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AN IMPROVED BOUND ON THE NUMBER OF

POINT-SURFACE INCIDENCES IN THREE DIMENSIONS

JOSHUA ZAHL

Abstract. We show that m points and n smooth algebraic surfaces
of bounded degree in R3 satisfying suitable non-degeneracy conditions
can have at most O(m2k/(3k−1)n(3k−3)/(3k−1) +m+ n) incidences, pro-
vided that any collection of k points have at most O(1) surfaces passing
through all of them, for some k ≥ 3. In the case where the surfaces
are spheres and no three spheres meet in a common circle, this implies
there are O((mn)3/4 + m + n) point-sphere incidences. This is a slight

improvement over the previous bound of O((mn)3/4β(m,n) + m + n)
for β(m,n) an (explicit) very slowly growing function. We obtain this
bound by using the discrete polynomial ham sandwich theorem to cut
R3 into open cells adapted to the set of points, and within each cell of the
decomposition we apply a Turan-type theorem to obtain crude control
on the number of point-surface incidences. We then perform a second
polynomial ham sandwich decomposition on the irreducible components
of the variety defined by the first decomposition. As an application, we
obtain a new bound on the maximum number of unit distances amongst
m points in R3.

1. Introduction

In [6], Clarkson, Edelsbrunner, Guibas, Sharir, and Welzl obtained the
following bound on the number of incidences between points and spheres in
R3.

Theorem 1.1 (Clarkson et al.). The number of incidences between m points
and n spheres in R3 with no three spheres meeting at a common circle is

(1.1) O
(

(mn)3/4β(m,n) +m+ n
)
,

where β(m,n) is a very slowly growing function of m and n. In particular,

β(m,n) ≤ 2Cα(m
3/n)2 , where α(s) is the inverse Ackerman function and C

is a large constant.

We obtain the following slight sharpening.
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Theorem 1.2. Let k ≥ 3, and let P ⊂ R3 be a collection of m points
and S a collection of n smooth algebraic surfaces of bounded degree (the
degree is allowed to depend on k) such that for some constant C we have
|S ∩ S′ ∩ S′′| ≤ C for all S, S′, S′′ ∈ S, and for any collection of k points in
R3, there are at most C surfaces that contain all k points. Then the number
of incidences between points in P and surfaces in S is

(1.2) O
(
m

2k
3k−1n

3k−3
3k−1 +m+ n

)
,

where the implicit constant depends only on k, C, and the degree of the
algebraic surfaces.

In particular, the number of incidences between m points and n spheres
in R3 with no three spheres meeting at a common circle is

(1.3) O
(

(mn)
3
4 +m+ n

)
.

Remark 1.3. The requirement that every three surfaces meet in a complete
intersection, or some variant thereof, is necessary to prevent the situation
in which all of the surfaces meet in a common curve and all of the points lie
on that curve, yielding mn incidences (i.e. if we don’t place any restrictions
on how the surfaces can intersect, then the trivial bound of mn incidences
is sharp).

Remark 1.4. When k = 2 and n = m, the following example shows that
Theorem 1.2 is sharp. Let P be the set [−2k, 2k]2 × [0, 2k2], and let

S = {z = (x− x0)2 + (y − y0)2 + z0 |x0, y0 = −k, . . . , k; z0 = 0, . . . , k2}.
Then |P| = 32k4, |S| = k4, and we can verify that for every triple S, S′, S′′

of surfaces in S, we have |S ∩ S′ ∩ S′′| ≤ 8, and for every three points of
P, there are at most four surfaces from S that contain all three. Since each
S ∈ S hits at least k2 points from P, there are at least k6 incidences total.

Remark 1.5. The requirements that every three surfaces meet in C points
and that every k points have at most C surfaces passing through them are
analogous to the definition of “curves with k degrees of freedom” from [18],
though in [18] the curves do not need to be algebraic.

Remark 1.6. Theorem 1.1 can be extended to the more general case of
bounded degree algebraic surfaces using the decomposition techniques de-
scribed in [1, §8.3] to obtain an analogue of (1.2). Doing so yields a bound
of

O
(
m

2k
3k−1n

3k−3
3k−1β(m,n) +m+ n

)
,

where β is a slowly growing function.

1.1. Previous results. Similar results to Theorem 1.1 and 1.2 have been
obtained by  Laba and Solymosi in [16] and by Iosevich, Jorati, and  Laba in
[12]. In [16] and [12], however, the authors consider a more general class of
surfaces (they need not be algebraic), but they require that the point set be
“homogeneous” in a suitable sense.
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Our techniques do not work well when k = 2, i.e. for obtaining bounds on
point-hyperplane incidences, but this case has been studied by other authors
(see e.g. [7], where the authors obtain sharp bounds on point-hyperplane
incidences under a slightly different set of non-degeneracy conditions).

1.2. Update 7/4/2011. The author has recently become aware that con-
currently with this paper, Kaplan, Matoušek, Safernová, and Sharir in [13]
obtained results similar to the bound (1.3) using similar methods. Kaplan
et. al. are able to avoid some of the technical difficulties present in this paper
by using an explicit parameterization of the sphere by rational functions.

1.3. Proof sketch. Clarkson et al. obtain Theorem 1.1 through their “Can-
ham threshold plus divide and conquer” technique: the arrangement of
spheres in R3 is subdivided into smaller collections through a careful parti-
tioning of R3, and the number of incidences between these smaller collections
of spheres and points is controlled by a Turan-type bound on the number of
edges in a bipartite graph with certain forbidden subgraphs.

In this paper, we employ similar ideas, except instead of dividing the
problem into smaller subproblems by partitioning R3 into cells using a de-
composition adapted to the collection of spheres (or more general nonsin-
gular algebraic surfaces), we employ a partition adapted to the collection of
points. This partition is obtained from the discrete polynomial ham sand-
wich theorem recently used to great effect by Guth and Katz in [11] and
more recently by Solymosi and Tao in [19] and by Kaplan, Matoušek, and
Sharir in [14]. Specifically, we find a polynomial P such that the comple-
ment of the zero set of P consists of open “cells,” none of which contain
too many points. We can then apply a Turan-type bound to the points and
surfaces inside each cell. However, some points may lie on the zero set of P ,
and thus do not lie in any of the cells. To deal with these points, we perform
a second polynomial ham sandwich decomposition to find a polynomial Q
whose zero set partitions the zero set of P into cell-like objects, and we ap-
ply the Turan-type bound to each of these “cells.” While it is possible that
a point could lie in the zero set of both P and Q, we can use Bézout-type
theorems to control how often this can occur.

