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QUASI-HERMITIAN VARIETIES IN PG(r,¢?), ¢ EVEN

ANGELA AGUGLIA

ABSTRACT. In this paper a new example of quasi—Hermitian variety
V in PG(r,q?) is provided, where ¢ is an odd power of 2. In higher-
dimensional spaces, V can be viewed as a generalization of the
Buekenhout-Tits unital in the desarguesian projective plane; see [9].

1. INTRODUCTION

In the r-dimensional projective space PG(r, ¢?) over a finite field GF(¢?)
of order ¢?, a quasi-Hermitian variety is a set of points which has the same
intersection numbers with hyperplanes as a (non—degenerate) Hermitian va-
riety does. Therefore quasi-Hermitian varieties are two-character sets with
respect to hyperplanes, where the characters, that is the intersection num-
bers, are

(@ + (DD = (=)
¢ —1 ’

and

¢+ (=)@ = (=)
g*>—1
Quasi—Hermitian varieties other than Hermitian varieties are known to exist;
see [1] and [6]. The interest for quasi-Hermitian varieties arose from coding
theory. Delsarte [8] proved indeed that a two—character set gives rise to
a projective linear two weights code and a strongly regular graph. Recent
papers on this subject are [4, 5, 7].

We construct a new family of non—trivial quasi—-Hermitian varieties V in
PG(r, %) with ¢ = 2¢ and e odd, using a procedure similar to that developed
in [1]. The essential idea is to keep a Hermitian variety H = H(r, ¢*) invari-
ant but modify the ambient space PG(r, ¢?) by a birational transformation
so that H becomes a quasi—-Hermitian variety of the r-dimensional projec-
tive space PG/(r,q?) represented by a (non-standard) model IT of PG(r, ¢?)
where

+ (_1)7’—1(]7’—1'
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(i) points of II are those of PG(r, ¢?);

(ii) hyperplanes of II are certain hyperplanes and hypersurfaces
of PG(r, ¢?).

We give the equations of these hypersurfaces later in Section 2 where we
also extend some results obtained in [2] from r = 2 to any r > 2. Interest-
ingly, some planar sections of V are Buekenhout-Tits unitals, in particular
V is a Buekenhout-Tits unital for r = 2.

For generalities on Hermitian varieties and unitals in projective spaces, the
reader is referred to [14, 11, 13, 10, 3]. Basic facts on rational transformations
of projective spaces are found in [12, Section 3.3].

2. A NON-STANDARD MODEL OF PG(r, ¢?)

Fix a projective frame in PG(r, ¢%), where ¢ is an odd power of 2. Let
(X0, X1,...,X,) denote homogeneous coordinates, and consider the affine
plane AG(r, ¢?) whose infinite hyperplane ¥, has equation Xy = 0. Then
AG(r,¢?) has affine coordinates (1,2, ...,z,) where z; = X;/ X for i €
{1,...,r}.

Take ¢ € GF(¢?)\ GF(q) such that €2 +e+4 = 0 for some 6§ € GF(¢)\ {1}
with Tr (0) = 1. Here, Tr stands for the trace function GF(q) — GF(2).
Then £24+£9+§ = 0. Therefore, (¢7+¢)2+(e94¢) = 0, whence e?+c+1 = 0.
Moreover, if ¢ = 2¢, with e an odd integer, then

o(e+1)/2
oIx T
is an automorphism of GF(q). Set
Ag(l') _ €0+2$Q(J+2) + (60 + €0+2)xqo+2 +2° + (1 + 5)12.

For any m = (myq,...,m,_1,d) € GF(¢*)", let D(m) denote the algebraic
hypersurface

(2.1) T = Ac(w1) + -+ Ac(@po1) 12y + -+ M2+ d

Consider the incidence structure II. = (P, ¥) whose points are the points of
AG(r,¢?) and whose hyperplanes are the hyperplanes through the point at
infinity P (0,0,...,0,1) together with the hypersurfaces D(m), where m
ranges over GF(¢g?)".

