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CONVEX SUBLATTICES OF A LATTICE AND A FIXED

POINT PROPERTY

DWIGHT DUFFUS, CLAUDE LAFLAMME*, MAURICE POUZET**,
AND ROBERT WOODROW

Abstract. The collection CL�T � of nonempty convex sublattices of a
lattice T ordered by bi-domination is a lattice. We say that T has the
fixed point property for convex sublattices (CLFPP for short) if every
order preserving map f � T � CL�T � has a fixed point, that is x > f�x� for
some x > T . We examine which lattices may have CLFPP. We introduce
the selection property for convex sublattices (CLSP); we observe that a
complete lattice with CLSP must have CLFPP, and that this property
implies that CL�T � is complete. We show that for a lattice T , the fact
that CL�T � is complete is equivalent to the fact that T is complete and
the lattice ´�ω� of all subsets of a countable set, ordered by containment,
is not order embeddable into T . We show that for the lattice T �� I�P �
of initial segments of a poset P , the implications above are equivalences
and that these properties are equivalent to the fact that P has no infinite
antichain. A crucial part of this proof is a straightforward application of
a wonderful Hausdorff type result due to Abraham, Bonnet, Cummings,
Džamondja and Thompson 2010 [1].

1. Introduction

Let E be a set. A multivalued map defined on E is a map f from E into
´�E�, the power set of E, and a fixed point of f is an element x > E such that
x > f�x�. The consideration of the existence of fixed points for various kinds
of multivalued maps originates in analysis, with Kakutani’s proof of von
Neumann’s minmax theorem. Investigation of fixed points of multi-valued
maps occurs also in the study of partially ordered sets ([21, 23, 25]), and
that is our goal in this paper.

Given a poset P �� �E,B�, we shall reserve the notation ´�E� for the
power set of E equipped with the usual subset inclusion. We shall use
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instead P�E� �� ´�E� � �g� to denote the nonempty subsets of E endowed
with the following bi-dominating preorder: for A,B b E, A B B if every
x > A is below some y > B and every y > B is above some x > A. Note
that we removed the empty set for convenience only, as that subset would
be incomparable to any other subset in the bi-dominating ordering. A map
f � E � P�E� such that x B y implies f�x� B f�y� is said to be order
preserving (despite the fact that the bi-dominating preorder is not an order
in general).

The poset P has the relational fixed point property (RFPP for short) if
every order preserving map f � P � P�P ) has a fixed point. This property
and the bi-dominating preorder were introduced by Walker in [25] (who used
the phrase “isotone maps” for what we call “order preserving maps” and gave
no name to the bi-dominating preorder), in connection with the fixed point
property for the product of posets. He proved that a finite poset P has RFPP
if and only if it is dismantlable. In this paper, we are primarily interested
by a special case of this notion: P is a lattice T , and multivalued maps
considered take values in the set CL�T � of nonempty convex sublattices of
T . We say that T has the fixed point property for convex sublattices (CLFPP
for short) if every order preserving map from T into CL�T � has a fixed point.
We concentrate on the following general question.

Question 1.1. Which lattices have CLFPP?

This property extends the fixed point property for order preserving maps
of a lattice into itself. As is well known, a lattice T has the fixed point prop-
erty if and only if T is complete [4, 24]. Since CLFPP extends FPP, a lattice
satisfying CLFPP must be complete. More is true: as we will see, CL�T �
must be complete too (see Proposition 4.16). It is a tempting conjecture that
the converse holds, but we have not yet succeeded in proving or disproving
this. However, a main result of this paper characterizes lattices T such that
CL�T � is complete. This characterization is based on the nonembeddability
of ´�ω�, the set of all subsets of ω, the set of nonnegative integers, ordered
by containment.

Main Theorem 1.2. Let T be a lattice. Then the following properties are
equivalent:

(i) CL�T � is a complete lattice;
(ii) Every lattice quotient of every retract of T is complete;

(iii) T is a complete lattice and ´�ω� is not order embeddable in T .

The implication �iii�� �ii� is, under a seemingly weaker form, in [17].
Complete lattices in which ´�ω� is not order embeddable arise naturally.

A quite familiar example allows us to sharpen the preceding characteriza-
tion for a particular family of complete lattices. (For more sophisticated
examples, see [15, 16].) First, we introduce another property that is closely
related to CLFPP and completeness of CL�T �.
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We say that a lattice T has the selection property for convex sublattices
(CLSP) if there is an order preserving map ϕ from CL�T � into T such that
ϕ�X� > X for all X > CL�T �. For complete lattices, CLSP implies CLFPP
(Proposition 4.16).

Let us recall that a closure on a set E is a function ϕ defined on the
subsets of E such that X b ϕ�X� b ϕ�Y � � ϕ�ϕ�Y �� whenever X b Y b E.
A subset X of E is closed if ϕ�X� �X, and it is independent if x ~> ϕ�X��x��
for every x > X. The set Cϕ of closed sets is a complete lattice. Here is a
well-known fact (see [3] Theorem 1.2 or [15]).

Fact 1.3. The lattice ´�ω� is not order embeddable in the complete lattice
Cϕ if and only if E contains no infinite independent set.

If P is an ordered set, then the map which associates �X, the initial
segment generated by X, to each X b P is a closure, and the lattice of
closed sets is the set I�P � of initial segments of P , ordered by containment.
A subset S is independent with respect to this closure if and only if S is
an antichain in P . Hence from Fact 1.3, we have that ´�ω� is not order
embeddable in I�P � if and only if P contains no infinite antichain.

In general we have the following.

Main Theorem 1.4. Let P be a poset and T �� I�P � be the lattice of initial
segments of P . Then the following properties are equivalent:

(i) T has CLSP;
(ii) T has CLFPP;

(iii) CL�T � is a complete lattice;
(iv) P has no infinite antichain.

The implications �i�� �ii� and �ii�� �iii�, included in Proposition 4.16,
are easy. The implication �iii�� �iv� mixes the easy part of Theorem 1.2,
namely implication �i�� �iii�, with Fact 1.3. The implication �iv�� �i�,
the content of Lemma 4.32, is the cornerstone of the theorem. It follows from
a Hausdorff type result due to Abraham, Bonnet, Cummings, Džamondja
and Thompson 2010 [1].

From previous results in [8] and [18], we know that CLFPP holds for
countable complete lattices and finite dimensional complete lattices. In Sec-
tion 4, we look at the relationship between various properties which may
hold for the class of lattices with CLSP, the class of lattices with CLFPP,
as well as the class of lattices such that CL�T � is complete. Results and
problems are reviewed at the end of Section 5.

In Section 3, we consider also maps defined on a poset P and whose
values are convex subsets of P . We establish the exact relationship between
FPP for the maps into convex subsets (CFPP) and RFPP, which yields the
following:

Main Theorem 1.5. A poset has RFPP if and only if it has CFPP and
contains no chain of the same type as the integers. In particular RFPP and
CFPP coincide for finite posets.
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We illustrate the differences with CLFPP, the main illustration being
Theorem 3.50.

In the following section, we present the required notation, terminology
and preliminary results.

2. Preliminaries

Our notation is standard apart from one instance. Let f be a map with
domain a set E. For X b E, let f�X� � �f�x� � x > X�, rather than the
more common f�X�. We denote by ω the order type of the set N of non
negative integers and use n > N as well as n > ω and n @ ω. Similarly we
denote by θ the order type of the chain Z of integers. We recall below some
basic notions of the theory of ordered sets, but we refer to [12] for other
undefined set theoretical notation.

Let P �� �E,B� be a poset. In the sequel we will denote by P the set E;
that is, we write A b P to mean A b E. Let A be a subset of P . We say
that A is an initial segment of P if x > P , y > A and x B y imply x > A.
We say that A is up-directed if every pair of elements of A has a common
upper bound in A. An ideal of P is a nonempty up-directed initial segment
of P . A final segment (resp. a down directed subset, resp. filter) of P is any
initial segment (resp. up-directed subset, resp. ideal) of P �, the dual of P .

We use this notation and terminology:

Y U�A� �� �x > P � y B x for all y > A� is the set of upper bounds of A
and L�A�, the set of lower bounds, is defined dually;

Y �A �� �x > P � x B y for some y > A� is the initial segment generated
by A and �A is defined dually and called the final segment generated
by A.

For a singleton x > P , we use �x instead of ��x�. If reference to P is
needed, particularly in case of several orders on the same ground set, we
may use the notation �PA.

A subset A of P is cofinal (resp. coinitial) in P if �A � P (resp. �A � P ).
The cofinality of P , denoted by cf�P � is the least cardinal κ such that P
contains a cofinal subset of size κ.

We now review the basic notions associated with gaps. Let �A,B� be a
pair of subsets of P . If �A,B� is a pregap, set S�A,B� �� U�A� 9L�B�

Y �A,B� is a pregap of P if A b L�B� or, equivalently, if B b U�A�;
Y �A,B� is totally ordered if A 8B is totally ordered via the order on
P ;

Y A pregap �A,B� is called separable if S�A,B� x g;
Y A pregap �A,B� is called a gap if S�A,B� � g.