1.4. Some difficulties with real algebraic sets. There are several tech-
nical difficulties that have to be dealt with while executing the above strat-
egy. In contrast to the situation over C, there exist polynomials P1, . . . , Pd ∈
R[x1, . . . , xd] of degrees D1, . . . , Dd such that {x ∈ Rd|P1(x) = 0} ∩ · · ·
∩{x ∈ Rd|Pd(x) = 0} contains more than D1, . . . , Dd isolated points, i.e. the
näıve analogue of Bézout’s theorem fails over R. To deal with this problem,
we will sometimes be forced to embed our varieties into C and use the (usual)
Bézout’s theorem (though we have to be careful that the intersection of the
embedded varieties does not contain new, unexpected components of posi-
tive dimension).
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A second difficulty concerns the failure of the Nullstellensatz for varieties
defined over R. In contrast to the complex case, if (P ) is a principal prime
ideal and Q is a real polynomial, it need not be the case that if Q vanishes
identically on {x ∈ Rd |P (x) = 0} then Q ∈ (P ). Luckily, there is a special
type of ideal known as a “real ideal” for which an analogue of the Nullstel-
lensatz does hold. Frequently we will be required to replace our polynomials
with new polynomials that generate real ideals.

Finally, if P ∈ R[x1, . . . , xd], then the dimension of {x ∈ Rd |P (x) = 0}
may be less than d − 1, and even if P is square-free, ∇P may vanish on
{x ∈ Rd|P (x) = 0}. Again, we can remedy this problem by working with
(irreducible) polynomials that generate real ideals.

2. Main Result

2.1. Notation. Throughout the paper, c and C will denote sufficiently
small and large constants, respectively, which are allowed to vary from line
to line. We will write A . B to mean A < CB, and we say that a quantity
A is O(B) if A . B.

Let S be a collection of smooth (real) surfaces and P a collection of points.
Then I(P,S) is the number of incidences between the surfaces in S and the
points in P. If S ∈ S is a surface, then fS is the polynomial whose zero set
is S.

All ideals and varieties will be assumed to be affine. Unless otherwise
specified, all ideals are subsets of R[x1, . . . , xd], and all varieties are defined
over R and thus are subsets of Rd, though sometimes we will specialize to the
case d = 3. If P is a polynomial, (P ) ⊂ R[x1, . . . , xd] is the ideal generated
by P .

Special emphasis will be placed on “real ideals.” These are described in
Definition A.2 of Appendix A, and they should not be confused with ideals
that are merely subsets of R[x1, . . . , xd]. On the other hand, a “real variety”
is merely a variety defined over R (as opposed to C).

If I is an ideal, we use

Z(I) = {x ∈ Rd |P (x) = 0 for all P ∈ I}

to denote the zero set of I. If P is a polynomial we shall abuse notation
and use Z(P ) to denote Z((P )) = {x ∈ Rd |P (x) = 0}. If Z ⊂ Rd is a real
variety, then we define

I(Z) = {P ∈ R[x1, . . . , xd] |P (x) = 0 for all x ∈ Z}

to be the ideal of polynomials that vanish on Z.
If Z ⊂ Rd is a real variety, then Z∗ ⊂ Cd denotes the smallest complex

variety containing Z. Conversely, if Z ⊂ Cd is a complex variety, then
R(Z) ⊂ Rd is its set of real points.

If Q ⊂ R[x1, . . . , xd] is a collection of real polynomials, then we can par-
tition Rd\

⋃
Q∈Q Z(Q) into a collection of open sets such that on each open
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set, the polynomials from Q do not change sign. These sets will be called
the realizations of realizable strict sign conditions of Q. Similarly, if Z ⊂ Rd
is a variety, then we can consider the restriction of the above open sets to
Z, and these are called the realizations of realizable strict sign conditions of
Q on Z. These notions are defined more precisely in Appendix A.

2.2. Preliminaries. Following [6], we shall need the following Turan-type
bound:

Theorem 2.1 (Kővari, Sós, Turan [15]). Let s, t be fixed, and let G =
G1 tG2 be a bipartite graph with |G1| = m, |G2| = n that contains no copy

of Ks,t. Then G has at most O(nm1−1/s +m) edges. Symmetrically, G has

at most O(mn1−1/t + n) edges. All implicit constants depend only on s and
t.

In our case, we have that |S ∩ S′ ∩ S′′| ≤ C for every three surfaces
S, S′, S′′, and any k points have at most C surfaces passing through all of
them. Thus we have the bounds

I(P,S) . |P||S|1−1/k + |S|,(2.1)

I(P,S) . |P|2/3|S|+ |P|.(2.2)

Recall the discrete polynomial partitioning theorem from [11]:

Theorem 2.2. Let P be a collection of points in Rd, and let D > 0. Then
there exists a non-zero polynomial P of degree at most D such that each
connected component of Rd\Z(P ) contains O(|P|/Dd) points of P.

Remark 2.3. Without loss of generality, we can assume that P is square-
free. Indeed if P is not square-free then we can replace P by its square-free
part, and the new polynomial still has all of the desired properties.

Example 2.4. Consider the set of 24 points

P1 = {(0,±1,±1), (0,±2,±2), (±1,±1,±1), (±2,±2,±2)} ⊂ R3,

and let D = 3. Then the polynomial P1(x1, x2, x3) = x1x2x3 partitions R3

into 8 octants, each of which contains 2 points from P1.

Remark 2.5. Note as well that in the above example, the 8 points
{0,±1,±1}, {0,±2, ±2} lie on the set Z(P1) and thus they do not lie inside
any of the open components of R3\Z(P1). This is not merely a consequence
of us choosing P1 poorly; it is an unavoidable phenomena that occurs when
performing the discrete polynomial partitioning decomposition. In order to
control the number of incidences between points lying on Z(P1) and surfaces
in S, we shall have to perform a second polynomial partitioning decompo-
sition “on” the surface Z(P1). For technical reasons, we cannot simply con-
sider the complement of the zero set of our second partitioning polynomial
as a union of relatively open subsets of Z(P1). Instead, we need to perform
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a somewhat more detailed decomposition that partitions Z(P1) into sets
that are realizations of realizable strict sign conditions of a certain family of
polynomials. This is made precise in the theorem below. See Appendix A
for the definition of a real ideal, a strict sign condition, and the realization
of a strict sign condition.