Lemma 2.1. The incidence structure Il = (P,X) is an affine space iso-
morphic to AG(r,¢?).

Proof. The birational transformation ¢ given by
(2.2) (a1, s xre1,xp) = (21, Tty B + Ac(zr) + -+ Ac(Tr21)),s

transforms the hyperplanes through P.(0,0,...,0,1) into themselves,
whereas the hyperplane of equation x, = miz1 + -+ + my_12,_1 + d is
mapped into the hypersurface D(m). Therefore, ¢ determines an isomor-
phism

I, ~ AG(r, ¢%),
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and the assertion is proven. U
Completing II. with its points at infinity in the usual way gives a projec-
tive space isomorphic to PG(r, ¢?).
3. MAIN RESULT

Let H be the Hermitian variety of PG(r,q?). H is assumed to be in an
affine canonical form

The set of the infinity points of H is
(32) F={0,z1,....2,) |21+ + 2771 = 0}

and it can be viewed as a Hermitian cone of PG(r — 1,¢?) projecting a
Hermitian variety of PG(r — 2,¢%). Set

T.(z) = [z + (27 4+ 2)e]” 2 + (27 + 2)° + (2?7 + 2%)e + 27T + 22,
Theorem 3.1. The affine algebraic variety of equation
(3.3) xl 4z, =Tc(x1) + -+ Te(zr1),

together with the infinity points (3.2) of H is a quasi-Hermitian variety V
of PG(r,¢?).

Proof. Let P = (&1,...,&) be an affine point in II.. This point, viewed
as an element of AG(r, ¢?), has coordinates z; = &, for i = 1,...,r — 1,
and x, = & + A (&) + -+ + A(&—1). Therefore, H and V coincide in the
projective closure of II. thus, we just have to prove the following lemma.
Let D(m) be the hypersurface with equation (2.1).

Lemma 3.2. The hypersurface D(m) and H have either
(¢"+ (=D = (=)

le q2_1 - ‘H(T_Zan)‘
or
T4(—1 =y (gr—1 — (—1)—1 r—1_r—
N, = @D q)Q(z : =07 (=)L = [H(r = 2,¢%)|

common points in AG(r,¢?).

Proof. The intersection size of H and D(m) in AG(r,q?) is the number of
solutions (x1,...,7,) € GF(¢?)" of the following system
(3.4)
2l 4z, =20 4 42t
xr = Ac(r1) + -+ Ac(mp—1) + Mz + -+ myp_120-1 + d.

Substituting the value of x, in the first equation gives
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(3.5)

e T = AL ()T A )+ mIat w2+
Ac(zr) + -+ Ad(zp—r) +muz 4+ -+ M1+
d? +d.

Consider now GF(g?) as a vector space over GF(g). The set {1,¢} is a basis
of GF(q?), thus the elements in GF(¢?) can be written as linear combinations
with respect to this basis, that is, x; = x?%—x}s, with ZE?, xll € GF(q). Hence,
(3.5) becomes an equation over GF(q),

(3.6)

0= (2)"" +atwr + @)+ + (27) 7+ a gz + (2) 7+
mial + (m + m)zy + -+ mi@) 4 (m)_ +my)z ) +d
The solutions (29, z1,...,29_;,z1_,) of (3.6) may be regarded as points of

the affine space AG(2(r—1), ¢) over GF(q). In fact, (3.6) turns out to be the
equation of a (possibly degenerate) affine hypersurface S of AG(2(r —1), q).
The number N of points in AG(2(r — 1), ¢) which lie on S is the number of
points in AG(r,¢?) on H N D(m). We will show that N is either N7 or Ny
by induction on r.