Concerning the separation of pregaps, we recall that a poset is a complete
lattice if and only if every pregap is separated. As it is easy to see a lattice
is complete if and only if every pregap where A is up-directed and B down-
directed is separated. It is known that this later condition is equivalent to
the fact that every totally ordered pregap is separated, see [7].
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We denote by I�P � (resp. Id�P �) the set of initial segments (resp. ideals)
of P ordered by inclusion. We denote by F�P � (resp. Fi�P �) the set of
final segments (resp. filters) of P ordered by inclusion.

Let A be subset of P . We say that A is convex if x, y > A, z > P and
x B z B y imply z > A. Such sets are also called intervals. If a, b > P we
set �a, b� �� �x > P � a B x B b�. This set is a closed interval. A nonempty
set is of this form if and only if it is convex with a least and largest el-
ement. A subset A of P is convex if and only if A �� I 9 F for some pair�I,F � > I�P � � F�P �. In particular, the set ConvP �A� �� �A 9 �A
(=�z > P � x B z B y for some �x, y� > A2�) is convex and called the con-
vex envelope of A. The set of convex subsets of P is a closure system, and
the convex envelope of A is nothing else than the closure of A. Ordered by
inclusion, this set is a complete lattice (in fact an algebraic lattice), which
is the object of several studies eg [2, 22]. We denote the set of nonempty
convex subsets of P by C�P �. In this paper we are concerned with C�P �
under a different ordering, which is the subject of the next section.

3. The poset of convex subsets of a poset

Let P be a poset. As noted in the introduction, we use P�P � �� ´�P ���g�
to denote the nonempty subsets of (the domain of) P endowed with the
following bi-dominating preorder. For X,Y >P�P ), define

X B Y if X b �Y and Y b �X.(3.1)

We also set

X � Y if X B Y and Y BX.(3.2)

Lemma 3.1. The relation B on P�P ) is a preorder. It induces an order on
C�P � which is isomorphic to the quotient of this preorder by the equivalence
associated with the preorder.

Proof. The first part of this lemma is obvious. The second part relies on the
following facts both of which are straightforward to prove:

Conv�X� �X, and X � Y � Conv�X� � Conv�Y �
for all X,Y >P�P .) �

Note that we could have defined this preorder on the collection of all
subsets, but then the empty set would have been incomparable to every
nonempty subset. Therefore it is avoided.

The poset C�P � has a simple representation:

Fact 3.2. The map φ from C�P � to the product I�P � �F�P ��, defined by
φ�A� �� ��A, �A�, is an embedding.

Remark 3.3. Let X,Y > C�P �. If Y bX then X B Y if and only if X b �Y ,
that is, Y is cofinal in X. Consequently, a convex subset of P is above P
with respect to the bi-domination order if and only if it is a final segment of
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P which is cofinal in P . Subsets of a poset with these properties are called
open dense sets, and are well known in the literature, particularly regarding
Baire spaces.

Definition 3.4. Let P be a poset. We say that P has the convex fixed point
property (CFPP for short) if every order preserving map f � P � C�P � has
a fixed point.

The relationship between RFPP and CFPP is quite simple and was given
in Main Theorem 1.5. The proof is related to ideas due to Walker. The
first involves the notion of retraction, where a poset Q is called a retract of
another poset P if there are order preserving maps s � Q� P and r � P � Q
such that r X s � 1Q. The maps r and s are called a retraction and a
coretraction respectively.

Lemma 3.5. RFPP is preserved under retracts.

Proof. Let P be a poset satisfying RFPP, Q an order retract of P , and
g � Q � P�Q) an order preserving map. Let s � Q � P and r � P � Q be
two order preserving maps such that r X s � 1Q. The map h � P � P�P )
defined by h�x� �� s�g�r�x�� is order preserving, hence it has a fixed point,
say u. Since u > h�u� there is some y > g�r�u�� such that u � s�y�. We have
r�u� � r�s�y�� � y, thus y > g�y� and hence y is a fixed point of g. �

The second idea involves the notion of well foundedness.

Definition 3.6. We recall that a poset P is well founded if every nonempty
subset contains some minimal element; equivalently, P contains no infinite
chain of type ω�.

The next lemma is essentially Proposition 5.2 of [25].

Lemma 3.7. Let P be a poset and f � P � P�P ) be a preorder preserving
map. If there exists some x > P such that �x is well founded and meets f�x�
then f has a fixed point.

Proof. Define by induction a sequence �xn�n@ω of elements of P . Let m @ ω
and suppose �xn�n@m is defined. If m � 0, set xm �� x. Otherwise, choose
xm > f�xm�1�9 �xm�1. This sequence is well defined. It is descending, thus
stationary, hence it yields a fixed point. �

Proof of Main Theorem 1.5. Let P be a poset. Suppose that P has RFPP.
Trivially, it has CFPP. Suppose that it contains a chain Z of type θ.
Extend this chain to a maximal chain C. As a maximal chain of P , this is
a retract of P by [8]. Since RFPP is preserved under retraction (by Lemma
3.5), C has RFPP. In particular, C has FPP, hence C is complete. Hence
Z has an infimum a and a supremum b. As it is easy to see, the chain
D �� �a� 8 Z 8 �b� is a retract of C, thus it has RFPP. But this is trivially
false. Indeed, let f � D � P�D) be defined by f�x� �� Z � �x� if x > Z and



CONVEX SUBLATTICES AND A FIXED POINT PROPERTY 7

f�x� �� Z if x > �a, b�. This map is order preserving but has no fixed point.
Thus P cannot contain a chain of type θ.

Conversely, suppose that P has CFPP and contains no chain of type θ.
Let f � P � P�P ) be an order preserving map. Let f � P � C�P � defined

by setting f�x� �� ConvP �f�x��. This map is order preserving too. Thus

it has a fixed point x. Since x > f�x� �� ConvP �f�x�� there are u, v > f�x�
such that u B x B v. Since P contains no chain of type θ, either �x is well
founded or �x is dually well founded. Without loss of generality, we may
suppose that �x is well founded (otherwise consider P �). Apply Lemma 3.7
and we obtain that f has a fixed point. �

3.1. FPP for the poset of convex subsets of a poset. Since the set
C�P � of nonempty convex subsets of a poset P is a poset, a straightforward
question emerges:

Question 3.8. How can we relate FPP for C�P � and CFPP for P?

This simple minded question is at the root of this paper. As we will
see, there is no relation in general. There are posets P without CFPP for
which C�P � has FPP; a straightforward example is the ordinal sum of two
2-element chains (see Example 3.31). On the other hand, there are posets
P with CFPP, but such that C�P � does not have FPP (see Lemma 3.22).
According to Theorem 3.32 below these posets are infinite.

The example we give in Lemma 3.22 relies on the well-known fact that
a poset containing a totally ordered gap does not have FPP. With that in
hand, we construct a complete lattice Q with CFPP such that C�Q� contains
a totally ordered gap.

We start our discussion with some rather simple facts about pregaps,
namely with a necessary condition for separation, and the fact that each
gap yields a gap having a special form.

Let P be a poset. If A b C�P �, we set IA �� ���A � A > A� and
FA �� ��� A � A > A�. If �A,B� is a pregap of C�P � we set
AB �� �IB 9 �A � A > A� and BA �� �FA 9 �B � B > B�.

Lemma 3.9. Let �A,B� be a pregap of C�P �.
(i) If �A,B� is separable then FA 9 IB separates it; furthermore it con-

tains every separator. In particular FA 9 IB is nonempty.
(ii) �AB,BA� is a pregap of C�P � such that FAB � FA, IBA � IB, and

S�AB,BA� b S�A,B�. In particular, �AB,BA� is a gap whenever�A,B� is a gap.

Proof.

(i) Set Z �� FA 9 IB. Let C > S�A,B�. For every A > A, B > B we have
C b �A and C b �B hence C b Z. Let A > A. We have trivially
Z b �A. We have A b �C and C b Z, hence A b �Z so that A B Z. By
the same token, we have Z B B if B > B hence Z > S�A,B�.
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(ii) We first prove two basic claims. Let A > A and B > B.

Claim 3.10. ��IB 9 �A� � �A and ��FA 9 �B� � �B.

Proof. We prove only the first equality. We have A b IB since �A,B�
is a pregap. This yields A b ��IB 9 �A�. Thus �A b ��IB 9 �A�. The
reverse inclusion holds since IB 9 �A is a subset of �A. �

Claim 3.11. A B IB 9 �A B FA 9 �B B B.

Proof. We have trivially IB 9 �A b �A. Since, as seen in Claim 3.10
above, A b IB we have A b ��IB 9 �A�. The inequality A B IB 9 �A
follows. Similarly, we have FA 9 �B B B. Finally, from IB b �B and
Claim 3.11 above, we have IB 9 �A b �B � ��FA 9 �B�. Similarly, we
have �FA 9 �B� b ��IB 9 �A�, proving IB 9 �A B FA 9 �B. �

Continuing the proof of (ii), the equality FAB � FA follows from the
first part of Claim 3.10; the equality IBA � IB follows from the second
part. From Claim 3.11, we have S�AB,BA� b S�A,B�. �

These particular gaps will play an important role and thus deserve a
dedicated nomenclature.

Definition 3.12. A pregap �A�,B�� of the form �AB,BA� will be called
special.

The following result on special pregaps relies on the simple fact that a
nonempty final segment of an up-directed poset is cofinal in that poset.

