [min(S),max(S)] is called the S-foot.
Similarly, the segments [min(E),max(E)], [min(N),max(N)] and
[min(W ),max(W )] are called the E-foot, N -foot and W -foot.

Figure 5. Min and max of the four feet in the rectangle R.

For a bounding rectangle R and for a given polyomino P , let us define
the following sets:

WN = {(i, j) ∈ P | i < min(W ) and j < min(N)},
SE = {(i, j) ∈ P | i > max(E) and j > max(S)},
NE = {(i, j) ∈ P | i < min(E) and j > max(N)},
WS = {(i, j) ∈ P | i > max(W ) and j < min(S)}.
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Let C (resp. C2L) be the class of HV -convex polyominoes (resp. 2L-convex
polyominoes). We have the following classes of polyominoes regarding the
position of the non-intersecting feet.

=0,0 = {P ∈ C | card(WN) = 0 and card(SE) = 0,

max(W ) < min(E) and max(N) < min(S)},

=0,0
2L = {P ∈ C2L | card(WN) = 0 and card(SE) = 0,

max(W ) < min(E) and max(N) < min(S)},
=′ 0,0 = {P ∈ C | card(NE) = 0 and card(SW ) = 0,

max(S) < min(N) and max(E) < min(W )},

=′ 0,02L = {P ∈ C2L | card(NE) = 0 and card(SW ) = 0,

max(S) < min(N) and max(E) < min(W )},
γ = {P ∈ C | max(N) < min(S) and max(E) < min(W )},
γ′ = {P ∈ C | max(S) < min(N) and max(W ) < min(E)}.

Theorem 3.2 (Tawbe, Vuillon [14]). Let P be an HV -convex polyomino in
the class =0,0. P is 2L-convex if and only if one of the following holds:

(1) There exist L-paths from max(N) to max(E) and from max(W ) to
max(S),

(2) There exist L-paths from min(N) to min(E) and from min(W ) to
min(S),

(3) There exist L-paths from min(N) to min(E) and from max(W ) to
max(S), as well as a 2L-path from min(W ) to max(E),

(4) There exist L-paths from max(N) to max(E) and from min(W ) to
min(S), as well as a 2L-path from min(N) to max(S).

Corollary 3.3. If P satisfies the conditions of Theorem 3.2, then P is in
the class =0,0

2L .

The visualisation of the paths is shown below.

4. HV -Convex Polyominoes

Assume that H, V denote strictly positive row and column sum vectors.
We also assume that

∑
i hi =

∑
j vj , since otherwise (H,V ) does not have

a realization.
The idea of Chrobak and Dürr (see [7]) for the control of theHV -convexity

is in fact to impose convexity on the four corner regions outside of the
polyomino.
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Figure 6. L-paths and 2L-paths on (1): first geometry, (2):
second geometry, (3): third geometry, (4): fourth geometry.

An object A is called an upper-left corner region if (i + 1, j) ∈ A or
(i, j + 1) ∈ A implies (i, j) ∈ A. In an analogous fashion we can define
the other corner regions. Let P be the complement of P . The definition of
HV -convex polyominoes directly implies the following lemma.

Lemma 4.1. P is an HV -convex polyomino if and only if P = A∪B∪C∪D,
where A,B,C,D are disjoint corner regions (upper-left, upper-right, lower-
left and lower-right, respectively) such that

(i) (i− 1, j − 1) ∈ A implies (i, j) /∈ D, and
(ii) (i− 1, j + 1) ∈ B implies (i, j) /∈ C.

