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QUASI-HERMITIAN VARIETIES IN PG(r, q2), q EVEN

ANGELA AGUGLIA

Abstract. In this paper a new example of quasi–Hermitian variety
V in PG(r, q2) is provided, where q is an odd power of 2. In higher-
dimensional spaces, V can be viewed as a generalization of the
Buekenhout-Tits unital in the desarguesian projective plane; see [9].

1. Introduction

In the r-dimensional projective space PG(r, q2) over a finite field GF (q2)
of order q2, a quasi–Hermitian variety is a set of points which has the same
intersection numbers with hyperplanes as a (non–degenerate) Hermitian va-
riety does. Therefore quasi-Hermitian varieties are two-character sets with
respect to hyperplanes, where the characters, that is the intersection num-
bers, are

(qr + (−1)r−1)(qr−1 − (−1)r−1)

q2 − 1
,

and

(qr + (−1)r−1)(qr−1 − (−1)r−1)

q2 − 1
+ (−1)r−1qr−1.

Quasi–Hermitian varieties other than Hermitian varieties are known to exist;
see [1] and [6]. The interest for quasi-Hermitian varieties arose from coding
theory. Delsarte [8] proved indeed that a two–character set gives rise to
a projective linear two weights code and a strongly regular graph. Recent
papers on this subject are [4, 5, 7].

We construct a new family of non–trivial quasi–Hermitian varieties V in
PG(r, q2) with q = 2e and e odd, using a procedure similar to that developed
in [1]. The essential idea is to keep a Hermitian variety H = H(r, q2) invari-
ant but modify the ambient space PG(r, q2) by a birational transformation
so that H becomes a quasi–Hermitian variety of the r-dimensional projec-
tive space PG(r, q2) represented by a (non-standard) model Π of PG(r, q2)
where
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(i) points of Π are those of PG(r, q2);
(ii) hyperplanes of Π are certain hyperplanes and hypersurfaces

of PG(r, q2).

We give the equations of these hypersurfaces later in Section 2 where we
also extend some results obtained in [2] from r = 2 to any r > 2. Interest-
ingly, some planar sections of V are Buekenhout-Tits unitals, in particular
V is a Buekenhout-Tits unital for r = 2.

For generalities on Hermitian varieties and unitals in projective spaces, the
reader is referred to [14, 11, 13, 10, 3]. Basic facts on rational transformations
of projective spaces are found in [12, Section 3.3].

2. A non-standard model of PG(r, q2)

Fix a projective frame in PG(r, q2), where q is an odd power of 2. Let
(X0, X1, . . . , Xr) denote homogeneous coordinates, and consider the affine
plane AG(r, q2) whose infinite hyperplane Σ∞ has equation X0 = 0. Then
AG(r, q2) has affine coordinates (x1, x2, . . . , xr) where xi = Xi/X0 for i ∈
{1, . . . , r}.

Take ε ∈ GF(q2)\GF(q) such that ε2 +ε+δ = 0 for some δ ∈ GF(q)\{1}
with Tr (δ) = 1. Here, Tr stands for the trace function GF(q) → GF(2).
Then ε2q+εq+δ = 0. Therefore, (εq+ε)2+(εq+ε) = 0, whence εq+ε+1 = 0.
Moreover, if q = 2e, with e an odd integer, then

σ : x 7→ x2
(e+1)/2

is an automorphism of GF(q). Set

∆ε(x) = εσ+2xq(σ+2) + (εσ + εσ+2)xqσ+2 + xσ + (1 + ε)x2.

For any m = (m1, . . . ,mr−1, d) ∈ GF (q2)r, let D(m) denote the algebraic
hypersurface

(2.1) xr = ∆ε(x1) + · · ·+ ∆ε(xr−1) +m1x1 + · · ·+mr−1xr−1 + d.

Consider the incidence structure Πε = (P,Σ) whose points are the points of
AG(r, q2) and whose hyperplanes are the hyperplanes through the point at
infinity P∞(0, 0, . . . , 0, 1) together with the hypersurfaces D(m), where m
ranges over GF(q2)r.

Lemma 2.1. The incidence structure Πε = (P,Σ) is an affine space iso-
morphic to AG(r, q2).