Theorem 2.6 (Discrete polynomial partitioning on a hypersurface). Let
P ∈ R[x1, . . . , xd] be an irreducible polynomial of degree D such that (P ) is
a real ideal, and let P be a collection of points contained in Z = Z(P ) ⊂ Rd.
Let E ≥ D. Then there exists a collection of polynomials Q ⊂ R[x1, . . . , xd]
with the following properties:

(1) |Q| ≤ log2(DE
d−1) +O(1),

(2)
∑
Q degQ . E,

(3) None of the polynomials in Q vanish identically on Z,

(4) The realization of each of the O(DEd−1) strict sign conditions of Q
on Z contains O

(
|P|

DEd−1

)
points of P.

All implicit constants depend only on d.

We shall defer the proof of Theorem 2.6 to Appendix B. In our applica-
tions, we will always have d = 3.

Example 2.7. Let us continue Example 2.4. The polynomial P1 from
Example 2.4 was not irreducible, but we can factor it into the three ir-
reducible factors x1, x2, x3. All of the points lying on Z(P1) actually lie on
the irreducible component Z(x1), so we let P2(x1, x2, x3) = x1. Note that
(P2) = (x1) is a real ideal, and D = deg(P2) = 1. Select E = 2 (which is
larger than D). Then the collection of polynomials Q = {x2, x3} satisfies
the requirements of Theorem 2.6. The realizations of realizable strict sign
conditions of Q on Z are the 4 sets of the form

(2.3) {(x1, x2, x3) |x1 = 0, ±x2 > 0, ±x3 > 0}.
Note that each of these sets contains 2 points of P1∩Z(P2). Two coincidences
occur in this example that are not present in general. First, in this example
the realizations of the four strict sign conditions of Q on Z(P2) correspond
to the four connected components of Z(P2)\

⋃
Q Z(Q). In general, each

realization of a strict sign condition may be a union of multiple connected
components of Z(P2)\

⋃
Q Z(Q). Second, each of the polynomials in Q were

irreducible factors of P1. In general this does not occur.

2.3. Proof of Theorem 1.2. We are now ready to prove Theorem 1.2. For
the reader’s convenience, we will restate the theorem below.

Theorem 1.2. Let k ≥ 3, and let P ⊂ R3 be a collection of m points
and S a collection of n smooth algebraic surfaces of bounded degree (the
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degree is allowed to depend on k) such that for some constant C we have
|S ∩ S′ ∩ S′′| ≤ C for all S, S′, S′′ ∈ S, and for any collection of k points in
R3, there are at most C surfaces that contain all k points. Then the number
of incidences between points in P and surfaces in S is

(1.2) O
(
m

2k
3k−1n

3k−3
3k−1 +m+ n

)
,

where the implicit constant depends only on k, C, and the degree of the
algebraic surfaces.

Proof. From (2.1) and (2.2), we have that if n > cmk or m > cn3 for
some fixed small constant c > 0 to be specified later, then Theorem 1.2
immediately holds. Thus we may assume

(2.4) n < cmk and m < cn3.

We may also assume that the surfaces in S are irreducible varieties. In-
deed, if this were not the case, then we could let S ′ be the set of all irreducible
components of surfaces in S. We would have |S ′| . |S|, and the surfaces in
S ′ would satisfy the same bounds as the surfaces in S. We could then run
our arguments below with S ′ in place of S.

Let P be a square-free polynomial of degree at most D (D will be deter-
mined later, but the impatient reader can jump to (2.23)) that cuts R3 into
O(D3) cells with O(m/D3) points in each cell, and let Z = Z(P ). Let mi

be the number of points lying in the i–th cell of the above decomposition,
and let ni be the number of surfaces that meet the interior of the i–th cell.

Lemma 2.8.

(2.5)
∑

ni . D
2n.

Proof. Let S be a surface that is not contained in Z. Since there are finitely
many cells, we can select a large closed ball B ⊂ R3 so that the num-
ber of cells that meet S is equal to the number of cells that meet S ∩ B.
We can apply a small generic translation to S, and doing so can only in-
crease the number of cells that meet S ∩ B (and thus can only increase
the number of cells that meet S). Select a generic vector v ∈ R3 and let
T (x) = v ∧ ∇fS(x) ∧ ∇P (x), so if x ∈ S ∩ Z and ∇fS(x) and ∇P (x) are
both non-zero and non-collinear, then T (x) = 0 if the curve S∩Z is tangent
at x to a plane with normal vector v.

For every cell Ω that meets S, either Ω contains an entire connected
component of S (since S has bounded degree, at most O(1) cells can contain
an entire connected component of S), or there is a point x ∈ ∂Ω∩S satisfying
the following properties.

(1) x is a smooth point of the space curve Z ∩ S,
(2) x is a non-singular intersection point of Z(T ) ∩ Z ∩ S,
(3) x is a smooth point of ∂Ω.

These three properties follow from the fact that v is generic and we picked a
generic translation of S. From Item 3, each point x satisfying the above
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properties can be associated to at most two distinct cells. By Item 2
and the real Bézout inequality (see e.g. [3, §4.7]), there can be at most
deg(P ) deg(T ) deg(fs) = O(D2) such points, and thus S can enter at most
O(D2) such cells. Since there are n surfaces in S, the result follows. �

Using Lemma 2.8 and the bound from (2.1) we can control the number
of incidences between points not lying in Z and surfaces in S:

I(P\Z,S) =
∑
i

I(P ∩ Ωi,S)

.
∑
i

min
1− 1

k
i + ni

.

(∑
i

mk
i

) 1
k
(∑

i

ni

)1− 1
k

+D2n

.

(
D3 m

k

D3k

) 1
k

(D2n)1−
1
k +D2n

.
mn1−1/k

D1−1/k +D2n.

(2.6)

We must now control I(P ∩ Z,S). We have

I(P ∩ Z,S) = I(P ∩ Z,S1) + I(P ∩ Z,S2),(2.7)

where S1 is the set of surfaces contained in Z, and S2 are the remaining
surfaces. Since Z has degree D, Z can contain at most D surfaces from S,
i.e. |S1| ≤ D. By (2.2),

I(P ∩ Z,S1) . |S1| |P|
2
3 + |P|

. Dm
2
3 +m.

(2.8)

Thus it remains to control I(P ∩ Z,S2). Write P = P1 · · ·P`, where
each Pj is irreducible of degree Dj , and let Zj = Z(Pj). Thus we have
D1 + · · · + D` ≤ D, and Z =

⋃
Zj . We would like to use Lemma 2.6 to

perform a second discrete polynomial ham sandwich decomposition on each
variety Zj , but if (Pj) is not a real ideal then we cannot apply the lemma.
Luckily, the following lemma lets us remedy this situation.