Given an HV -convex polyomino P and two row indices 1 ≤ k, l ≤ m, P
is said to be anchored at (k, l) if (k, 1), (l,m) ∈ P . The idea of Chrobak
and Dürr is, given (H,V ), to reconstruct a 2SAT expression Fk,l(H,V ) (a
boolean expression in conjunctive normal form with at most two literals in
each clause) with the property that Fk,l(H,V ) is satisfiable if and only if
there is an HV -convex polyomino realization P of (H,V ) that is anchored
at (k, l). Fk,l(H,V ) consists of several sets of clauses, each set expressing
a certain property: “Corners” (Cor), “Disjointness” (Dis), “Connectivity”
(Con), “Anchors” (Anc), “Lower bound on column sums” (LBC) and “Up-
per bound on row sums” (UBR).
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Cor =
∧
i,j

{
Ai,j ⇒ Ai−1,j Bi,j ⇒ Bi−1,j Ci,j ⇒ Ci+1,j Di,j ⇒ Di+1,j

Ai,j ⇒ Ai,j−1 Bi,j ⇒ Bi,j+1 Ci,j ⇒ Ci,j−1 Di,j ⇒ Di,j+1

}

The set of clauses Cor means that the corners are convex, that is for the
corner A if the cell (i, j) belongs to A then cells (i−1, j) and (i, j−1) belong
also to A. Similarly for corners B,C, and D.

Dis =
∧
i,j

{
Xi,j ⇒ Y i,j | for symbols X,Y ∈ {A,B,C,D}, X 6= Y

}
The set of clauses Dis means that all four corners are pairwise disjoint, that
is X ∩ Y = ∅ for X,Y ∈ {A,B,C,D}.

Con =
∧
i,j

{
Ai,j ⇒ Di+1,j+1 Bi,j ⇒ Ci+1,j−1

}
The set of clauses Con means that if the cell (i, j) belongs to A then the cell
(i+ 1, j + 1) does not belong to D, and similarly if the cell (i, j) belongs to
B then the cell (i+ 1, j − 1) does not belong to C.

Anc =
{
Ak,1 ∧Bk,1 ∧ Ck,1 ∧Dk,1 ∧Al,n ∧Bl,n ∧ C l,n ∧Dl,n

}
The set of clauses Anc means that we fix two cells on the west and east feet
of the polyomino P , for k, l = 1, . . . ,m; the first one at the position (k, 1)
and the second one at the position (l, n).

LBC =
∧
i,j

 Ai,j ⇒ Ci+vj ,j Ai,j ⇒ Di+vj ,j

Bi,j ⇒ Ci+vj ,j Bi,j ⇒ Di+vj ,j

 ∧
∧
j

{
Cvj ,j Dvj ,j

}
The set of clauses LBC implies that for each column j, we have that∑

i Pi,j ≥ vj .

UBR =
∧
j

 ∧i≤min{k,l}Ai,j ⇒ Bi,j+hi
∧k≤i≤lCi,j ⇒ Bi,j+hi

∧l≤i≤kAi,j ⇒ Di,j+hi
∧max{k,l}≤iCi,j ⇒ Di,j+hi


The set of clauses UBR implies that for each row i, we have that∑

j Pi,j ≤ hi.

Define Fk,l(H,V ) = Cor∧Dis∧Con∧Anc∧LBC∧UBR. All literals with
indices outside the set {1, . . . ,m} × {1, . . . , n} are assumed to have value 1.
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Algorithm 1
Input: H ∈ Nm, V ∈ Nn

W.L.O.G. assume: ∀i : hi ∈ [1, n], ∀j : vj ∈ [1,m],
∑

i hi =
∑

j vj and
m ≤ n.

for k, l = 1, . . . ,m do begin
if Fk,l(H,V ) is satisfiable,

then output P = A ∪B ∪ C ∪D and halt.
end
Output: “failure”.

The following theorem allows us to link the existence of HV -convex so-
lution and the evaluation of Fk,l(H,V ). The crucial part of this algorithm
comes from the constraints on the two sets of clauses LBC and UBR.

Theorem 4.2 (Chrobak, Dürr). Fk,l(H,V ) is satisfiable if and only if
(H,V ) has a realization P that is an HV -convex polyomino anchored at
(k, l).

Each formula Fk,l(H,V ) has size O(mn) and can be computed in time
O(mn). Since 2SAT can be solved in linear time (see [1, 10]), Chrobak and
Dürr give the following result.

Theorem 4.3 (Chrobak, Dürr). Algorithm 1 solves the reconstruction prob-
lem for HV -convex polyominoes in time O(mnmin(m2, n2)).