Lemma 3.13. Let �A�,B�� be a special pregap of C�P �, and let �A,B� be
such that �A�,B�� � �AB,BA�. If IB and FA are respectively up and down
directed, then

(i) The order on A� coincides with the reverse of the inclusion, and the
order on B� coincides with the inclusion.

(ii) The map A 0 IB 9 �A from A onto A�, and the map B 0 FA 9 �B
from B onto B� are two order preserving maps.

(iii) �A�
� IB� and �B�

� FA� for all A�
> A�, B�

> B�;
(iv) The following properties are equivalent:

(a) �A�,B�� is a gap;
(b) FA� 9 IB� � FA 9 IB � g;
(c) �A,B� is a gap.
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Proof. We begin with a claim.

Claim 3.14. If IB is up-directed then ��IB 9 �A� � IB for every A > A.

Proof. Indeed, let A > A. Since �A,B� is a pregap we have A b IB. Hence,
the final segment IB 9 �A of IB is nonempty. Since IB is up directed, IB 9 �A
is cofinal in IB that is ��IB 9 �A� � IB, proving our claim. �

(i) Let A,A�
> A. Suppose IB 9 �A B IB 9 �A�. Necessarily, we have

IB 9 �A
�
b ��IB 9 �A�. It follows that IB 9 �A

�
b IB 9 �A. Conversely,

suppose IB 9�A
�
b IB 9�A. Then trivially, IB 9�A

�
b��IB 9�A�. With

Claim 3.14 we have �IB 9 �A� b IB � IB 9 �A
�, hence IB 9�A B IB 9�A

�

as required.
(ii) Now, let A,A�

> A. According to Claim 3.14, ��IB 9 �A� � IB �

��IB 9 �A��. Suppose A B A�. Then, in particular �A�
b �A, hence

IB 9 �A�
b ��IB 9 �A�. The inequality IB 9 �A B IB 9 �A� follows.

Hence, the map A0 IB 9A is order preserving as claimed. Since FA
is down directed, the same property holds for the map B 0 FA 9 �B.

(iii) According to Claim 3.14, �A�
� IB; since IB � IB� we have �A�

� IB� .
Similarly, �B�

� FA� for every B�
> B and thus (iii) holds.

(iv) We prove the implications �a� � �b� � �c� � �a�. Suppose that�b� does not hold. Since IB� � IB and FA� � FA, this amounts to
FA 9 IB ~� g. We claim that FA 9 IB separates �A�,B��, that is,
IB 9 �A B FA 9 IB B FA 9 �B for all A > A and B > B, hence�a� does not hold. Indeed, let A > A. With Claim 3.10, we have
FA 9 IB b �A � ��IB 9�A�. Also, FA 9 IB is a nonempty final segment
of IB. This later set being up-directed, � �FA 9 IB� � IB. Since
��IB 9�A� � IB from Claim 3.14 it follows that IB 9�A b ��FA 9 IB�.
Thus IB 9�A B FA 9 IB. The proof that FA 9 IB B FA 9�B for B > B

is similar. Implication �b� � �c� is the contraposition of Item (i)
of Lemma 3.9. Implication �c� � �a� is contained in Item (ii) of
Lemma 3.9. �

Lemma 3.15. If C�P � contains a totally ordered pregap �A,B� such that
FA 9 IB � g, then P does not have CFPP.

Proof. Without loss of generality, we may suppose that A �� �Aα � α @ µ�
and B �� �Bβ � β @ λ� are a well ordered chain and a dually well ordered
chain in C�P � satisfying: Aα @ Aγ if and only if α @ γ @ µ and Bδ @ Bβ if
and only if β @ δ @ λ. Define f � P � C�P � as follows. Let x > P . If x ~> IB,
set f�x� �� Bβ where β is minimum such that x ~> �Bδ. If x > IB then x ~> FA
and we set f�x� �� Aα where α is minimum such that x ~> �Aα. It is easy to
see that this map is order preserving. By construction it has no fixed point,
hence P does not have CFPP. �

Remark 3.16. The set C�P � of (nonempty) convex subsets of a poset P
may contain a gap �A,B� which is totally ordered and such that FA 9 IB is
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nonempty. In this case, C�P � does not have FPP. However, one cannot use
this gap to construct a fixed point free map from P to C�P � as in Lemma
3.15 above (See Example 3.21).

The following fact follows from Lemma 3.7:

Fact 3.17. A well founded poset with a largest element has CFPP.

Definition 3.18. We recall that a poset P is a well-quasi-order (wqo for
short) if it contains no infinite antichain and no infinite descending chain.

A well-known result of Higman [10] shows that if P is well-quasi-ordered,
then I�P � is well founded. Here we have the following.

Lemma 3.19. If P is wqo then C�P � is well founded.

Proof. According to Fact 3.2, C�P � is embeddable into the direct product
I�P � � F�P ��. Since F�P �� is isomorphic to I�P �, each factor of this
product is well founded. It turns out that the product is well founded, and
that its subsets are well founded too. �

Lemma 3.20. If P is wqo with a largest element, then C�P � has FPP.

Proof. Let Q �� C�P �. Then Q has a largest element (namely �a� where a
is the largest element of P ) and is well founded (Lemma 3.19). Thus it has
FPP. �

As the following example shows, the well foundedness of P is not enough
in Lemma 3.20.

Example 3.21. Let F �� �a, b, c� be a three element set and Q �� F � N.
For x > F set xn �� �x,n�. Order Q in such a way that an @ bn, cm @ bn and
cm B cn for all m B n. With a top 0 and bottom 1 added to Q, the resulting
poset Q is a lattice, in fact a complete lattice.

Claim 3.22. The complete lattice Q has CFPP but C�Q� does not have
FPP.

Proof. Q has a largest element and is well founded, thus it has CFPP (Fact
3.17). C�Q� does not have FPP because it contains an �ω,ω��-gap. Indeed
let

A � �an � n > N�,
B � �bn � n > N�,
C � �cn � n > N�,
Fn � ��A 8 �cn��,
In � ��A 8BCn�,

ACn � �am �m C n�,
BCn � �bm �m C n�,
CCn � �cm �m C n�,
F ��Fn,

I �� In.

Then a straightforward calculation yields

Fn � A 8B 8CCn 8 �1�,
In � A 8BCn 8C 8 �0�,

F � A 8B 8 �1�,
I � A 8C 8 �0�.
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Now let An � Fn 9 I � A 8 CCn and Bn � In 9 F � A 8 BCn, and de-
fine G �� �A,B�, where A �� �An � n > N�, B �� �Bn � n > N�. We have
An @ An�1 B Bm�1 @ Bm for all n,m > N , hence G is a totally ordered pre-
gap. We also have �Bn � In, �An � Fn, hence FA � F , IB � I and FA9IB � A.
If G was a separable pregap then FA 9 IB would separate it (Lemma 3.9).
Since An ~B A, this is not the case. Thus G is a gap. �

Fact 3.17 and Lemma 3.20 immediately yield that a finite poset P with
a largest element has CFPP and C�P � has FPP. As we will see in Theorem
3.32 this property extends to dismantlable posets. For that, we need some
properties of retracts.

Lemma 3.23. If Q is an order retract of P via the maps s � Q � P and
r � P � Q, then C�Q� is an order retract of C�P � via the maps
s � C�Q�� C�P � and r � C�P �� C�Q�, defined by s�Y � �� ConvP �s�Y �� and
r�X� �� ConvQ�r�X�� for all Y > C�Q� and X > C�P �.
Proof. As it is easy to check, the maps s and r are order preserving. To
conclude, it suffices to prove that rXs is the identity on C�Q�. Let Y > C�Q�.
Since s�Y � b ConvP �s�Y �� we have

Y � r�s�Y �� b r�ConvP �s�Y ��� b ConvQ�r�ConvP �s�Y ���� � r�s�Y ��.
Observing that r�ConvP �Z�� b ConvQ�r�Z�� for every subset Z of P , we
have r�ConvP �s�Y ��� b ConvQ�r�s�Y ���� � ConvQ�Y � � Y and since Y is
convex r�s�Y �� � ConvQ�r�ConvP �s�Y ���� b Y . Thus r�s�Y �� � Y . �

Since FPP is preserved under retraction, we have immediately the follow-
ing:

Corollary 3.24. If Q is an order retract of P and C�P � has FPP, then
C�Q� has FPP.

Corollary 3.25. CFPP is preserved under retraction.

Proof. Let P be a poset satisfying CFPP. Suppose that Q is an order retract
of P and let g � Q � C�Q� be an order preserving map. Let s � Q � P
and r � P � Q be two order preserving maps such that r X s � 1Q and let
s � C�Q� � C�P � and r � C�P � � C�Q� be given by Lemma 3.23 above. The
map h � P � C�P � defined by h �� s X g X r is order preserving, hence it has a
fixed point, say x. We claim that y �� r�x� is a fixed point of g. Indeed, since
x > h�x�, r�x� > r�h�x�� � r X s�g�r�x��� � g�r�x��, proving our claim. �

Definition 3.26. An element x of a poset P is an irreducible of P if either�y > P � y @ x� has a largest element or else or �y > P � y A x� has a least
element.

We note that if x is an irreducible of P then P�x, the poset obtained from
P by deleting x, is a retract of P .