Lemma 2.9. Let A ⊂ R[x1, . . . , xd] be a collection of irreducible polynomi-
als. Then we can find a new collection A′ of irreducible polynomials such
that:

(1)
⋃
P∈A Z(P ) ⊂

⋃
P∈A′ Z(P ),

(2)
∑

P∈A degP ≤
∑

P∈A′ degP ,

(3) (P ) is a real ideal for each P ∈ A′.
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Proof. We shall proceed by induction on
∑

P∈A degP . If the sum is 1, then
the result is trivial since in that case A consists of a single linear polyno-
mial, so we can let A′ = A. Suppose the lemma has been established for

all families Ã with
∑

P∈Ã degP < w, and let
∑

P∈A degP = w. If (P ) is
a real ideal for every P ∈ A then the result is immediate. If not, select
P0 ∈ A such that (P0) is not a real ideal. By Proposition A.3 in Appendix
A, ∇P0 vanishes on Z(P0). Let v ∈ Rd be a generic unit vector. Then
Z(P0) ⊂ Z(∇vP0) and deg(∇vP0) < degP0. Write ∇vP0 = Q1 · · ·Qa as a

product of irreducible components, and let Ã = A\{P0} ∪ {Q1, . . . , Qa}.
We have

∑
P∈Ã degP <

∑
P∈A degP = w, and

⋃
P∈A Z(P ) ⊂

⋃
P∈Ã Z(P ).

Apply the induction hypothesis to Ã to obtain a family Ã′ satisfying Prop-

erties 1–3 with Ã in place of A. We can verify that Ã′ has the desired
properties. �

After applying Lemma 2.9, we can assume that each irreducible polyno-
mial Pj in the factorization of P generates a real ideal. Write P ∩Z =

⊔
Pj ,

where Pj consists of those points lying in Zj . If a point lies on two or more
such varieties, place it into only one of the sets. We need to distinguish
between several cases. Let

A1 = {j | |Pj |k < Dk
j n},

A2 = {j | Dk
j n ≤ |Pj |k < D3k−1

j n},

A3 = {j | |Pj |k ≥ D3k−1
j n}.

(2.9)

For each j ∈ A1 we have

I(Pj ,S2) . |Pj |n1−
1
k + n

. Djn,
(2.10)

where the second inequality uses the assumption |Pj | < Djn
1/k. Summing

(2.10) over all j ∈ A1, we obtain

I

 ⋃
j∈A1

Pj ,S2

 .∑
A1

Djn

≤ Dn.

(2.11)

Now we must control the incidences between surfaces and points lying on
varieties Zj , j ∈ A2 or j ∈ A3. If j ∈ A2, use Theorem 2.2 to select a
square-free polynomial Qj of degree at most Ej ,

Ej =

(
|Pj |k

nDk
j

) 1
2k−1

,(2.12)
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that cuts R3 into O(E3
j ) cells, each of which contains O(|Pj |/E3

j ) points

of Pj . Recall that Pj is irreducible, (Pj) is real, and j ∈ A2 implies
deg(Qj) ≤ Ej < deg(Pj). Thus Qj does not vanish identically on Zj . Let
Qj = {Qj} and let Wj = Z(Qj).

If j ∈ A3, let Ej be as in (2.12) and use Theorem 2.6 (with E = Ej) to
find a family Qj of polynomials satisfying properties 1–4 of the theorem. In
particular, the realizations of the realizable strict sign conditions of Qj on
Zj partition Zj into O(DjE

2
j ) (not necessarily connected) sets, each of which

contains O
(
|Pj |/DjE

2
j

)
points, plus the “boundary” Zj ∩

⋃
Qj

Z(Q). Define

Wj =
⋃
Qj

Z(Q) (thus the definition of Wj depends on whether j ∈ A2 or

j ∈ A3).
Regardless of whether j ∈ A2 or A3, we have

I(Pj ,S2) = I(Pj\Wj ,S2) + I(Pj ∩Wj ,S2).(2.13)

We shall begin by bounding the first term of (2.13). If j ∈ A2, then through
the same computation performed in (2.6) we have

I(Pj\Wj ,S2) .
|Pj |n1−1/k

E
1−1/k
j

+ nE2
j

≤ |Pj |n
1−1/k

E
1−1/k
j

+ nDjEj .

(2.14)

If j ∈ A3, then let Ωij be the realization of the i–th realizable strict sign
condition of Qj on Zj . Recall that there are O(DjE

2
j ) such realizable strict

sign conditions. Let mij = |Pj ∩Ωij |, and let nij be the number of surfaces
in S2 that intersect Ωij .

Lemma 2.10.

(2.15)
∑
i

nij . nDjEj .

Proof. If a surface S ∈ S2 lies in Wj then it does not contribute to the
above sum, so we need only consider those surfaces that do not lie in Zj
or Wj . First, we can replace each Q ∈ Q by the polynomial Q + ε for
ε > 0 a sufficiently small constant. If S ∩ {x ∈ R3 |Q(x) > 0} ∩ Zj 6= ∅,
then there must be a point on S ∩ Zj where Q is positive, so
S ∩ {x ∈ R3 |Q(x) + ε > 0} ∩ Zj 6= ∅ where ε is sufficiently small, and
similarly for S ∩ {x ∈ R3 |Q(x) < 0} ∩ Zj . Thus replacing each Q ∈ Q by
Q + ε does not increase the number of realizations of realizable strict sign
conditions that meet S. We shall select a small generic (with respect to S
and Zj) choice of ε.

By Corollary A.7 in Appendix A, we can assume that each irreducible
component of each polynomial in Qj generates a real ideal. Instead of count-
ing

∑
i nij directly, we shall bound the number of times a surface S enters
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a connected component of Zj\Wj , as this quantity controls
∑

i nij (i.e. if
the same surface enters multiple connected components of the same realiza-
tion of a realizable strict sign condition, then we will over-count, but this is
acceptable). The proof is essentially topological.

Let S ∈ S2 with S not contained in Wj . As in Lemma 2.8, we can
select a large closed ball B so that the number of connected components of
Zj\Wj that S enters is equal to the number of connected components that
S ∩ B enters. Now, replace S by S′ = Z((fS + ε)(fS − ε)) where ε > 0
is a sufficiently small generic number. Provided ε is sufficiently small, if
S meets a connected component ∆ of Z\Wj then S′ also meets ∆, since
fS is a continuous function on the (relatively) open set ∆, so fS vanishes
somewhere on ∆ but does not vanish identically on ∆. Thus it suffices to
count the number of times S′ meets a connected component of Zj\Wj . After
replacing S by S′ (and recalling that we applied a small generic perturbation
to each Q ∈ Q), every point in Zj ∩ Wj ∩ S′ is a point of non-singular
intersection.