5. Reconstruction of 2L-convex polyominoes in γ and =0,0
2L

The present section uses the theoretical material developed in the above
sections in order to reconstruct 2L-convex polyominoes in γ and =0,0

2L . Some
modifications are made to the reconstruction algorithm of Chrobak and
Dürr for HV -convex polyominoes in order to impose our geometries. All the
clauses that have been added and the modifications of the original algorithm
are explained in the proofs of each subclass. Finally, by defining a horizontal
symmetry SH , we show how to reconstruct P in the class γ′ and =′ 0,02L .

5.1. Clauses for the class γ. In this section, we add the clause Pos and
we modify the clause Anc of the original Chrobak and Dürr algorithm in
order to reconstruct, if possible, all polyominoes in the subclass γ.

Pos =
{
A(max(E),1) ∧ C(m,max(N))

}
Cor =

∧
i,j

{
Ai,j ⇒ Ai−1,j Bi,j ⇒ Bi−1,j Ci,j ⇒ Ci+1,j Di,j ⇒ Di+1,j

Ai,j ⇒ Ai,j−1 Bi,j ⇒ Bi,j+1 Ci,j ⇒ Ci,j−1 Di,j ⇒ Di,j+1

}

Dis =
∧
i,j

{
Xi,j ⇒ Y i,j | for symbols X,Y ∈ {A,B,C,D}, X 6= Y

}
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Con =
∧
i,j

{
Ai,j ⇒ Di+1,j+1 Bi,j ⇒ Ci+1,j−1

}

Anc =



Amin(W ),1 ∧Amin(E),n ∧Bmin(W ),1 ∧Bmin(E),n∧

Cmin(W ),1 ∧ Cmin(E),n ∧Dmin(W ),1 ∧Dmin(E),n∧

A1,min(N) ∧Am,min(S) ∧B1,min(N) ∧Bm,min(S)∧

C1,min(N) ∧ Cm,min(S) ∧D1,min(N) ∧Dm,min(S)∧

Amax(W ),1 ∧Amax(E),n ∧Bmax(W ),1 ∧Bmax(E),n∧

Cmax(W ),1 ∧ Cmax(E),n ∧Dmax(W ),1 ∧Dmax(E),n∧

A1,max(N) ∧Am,max(S) ∧B1,max(N) ∧Bm,max(S)∧

C1,max(N) ∧ Cm,max(S) ∧D1,max(N) ∧Dm,max(S)



LBC =
∧
i



∧j<min(N)Ai,j ⇒ Ci+vj ,j

∧min(N)≤j≤max(N)Ci+vj ,j ⇒ Ai,j

∧max(N)<j<min(S)Bi,j ⇒ Ci+vj ,j

∧min(S)≤j≤max(S)Bi,j ⇒ Ci+vj ,j

∧j>max(S)Bi,j ⇒ Di+vj ,j


∧

∧
j

{
Cvj ,j Dvj ,j

}

UBR =
∧
j



∧i<min(E)Ai,j ⇒ Bi,j+hi

∧min(E)≤i≤max(E)Bi,j+hi
⇒ Ai,j

∧max(E)<i<min(W )Ai,j ⇒ Di,j+hi

∧min(W )≤i≤max(W )Ai,j ⇒ Di,j+hi

∧i>max(W )Ci,j ⇒ Di,j+hi



Define γ(H,V ) = Pos∧Cor∧Dis∧Con∧Anc∧LBC∧UBR. All literals
with indices outside the set {1, . . . ,m} × {1, . . . , n} are assumed to have
value 1.

Proposition 5.1. If P is an HV -convex polyomino in γ, then P is a 2L-
convex polyomino.

Proof. The proof is straightforward by using the L-paths between each pair
of feet (see [14]). �
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Algorithm 2
Input: H ∈ Nm, V ∈ Nn

W.L.O.G. assume: ∀i : hi ∈ [1, n], ∀j : vj ∈ [1,m],
∑

i hi =
∑

j vj .

for min(W ),min(E) = 1, . . . ,m and
min(S),min(N) = 1, . . . , n do begin

if γ(H,V ) is satisfiable,
then output P = A ∪B ∪ C ∪D and halt.

end
Output: “failure”.

