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BEADED PARTITIONS WITH k COLORS

LOUIS W. KOLITSCH

Abstract. In this paper a new category of partitions called beaded
partitions with k colors will be introduced. The generating functions
for these partitions will be given and several properties and congruences
will be presented.

A beaded partition of a positive integer n is a necklace made up of strands
of beads in k colors where the total number of beads in the necklace is n.
Sliding the beads around the strand does not change the strand and chang-
ing the order of the strands in the necklace does not change the partition.
However, flipping a strand can result in a different strand. For example
if k = 2 then there are two distinct strands with one bead, three distinct
strands with two beads, and four distinct strands with three beads which
are illustrated in Figure 1.

Figure 1. Beaded Strands with 2 Colors.

Note that the three strands in Figure 2 are equivalent since the beads can
be slid around the strand to form each of these color configurations.
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Figure 2. Equivalent strands.

The two strands using k = 3 colors in Figure 3, one of which is the
reflection of the other, are not equivalent since the beads in the first strand
cannot be slid to make the second strand.

Figure 3. Non-equivalent strands.

The number of distinct strands with t beads in k colors is given by

ak(t) =
1

t

∑
d|t

φ(
t

d
)kd;

see [4].
For k = 2 and n = 3, there are fourteen beaded partitions if strands can

be repeated and ten beaded partitions if the strands must be distinct. These
partitions are illustrated in Figures 4 and 5, respectively.

The generating function for beaded partitions with k colors where the
strands can be repeated is given by

∞∑
n=0

bk(n)qn =

∞∏
i=1

(1 − qi)−ak(i).

The generating function for beaded partitions with k colors where the strands
must be distinct is given by

∞∑
n=0

bdk(n)qn =

∞∏
i=1

(1 + qi)ak(i).

These generating functions are similar to those given by Agarwal and Mullen
in [1]. Both of these generating functions can be expressed in a different
form.

Theorem 1.

(a) ∞∏
i=1

(1 − qi)−ak(i) =

∞∏
i=1

(1 − kqi)−1
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Figure 4. Beaded partitions with 2 colors, repetitions allowed.

Figure 5. Beaded partitions with 2 colors, strands distinct.
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(b)
∞∏
i=1

(1 + qi)ak(i) =
∞∏
i=1

(1 + k2
ν(i)
qi)

where ν(i) = m if 2m divides i but 2m+1 does not.

To prove this theorem, we begin by looking at the logarithm of both sides
of each equation. For part (a) we have

∞∑
i=1

−ak(i) ln(1 − qi) =

∞∑
i=1

−ak(i)
∞∑
j=1

qij

j
= −

∞∑
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t|n
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t

n

)
qn

= −
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1

t

(∑
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)
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n

)
qn

= −
∞∑
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(∑
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kd

n
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j|n
d

φ(j)

)
qn
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∞∑
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(∑
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n
· n
d

)
qn

= −
∞∑
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(kqi)d

d
= −

∞∑
i=1

ln(1 − kqi).

For part (b) we have
∞∑
i=1

ak(i) ln(1 + qi) =

∞∑
i=1

ak(i)

∞∑
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(−1)jqij
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∞∑
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n
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=
∞∑
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∞∑
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∞∑
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∞∑
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∞∑
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∞∑
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∞∑
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The ′ on the sum indicates that we are summing over the values of d dividing

n of the form 2ν(n)r where r is odd since
∑

j|n
d
φ(j)(−1)

n
dj is 0 if n/d is even

and is −n/d if n/d is odd.
Interpreting these new generating functions in terms of partitions we get

the following theorem.

Theorem 2.

(a) The number of beaded partitions of n with k colors where the strands
can be repeated is the same as the number of partitions of n into
parts where the parts can occur in k colors and where the ordering
of the colors for a part of a given size is taken into account.

(b) The number of beaded partitions of n with k colors where the strands
must be distinct is the same as the number of partitions of n where

a part i occurs at most once in one of k2
ν(i)

colors.

If we include a parameter z to keep track of the number of strands in
each beaded partition with k colors where the strands must be distinct,
the product

∏∞
i=1(1 + qi)ak(i) becomes

∏∞
i=1(1 + zqi)ak(i). If we replace

this parameter z by −1 to calculate the difference in the number of beaded
partitions of n with an even number of distinct strands and the number with
an odd number of distinct strands we obtain the following theorem.

Theorem 3.
∞∏
i=1

(1 − qi)ak(i) =
∞∏
i=1

(1 − kqi).

This theorem follows immediately from Theorem 1.
If we compare the coefficients of qn on each side of the generating function

identities in Theorems 1 and 3, we obtain the following theorem.

Theorem 4.

(a)

bk(n) =
∑

π∈S(n)

kl(π)

where S(n) is the set of ordinary partitions of n and l(π) is the
number of parts in π.

(b)

bdk(n) =
∑

π∈S(n)

∏
nj∈π

(
ak(nj)
#(nj)

)
=

∑
π∈Sd(n)

k
∑
nj∈π

2ν(nj)

where Sd(n) is the set of partitions of n into distinct parts, the nj’s
are the parts in the partition π, and #(nj) is the number of occur-
rences of nj in π.

(c) ∑
π∈S(n)

(−1)l(π)
∏
nj∈π

(
ak(nj)
#(nj)

)
=

∑
π∈Sd(n)

(−k)l(π).
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Like the ordinary partitions [2] and the generalized Frobenius partitions
with k colors [3], the beaded partitions satisfy some interesting congruences.
From (a) and (b) in Theorem 4 we have

Theorem 5. For n > 0

(a) bk(n) ≡ 0 (mod k),
(b) bdk(n) ≡ 0 (mod k),
(c) bdk(2n) ≡ 0 (mod k2),
(d) bdk(4kn) ≡ 0 (mod k3), and
(e) bdk(4kn− 2) ≡ 0 (mod k3).

Results (a) and (b) of Theorem 5 follow directly from (a) and (b) of
Theorem 4. Result (c) also follows from (b) of Theorem 4 by noting that
any partition of 2n into distinct parts must include at least one even part or
at least two odd parts. Result (d) follows from (b) of Theorem 4 by noting
that the number of partitions of 4kn into two distinct odd parts is a multiple
of k. Result (e) follows by observing that the number of partitions of 4kn−2
into two distinct odd parts is k2(kn − 1) and the number of partitions of
4kn− 2 as a single part is k2 which when taken together is a multiple of k3.
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