Now, if S meets a connected component ∆ of Zj\Wj , then one of the
following two things must occur:

(1) ∆ contains (all of) a connected component of S′ ∩ Zj ,
(2) S′ ∩∆ contains a (topological) curve that meets the boundary of ∆

at a point x ∈ S′∩Zj ∩Wj . Furthermore, there is at most one other
connected component ∆′ for which Item 2 holds for the same point
x.

We will first bound the number of times Item 1 can occur by showing
that S′ ∩ Zj contains O(D2

j ) = O(DjEj) connected components. Apply
a generic rotation to the coordinate axes, and consider the plane curve
γ = Z(resx3(fS′ , Pj)), where resx3 is the resultant of fS′ and Pj in the
x3 variable. Since neither of the (two) irreducible components of S′ are
contained in Zj , γ is indeed a plane curve, and γ contains the image of the
projection of S′ ∩ Zj in the x3 direction. Thus, the number of connected
components of S′ ∩ Zj is bounded by the number of connected components
of γ plus the number of singular points of γ. Since γ has degree O(Dj),
both these quantities are O(D2

j ) (this follows from Bézout’s theorem in the

plane and the Harnack curve theorem).
We will now bound the number of times Item 2 can occur. By the real

Bézout’s inequality, S′ ∩ Zj ∩Wj contains O(DjEj) points of non-singular
intersection, and thus Item 2 can occur at most O(DjEj) times.

Thus S′ can enter at most O(DjEj) connected components of Zj\Wj .
Since there are at most n surfaces, the result follows. �

Remark 2.11. A similar result to Lemma 2.10 can be obtained from the
recent work of Barone and Basu in [2] and Solymosi and Tao in [19].
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Using Lemma 2.10, we have

I(Pj\Wj ,S2) =
∑
i

I(Pj ∩ Ωij ,S2)

.
∑
i

mijn
1− 1

k
ij + nij

≤

(∑
i

mk
ij

) 1
k
(∑

i

nij

)1− 1
k

+ nij

.

(
DjE

2
j

|Pj |k

(DjE2
j )k

) 1
k

(nDjEj)
1− 1

k + nDjEj

=
|Pj |n1−1/k

E
1−1/k
j

+ nDjEj .

(2.16)

Our analysis of the second term of (2.13) will be the same regardless of
whether j ∈ A2 or A3. We shall express this bound as a lemma.

Lemma 2.12. For j ∈ A2 ∪A3, let Zj , Wj , Pj , and S2 be as above. Then

(2.17) I(Pj ∩Wj ,S2) . nDjEj + |Pj |.

Proof. We shall write

(2.18) I(Pj ∩Wj ,S2) = I1(Pj ∩Wj ,S2) + I2(Pj ∩Wj ,S2),
where I1 counts those incidences between points p ∈ Pj ∩ Wj and sur-
faces S ∈ S2 such that p∗ lies on a 1 (complex) dimensional component of
S∗ ∩ Z∗j ∩W ∗j , and I2 counts the remaining incidences. To control I2, note

that by Bézout’s inequality (over C), for each S ∈ S2, S∗∩Z∗j ∩W ∗j contains

O(DjEj) isolated points. Since |S2| ≤ n we obtain

(2.19) I2(Pj ∩Wj ,S2) . nDjEj .

Thus it remains to control I1. First, we shall replace Qj with a new

family of polynomials Q̃j with the following properties:

(1) Zj ∩Wj ⊂ Zj ∩
⋃
Q∈Q̃j

Z(Q),

(2)
∑

Q∈Q̃j
degQ ≤ Ej ,

(3) Each Q ∈ Q̃j is irreducible,

(4) For each Q ∈ Q̃j , every irreducible component of Z∗j ∩ Z(Q)∗ that

contains a real point has (complex) dimension 1.

The procedure will be similar to that in the proof of Lemma 2.9: For each
Q ∈ Qj , write Q = Q1, . . . , Qa as a product of irreducible factors. Discard
those factors Qb with Z(Qb) ∩ Zj = ∅. Of the remaining factors, place each

irreducible factor that generates a real ideal in Q̃j . If Qb is a factor that
does not generate a real ideal then consider ∇vQb for v a generic vector.
By assumption, Qb does not vanish identically on Zj , but it does vanish
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on at least one point of Zj . Thus Qb is not constant on Zj , so ∇Qj does
not vanish identically on Zj and hence if v is a generic vector then ∇vQb
does not vanish identically on Zj . Thus we can repeat the above procedure
with ∇vQb in place of Qb. This process will eventually terminate, and the

resulting collection of polynomials Q̃j has the desired properties; Properties

1–3 are immediate. To obtain Property 4, suppose that for some Q ∈ Q̃j ,
Z∗j ∩Z(Q)∗ fails to be a complete intersection. Then there exists some variety

Y that is an irreducible component of both Z∗j and Z(Q)∗. by Proposition

A.8 in Appendix A, R(Y ) is an irreducible component of Zj and Z(Q), and
thus either R(Y ) = ∅ or R(Y ) = Zj = Z(Q). The latter is impossible since
Zj and Z(Q) have dimension 2, while Zj ∩ Z(Q) has dimension at most 1.

Let

W̃j =
⋃
Q∈Q̃j

Z(Q).

We can write

Z∗j ∩ W̃ ∗j =
⋃
Yj(2.20)

as a union of irreducible (complex) varieties. By Property 4 above, we
need only consider those components with (complex) dimension 1. We shall
discard all components that have dimension 2. Let

P̃j = {p ∈ Pj | there exists a (Euclidean) neighborhood U ⊂ C3 of p∗ such

that Z∗j ∩ W̃ ∗j ∩ U is a (topological) 1–complex-dimensional curve}.
We shall establish several claims.

(1) Z∗j ∩ W̃ ∗j is a union of O(DjEj) irreducible varieties,

(2) If p ∈ P̃j then p∗ lies on at most one of the irreducible components
from (2.20),

(3) Let Y be a variety from the above decomposition. If there exist
three surfaces S1, S2, S3 ∈ S2 such that Y ⊂ S∗i , i = 1, 2, 3, then
|Pj ∩R(Y )| ≤ C,

(4) If S ∈ S2, then there are O(DjEj) points p /∈ P̃j such that p∗ is
contained in a 1–dimensional component of S∗ ∩ Z∗j ∩W ∗j .

