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CHARACTERIZING GRAPH CLASSES BY

INTERSECTIONS OF NEIGHBORHOODS

TERRY A. MCKEE

Abstract. The interplay between maxcliques (maximal cliques) and
intersections of closed neighborhoods leads to new types of characteri-
zations of several standard graph classes. For instance, being hereditary
clique-Helly is equivalent to every nontrivial maxclique Q containing the
intersection of closed neighborhoods of two vertices of Q, and also to,
in all induced subgraphs, every nontrivial maxclique containing a sim-
plicial edge (an edge in a unique maxclique). Similarly, being trivially
perfect is equivalent to every maxclique Q containing the closed neigh-
borhood of a vertex of Q, and also to, in all induced subgraphs, every
maxclique containing a simplicial vertex. Maxcliques can be general-
ized to maximal cographs, yielding a new characterization of ptolemaic
graphs.

1. Maximal cliques and closed neighborhoods

A clique of a graph G is a complete subgraph of G or, interchangeably,
the vertex set of a complete subgraph. A clique Q is a p-clique if |Q| = p;
is a maxclique if Q is not contained in a (|Q|+ 1)-clique; and is a simplicial
clique if Q is contained in a unique maxclique. Simplicial 1-cliques are
traditionally called simplicial vertices, and so simplicial 2-cliques can be
called simplicial edges. The open neighborhood NG(v) of a vertex v is the
set {w ∈ V (G) : wv ∈ E(G)}. The closed neighborhood NG[v] of v is the
set NG(v) ∪ {v} or, interchangeably, the subgraph of G induced by the set
NG[v].

Lemma 1. For every graph G and every p ≥ 1, a maxclique Q of G contains
NG[v1] ∩ · · · ∩NG[vp] for distinct v1, . . . , vp ∈ Q if and only if Q contains a
simplicial p-clique of G.

For k ≥ 2, define a k-ocular graph to consist of 2k vertices that are
partitioned into W = {w1, . . . , wk} and U = {u1, . . . , uk} where W induces
a k-clique and each NG(ui) = {wj : j 6= i} (the subgraph induced by U can
contain any subset of edges uiuj); see Figure 1. This is the terminology of
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[2] when k ≥ 3. The only 2-ocular graphs are the path u1, w2, w1, u2 ∼= P4

and the cycle u1, w2, w1, u2, u1 ∼= C4.
2 TERRY A. MCKEE
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Figure 1. The smallest of the two 2-ocular graphs, of the
four 3-ocular graphs, and of the eleven 4-ocular graphs.

For p ≥ 2, define a graph G to be p-clique-Helly when, for every family
F of maxcliques of G, if every p members of F have an element in common,
then all the members of F have an element in common. If every induced
subgraph of G is p-clique-Helly, then G is called hereditary p-clique-Helly.
Reference [2] contains several characterizations of hereditary p-clique-Helly
graphs, including condition (2.4) in Theorem 2.

Theorem 2. The following are equivalent for every graph G and p ≥ 2:

(2.1): If Q is a maxclique of an induced subgraph G′ of G and |Q| ≥ p,
then Q contains NG′ [v1] ∩ · · · ∩NG′ [vp] for distinct v1, . . . , vp ∈ Q.

(2.2): If Q is a maxclique of an induced subgraph G′ of G and |Q| ≥ p,
then Q contains a simplicial p-clique of G′.

(2.3): G is hereditary p-clique-Helly.
(2.4): G contains no induced (p + 1)-ocular subgraph.

Proof. Suppose p ≥ 2. Lemma 1 implies the equivalence (2.1)⇔(2.2). The
equivalence (2.3)⇔(2.4) is [2, Thm. 4].

To prove (2.4)⇒ (2.1), suppose (2.4) holds, G′ is an induced subgraph
of G, and Q is a maxclique of G′ with |Q| > p (the |Q| = p case being
immediate). Let Q′ = {w1, . . . , wp+1} ⊆ Q and, whenever 1 ≤ i ≤ p + 1,
let Si =

⋂
j 6=iNG′ [wj ]. Thus Q′ ⊆ Si for each i. If for each i there exists

a vertex ui ∈ Si − Q, then W = Q′ and U = {u1, . . . , up+1} would induce
a (p + 1)-ocular subgraph (noting that ui and wi are not adjacent, since Q
is a maxclique). Therefore (2.4) implies that some Si = Q; without loss
of generality, say Sp+1 = Q. That makes Q =