First, suppose r = 2. In this case S can be viewed as an affine planar
section of the Tits ovoid O of affine equation (x1)7 + 29x{ + (29)72 = 2.
Here (x(l), x%, z) denote affine coordinates for points in the affine 3-space in
which AG(2, q) is embedded as a hyperplane. Therefore, S consists of 1 or
q+1 points according as our plane of equation z = miz{+ (m{+ml)xl +d!
is tangent to O or not, and the assertion follows.

Now suppose 7 > 2. Fix a 2(r — 2)-tuple (29, z3,...,2% 1,2L ) of ele-
ments in GF(q). For each such tuple, the number of 2(r — 1)-tuples

(av 67 Zi‘g, i‘%v ce v*f(r]flv @1"71)
satisfying (3.6) is 1 or ¢ + 1 according to whether
(3.7)
0= (29)7"* + 2575 + ()7 + -+ + (37-0) "+ 20 Ty + (T) T+
myTy + (mh + my)Ty + -+ +my_y T)_q + (m)_y +m})E;_ +
(m1)7"% + (m} + my)my + (m} +m)” +d'
or not. The induction hypothesis applied to r — 1 yields that (3.7) has either

r—1 _1\r=2\ ("2 _ (_1\r—2
ny = (q +( 1) q2)£q1 ( 1) ) _ ’H(’I“ _ 3,(]2)‘

or

r—1 N2\ (42 _ (_1\r—2
ny = (q + ( 1) q2)£q1 ( 1) ) + (_1)r—2qr—2 _ ’/H(,r, _ 3’q2)‘
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solutions. This implies that the number of solutions of (3.6) is either

a=n1+ (" —n)(g+1)

or
b=mny+ (> = ny)(q+1).

A direct computation shows that a = Ny and b = Ny and our lemma

follows O

Since the points at infinity of a hyperplane of AG(r, ¢?) are also the points
at infinity of the corresponding hyperplane in the projective closure of I,
the assertion is proven. ([l

Theorem 3.3. The quasi—-Hermitian variety V defined in Theorem (3.1) is
not projectively equivalent to the Hermitian variety H of PG(r, ¢?).

Proof. First assume r = 2. In this case V consists of the infinity point
(0,0, 1) together with the points (1, x,y) such that

yq +y= [:U + (xq + m)5]04-2 + (xq + w)a + (:L.2q 4 $2)8 4 mq—&-l + x2'
Setting 7 + x = t, and = + (2?7 + x)e = s, we have
T =8+ tg,
and
Yyl +y=s"T2 417 +ts,
that is,
y=(s"T2+t7 +to)e +,
where r € GF(q). Therefore,
V={(1,s+te, (5772 417 4 to)e +7)|r, st € GF(q)} u{(0,0,1)},

namely, V coincides with a Buekenhout-Tits unital which is not projectively
equivalent to the hermitian curve of PG(2, ¢%); see [2, 9].

In the case r > 2 let 7 be the plane of affine equations zo = --- = z,,_1 = 0,
and let U denote the intersection of V and w. We can choose homogeneous
coordinates in 7 in such a way that U is the set of points

{(1,5+te, (T2 447 +to)e+7) |7 s,t € GF(q)} U{(0,0,1)}

that is, a Buekenhout-Tits unital of 7, and thus the assertion is proven. [
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Remark. For each v = (v1,...,%) € GF(q)", let 1, be the collineation of
PG(r, ¢?) induced by the non-singular matrix

1 me ve ... po1e r+Mm+-+7-1)%)
0o 1 0 ... 0 Y1+ 7€
0 0 1 ... 0 Yo + Yoe
0 1 Yr—1 + Vr—1&
0 0 0 ... 0 1

Let G denote the following collineation group of order ¢",

St
1%

G = {, ]y € GF(g)'}.

raightforward computations show that G is an abelian group which leaves
invariant; in particular, it fixes P, and has ¢"~! orbits of size ¢" on V\ F.

Furthermore, for r = 2, it coincides with the stabilizer in PGL(3,¢?) of V ;
see [9].
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