For Item 1, see e.g. [10]. Item 2 follows from the assumption that every
variety in the decomposition (2.20) has dimension 1. Item 3 follows from
the requirement that any three surfaces intersect in at most C points. To
obtain Item 4, suppose that Dj ≤ Ej (if not, we can interchange the roles
of Zj and Wj). Note that if p satisfies the requirements of Item 4, then
S∗ ∩ Z∗j ∩W ∗j fails to be a complex (C0) curve in a small neighborhood of

p∗ (i.e. in a small neighborhood of p∗, S∗ ∩ Z∗j ∩W ∗j is a union of several

complex curves all passing though p∗), and thus S∗∩Z∗j fails to be a complex

(C0) curve in a small neighborhood of p∗. Thus after a generic rotation of
the coordinate axis, the image of p∗ under the projection (x1, x2, x3) 7→
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(x1, x2) is a singular point of the (complex) plane curve Z(resx3(fS , Pj))
∗,

where resx3 is the bivariate polynomial obtained by taking the resultant of
fS and Pj in the x3 variable. This curve has degree O(Dj) and thus has
O(D2

j ) = O(DjEj) singular points.

Now, for each S ∈ S2, at most O(DjEj) points p ∈ Pj\P̃j can con-
tribute to I1(Pj , {S}), so the total contribution from all surfaces in S2
is O(nDjEj). To control the remaining incidences, use Item 3 to write
{Yj} = {Y ′j } t {Y ′′j }, where the first set consists of varieties that are con-
tained in at most 2 surfaces S ∈ S2, and the second consists of varieties

that contain at most C points. Each point p ∈ P̃j with p∗ ∈
⋃
Y ′j can be

incident to at most two surfaces, so the total contribution from such points
is O(|Pj |). On the other hand, by Item 1 at most O(DjEj) points can be
contained in R(

⋃
Y ′′j ), so these points can contribute at most O(nDjEj)

incidences. �

Combining (2.14), (2.16), and (2.17) and optimizing in Ej , we see that
our choice of Ej from (2.12) yields the bound

I(Pj ,S2) . |Pj |
k

2k−1n
2k−2
2k−1D

k−1
2k−1

j +mj .(2.21)

Summing (2.21) over all j ∈ A2 ∪ A3 and noting that (2k − 1)/k and
(2k − 1)/(k − 1) are conjugate exponents, we obtain

I

 ⋃
j∈A2∪A3

Pj ,S2

 . ∑
A2∪A3

|Pj |
k

2k−1n
2k−2
2k−1D

k−1
2k−1

j + |Pj |

. n
2k−2
2k−1

(∑
j

|Pj |
) k

2k−1
(∑

j

Dj

) k−1
2k−1

+m

. m
k

2k−1n
2k−2
2k−1D

k−1
2k−1 +m.

(2.22)

Finally, selecting

D = m
k

3k−1n
−1

3k−1 ,(2.23)

which by (2.4) satisfies D > C, and combining (2.4), (2.6), (2.8), (2.11), and
(2.22), we obtain

I(P,S) . D2n+m+
mn1−1/k

D1−1/k +Dm
2
3

+ nD +m+m
k

2k−1n
2k−2
2k−1D

k−1
2k−1

. m
2k

3k−1n
3k−3
3k−1 +m

2
3
+ k

3k−1n
−1

3k−1 +m+ n

. m
2k

3k−1n
3k−3
3k−1 +m+ n.

(2.24)

�
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3. Applications

In [8, 9], Erdős asked how many unit distances could there be amongst
m points in the plane or in R3. Theorem 1.2 yields new bounds for the
R3 version of this question. Let P be a collection of m points in R3, and
let S be a collection of unit spheres centered about the points in P. We
can immediately verify that any three spheres have at most eight points
in common, so Theorem 1.2 tells us that there are O(m3/2) point-sphere
incidences.

Theorem 3.1. The maximum number of unit-distance pairs in a set of m
points in R3 is O(m3/2).

This is a slight improvement over the previous bound of O(m3/2β(m))
from [6], where β is a very slowly growing function.

As observed in [6], Theorem 1.2, combined with the method outlined in
[5] can be used to establish bounds on the number of incidences between
points and spheres in Rd. Specifically, we have the following theorem:

Theorem 3.2. The maximum number of incidences between m points and
n spheres in Rd is

(3.1) O
(
m

d
d+1n

d
d+1 +m+ n

)
,

provided no d of the spheres intersect in a common circle.

Again, this is a slight improvement (by a β(m,n) factor) from the anal-
ogous bounds established in [6]. See [6, §6.5] for additional applications of
Theorem 1.2. In each case, we are able to slightly sharpen the bound from
[6] by removing the β(m) factor.

4. Generalizations to higher dimensions

It is reasonable to ask whether Theorem 1.2 can be generalized to inci-
dences between points and hypersurfaces in higher dimensions. This task
appears to be quite involved, as the necessary algebraic geometry becomes
more difficult. In particular, it appears that in order to generalize the proof
of Theorem 1.2 to (say) spheres in Rd, we need to perform d − 1 poly-
nomial ham sandwich decompositions, with each successive decomposition
performed on the variety defined by the previous decompositions. As d in-
creases, the number of cases to be considered increases dramatically, and
certain difficulties such as the failure of the connected components of a com-
plete intersection to themselves be a complete intersection, and the failure of
an arbitrary complete intersection to be a nonsingular complete intersection,
etc. become increasingly problematic.

One could also consider two dimensional surfaces in Rd, d > 3, and this
appears to be more promising. However, the analogues of (2.8) and Lemma
2.12 become more difficult: an algebraic variety of dimension d − 1 can
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contain many 2–dimensional surfaces without obvious constraints being im-
posed on its structure, and in higher dimensions there are more (and more
complicated) ways in which varieties can fail to intersect completely. Nev-
ertheless, this is certainly a promising area for future work.

A. Real algebraic geometry

A.1. Sign conditions.

Definition A.1. Let Q ⊂ R[x1, . . . , xd] be a collection of non-zero real
polynomials. A strict sign condition on Q is a map σ : Q → {±1}. If Q ∈ Q,
we will denote the evaluation of σ at Q either by σQ or σ(Q), depending on
context. If σ is a strict sign condition on Q we define its realization by

Reali(σ,Q) = {x ∈ Rd |Q(x)σQ > 0 for all Q ∈ Q}.(A.1)

If Reali(σ,Q) 6= ∅ then we say that σ is realizable. We define

ΣQ = {σ | Reali(σ,Q) 6= ∅},(A.2)

and

Reali(Q) = {Reali(σ,Q) |σ ∈ ΣQ}.(A.3)

We call Reali(Q) the collection of “realizations of realizable strict sign con-
ditions of Q.”