Lemma 3.27. Let P be a finite poset and x be an irreducible of P . Then
C�P � has FPP if and only if C�P�x� has FPP.
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Proof. Since P�x is a retract of P , C�P�x� is a retract of C�P � (by Lemma
3.23). Since FPP is preserved under retraction, if C�P � has FPP, then
C�P�x� has FPP too.

Conversely, suppose that C�P�x� has FPP, and let f � C�P � � C�P � be
an order preserving map. We prove that f has a fixed point. For that, we
will set Q �� P�x, and denote by s the identity map from Q to P . Sup-
pose that �y > P � y @ x� has a largest element x�, and denote by r the
retraction map defined on P by r�x� �� x� and r�y� � y for all y ~� x. Let
s and r the maps defined in Lemma 3.23 (that is, s�Y � �� ConvP �Y � and
r�X� �� ConvQ�r�X�� for Y > C�Q� and X > C�Q�). The map g �� r X f X s
has a fixed point Y . Set X �� s�Y �. We prove the following claim.

Claim 3.28. X B f�X�.
Proof. Note that Y bX b Y 8 �x� and Y b f�X� b Y 8 �x�.
Case 1 : X � Y , that is x ~>X.

Subcase 1. x ~> f�X�.
In this case, r�f�X�� � f�X� thus Y � f�X� and since X � Y ,
X � f�X� proving our claim.

Subcase 2. x > f�X�.
In this case f�X� � X 8 �x� and x� > X. Since x� B x this yields
X B f�X�.

Case 2 : x >X.
In this case X � Y 8 �x� and f�X� � X. The first equality amounts to
x > X. For the second note that there are a, b > Y such that a B x B b.
Since Y b f�X� this yields Y 8 �x� b f�X�. Since f�X� b Y 8 �x�, this
gives f�X� � Y 8 �x�. �

Continuing with the proof of Lemma 3.28, set X0 �� X and Xn�1 �� f�Xn�
for every n > N. We have Xn B Xn�1. Since P is finite, C�P � is finite too,
hence the sequence is stationary. Its largest element is a fixed point of f .

Now, suppose that �y > P � y A x� has a least element. Since C�Q�� is
the dual of C�Q�, it has FPP, thus the proof above tells us that C�P �� has
FPP, and hence by the same token, C�P � has FPP. �

We mention here that we do not know if the the finiteness assumption in
Lemma 3.27 can be removed.

Definition 3.29. We recall that a finite poset P is dismantlable if there
is an enumeration x0, . . . , xn�1 of its elements such that xi is irreducible in
P � �xj � j @ i� for every i @ n � 1.

For example, every finite poset with a least (or a largest) element is dis-
mantlable.

Corollary 3.30. If a finite poset P is dismantlable then C�P � has FPP.

Proof. We argue by induction on the cardinality n of P . If n B 1, P has
FPP. If n C 2 then P contains an irreducible element x such that P�x is
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dismantlable. By induction, C�P�x� has FPP. According to Lemma 3.27,
C�P � has FPP. �

The following example shows that the converse does not holds.

Example 3.31. Let P be the ordinal sum of two antichains �a, b� and�c, d�. Since P has no irreducible, it is not dismantlable. On the other hand
C�P � has FPP. Indeed, let f � C�P � � C�P � be an order preserving map.
If there is some X > C�P � such that f�X� is comparable to X then, since
C�P � is finite, f has a fixed point. Let X �� �c, d� and Y �� �a, b�. We
may suppose that f�X� is incomparable to X and f�Y � is incomparable to
Y . The elements incomparable to X are �c� and �d�, whereas the elements
incomparable to Y are �a� and �b�. With no loss of generality, we may
suppose that f�X� � �c� and f�Y � � �a�. We have Y B �a, c� B X, hence�a� B f��a, c�� B �c�. But then f��a, c�� is comparable to �a, c�. Thus f
has a fixed point.

Walker’s characterization of finite posets with RFPP leads to:

Theorem 3.32. If a finite poset P has CFPP then C�P � has FPP.

Indeed, if P finite has CFPP, then it has RFPP (Theorem 1.5). According
to Walker, it is dismantlable, thus from Corollary 3.30, C�P � has FPP.

3.2. Lattices properties and CFPP. Lattice properties do not easily
transfer from a poset P to the poset C�P �. We give in Example 3.33 a finite
lattice P such that C�P � is not a lattice (for an example of infinite and
complete P see Example 3.34). Note that since P and C�P � are finite with
a largest element, both have CFPP (Fact 3.17).

Example 3.33. Let Q �� �a, b,0,1, c� 8 �ij � i @ 2, j @ 2� be the 9-element
poset whose covering pairs are i @ ij for i, j @ 2, a @ 0, a @ c, b @ c, b @ 1, and
let P be obtained by adding a least and a largest element to Q. Then P ,
shown in Figure 1, is a lattice. Furthermore, the subsets X �� �00, c,11� and
Y �� �01,10� are two convex subsets (they are antichains of P ) which have
no infimum. Indeed, let Z �� ��X� 9 ��Y � � ��0,1�. This is a lower bound
of X and Y . Inside, Z0 �� �0, a,1� and Z1 �� �0, b,1� are two maximal lower
bounds.

On the other hand, we give in Example 3.34 below an example of a com-
plete lattice T without CFPP and such that C�T � does not have FPP . This
lattice contains no chain of type θ.

We recall that a poset P contains no chain of type θ if and only if
it is the union of a well founded initial segment and a dually well
founded final segment. Indeed, set P � �� �x > P � �x is well founded� and
P � �� �x > P � �x is dually well founded�. These two sets are an initial seg-
ment and a final segment respectively. As it is easy to see, their union is P
if and only if P contains no chain of type θ.
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Figure 1. A finite lattice P such that C�P � is not a lattice

Example 3.34. Let 2@ω (resp. 2ω) be the set of finite sequences (resp.
of ω-sequences of 0 and 1). Let s > 2@ω 8 2ω. We denote by dom�s� the
domain of s, and by l�s�, the length of s, which is the cardinality of dom�s�.
Hence the empty sequence has length 0. For s, s� > 2@ω 8 2ω, we set s B s� if
s � s�

Idom�s��. Set D �� 2@ω � �0�, U �� 2@ω � �1�, A �� 2ω. Let T �� D 8U 8A

and S � T � T be defined by S�x� �� x if x > A and S��s, i�� �� �x, i�̇1�
where the sum i�̇1 is 1 if i is 0 and 0 otherwise. Let x, y > T , we set x @ y in
the following cases:

Y x � �s, i�, y � �s�, i�, and either i � 0 and s @ s�, or i � 1 and s� @ s;
Y x � �s,0�, y � �s�,1�, and either s @ s� or s� @ s;
Y x � �s,0�, y � s�, and s @ s�;
Y x � s, y � �s�,1�, and s� @ s.

With this in mind we can prove the following claim.

Claim 3.35. The set T with the relation @ is a complete lattice containing
no chain of type θ. In particular, ´�ω� is not embeddable into T . The lattice
T does not have CFPP, the poset C�T � is not a lattice and does not have
FPP.

Proof. The map S is a self dual map which sends D onto U , fixes A, and
reverses the relation @. The relation @ defined on D 8 A yields the binary
tree with ends, hence yields an ordering, and in fact a meet semilattice. On
A 8 U , this relation is the dual of @, hence it yields an ordering too, which
is a join semilattice. To see that this is an ordering on the union, note that
since D is a tree, �s,0� @ �s�,1� if and only if there is some t > A such that�s,0� @ t @ �s�,1�. Since T is self dual, to prove that this is a lattice it
suffices to prove that this is a join semilattice. Let x, y be two arbitrary
elements of T . If x and y are in A 8 U , then they have a join since A 8 U
is a join semilattice. We may suppose that x > D. If y is comparable to x,
then the join is the largest of the two. If y is incomparable to x, then, as it
is easy to see, we have x - y � x - S�y� � S�x� - y � S�x� - S�y�. Thus T is
a lattice. Each maximal chain of T has order type ω �1�ω�, and hence is a
complete chain. Since T is a lattice, this ensures that it is complete lattice.
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The set D 8A is a well founded initial segment of T and the set A 8U is a
dually well founded final segment of T ; since their union covers T , no chain
of type θ is contained in it. Let f � T � C�T � defined by setting

f�x� ��
¢̈̈̈
¦̈̈̈
¤

��s�,0� � l�s�� A l�s��, if x � �s,0�,��s�,1� � l�s�� A l�s��, if x � �s,1�,
A � �x�, if x > A.

This map is order preserving. Since it does not have a fixed point, CFPP
fails.

It remains to show that FPP fails for C�T �. For that, we will apply the
following result of Rutkowski ([21] Lemma 1):

Fact 3.36. If a poset P contains a totally ordered pregap �A,B� such that
S�A,B� does not have FPP, then P does not have FPP.

Let A �� �An � n > N� where An �� ��s,0� > D � l�s� B n� and
B �� �Bn � n > N� where Bn �� ��s,1� > U � l�s� B n�. As it is easy to
see, �A,B� is a totally ordered pregap. Furthermore, S�A,B� � �X b A �

X is topologically dense in A� (note that A being the set of branches of the
binary tree is homeomorphic to the Cantor space). Hence, S�A,B� is an
infinite antichain of C�T �, thus it does not have FPP. Fact 3.36 now ensures
that C�T � does not have FPP. In addition, we get from this construction
that C�T � is not a lattice. Indeed, otherwise S�A,B� would be a lattice.
This is impossible since it is an infinite antichain. �

As a consequence of this last example we obtain the following.