Proof of Algorithm 2. We make the following modifications of the original
algorithm of Chrobak and Durr [7] in order to add the geometrical con-
straints of the class γ. The set Anc gives the feet of suitable size by fixing
8 cells outside the corners A,B,C,D. Thus these cells of the extremities
of the feet are in the interior of the polyomino. The set Pos imposes the
constraint of the relative positions of feet in the class γ. In particular the
cell A(max(E),1) implies that min(W ) > max(E) and the cell C(m,max(N)) im-
plies that max(N) < min(S) (see Figure 7) . Using the combination of the
whole set of clauses, if γ(H,V ) is satisfiable then we are able to reconstruct
an HV -convex with the constraints of the class γ. By Proposition 2 this
HV -convex polyomino must be also 2L-convex. �

Figure 7. Relative position and anchors of the feet in the
class γ
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5.2. Clauses for the class =0,0
2L . We code the four geometries that char-

acterize all 2L-convex polyominoes in the class =0,0
2L using a 2SAT formula,

in order to reconstruct them.

Pos =
{
C(min(E),1) ∧ C(m,max(N)) ∧A1,1 ∧Dm,n

}
Cor =

∧
i,j

{
Ai,j ⇒ Ai−1,j Bi,j ⇒ Bi−1,j Ci,j ⇒ Ci+1,j Di,j ⇒ Di+1,j

Ai,j ⇒ Ai,j−1 Bi,j ⇒ Bi,j+1 Ci,j ⇒ Ci,j−1 Di,j ⇒ Di,j+1

}

Dis =
∧
i,j

{
Xi,j ⇒ Y i,j | for symbols X,Y ∈ {A,B,C,D}, X 6= Y

}
Con =

∧
i,j

{
Ai,j ⇒ Di+1,j+1 Bi,j ⇒ Ci+1,j−1

}

Anc =



Amin(W ),1 ∧Amin(E),n ∧Bmin(W ),1 ∧Bmin(E),n∧

Cmin(W ),1 ∧ Cmin(E),n ∧Dmin(W ),1 ∧Dmin(E),n∧

A1,min(N) ∧Am,min(S) ∧B1,min(N) ∧Bm,min(S)∧

C1,min(N) ∧ Cm,min(S) ∧D1,min(N) ∧Dm,min(S)∧

Amax(W ),1 ∧Amax(E),n ∧Bmax(W ),1 ∧Bmax(E),n∧

Cmax(W ),1 ∧ Cmax(E),n ∧Dmax(W ),1 ∧Dmax(E),n∧

A1,max(N) ∧Am,max(S) ∧B1,max(N) ∧Bm,max(S)∧

C1,max(N) ∧ Cm,max(S) ∧D1,max(N) ∧Dm,max(S)



LBC =
∧
i



∧j<min(N)Ai,j ⇒ Ci+vj ,j

∧min(N)≤j≤max(N)Ci+vj ,j ⇒ Ai,j

∧max(N)<j<min(S)Bi,j ⇒ Ci+vj ,j

∧min(S)≤j≤max(S)Bi,j ⇒ Ci+vj ,j

∧j>max(S)Bi,j ⇒ Di+vj ,j


∧

∧
j

{
Cvj ,j Dvj ,j

}

UBR =
∧
j



∧i<min(E)Ai,j ⇒ Bi,j+hi

∧min(E)≤i≤max(E)Bi,j+hi
⇒ Ai,j

∧max(E)<i<min(W )Ai,j ⇒ Di,j+hi

∧min(W )≤i≤max(W )Ai,j ⇒ Di,j+hi

∧i>max(W )Ci,j ⇒ Di,j+hi


REC =

{
Amin(W )−1,min(N)−1 ∧Dmax(E)+1,max(S)+1

}
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GEO1 =



Amax(W ),max(S) ∧Bmax(W ),max(S)

∧Cmax(W ),max(S) ∧Dmax(W ),max(S)

∧Amax(E),max(N) ∧Bmax(E),max(N)

∧Cmax(E),max(N) ∧Dmax(E),max(N)