If Z ⊂ Rd is a variety, and σ is a strict sign condition on Q, then we can
define the realization of σ on Z by

Reali(σ,Q, Z) = {x ∈ Z |Q(x)σQ > 0 for all Q ∈ Q},(A.4)

and we can define analogous sets

ΣQ,Z = {σ | Reali(σ,Q, Z) 6= ∅},(A.5)

and

Reali(Q, Z) = {Reali(σ,Q, Z) |σ ∈ ΣQ,Z}.(A.6)

We call Reali(Q, Z) the collection of “realizations of realizable strict sign
conditions of Q on Z.” Note that if some Q ∈ Q vanishes identically on Z
then ΣQ,Z = ∅ and thus Reali(Q, Z) = ∅.

A.2. Real ideals.

Definition A.2. An ideal I ⊂ R[x1, . . . , xd] is real if for every sequence
a1, . . . , a` ∈ R[x1, . . . , xd], a21 + · · · + a2` ∈ I implies aj ∈ I for each
j = 1, . . . , `.

The following proposition shows that real principal prime ideals and their
corresponding real varieties have some of the “nice” properties of ideals and
varieties defined over C.
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Proposition A.3 (see [4, §4.5]). Let P ∈ R[x1, . . . , xd] be irreducible. Then
the following are equivalent:

(1) (P ) is real.
(2) (P ) = I(Z(P )).
(3) dim(Z(P )) = d− 1.
(4) ∇P does not vanish identically on Z(P ).
(5) The sign of P changes somewhere on Rd (i.e. from strictly positive

to strictly negative).

A.3. Removing non-real components from a polynomial.

Definition A.4. If P ⊂ R[x1, . . . , xd] is a polynomial and P = P1, . . . , P`
is its factorization, we define P̂ to be the polynomial obtained by removing
those irreducible components that generate ideals that aren’t real. If every
irreducible component of P generates an ideal that is not real, then we define

P̂ = 1.

Example A.5. Let P = (x21+x22+x23−1)(x21+x22). Then P̂ = x21+x22+x23−1.

Geometrically, if P̂ 6= 1, then Z(P ) is a (d − 1)–dimensional (real) variety,
but some of the components of Z(P ) may have dimension less than d − 1.

P̂ keeps only those factors that generate components that have dimension

d− 1, and discards the rest. Note that Z(P̂ ) may still contain points whose
local dimension is less than d− 1.

The existence of polynomials that do not generate real ideals complicates
our analysis, but since the zero sets of such polynomials have codimension
at least 2, we can ignore them when we are computing the number of times a
surface meets the realization of a realizable strict sign condition of a family
of polynomials. The following theorem helps make this statement precise.

Theorem A.6. Let Q ⊂ R[x1, . . . , xd], d ≥ 3 be a collection of real polyno-

mials and let Q̂ = {Q̂ |Q ∈ Q}. Then there exists a bijection

τ : Reali(Q)→ Reali(Q̂)

such that

(A.7) X ⊂ τ(X) for every X ∈ Reali(Q).

Similarly, if Z = Z(P ) where P ∈ R[x1, . . . , xd] generates a real ideal and
no polynomial Q ∈ Q vanishes identically on Z, then there exists a bijection

τ : Reali(Q, Z)→ Reali(Q̂, Z)

such that

(A.8) X ⊂ τ(X) for every X ∈ Reali(Q, Z).

Proof. First, by Item 5 of Proposition A.3, for each Q ∈ Q we have that

Q/Q̂ ≥ 0 or Q/Q̂ ≤ 0 on all of Rd. Choose εQ ∈ {±1} so that εQQ/Q̂ ≥ 0.

Now, note that if there exist Q1, Q2 ∈ Q with Q̂1 = Q̂2 and if σ is a strict
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sign condition on Q, then either εQ1σ(Q1) = εQ2σ(Q2) or Reali(σ,Q) = ∅.
Thus if σ is a realizable strict sign condition on Q, then we can define

σ̂ : Q̂ → {±1} by σ̂(T ) = εQσ(Q), where Q ∈ Q satisfies T = Q̂, and σ̂ is
well-defined.

We shall show that the map ΣQ → ΣQ̂, σ 7→ σ̂ is a bijection. To prove

injectivity, note that if distinct σ1, σ2 both map to the same element σ̂,
then εQσ1(Q) = εQσ2(Q) for all Q ∈ Q, so clearly σ1 = σ2. To establish
surjectivity, note that each σ1 ∈ Σ

Q̂
has a pre-image under the map σ 7→ σ̂.

Thus every element of Σ
Q̂

may be written as σ̂ for some strict sign condition

σ on Q. All that we must establish is that σ is realizable. For each Q ∈ Q,
we have

(A.9) dim
(
{x ∈ Rd|Q̂(x) > 0}\{x ∈ Rd|εQQ(x) > 0}

)
≤ d− 2,

(see [4] for the dimension of a semi-algebraic set). On the other hand, the

realization of each realizable strict sign condition of Q̂ has dimension d.

Thus, if Reali(σ̂, Q̂) 6= ∅, then Reali(σ,Q) can be written as a (non-empty)
dimension d semi-algebraic set minus a dimension d− 2 semi-algebraic set,
and in particular, Reali(σ,Q) 6= ∅.

Thus the map Reali(Q) → Reali(Q̂) given by Reali(σ,Q) 7→ Reali(σ̂, Q̂)
is well-defined and is a bijection. Now, note that by Items 3 and 5 of Propo-

sition A.3, {x ∈ Rd | εQQ(x) > 0} ⊂ {x ∈ Rd | Q̂(x) > 0}, and similarly with
“>” replaced by “<”). Thus

Reali(σ,Q) ⊂ Reali(σ̂, Q̂),

so (A.7) holds.
The same arguments establish the second part of the theorem. The only

new thing that must be verified is that the map ΣQ,Z → ΣQ̂,Z , σ 7→ σ̂ is

onto. However, this is established by (A.9) plus the fact that the realization
of each realizable strict sign condition of Q on Z has dimension d− 1. �

Corollary A.7. Let S ⊂ R3 be a smooth surface, let Q be a collection of

polynomials, and let Q̂ be as in Theorem A.6. Then

(A.10) |{X ∈ Reali(Q) |X ∩ S 6= ∅}| ≤ |{X ∈ Reali(Q̂) |X ∩ S 6= ∅}|.
Similarly, let S ⊂ R3 be a smooth surface, let Z = Z(P ) where
P ∈ R[x1, x2, x3] generates a real ideal, let Q be a collection of polyno-

mials, none of which vanish identically on Z, and let Q̂ be as in Theorem
A.6. Then

(A.11) |{X ∈ Reali(Q, Z) |X ∩S 6= ∅}| ≤ |{X ∈ Reali(Q̂, Z) |X ∩S 6= ∅}|.