Corollary 3.37. CFPP is not preserved under finite product. Indeed, CFPP
holds for complete chains, but this property fails for the direct product�0,1� � �0,1�.
Proof. Let T be the lattice defined defined in Example 3.34. This lattice is
an order retract of the direct product �0,1� � �0,1� because it is complete
and can be embedded into this direct product. Now, CFPP is preserved
under order retraction (Corollary 3.25). Thus, if �0,1�� �0,1� had CFPP, T
would have CFPP, which is not the case. �

3.3. Selection properties.

Definition 3.38. A poset P has the selection property for convex subsets
(CSP for short) if there is an order preserving map s � C�P � � P such that
s�S� > S for every S > C�P �.

It is a simple exercise to prove that if P has CSP, then P has FPP if and
only if it has CFPP.

CSP is a strong condition, in fact too strong with respect to CFPP. Indeed,
CSP is preserved by convex subsets while CFPP is not. In addition, note
that every finite poset with a least element has CFPP, while we will see that
the finite lattices in Corollary 3.42 do not have CSP.
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Definition 3.39. Let us recall that a poset P is bipartite if its comparability
graph G�P � is bipartite; equivalently P is the union of the set min�P � of
minimal elements and the set max�P � of maximal elements.

Definition 3.40. A crown is a poset whose comparability graph is a
cycle – a crown is bipartite and every vertex has degree two.

Lemma 3.41. A bipartite poset where every vertex has degree at least two
does not have CSP.

Proof. Let P be such a poset. Suppose that there is some selection
s � C�P � � P . Let P0 �� min�P �, a �� s�P0�, P1 �� max�P �, and b0 �� s�P1�.
Due to our assumption on P , we have P0 B P1, hence a @ b0. Since every
vertex of P has degree at least two, there is some b1 > P1 with b1 ~� b0 and
a @ b1. For i > �0,1�, we set Xi �� �P0 � �a�� 8 �bi�. As it is easy to check,
we have P0 B Xi B P1, hence a B s�Xi� B b0. Since s�Xi� � bi, this yields a
contradiction for i � 1. �

Since CSP is preserved by convex subsets we immediately have:

Corollary 3.42. The lattices made of a crown with a top and bottom ele-
ment added do not have CSP.

Definition 3.43. We can weaken CSP by simply supposing that for every
chain C in C�P �, there is an order preserving map s � C � P such that
s�S� > S for every S > C. We will call this property CCSP.

It is easy to prove that every finite poset satisfies CCSP. There are infinite
posets with CFPP and not CCSP. We give examples below, but first recall
the notion of cofinality of a chain.

Definition 3.44. The cofinality of a chain C, written cf�C�, is the least
ordinal κ such that C contains a cofinal subset with order type κ.

Note that the image C � of C by an order preserving map has either a
largest element or the same cofinality as C. In our setting, this yields the
following:

Fact 3.45. Let P be a poset with CCSP. Let C be a chain in C�P � and
A�C� �� �9C>C �C�9�8C>C �C�. If A�C� � g, then P contains a chain of type
cf�C�.
Proof. Let C� be the image of C by a selection map. Since A�C� � g, C� does
not have a largest element, hence cf�C �� � cf�C�. �

Before we produce the example, we need the following lemma.

Lemma 3.46. Let Q be a well founded poset such that cf�Q� � cf��x� � ω1

for every x > Q. If Q contains no chain of type ω1, then the poset P �� Q�1,
obtained from Q by adding a largest element, has CFPP but not CCSP.
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Proof. Since P is well founded with a largest element, it has CFPP from
Fact 3.17. Next, let �xα�α@ω1 be a sequence of elements of Q which is cofinal
in Q. Let Cα �� Q� ��xβ � β @ α� for each α @ ω1. Set C �� �Cα � α @ ω1�.
Let α B β @ ω1. The set Cβ is a final segment of Cα and it is cofinal in
Q. Indeed, let x > Q. Since cf��x� � ω1, �x� ��xγ � γ @ β� ~� g. Thus Cβ
is cofinal in Cα, and hence, Cα B Cβ in C�P �. Consequently, C is a chain.
Furthermore, A�C� � Q9�α@ω1

Cα, and hence A�C� � g. According to Fact
3.45, if P had CCSP, it would contain an uncountable chain. Hence, CCSP
fails. �

Definition 3.47. Let κ be a cardinal, and let �κ�@ω be the poset of finite
subsets of κ ordered by inclusion. We further denote by �κ�@ω�1 the complete
lattice obtained by simply adding a largest element to the previous poset.

Example 3.48. If a poset Q is up-directed, then cf�Q� � cf��x� for every
x > Q. Thus a well founded up-directed poset of cofinality ω1 with no chain
of type ω1 will satisfy the conditions of Lemma 3.46. A second example is
I@ω�Q��, the set of finitely generated initial segments of Q� �� `α@ω1Lα, the
direct sum of ¯1 copies of well ordered chains Lα having order type α (the
fact that this poset is well-founded follows from a result of Birkhoff). For an
example of a non-directed poset, take a regular Aronszajn Tree (see [12]).

Remark 3.49. As for CFPP, CSP is not preserved under finite product.
Indeed, CSP holds for chains (see Lemma 4.26) but this property fails for
the direct product �0,1� � �0,1�. Otherwise, since this direct product is a
complete lattice, it would have CFPP, which is not the case according to
Lemma 3.37.

The following result uses a typical example to illustrate the relationship
between fixed point properties and selection.

Theorem 3.50. Le κ be a cardinal. And let P �� �κ�@ω � 1 be the complete
lattice defined above. Then the following hold:

(i) P has CFPP;
(ii) P has CSP if and only if κ B 2;

(iii) P does not have CCSP if κ is uncountable; and,
(iv) C�P � has FPP if and only if κ @ ω.

Proof.

(i) P is well founded with a largest element. Apply Fact 3.17.
(ii) If κ B 2, a simple inspection proves that CSP holds. If κ C 3, then

P embeds the lattice L made of the 6-element crown with top and
bottom added. Since every complete lattice is a retract of any poset
in which it can be embedded, L is a retract of P . Since CSP is
preserved under retract, if P had CSP, then L would have CSP.
According to Corollary 3.42, this is not the case.

(iii) If κ is uncountable, a surjective map from κ onto ω1 induces a retrac-
tion of P onto �ω1�@ω � 1. Since CCSP is preserved under retract,
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if P had CCSP, then �ω1�@ω � 1 would have CCSP. According to
Lemma 3.46, this is not the case.

(iv) If κ @ ω, then P is finite. Since it has a largest element, C�P � has
FPP by Lemma 3.20. If κ C ω, then the poset Q defined in Example
3.21 is embeddable in �κ�@ω, because for every x > Q, �x is finite.
Thus Q is embeddable in P . Since Q is a complete lattice, this is a
retract of P . According to Lemma 3.23, C�Q� is a retract of C�P �.
Since FPP is preserved under retraction, and C�Q� does not have
FPP, C�P � does not have FPP. �

4. The lattice of convex sublattices of a lattice

Let T be a lattice. The join and meet of two elements x, y > T are, as
usual, denoted respectively by x-y and x,y, and a sublattice is a nonempty
subset closed under these operations. The set Id�T � of ideals of T , ordered
by inclusion, is a lattice (a complete lattice provided that T has a least
element), the join, and meet, of two ideals A and B being

A -B � ��a - b � a > A, b > B�
A ,B � A 9B

Similarly, Fi�P �, the set of filters of T is a lattice (a complete lattice pro-
vided that T has a largest element): for every A,B > Fi�T �,

A -B � ��a , b � a > A, b > B�
A ,B � A 9B.

It is immediate that an ideal of a lattice is a nonempty initial segment
closed under pairwise joins, and a filter of a lattice is a final segment closed
under pairwise meets. Hence, the up and down directed convex subsets of
T are simply the convex sublattices of T .

We denote by CL�T � the set of nonempty convex sublattices of T , ordered
with the bi-domination preorder.

Proposition 4.1. Let T be a lattice. Then:

(a) CL�T � is a lattice, and the map ϑ � CL�T � � Id�T � � Fi�T ��, de-
fined by ϑ�S� �� ��S, �S� for S > CL�T �, is a one to one lattice
homomorphism. The image is the subset

K�T � �� ��I,F � > Id�T � �Fi�T �� � I 9 F ~� g�
of Id�T � �Fi�T ��.

(b) In particular, if A,B > CL�T �, then:

(ii) A B B if and only if a-b > B and a,b > A for every a > A, b > B;
(ii) A -B � ���A� - ��B�� 9 ���A� 9 ��B��; and
(ii) A ,B � ���A� 9 ��B�� 9 ���A� , ��B��.
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Proof.

(a) From Fact 3.2, the map ϑ is an order isomorphism from CL�T � on
its image. Thus, to prove that CL�T � is a lattice, it suffices to
prove that its image is a lattice. This image is clearly included in
K�T �. The reverse inclusion is due to the fact that if �I,F � > K�T �
then � �I 9 F � � I and � �I 9 F � � F . In fact, the first equality
holds whenever I is an ideal and F is a final segment which meets
I. With the product order, Id�T � � Fi�T �� is a lattice in which�I,F � - �I �, F �� � �I - I �, F 9 F �� for every �I,F �, �I �, F �� >

Id�T � � Fi�T ��. If �I,F �, �I �, F �� > K�T � then �I,F � - �I �, F �� >

K�T � since

�x - x� � x > I 9 F,x� > I � 9 F �� b �I - I �� 9 �F 9 F ��.
The same property holds with meet instead of join. Hence K�T � is
a sublattice of the lattice Id�T � �Fi�T ��.