GEO2 =



Amin(W ),min(S) ∧Bmin(W ),min(S)

∧Cmin(W ),min(S) ∧Dmin(W ),min(S)

∧Amin(E),min(N) ∧Bmin(E),min(N)

∧Cmin(E),min(N) ∧Dmin(E),min(N)



LGEO3 =



Amax(W ),max(S) ∧Bmax(W ),max(S)

∧Cmax(W ),max(S) ∧Dmax(W ),max(S)

∧Amin(E),min(N) ∧Bmin(E),min(N)

∧Cmin(E),min(N) ∧Dmin(E),min(N)


2LGEO3 =


Bmin(W ),j ⇒ Cmax(E),j−1∧j>1

∧Xmin(W ),max(N)+1

∧Xmax(E),min(S)−1,∀X ∈ {A,B,C,D}



LGEO4 =



Amin(W ),min(S) ∧Bmin(W ),min(S)

∧Cmin(W ),min(S) ∧Dmin(W ),min(S)

∧Amax(E),max(N) ∧Bmax(E),max(N)

∧Cmax(E),max(N) ∧Dmax(E),max(N)


2LGEO4 =


Ci,min(N) ⇒ Bi−1,max(S)∧i>1

Xmax(W )+1,min(N)

∧Xmin(E)−1,max(S),∀X ∈ {A,B,C,D}
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In order to reconstruct and to obtain the uniqueness of all 2L-convex
polyominoes in the class =0,0

2L , we use all the combinations of the whole set
of clauses that impose the union (or the sub-union) of the 4 geometries
starting from all geometries and leading to each single one (see [14]).

=0,0
2L,geo1,geo2,geo3,geo4(H,V ) = Pos∧Cor∧Dis∧Con∧Anc∧LBC∧UBR∧

REC∧GEO1∧GEO2∧LGEO3∧LGEO4,

=0,0
2L,geo2,geo4(H,V ) = Pos∧Cor∧Dis∧Con∧Anc∧LBC∧UBR∧

REC∧GEO2∧LGEO4,

=0,0
2L,geo2,geo3(H,V ) = Pos∧Cor∧Dis∧Con∧Anc∧LBC∧UBR∧

REC∧GEO2∧LGEO3,

=0,0
2L,geo1,geo4(H,V ) = Pos∧Cor∧Dis∧Con∧Anc∧LBC∧UBR∧

REC∧GEO1∧LGEO4,

=0,0
2L,geo1,geo3(H,V ) = Pos∧Cor∧Dis∧Con∧Anc∧LBC∧UBR∧

REC∧GEO1∧LGEO3,

=0,0
2L,geo4(H,V ) = Pos∧Cor∧Dis∧Con∧Anc∧LBC∧UBR∧

REC∧LGEO4∧ 2LGEO4,

=0,0
2L,geo3(H,V ) = Pos∧Cor∧Dis∧Con∧Anc∧LBC∧UBR∧

REC∧LGEO3∧ 2LGEO3,

=0,0
2L,geo2(H,V ) = Pos∧Cor∧Dis∧Con∧Anc∧LBC∧UBR∧

REC∧GEO2,

=0,0
2L,geo1(H,V ) = Pos∧Cor∧Dis∧Con∧Anc∧LBC∧UBR∧

REC∧GEO1 .

Algorithm 3
Input: H ∈ Nm, V ∈ Nn

W.L.O.G. assume: ∀i : hi ∈ [1, n], ∀j : vj ∈ [1,m],
∑

i hi =
∑

j vj .

for min(W ),min(E) = 1, . . . ,m and
min(N),min(S) = 1, . . . , n do begin

if =0,0
2L,geo1,geo2,geo3,geo4(H,V ) or =0,0

2L,geo2,geo4(H,V ) or · · ·
or =0,0

2L,geo1(H,V ) is satisfiable,

then output P = A ∪B ∪ C ∪D and halt.
end
Output: “failure”.
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Proof of Algorithm 3. By Theorem 3.2, all 2L-convex polyominoes of the
class =0,0

2L are given by combining the 4 geometries. Thus we combine all
geometries using a suitable set of clauses in order to try to reconstruct a
polyomino in the class =0,0