⋂p
i=1NG′ [wj ] with distinct

w1, . . . , wp ∈ Q, showing that (2.1) holds.
To prove (2.1)⇒(2.4), suppose (2.4) fails because G contains an induced

(p+ 1)-ocular subgraph G′ where V (G′) is partitioned into W ∪U as in the
definition of (p + 1)-ocular. Each NG′ [wi] contains the p vertices uj that
have j 6= i. Therefore, each uj ∈

⋂
i 6=j NG′ [wi], and so Q = W can never

contain the intersection of p neighborhoods NG′ [wj ] with wj ∈ Q, showing
that (2.1) fails. 2

Hereditary 2-clique-Helly graphs are called hereditary clique-Helly graphs
in [10] and clique reducible graphs in [11]. These papers contain several
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Hereditary 2-clique-Helly graphs are called hereditary clique-Helly graphs
in [10] and clique reducible graphs in [11]. These papers contain several
other characterizations, and [8] will contain more characterizations involving
simplicial cliques.

Corollary 3. The following are equivalent for every graph G:

(1) If Q is a maxclique of an induced subgraph G′ of G and |Q| ≥ 2,
then Q contains NG′ [v] ∩NG′ [v

′] for distinct v, v′ ∈ Q.
(2) Every nontrivial maxclique of an induced subgraph of G contains a

simplicial edge.
(3) G is hereditary clique-Helly.
(4) G contains no induced 3-ocular subgraph.

Proof. This follows from the p = 2 case of Theorem 2. (The equivalence
(3)⇔ (4) also appears in [10, 11].) �

A graph G is called trivially perfect if, for every induced subgraph G′

of G, the cardinality of the largest independent set in G′ equals the num-
ber of maxcliques in G′. Reference [4] contains several other characteriza-
tions, including condition (4) in Theorem 4. See [1, 9] for many additional
characterizations—and names—for trivially perfect graphs; [8] will contain
more characterizations involving simplicial cliques.

Theorem 4. The following are equivalent for every graph G:

(1) If Q is a maxclique of an induced subgraph G′ of G, then Q contains
NG′ [v] for some v ∈ Q.

(2) Every maxclique of an induced subgraph of G contains a simplicial
vertex.

(3) G is trivially perfect.
(4) G contains no induced P4 or C4 subgraph.

Proof. The equivalence (1) ⇔ (2) follows from Lemma 1. The equivalence
(3) ⇔ (4) is [4, Thm. 2]. The equivalence (1) ⇔ (4) can be proved by a
simple modification of the proof of (1) ⇔ (4) in Theorem 2, taking p = 1
and using that P4 and C4 are the two 2-ocular graphs. �

Corollary 5 will be a restriction of Corollary 3 to chordal graphs—the
graphs in which every cycle of length four or more has a chord (see [1, 9]
for other many characterizations and history). Note that the existence of
an edge uiuj in a p-ocular graph (with vertex set partitioned into W and
U as in the definition) would produce a chordless 4-cycle ui, uj , wi, wj , ui.
Therefore a p-ocular graph is chordal if and only if the set U is independent
(meaning that there are no edges between vertices in U).

A disk DG[v, k] of a graph G is the set {x : 0 ≤ d(v, x) ≤ k} ⊆ V (G),
where d(v, x) denotes the v-to-x distance in G. Define G to be disk-Helly
when, for every family F of disks of G, if every two members of F have an
element in common, then all the members of F have an element in common.
If every induced subgraph of G is disk-Helly, then G is called hereditary
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disk-Helly. References [3, 5] contain several characterizations of hereditary
disk-Helly graphs, including the following two: (i) being both chordal and
clique-Helly, and (ii) being chordal with no induced Hajós subgraph (where
the Hajós graph—sometimes called the 3-sun—is the 3-ocular graph with
{u1, u2, u3} independent, shown as the center graph in Figure 1).

Corollary 5. The following are equivalent for every chordal graph G:

(1) If Q is a maxclique of an induced subgraph G′ of G and |Q| ≥ 2,
then Q contains NG′ [v] ∩NG′ [v

′] for distinct v, v′ ∈ Q.
(2) Every nontrivial maxclique of an induced subgraph of G contains a

simplicial edge.
(3) G is hereditary disk-Helly.
(4) G contains no induced Hajós subgraph.