(b) This follows from (a) and the form of joins and meets in
Id�T � �Fi�T ��. �

Lemma 4.2. Let �A,B� be a pregap of CL�T �. Then the following properties
are equivalent:

(a) �A,B� is a gap of CL�T �;
(b) IB 9 FA � g;
(c) �A,B� is a gap of C�T �.

Proof.

(b)�(c): This is the contrapositive of (i) of Lemma 3.9.
(c)�(a): This follows from the fact that CL�T � is a subposet of C�T �.
(a)�(b): Suppose that �b� does not hold. Then observe that IB and

FA are up and down directed, respectively. Thus implication�c�� �b� of Lemma 3.13(iv) applies, so �A,B� is not a gap in
C�T �. According to Lemma 3.9(i), IB 9 FA separates �A,B� in
C�T �. But IB 9FA > CL�T �, hence it separates �A,B� in CL�T �,
hence �a� does not hold. �

The proof of the following lemma is straightforward.

Lemma 4.3. Let T be a lattice. The map i � T � CL�T �, defined by
i�x� �� �x�, is a lattice homomorphism; it preserves all infinite joins and
meets in T and all gaps of T .

Now since a complete lattice has no gap, we deduce immediately that:

Corollary 4.4. If CL�T � is a complete lattice, then T is a complete lattice.

Lemma 4.5. Let T be a complete lattice. There is an order embedding from
´�ω� into T if and only if there are sequences �xn�n>ω and �yn�n>ω in T such
that:
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(i) x0 A x1 A x2 A � � � A xn A � � �;
(ii) y0 ~B x0, y1 ~B x1 - y0, y2 ~B x2 - y0 - y1, . . . , yn ~B xn -�j@n yj , . . . ;

(iii) y1 B x0, y2 B x1, . . . , yn�1 B xn, . . ..

Proof. Suppose that f is an order embedding from ´�ω� into T . Set
xn �� f�ω � �j � j B n�� and yn �� f��n�� for each n > ω. Then (i) and (iii)
are trivially satisfied. Concerning (ii), note first that since �n� ~b ω��n�, we
have yn � f��n�� ~B f�ω��n�� and next, that since ω��j � j B n�8�j@n�j� b
ω � �n�, we have

xn - �
j@n

yj � f�ω � �j � j B n�� - �
j@n

f��j�� B f�ω � �n��.
Thus yn ~B xn -�j@n yj as required.

Conversely, suppose that there are two sequences satisfying (i) - (iii).
Define f � ´�ω� � T by setting f�X� �� ��yn � n > X� for every X b ω,
with the convention that f�g� is the least element of T . Clearly, this map
is order preserving. To show that it is an order embedding, it suffices to
prove that if X ~b X �, then f�X� ~B f�X ��. Suppose that n > X �X �. Then
X �

b ω��n�. Since f is order preserving, it follows that f�X �� B f�ω��n��.
By definition of f , we have

f�ω � �n�� � �
jAn

f��j�� - �
j@n

f��j�� � �
jAn

yj - �
j@n

yj B xn - �
j@n

yj ,

since yj B xn for j A n. Thus, f�X �� B xn -�j@n yj . Since n > X, we have
yn � f��n�� B f�X�. Since yn ~B xn -�j@n yj , this yields f�X� ~B f�X ��, as
required. �

We note that the conditions in the preceding lemma were introduced in
[17] to study pregaps under lattice homomorphisms.

Lemma 4.6. Let T be a complete lattice. If CL�T � is not complete, then
there is an embedding from ´�ω� into T .

Proof. We proceed by showing various claims under the assumption that
CL�T � is not complete.

Claim 4.7. CL�T � contains a special gap �A,B� where A and B are, respec-
tively, up-directed with a least element A0, and down-directed with a largest
element B0.

Proof. First CL�T � contains a gap, not necessarily special, with these prop-
erties. Indeed, since CL�T � is not complete, it contains a gap, say �A,B�.
Since CL�T � has a least element and a largest element (namely �0T � and�1T �, where 0T and 1T are the least and largest elements of T ), A and B

are both nonempty. Since CL�T � is a lattice, we may suppose that A is
up-directed and B down-directed (otherwise, replace A by L�B� and B by
U�L�B��), and also that A and B have, respectively, a least element A0 and
a largest element B0. The pair �AB,BA� is a special gap with the required
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properties. Indeed, according to Lemma 4.2, �A,B� is a gap in C�T �. Fur-
thermore IB and FA are, respectively, up- and down-directed. Hence, by
Lemma 3.13, �AB,BA� is a gap in C�T �, and thus in CL�T �, and AB and
BA are, respectively, up-directed with a least element and down-directed
with a largest element. �

Claim 4.8. If Y and X are two subsets of T such that Y 9 A and X 9B
are nonempty for all A > A and B > B then �Y ~B �X.

Proof. Suppose that the conclusion does not hold. Let d satisfy

�Y B d B �X. Since d B �X, d > �B>B �B � IB. Similarly, since �Y B d,
d > �A>A �A � FA. Hence d > IB 9FA. This is impossible as IB 9FA � g. �

Now the following claim provides the constructions of the desired ele-
ments.

Claim 4.9. There are �xn � n > ω� b B0 and and �yn � n > ω� b A0 satisfying
conditions (i) - (iii) of Lemma 4.5.

Proof. Let n > ω and suppose xk and yk have been defined for all k @ n.
Define xn and yn as follows. If n � 0, set Y0 �� A0 and X0 �� B0. The
hypotheses of Claim 4.8 are satisfied, hence there are y0 > Y0 and x0 > X0

such that y0 ~B x0. If n A 0, set

Yn �� �xn�1 9A0,

Zn �� �xn�1 9B0,

Xn �� Zn - �
k@n

yk

� �x - �
k@n

yk � x > Zn¡ .
The sets Xn and Yn satisfy the hypotheses of Claim 4.8. Indeed, let A > A

and B > B. Since A B B0 and xn�1 > B0, there is some t > A with t B xn�1.
Since A b A0, t > Yn 9 A proving that Yn 9 A x g. Since B B B0 and
xn�1 > B0, there is some x > B such that x B xn�1, and since B b B0, x > B0

and thus, x > Zn. Also, since A0 B B and �k@n yk > A0, x - �k@n yk > B,
hence Xn 9B ~� g. From Claim 4.8 there are yn > Yn and xn >Xn such that
yn ~B xn -�k@n yk. With the fact that necessarily xn @ xn�1, all conditions of
Lemma 4.5 are satisfied. �

Finally at this point, according to Lemma 4.5, there is an embedding from
´�ω� into T and this completes the proof of Lemma 4.6. �

Lemma 4.10. Let P and Q be lattices. If Q is an order retract of P or a
lattice quotient of P , then CL�Q� is an order retract of CL�P �.
Proof. Suppose that Q is an order retract of P . Let s � Q� P and r � P � Q
be two order preserving maps such that r X s � 1Q, and let s � C�Q� � C�P �
and r � C�P � � C�Q� be given by Lemma 3.23. These two maps send
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CL�Q� into CL�P � and CL�P � onto CL�Q�. Thus, we have coretraction and
retraction maps and CL�Q� is an order retract of CL�P �.

Suppose that Q is a quotient of P . Let r � P � Q be a surjective lattice
homomorphism. Let s � CL�Q� � CL�P � and r � CL�P � � CL�Q� be defined
by setting s�Y � �� r�1�Y � and r�X� �� ConvQ�r�X�� for all Y > CL�Q� and
X > CL�P �. These maps are order preserving. Moreover, if Y > CL�Q� then,
since r�r�1�Y �� � Y , r X s�Y � � Y . Hence, s and r are coretraction and
retraction maps; in particular CL�Q� is an order retract of CL�P �. �

Since a retract of a complete lattice is complete, Lemma 4.10 yields im-
mediately:

Corollary 4.11. If Q is a lattice quotient of a retract of P and CL�P � is
complete, then CL�Q� is complete.

Another consequence is this:

Corollary 4.12. If Q is a lattice quotient of a complete lattice P , and P is
order embeddable in a lattice T , then CL�Q� is a retract of CL�T �.
Proof. Since every complete lattice which is embeddable in a lattice is an
order retract of that lattice, P is an order retract of T . From Lemma 4.10,
CL�P � is a retract of CL�T � and CL�Q� is a retract of CL�P �. Thus CL�Q�
is a retract of CL�T � as claimed. �

For any set E, let ´�E� denote the set of all subsets of E ordered by
containment, and let ´�E�~Fin be the quotient of ´�E� by the ideal Fin
of finite subsets of E. Define p � ´�E� � ´�E�~Fin to be the canonical
projection. For X,Y > ´�E�, we set X BFin Y if X � Y > Fin. This defines a
quasi-order on ´�E�, its image under p is the order on ´�E�~Fin.

With all these tools in hand, we are ready to provide the proof of Main
Theorem 1.2.