Proof. The birational transformation ϕ given by

(2.2) ϕ : (x1, . . . , xr−1, xr) 7→ (x1, . . . , xr−1, xr + ∆ε(x1) + · · ·+ ∆ε(xr−1)),

transforms the hyperplanes through P∞(0, 0, . . . , 0, 1) into themselves,
whereas the hyperplane of equation xr = m1x1 + · · · + mr−1xr−1 + d is
mapped into the hypersurface D(m). Therefore, ϕ determines an isomor-
phism

Πε ' AG(r, q2),
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and the assertion is proven. �

Completing Πε with its points at infinity in the usual way gives a projec-
tive space isomorphic to PG(r, q2).

3. Main result

Let H be the Hermitian variety of PG(r, q2). H is assumed to be in an
affine canonical form

(3.1) xqr + xr = xq+1
1 + · · ·+ xq+1

r−1.

The set of the infinity points of H is

(3.2) F = {(0, x1, . . . , xr) |xq+1
1 + · · ·+ xq+1

r−1 = 0}

and it can be viewed as a Hermitian cone of PG(r − 1, q2) projecting a
Hermitian variety of PG(r − 2, q2). Set

Γε(x) = [x+ (xq + x)ε]σ+2 + (xq + x)σ + (x2q + x2)ε+ xq+1 + x2.

Theorem 3.1. The affine algebraic variety of equation

(3.3) xqr + xr = Γε(x1) + · · ·+ Γε(xr−1),

together with the infinity points (3.2) of H is a quasi-Hermitian variety V
of PG(r, q2).

Proof. Let P = (ξ1, . . . , ξr) be an affine point in Πε. This point, viewed
as an element of AG(r, q2), has coordinates xi = ξi, for i = 1, . . . , r − 1,
and xr = ξr + ∆ε(ξ1) + · · ·+ ∆ε(ξr−1). Therefore, H and V coincide in the
projective closure of Πε thus, we just have to prove the following lemma.
Let D(m) be the hypersurface with equation (2.1).

Lemma 3.2. The hypersurface D(m) and H have either

N1 =
(qr + (−1)r−1)(qr−1 − (−1)r−1)

q2 − 1
−
∣∣H(r − 2, q2)

∣∣
or

N2 =
(qr + (−1)r−1)(qr−1 − (−1)r−1)

q2 − 1
+ (−1)r−1qr−1 −

∣∣H(r − 2, q2)
∣∣

common points in AG(r, q2).

Proof. The intersection size of H and D(m) in AG(r, q2) is the number of
solutions (x1, . . . , xr) ∈ GF(q2)r of the following system
(3.4){

xqr + xr = xq+1
1 + · · ·+ xq+1

r−1.

xr = ∆ε(x1) + · · ·+ ∆ε(xr−1) +m1x1 + · · ·+mr−1xr−1 + d.

Substituting the value of xr in the first equation gives
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(3.5)

xq+1
1 + · · ·+ xq+1

r−1 = ∆ε(x1)
q + · · ·+ ∆ε(xr−1)

q +mq
1x
q
1 + · · ·+mq

r−1x
q
r−1+

∆ε(x1) + · · ·+ ∆ε(xr−1) +m1x1 + · · ·+mr−1xr−1+

dq + d.

Consider now GF(q2) as a vector space over GF(q). The set {1, ε} is a basis
ofGF (q2), thus the elements in GF(q2) can be written as linear combinations
with respect to this basis, that is, xi = x0i +x1i ε, with x0i , x

1
i ∈ GF(q). Hence,

(3.5) becomes an equation over GF(q),
(3.6)

0 = (x01)
σ+2 + x01x

1
1 + (x11)

σ + · · ·+ (x0r−1)
σ+2 + x0r−1x

1
r−1 + (x1r−1)

σ+

m1
1x

0
1 + (m0

1 +m1
1)x

1
1 + · · ·+m1

r−1x
0
r−1 + (m0

r−1 +m1
1)x

1
r−1 + d1.

The solutions (x01, x
1
1, . . . , x

0
r−1, x

1
r−1) of (3.6) may be regarded as points of

the affine space AG(2(r−1), q) over GF(q). In fact, (3.6) turns out to be the
equation of a (possibly degenerate) affine hypersurface S of AG(2(r− 1), q).
The number N of points in AG(2(r− 1), q) which lie on S is the number of
points in AG(r, q2) on H ∩ D(m). We will show that N is either N1 or N2

by induction on r.
First, suppose r = 2. In this case S can be viewed as an affine planar

section of the Tits ovoid O of affine equation (x11)
σ + x01x

1
1 + (x01)