Proof. Since the Hajós graph is the only chordal 3-ocular graph, the equiv-
alences (1) ⇔ (2) and (1) ⇔ (4) follow from the p = 2 case of Theorem 2.
The equivalence (3)⇔ (4) is [5, Thm. 1.2]. �

2. Maximal cographs and closed neighborhoods

In this section, cliques—which are simply the graphs that have no induced
P3 subgraphs—will be generalized to the complement-reducible graphs (or
cographs)—which are the graphs that have no induced P4 subgraphs (or,
equivalently, the graphs in which every connected induced subgraph has
diameter at most two). See [1, 9] for many additional characterizations.
Echoing the CC(G) notation in [1] for the set of all inclusion-maximal subsets
of V (G) that induce connected cographs, define a CC-subgraph of G to be a
subgraph of G that is induced by a set in CC(G).

For each p ≥ 1, let Kp+4 − P4 denote the graph on the vertex set
{w1, . . . , wp+2, u1, u2} that is complete except that edges w1u1, u1u2 and
u2w2 do not occur. Equivalently, Kp+4 − P4 is the chordal (p + 2)-ocular
graph with vertices u3, . . . , up+2 deleted. The p-clique {w3, . . . , wp+2} is the
center of the Kp+4 − P4 graph.
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Figure 2. The graphs K5 − P4 and K6 − P4.

Lemma 6. For every graph G and p ≥ 1, a CC-subgraph H contains
NG[v1] ∩ · · · ∩NG[vp] for distinct v1, . . . , vp in V (H) if and only if H does
not contain the center of a Kp+4 − P4 subgraph of G.

Proof. Some CC-subgraph of G contains
⋂p

i=1NG[vi] for some set S =
{v1, . . . , vp} of p vertices if and only if

⋂p
i=1NG[vi] contains no induced P4

path a, b, c, d, which in turn is equivalent to no set S ∪ {a, b, c, d} inducing
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Lemma 6. For every graph G and p ≥ 1, a CC-subgraph H contains
NG[v1] ∩ · · · ∩ NG[vp] for distinct v1, . . . , vp in V (H) if and only if H does
not contain the center of a Kp+4 − P4 subgraph of G.
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Proof. Some CC-subgraph of G contains
⋂p

i=1NG[vi] for some set S =
{v1, . . . , vp} of p vertices if and only if

⋂p
i=1NG[vi] contains no induced P4

path a, b, c, d, which in turn is equivalent to no set S ∪ {a, b, c, d} inducing
a Kp+4 − P4 subgraph of G with w1 = b, w2 = c, w3 = v1, . . . , wp+2 = vp,
u1 = d, and u2 = a (in the notation in the definition of Kp+4 − P4). �

Theorem 7. The following are equivalent for every graph G and p ≥ 1:

(1) If H is a CC-subgraph of an induced subgraph G′ of G, then H
contains NG′ [v1] ∩ · · · ∩NG′ [vp] for distinct v1, . . . , vp ∈ V (H).

(2) G contains no induced Kp+4 − P4 subgraph.

Proof. To prove (1)⇒ (2), suppose p ≥ 1 and condition (2) fails; specifically,
suppose G has an induced subgraph G′ ∼= Kp+4 − P4 on the vertex set
{w1, . . . , wp+2, u1, u2} as described in the definition of Kp+4 − P4. Take H
to be the CC-subgraph of G′ that is obtained by deleting w1 from G′, and
note that H contains the center {w3, . . . , wp+2} of G′. Lemma 6 then implies
that H does not contain

⋂p
i=1NG′ [vi] for distinct vertices v1, . . . , vp, and so

condition (1) fails.
To prove (2) ⇒ (1), suppose p ≥ 1 and condition (1) fails; specifically,

suppose H is a CC-subgraph of an induced subgraph G′ of G such that H
contains distinct vertices v1, . . . , vp without containing

⋂p
i=1NG′ [vi]. Lemma

6 implies that H contains the center of a Kp+4 − P4 subgraph of G′, and so
condition (2) fails. �

A graph G is called ptolemaic if G is both chordal and contains no induced
K5 − P4 subgraph (often called a gem); see [1] for additional characteriza-
tions. Corollary 8 corresponds to Theorem 4.

Corollary 8. For every chordal graph G, every CC-subgraph H of an in-
duced subgraph G′ of G contains NG′ [v] for some v ∈ V (H) if and only if G
is ptolemaic.

Proof. This follows from the p = 1 case of Theorem 7. �
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