Proof of Main Theorem 1.2.

(i)�(ii): Let Q be a quotient of a retract of T . According to Corollary
4.12, CL�Q� is a retract of CL�T �. Since CL�T � is complete,
CL�Q� is complete too. According to Corollary 4.4, Q complete.

(ii)�(iii): Since T is a quotient and a retract of itself, it is complete. Let
P �� ´�ω� and Q �� ´�ω�~Fin. Clearly, the lattice Q is not
complete. Thus P cannot be a retract of T .

(iii)�(i): Apply Corollary 4.4 and Lemma 4.6. �

4.1. Selection property, fixed point property and completeness of
the lattice of convex sublattices.

Proposition 4.13. CLFPP is preserved under retraction and lattice quo-
tient.
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Proof. Let P be a lattice. Let Q be an order retract of P , or a lattice
quotient of P . According to Lemma 4.10, CL�Q� is an order retract of
CL�P �. More precisely, if Q is an order retract, let s � Q� P and r � P � Q
be two order preserving maps such that r X s � 1Q, and let s � C�Q� � C�P �
and r � C�P � � C�Q� be given by Lemma 3.23. These two maps provide a
retraction of CL�P � onto CL�Q�.

If Q is a lattice quotient of P let r � P � Q be a surjective lattice homo-
morphism. Let s � CL�Q� � CL�P � and r � CL�P � � CL�Q� be defined by
setting

s�Y � �� r�1�Y � and r�X� �� ConvQ�r�X��
for all Y > CL�Q� and X > CL�P �. According to Lemma 4.10, s and r are
coretraction and retraction maps. Thus, in both cases, if g � Q � CL�Q� is
an order preserving map, we may proceed as in the proof of Corollary 3.25,
defining h � P � CL�P � by h �� s X g X r. Then, if x is a fixed point of h,
y �� r�x� is a fixed point of g. �

Corollary 4.14. The lattice ´�ω� does not have CLFPP.

Proof. The lattice ´�ω�~Fin is a lattice quotient of ´�ω�. Since it is not
complete, it does not have FPP [4]. In particular, it does not have CLFPP.
According to Lemma 4.13, ´�ω� cannot have CLFPP. �

Definition 4.15. Recall that a lattice T has the selection property for
convex sublattices (CLSP for short) if there is an order preserving map
ϕ � CL�T �� T such that ϕ�S� > S for every S > CL�T �.
Proposition 4.16. Let us consider the following properties of a lattice T :

(i) T is complete and has CLSP;
(ii) T has CLFPP;

(iii) CL�T � is a complete lattice.

Then �i�� �ii�� �iii�.
Proof.

(i)�(ii): Let h � T � CL�T � be an order preserving map. Let ϕ � CL�T ��
T be an order preserving selection map guaranteed by (i). The
map ϕ X h � T � T is order preserving. Since T is a complete
lattice, ϕXh has a fixed point (see [24]), say, x � ϕXh�x�. Since
ϕ is a selection, x > h�x�. Hence, (ii) holds.

(ii)�(iii): Suppose that (ii) holds. According to Lemma 4.13 and Corol-
lary 4.14, ´�ω� is not a retract of T . Since ´�ω� is a complete
lattice, it cannot be embedded in T . Hence, according to im-
plication (iii)�(i) of Main Theorem 1.2, CL�T � is a complete
lattice. �

Remark 4.17. Here is a more direct route to the implication (ii)�(iii). As
in the proof of Lemma 4.6, observe that in the non complete lattice CL�T �



24 D. DUFFUS, C. LAFLAMME, M. POUZET, AND R. WOODROW

there is a totally ordered gap �A,B�. According to Lemma 4.2, IB 9FA � g.
This gap is then a gap in C�T �. Lemma 3.15 yields a fixed point free map
of T to CL�T �.

Trivially, we have:

Proposition 4.18. The dual of a lattice with CLSP has CLSP.

Proposition 4.19. Given lattices L0 and L1, let L �� L0 � L1 be their
direct product and πi � L � Li be the i-th projection for i @ 2. Then the
map π � CL�L� � CL�L0� � CL�L1� defined by π�S� �� �π0�S�, π1�S�� for all
S > CL�L� is an isomorphism from CL�L� onto CL�L0� � CL�L1�.
Proof. Let π� � CL�L0�� CL�L1�� CL�L� be defined by π��S0, S1� �� S0 �S1.
Observe that π� is the inverse of π. �

The following Corollary is evident.

Corollary 4.20. The class of lattices, T , such that CL�T � is complete, is
closed under finite product.

Proposition 4.21. CLSP is preserved under finite products.

Proof. Let L0 and L1 be lattices with CLSP. Let L �� L0 � L1, let πi be
the i-th projection, and let ϕi � CL�Li� � Li be an ordered preserving
selection map for i @ 2. Let ϕ � CL�L� � L be defined by
ϕ�S� �� �ϕ0�π0�S��, ϕ1�π1�S��� for S > CL�L�. Since S � π0�S� � π1�S�
for all S > CL�L�, ϕ is an order preserving selection map. �

Proposition 4.22. Every quotient of a lattice with CLSP is a retract of
that lattice.

Proof. Let Q be a quotient of a lattice P with CLSP, with a surjective
homomorphism q � P � Q . For each y > Q, the set q�1�y� belongs to CL�P �.
Moreover, the map q�1 � Q � CL�P � is order preserving. Let s � CL�P � � P
be an order preserving selection. Let f �� s X q�1. Clearly q X f � 1Q. Hence,
q is a retraction and f a coretraction. Thus Q is a retract of P . �

Proposition 4.23. CLSP is preserved under retraction.

Proof. Let P be a lattice with CLSP, and let Q be an order retract of P .
Let s � Q � P and r � P � Q be order preserving maps such that r X s � 1Q.
Let s � CL�Q� � CL�P � and r � CL�P � � CL�Q� be defined as in the proof
of Lemma 4.10. Let ϕ � CL�P � � P be an order preserving selection. Let
ψ � CL�Q� � Q be defined by ψ �� r X ϕ X s. Clearly, this map is order
preserving. We claim that this is a selection map. Indeed, let Y > CL�Q�.
Since ϕ�s�Y �� > s�Y � it follows that ψ�Y � � r�ϕ�s�Y ��� > r X s�Y �. Since,
according to Lemma 4.10, r X s�Y � � Y , it follows that ψ�Y � > Y . �

Since a complete lattice which is embeddable in a poset is a retract of
that poset, Proposition 4.23 immediately yields:
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Corollary 4.24. Every complete lattice which is embeddable in a lattice
with CLSP has CLSP .

Combining Propositions 4.22 and 4.23, we get:

Corollary 4.25. CLSP is preserved under lattice quotients.

Several examples of lattices with CLSP can be obtained from the follow-
ing result of [8]. For the reader’s convenience, we recall the proof.

Proposition 4.26. Every chain has CLSP .

Proof. Let C �� �E,B� be a chain and let Bwo be a well ordering on E. Define
ϕ � CL�C� � C by setting ϕ�S� to be the least element of S > CL�C� with
respect to the well-ordering Bwo. This map is order preserving. Indeed,
let S�, S��

> CL�C� such that S�
B S��. Let x� �� ϕ�S�� and x�� �� ϕ�S���. If

x�, x�� > S�9S�� then x� Bwo x
�� and x�� Bwo x

�, thus x� � x��. If x� > S���S�9S���
then, since S�

B S��, S� 9 S�� is a final segment of S��. Thus x� @ x��. If
x�� > S�� � �S� 9 S���, a similar argument yields x� @ x��. From this, ϕ is an
order preserving selection. �

Combining Propositions 4.21, 4.23, and 4.26, we get:

Proposition 4.27. Every retract of a product of finitely many chains has
CLSP .

Corollary 4.28. Every complete finite dimensional lattice has CLSP .

Proof. A poset P of dimension n embeds in a direct product L of n chains
(and not fewer). If P is complete, then it is a retract of L, thus from
Proposition 4.27 it has CLSP . �

Countable lattices have the CLSP as well. One proof follows directly
from Proposition 4.23 and the following two facts.

Proposition 4.29 (Proposition 7 [18]). A sublattice of the lattice of all
finite unions of intervals of some chain, ordered by containment, has the
CLSP .

Proposition 4.30 (Corollary 3 [18]). Every countable lattice is a retract of
a convex sublattice of a Boolean algebra generated by a countable chain.

We also provide a direct argument based on a variant of the lattice “weav-
ing argument” (see [5]).

Theorem 4.31. Every countable lattice has CLSP .

Proof. Let �xn�n@ω be an enumeration of the elements of the countable lat-
tice T . Let �Dn�n@ω and �Cn�n@ω be the sequences of subsets of CL�T �
defined inductively by the following conditions. For all k @ ω,

D0 �� g;

Ck �� �C > CL�T � � xk > C� �Dk;
Dk�1 �� Dk 8 Ck.
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Then C0 � �C > CL�T � � x0 > C�, Dn �� �i@n Ci for n @ ω, and T � �n@ωDn.
We wish to define a map ϕ � CL�T �� T such that for each n @ ω,

(i) ϕ�C� > C for all C > Dn;
(ii) ϕIDn takes only finitely many values;
(iii) ϕIDn is order preserving.