σ+2 = z.
Here (x01, x

1
1, z) denote affine coordinates for points in the affine 3-space in

which AG(2, q) is embedded as a hyperplane. Therefore, S consists of 1 or
q+1 points according as our plane of equation z = m1

1x
0
1 +(m0

1 +m1
1)x

1
1 +d1

is tangent to O or not, and the assertion follows.
Now suppose r > 2. Fix a 2(r − 2)-tuple (x̄02, x̄

1
2, . . . , x̄

0
r−1, x̄

1
r−1) of ele-

ments in GF (q). For each such tuple, the number of 2(r − 1)-tuples

(α, β, x̄02, x̄
1
2, . . . , x̄

0
r−1, x̄

1
r−1)

satisfying (3.6) is 1 or q + 1 according to whether

(3.7)
0 = (x̄02)

σ+2 + x̄02x̄
1
2 + (x̄12)

σ + · · ·+ (x̄0r−1)
σ+2 + x̄0r−1x̄

1
r−1 + (x̄1r−1)

σ+

m1
2x̄

0
2 + (m0

2 +m1
2)x̄

1
2 + · · ·+m1

r−1x̄
0
r−1 + (m0

r−1 +m1
1)x̄

1
r−1+

(m1
1)
σ+2 + (m0

1 +m1
1)m

1
1 + (m0

1 +m1
1)
σ + d1

or not. The induction hypothesis applied to r−1 yields that (3.7) has either

n1 =
(qr−1 + (−1)r−2)(qr−2 − (−1)r−2)

q2 − 1
−
∣∣H(r − 3, q2)

∣∣
or

n2 =
(qr−1 + (−1)r−2)(qr−2 − (−1)r−2)

q2 − 1
+ (−1)r−2qr−2 −

∣∣H(r − 3, q2)
∣∣
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solutions. This implies that the number of solutions of (3.6) is either

a = n1 + (q2(r−2) − n1)(q + 1)

or

b = n2 + (q2(r−2) − n2)(q + 1).

A direct computation shows that a = N1 and b = N2 and our lemma
follows �

Since the points at infinity of a hyperplane of AG(r, q2) are also the points
at infinity of the corresponding hyperplane in the projective closure of Πε,
the assertion is proven. �

Theorem 3.3. The quasi–Hermitian variety V defined in Theorem (3.1) is
not projectively equivalent to the Hermitian variety H of PG(r, q2).

Proof. First assume r = 2. In this case V consists of the infinity point
(0, 0, 1) together with the points (1, x, y) such that

yq + y = [x+ (xq + x)ε]σ+2 + (xq + x)σ + (x2q + x2)ε+ xq+1 + x2.

Setting xq + x = t, and x+ (xq + x)ε = s, we have

x = s+ tε,

and

yq + y = sσ+2 + tσ + ts,

that is,

y = (sσ+2 + tσ + tσ)ε+ r,

where r ∈ GF (q). Therefore,

V =
{

(1, s+ tε, (sσ+2 + tσ + tσ)ε+ r) | r, s, t ∈ GF (q)
}
∪ {(0, 0, 1)},

namely, V coincides with a Buekenhout-Tits unital which is not projectively
equivalent to the hermitian curve of PG(2, q2); see [2, 9].

In the case r > 2 let π be the plane of affine equations x2 = · · · = xr−1 = 0,
and let U denote the intersection of V and π. We can choose homogeneous
coordinates in π in such a way that U is the set of points{

(1, s+ tε, (sσ+2 + tσ + tσ)ε+ r) | r, s, t ∈ GF (q)
}
∪ {(0, 0, 1)}

that is, a Buekenhout-Tits unital of π, and thus the assertion is proven. �
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Remark. For each γ = (γ1, . . . , γr) ∈ GF (q)r, let ψγ be the collineation of
PG(r, q2) induced by the non-singular matrix

1 γ1ε γ2ε . . . γr−1ε γr + (γ1 + · · ·+ γr−1)
σε)

0 1 0 . . . 0 γ1 + γ1ε
0 0 1 . . . 0 γ2 + γ2ε
...

...
...

...
...

0 0 0 . . . 1 γr−1 + γr−1ε
0 0 0 . . . 0 1


.

Let G denote the following collineation group of order qr,

G = {ψγ | γ ∈ GF (q)r}.

Straightforward computations show that G is an abelian group which leaves
V invariant; in particular, it fixes P∞ and has qr−1 orbits of size qr on V \F .
Furthermore, for r = 2, it coincides with the stabilizer in PGL(3, q2) of V ;
see [9].
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