2L . We make the following modifications of the
original algorithm of Chrobak and Durr (see [7]) in order to add the geo-

metrical constraints of the class =0,0
2L . The set Pos imposes the constraint

of the relative positions of feet in =0,0
2L (see Figure 8). The set GEO1 im-

plies that we put a cell in the interior of the polyomino at the position
(max(W ),max(S)) (resp. (max(E),max(N))) and then by convexity an L-
path between max(W ) and max(S) (resp. max(N) and max(E)). Thus
we have exactly the definition of the first geometry. The set GEO2 (resp.
LGEO3, LGEO4) gives the L-paths of the second (resp. third and fourth)
geometry. The set 2LGEO3 (resp. 2LGEO4) controls the 2L-paths of the
third (resp. fourth) geometry (see Figure 9).

In particular, 2LGEO3 gives the 2L-path between min(W ) and max(E)
by using the clause Bmin(W ),j ⇒ Cmax(E),j−1. This clause says that if the
cell (min(W ), j) is in the corner B, then the cell (max(E), j − 1) is in the
interior of the polyomino. By contraposition, we have the clause
∧jCmax(E),j−1 ⇒ Bmin(W ),j , meaning that (max(E), j − 1) is in the corner
C, while the cell (min(W ), j) is in the interior of the polyomino. We would
like to have the 2L-path between min(W ) and max(E), and thus we add two
limit cases: Xmin(W ),max(N)+1 ∧Xmax(E),min(S)−1,∀X ∈ {A,B,C,D} which
impose that the cells (min(W ),max(N) + 1) and (max(E),min(S)− 1) are
in the interior of the polyomino (see Figure 10). Thus we have a 2L-path
between min(W ) and max(E). The same technique is applied for the clauses
in 2LGEO4. We remark that the clauses in 2LGEO3 (resp. 2LGEO4) are
used only to determine the third (resp. the fourth) geometry because all
other geometry combinations give L-paths between the feet and thus there
is no reason to satisfy 2LGEO3 and 2LGEO4.

Using the conjunction of the whole set of clauses, if one of
=0,0
2L,geo1,geo2,geo3,geo4(H,V ),=0,0

2L,geo2,geo4(H,V ), . . . ,=0,0
2L,geo1(H,V ) is satisfi-

able, then we are able to reconstruct an HV -convex polyomino with the
constraints of the class =0,0

2L . �

In order to compute the complexity of this algorthim, one can see that the
possible positions of the four feet is (n−hm +1)(n−h1 +1)(m−v1 +1)(m−
vn + 1) ≤ n2m2 (see [2]). And so by imposing the paths in the interior of
the polyominoes using the algortihm of Chrobak and Dürr, we obtain the
following result.

Theorem 5.2. Algorithms 2 and 3 solve the reconstruction problem for
2L-convex polyominoes in γ or =0,0

2L in time O(n3m3).
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Figure 8. Relative position and anchors of the feet in the
class =0,0

2L

Figure 9. First geometry.

5.3. Reconstruction of the classes γ′ and =′ 0,02L using the horizontal
reflexion SH . We are given two integer vectors H = (h1, . . . , hm) and
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Figure 10. 2LGEO3: (a) and (b) are the limit cases for the

third geometry in the class =0,0
2L

V = (v1, . . . , vn). To reconstruct a polyomino P in the class γ′ (resp. =′ 0,02L ),
one can see that the horizontal reflexion SH : (i, j) −→ (m − i + 1, j), for
every i, j ∈ {1, . . . ,m} × {1, . . . , n} sends the projection vectors (H,V ) to

(H̃, V ), where H̃ = (hm, . . . , h1). Now from the two vectors of projections

(H̃, V ), one can reconstruct the polyomino P in the class γ (resp. =0,0
2L ) and

then by the horizontal reflexion SH , we reconstruct P in the class γ′ (resp.

=′ 0,02L ).

N,S W,E

S −→ N W −→W

N −→ S E −→ E

≤⇐⇒≥

min −→ min min −→ max

max −→ max max −→ min
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