Set ϕ�C� �� x0 for C > C0. Hence, (i) - (iii) hold for n B 1. Let k C 1 and
suppose that ϕ is defined on Dk such that (i) - (iii) hold for n � k. Extend
ϕ on Dk�1 as follows. For C > Ck, set

ϕ�k�C� � ��ϕ�D� �D > Dk and C @D�;

ϕ�k�C� � ��ϕ�D� �D > Dk and D @ C�;

ϕ�C� � �xk , ϕ�k�C�� - ϕ�k�C�.
Clearly, (i) and (ii) hold for n � k � 1, so it remains to verify (iii). Let
C �,C ��

> Dk�1 with C �
B C ��. We consider three cases.

Case 1 : C �,C ��
> Ck.

Since (iii) holds for n � k, ϕ�k�C �� B ϕ�k�C ��� and ϕ�k�C �� B ϕ�k�C ���. This
yields ϕ�C �� B ϕ�C ���.

Case 2 : C �
> Ck and C ��

> Dk.
Since (iii) holds for n � k, ϕ�k�C �� B ϕ�C ��� and ϕ�k�C �� B ϕ�C ���. Since
ϕ�C �� B ϕ�k�C �� - ϕ�k�C ��, we get ϕ�C �� B ϕ�C ���.

Case 3 : C �
> Dk and C ��

> Ck.
Since (iii) holds for n � k, ϕ�C �� B ϕ�k�C ���. Since by definition
ϕ�k�C ��� B ϕ�C ���, we get ϕ�C �� B ϕ�C ���.

The map ϕ is an order preserving selection map. This proves the theorem.
�

4.2. Well-quasi-ordered posets, posets with no infinite antichain
and a proof of Main Theorem 1.4. As said in the introduction, the
cornerstone of Main Theorem 1.4 is the implication (iv)�(i). Here is a
restatement.

Lemma 4.32. If P has no infinite antichain, then I�P � has CLSP .

The proof of this result follows from a Hausdorff type result due to Abraham
et al. [1]. In order to state this result, first we recall that if �Pα�α>A is a family
of ordered sets indexed by a poset A, then the lexicographical sum of the Pα’s
indexed by A is the poset, that we denote by Pα>A Pα, obtained by replacing
each element α > A by Pα, and by ordering the elements accordingly. Finally,
an augmentation of a poset P is a poset Q on the same underlying set such
that x B y in P implies x B y in Q.

Let BP be the class of posets P such that P is either a wqo poset, the
dual of a wqo poset, or a linear ordering. Let P be the smallest class of
posets such that

(a) P contains BP;
(b) P is closed under lexicographic sums with index set in BP;
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(c) P is closed under augmentation.

The Hausdorff type result is the following:

Theorem 4.33 ([1]). P is the class of posets with no infinite antichain.

With this result in hand, we prove Lemma 4.32 as follows. We start with
P > P and we prove that I�P � has CLSP by induction, distinguishing the
following cases:

Case 1: P > BP.
Case 2: P is a lexicographic sum of posets Pα indexed by a poset A > BP

such that Pα > P and I�Pα� has CLSP for each α > A.
Case 3: P is an augmentation of Q such that Q > P and I�Q� has

CLSP .

4.2.1. Case 1. If P is a chain, then I�P � is a chain, which has CLSP
according to Proposition 4.26. If P is well-quasi-ordered, then I�P � is well-
founded [10], and the fact that it has CLSP is a consequence of the following
lemma.

Lemma 4.34. Every well founded lattice has CLSP .

Proof. Let T be a well-founded lattice. Each nonempty sublattice T � has a
least element min�T ��. The map s � CL�T �� T defined by s�T �� �� min�T ��
is order preserving, hence T has CLSP . �

If P is dually well-quasi-ordered, note that I�P � is order isomorphic to
I�P ���. From above, I�P �� has CLSP . Since this property is preserved
by duality, it holds for I�P ���, hence for I�P �.
4.2.2. Case 2. The following lemma deals with the case of a lexicographic
sum indexed by a chain or a wqo. For the case of a lexicographical sum
indexed by a reverse wqo, use duality as in Case 1.

Lemma 4.35. Let A be a chain or a wqo poset, let �Pα�, α > A, be a family
of posets, and let Tα �� I�Pα� have CLSP for each α > A. Then I�Pα>A Pα�
has the CLSP .

Proof. According to Case 1 above, T �� I�A� has CLSP . Let s � CL�T �� T
and sα � CL�Tα� � Tα, α > A, be selection maps. Let P �� Pα>A Pα and
p � P � A be the projection map.

Let T � be a nonempty convex sublattice of I�P � and let
θ�T �� �� �p�I� � I > T ��. Since θ�T �� is convex, down-directed, and up-
directed, it is a nonempty convex sublattice of T , and A� �� s�θ�T ��� is well
defined. Then A�

> θ�T ��, so there is some I � > T � such that p�I �� � A�.
Let maxA� be the set of maximal elements of A� (perhaps the empty set).

For each α > maxA�, let T �

α �� �I9Pα � I > T ��. Routine checking verifies that
T �

α is a convex sublattice of Tα. Let sα�T �

α� � P �

α and define ϕ on CL�I�P ��
as follows:

ϕ�T �� ���Pα � α > A�
�maxA�� 8��P �

α � α > maxA��.
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Claim 4.36. The map ϕ � CL�I�P ��� I�P � is an order preserving selection
map.

Proof of Claim 4.36. First let us see that ϕ�T �� > T �. It is obvious that
ϕ�T �� > I�P �. If maxA�

� g then the conclusion is immediate since

��Pα � α > A�� is the only element I > T � with p�I� � A�.
Let us assume that maxA�

x g. Then ��Pα � α > A� � maxA�� b I for
each I > T � with p�I� � A�. For each α > maxA�, select Iα > T � such that
Iα 9 Pα � P �

α. Since A has no infinite antichain, maxA� is finite, and hence
these two initial segments belong to T �:

��Iα � α > maxA�� 9 I � and ��Iα � α > maxA�� 8 I �.
It is easy to see that ϕ�T �� is between these two sets in I�P � and so

belongs to the convex sublattice T �.
Now, let T �, T ��

> CL�I�P �� with T �
B T ��. We check that ϕ�T �� b ϕ�T ���.

Let x > ϕ�T ��. Then x > Pα for some α > A. If α is not maximal in A�,
defined as above, then since we have A�

b A��, α is not maximal in A��, thus
x > ϕ�T ���. If α is maximal in A� and not maximal in A��, then the same
conclusion holds. The only remaining case is α is maximal in A� and A��. In
this case,

x > P �

α � sα�T �

α� b sα�T ��

α � � P ��

α b ϕ�T ���.
This depends on the fact that T �

α B T
��

α , a consequence of T �
B T ��. �

With that, the proof of the Lemma 4.35 is complete. �

4.2.3. Case 3. If P is an augmentation of a poset Q, then I�P � is embed-
dable in I�Q�; if I�Q� has the CLSP , then Lemma 4.24 asserts that I�P �
has the CLSP .

5. Conclusion and further developments

The following table summarizes various preservation properties under op-
erations relevant to this investigation, and mentions one remaining open
question.

Property of a lattice T

Preservation under CLSP CLFPP CL�T � is complete

Retracts yes: Lemma 4.23 yes: Lemma 4.13 yes: Corollary 4.11

Quotient yes: Corollary 4.25 yes: Lemma 4.13 yes: Corollary 4.11

Finite product yes: Lemma 4.21 Open yes: Corollary 4.20

To be specific we pose the following:

Problem 5.1. Is CLFPP preserved under finite products?
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In Lemma 4.22, we showed that every quotient of a lattice with CLSP is
a retract of that lattice. We do not know if the corresponding statement is
true for CLFPP and CL�T � being complete. We therefore ask:

Problem 5.2.

(1) Is every quotient of a lattice with CLFPP a retract of that lattice?
(2) Is every quotient of a lattice T , such that CL�T � is complete, a retract

of that lattice?

In this paper we have considered multivalued maps defined on a poset
P whose values belong to a particular subset D of ´�P �, this set being ei-
ther C�P �, or CL�T � provided that P is a lattice T . In these two cases,
we have tried to relate the fixed point property for those maps to the or-
der structure of D. There are other sets D to consider, notably the set
of bounded sets, sets of the form S�A,B� where �A,B� is a separable pre-
gap of P . One could rather consider other structures than posets. Met-
ric spaces seem to be appropriate. If we look at a metric space �E,d� as
an object similar to a poset, the Hausdorff distance on ´�E� is the ana-
log of the preorder we defined on the power set of a poset, and the non-
expansive maps f from E to ´�E� (satisfying d�f�x�, f�y�� B d�x, y� for all
x, y > E) are the analog of the order preserving maps. In the theory of metric
spaces, the spaces analogous to complete lattices seem to be the hypercon-
vex metric spaces introduced by N. Aronszajn and P. Panitchpakdi in 1956,
e.g. bounded hyperconvex metric spaces have FPP (R. Sine, P. M. Soardi,
1979). Also, analogs of convex sublattices seem to be the up directed unions
of intersections of balls (for hyperconvex spaces see [14] and for the analogies
between posets and metric spaces see [11]).

We conclude with a specific problem in this direction.

Problem 5.3. For which metric spaces does every multivalued map into the
set of up directed unions of intersections of balls have a fixed point?
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