A.4. Real and complex varieties. As noted in Section 1.4, the number
of intersection points of a collection of real polynomials may exceed the
product of their degrees, even if those polynomials intersect completely.
Over C things are much better behaved, so there will be times when we
will wish to embed everything into C. The following proposition relates the
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properties of a variety defined over R and the corresponding variety defined
over C:

Proposition A.8 (see [21, §10]). Let Z ⊂ Rd be a real variety and let
Z∗1 , . . . , Z

∗
` be the irreducible components of Z∗. Then R(Z∗1 ), . . . ,R(Z∗` )

are the irreducible components of Z.

B. Proof of Theorem 2.6

For the reader’s convenience, we will restate Theorem 2.6 below:

Theorem 2.6. Let P ∈ R[x1, . . . , xd] be an irreducible polynomial of degree
D such that (P ) is a real ideal, and let P be a collection of points contained in
Z = Z(P ) ⊂ Rd. Let E ≥ D. Then there exists a collection of polynomials
Q ⊂ R[x1, . . . , xd] with the following properties:

(1) |Q| ≤ log2(DE
d−1) +O(1),

(2)
∑
Q degQ . E,

(3) None of the polynomials in Q vanish identically on Z,

(4) The realization of each of the O(DEd−1) strict sign conditions of Q
on Z contains O

(
|P|

DEd−1

)
points of P.

All implicit constants depend only on d.

Our proof of Theorem 2.6 will be similar to the original proof of the
discrete polynomial ham sandwich theorem in [11, §4], which can be stated
as follows:

Proposition B.1 (Discrete polynomial ham sandwich theorem). Let V ⊂
R[x1, . . . , xd] be a vector space of dimension `, and let F1, . . . , F` ⊂ Rd be
finite families of points. Then there exists a polynomial P ∈ V such that

|Fj ∩ {x ∈ Rd |P (x) > 0}| ≤ |Fj |
2
, and

|Fj ∩ {x ∈ Rd |P (x) < 0}| ≤ |Fj |
2
, j = 1, . . . , `.

Proposition B.1 is proved in [11] only in the special case where V is the
vector space of all polynomials of degree at most e (where e is chosen large
enough to ensure that V has the required dimension). However, the proof
carries over verbatim to the general case where V is arbitrary. To prove
Theorem 2.6, we will iterate the following lemma:

Lemma B.2. Let Z = Z(P ) ⊂ Rd for P an irreducible polynomial of
degree D such that (P ) is a real ideal. Let E > 0, and let F1, . . . , F`,
` = cmin{Ed, DEd−1} be finite families of points in Rd, with Fj ⊂ Z for
each j. Then provided c is sufficiently small (depending only on d), there
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exists a polynomial Q of degree at most E that does not vanish identically
on Z(P ) such that

|Fj ∩ {x ∈ Rd |Q(x) > 0}| ≤ |Fj |
2
, and

|Fj ∩ {x ∈ Rd |Q(x) < 0}| ≤ |Fj |
2
, j = 1, . . . , `.

(B.1)

Proof. Let R[x1, . . . , xd]≤E be the vector space of all polynomials in d vari-
ables of degree at most E, and let (P )≤E be the vector space of all polyno-
mials in the ideal (P ) that have degree at most E (of course, if E < degP
then (P )≤E = 0). We have

dim (R[x1, . . . , xd]≤E)− dim ((P )≤E) > cmin
{
Ed, DEd−1

}
for some (explicit) constant c depending only on the dimension d.
Thus, we can find a vector space V ⊂ R[x1, . . . , xd]≤E with dim(V ) >
cmin{Ed, DEd−1} such that V ∩ (P )≤E = 0. By Proposition B.1, we
can find a polynomial Q ∈ V satisfying (B.1). Since Q ∈ R[x1, . . . , xd]≤E
but Q /∈ (P )≤E , we have Q /∈ (P ). Since P is irreducible and generates a
real ideal, by Item 2 of Proposition A.3, Q does not vanish identically on
Z(P ). �

Proof of Theorem 2.6. Let Q0 = {1}. For each i = 1, . . . , t, with

t =
⌈
log2(DE

d−1)
⌉
,(B.2)

use Lemma B.2 to find a polynomial Qi with

deg(Qi) . max

{(
2i

D

) 1
d−1

, 2
i
d

}

(the implicit constant depends only on d) such that for each σ ∈ ΣQi−1 we
have

∣∣∣{x ∈ Rd |Qi(x) > 0} ∩
(
P ∩ Reali(σ,Qi−1)

)∣∣∣ ≤ 1

2
|P ∩ Reali(σ,Qi−1)|,∣∣∣{x ∈ Rd |Qi(x) < 0} ∩

(
P ∩ Reali(σ,Qi−1)

)∣∣∣ ≤ 1

2
|P ∩ Reali(σ,Qi−1)|.

(B.3)

Some of the above sets may be empty, but this does not pose a problem.
Let Qi = Qi−1 ∪ {Qi}. None of the polynomials in Q = Qt vanish on P , so
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Item 3 of the theorem is satisfied. Since E ≥ D we have∑
Q

degQ .
t∑
i=1

(
2i

D

) 1
d−1

+
t∑
i=1

2
i
d

.

(
DEd−1

D

) 1
d−1

+
(
DEd−1

) 1
d

. E,

which satisfies Item 2. By (B.3), for each σ ∈ ΣQ,

|P ∩ Reali(σ,Q)| . 2−t|P|

.
|P|

DEd−1
,

(B.4)

which satisfies Item 4. Finally, Item 1 follows from (B.2). �

Acknowledgments

The author is very grateful to Jordan Ellenberg, Larry Guth, Netz Katz,
Jozsef Solymosi, and Terence Tao for helpful discussions, and to Haim Ka-
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torial Topology (S.S. Cairns, ed.), Princeton Univ. Press, 1965, (Symposium in Honor
of Marston Morse), pp. 255–265.

21. H. Whitney, Elementary structure of real algebraic varieties, Annals of Math 66
(1957), 545–556.

Department of Mathematics, UCLA,
Los Angeles CA 90095-1555, USA

E-mail address: jzahl@zahl.ca


