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NOTES ON THE ILLUMINATION PARAMETERS OF

CONVEX POLYTOPES

GYÖRGY KISS AND PIETER OLOFF DE WET

Abstract. Convex bodies with large illumination parameters are con-
structed in each dimension. The exact values of the illumination pa-
rameters of the centrally symmetric Platonic solids are calculated, and
estimates on the illumination parameters of the centrally symmetric
Archimedean solids are given.

1. Introduction

Let K be a convex body of Ed, d ≥ 1 (i.e. a compact convex set of the d-
dimensional Euclidean space Ed with non-empty interior). We call a point
l ∈ Ed \ K a light-source and say that it illuminates the boundary point
p of K if the half-line starting at l and passing through p intersects the
interior of K somewhere not between l and p. Furthermore, we say that
the light-sources {l1, l2, . . . , ln} ⊂ Ed \ K illuminate K if each boundary
point of K is illuminated by at least one of the light-sources l1, l2, . . . , ln.
The smallest number of light-sources that can illuminate K is called the
illumination number I(K) of K. The well-known illumination conjecture
phrased independently by Boltyanski (1960) and Hadwiger (1960), says that
any d-dimensional convex body can be illuminated by 2d light-sources in Ed,
that is the inequality I(K) ≤ 2d holds for any convex body K ∈ Ed. This
has been proved only for d ≤ 2, but there are a number of partial results
supporting the conjecture for d > 2 (see [3] and [6]).

The following quantitative version of the illumination numbers of convex
bodies was introduced by K. Bezdek in [2]. If Ko is a convex body of Ed

symmetric about the origin o of Ed, then Ko defines a norm

‖x‖Ko = inf{0 < λ : λ−1x ∈ Ko},
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which turns Ed into a normed space. Then let the illumination parameter
of Ko be defined as

IP(Ko) = inf
{∑

i

‖pi‖Ko : {pi} illuminates Ko

}
.

This ensures that far-away light-sources are penalised. Let

IP(d) = sup{IP(Ko) : Ko is an o − symmetric convex body in Ed}.

Obviously IP(1) = 2. It is known (see [2] and [4]) that IP(2) = 6, and
if K0 is a planar convex body, then IP(K0) = 6 holds only for (affine)
regular convex hexagons. Also, [2] has raised the fundamental problem
of computing or estimating IP(d). Recently Swanepoel [7] has shown that
IP(d) ≤ O(2dd2 log d). Perhaps IP(d) = O(2d). In Section 2 we construct
some polytopes with large illumination parameters in each dimension. It
follows from our construction, that IP(d) ≥ 3 · 2d−1 if d > 1.

The exact values of the illumination parameters have been calculated
only for cubes and cross-polytopes in any dimension [4], and for spheres in
dimensions 2 and 3 [5]. In Section 3 we investigate some three-dimensional
polyhedra. We determine the exact values of the illumination parameters of
the regular dodecahedron and the regular icosahedron, and give estimates
on the illumination parameters of the ten centrally symmetric Archimedean
solids.

2. Bodies with large illumination parameters

It is easy to construct bodies with small illumination parameters. If we
illuminate the d-dimensional ball Bd by the set of vertices of a slightly
enlarged circumscribed cross-polytope, then we get IP(Bd) ≤ 2d

√
d. In this

section we construct polytopes with large illumination parameters in each
dimension.

Proposition 2.1. Let Ko be a convex body of Ed symmetric about the origin
o of Ed with IP(Ko) = k. If Co is a right cylinder of Ed+1 symmetric about
the origin of Ed+1, whose base is congruent with Ko, then IP(Co) ≥ 2k.

Proof. Let T and B be the top and the bottom of Co respectively. With-
out loss of generality, we may assume that T and B are in the hyperplanes
given by Xd+1 = 1 and Xd+1 = −1, and we can regard the intersection
of Co and the hyperplane Xd+1 = 0 as Ko. If l = (x1, x2, . . . , xd+1) illu-
minates a boundary point p = (p1, p2, . . . , pd+1) of T ⊂ Co in Ed+1 then
l′ = (x1, x2, . . . , xd, 0) illuminates p′ = (p1, p2, . . . , pd, 0) ∈ Ko in the hyper-
plane Xd+1 = 0. Furthermore we have that

‖p′‖Ko ≤ ‖p‖Co .

If a set of light-sources {l1, l2, . . . , ln} illuminates the boundary of T ⊂ Co

in Ed+1, then the set {l′1, l′2, . . . , l′n} illuminates Ko in Ed.
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The proposition follows from a similar argument for the boundary points
of B, and the fact that no light-source can illuminate a point on T and a
point on B simultaneously. �

Theorem 2.2. If d ≥ 2 then IP(d) ≥ 3 · 2d−1.

Proof. We use induction on d and show that there is an o-symmetric convex
body Ko for each dimension such that IP(Ko) ≥ 3 · 2d−1. For d = 2,
this follows from the result of Bezdek [2]. Now suppose that there exists
an o-symmetric convex body Ko in Ed such that IP(Ko) ≥ 3 · 2d−1, then
according to Proposition 2.1, there exists an o-symmetric convex body Co

in Ed+1 such that IP(Co) ≥ 3 · 2d. �

3. The illumination parameters of some three dimensional
polyhedra

Throughout this section we will use the following notations:

• if π is a supporting plane of a convex body K in E3, then π+ is the
closed half-space containing K ∪ π, and π− = E3 \ π+;
• if u, v and w are three non-collinear points in E3, then πuvw is the

unique plane containing them;
• if the light-source l illuminates exactly k vertices of a convex body
K, then the efficiency of l is e(l) = k/‖l‖K;
• if v and w are two vertices of a graph Γ, then d(v, w) is their distance

in Γ, that is the length of the shortest path joining them;
• τ is the positive root of the equation x2 = x+ 1, that is τ = (

√
5 +

1)/2.

The most famous polyhedra are the five Platonic solids. One of them, the
regular tetrahedron, is not centrally symmetric. The illumination parame-
ters of the cube and the regular octahedron are known [4]. In this section we
calculate the illumination parameters of the remaining two centrally sym-
metric Platonic solids.

If we would like to illuminate a polytope P, then it is enough to illuminate
the vertices of P. This follows because, if a light-source l illuminates a vertex
v which belongs to a k-face F of P, then l obviously illuminates each point in
the relative interior of F. So when we compute the illumination parameter of
P, we always compute the sum of norms of a set of light-sources illuminating
the vertices of P.

Theorem 3.1. The illumination parameter of the regular dodecahedron is
4
√

5 + 2.

Proof. Let D be a regular dodecahedron, and let ΓD be the edge-graph of
D (see Figure 1). It is easy to see that for any two vertices v and w of
ΓD if d(v, w) ≥ 3 holds, then there are two parallel faces of D such that
one of them contains v and the other contains w. Hence no light-source
can illuminate v and w simultaneously. If a subset of at least four vertices,
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Figure 1. Dodecahedral graph

V = {v1, v2, . . . , vk} has the property, that d(vi, vj) ≤ 2 for all i, j, then
there are two possibilities: either k = 4 and there exists a vertex v ∈ V such
that d(v, vi) = 1 for all v 6= vi ∈ V (we call this a star with centre v), or
there is a face of D which contains each vertex of V.

Let l be a light-source illuminating some vertices of D. We estimate
‖l‖D. For the computation we use Cartesian coordinates. It is well-known
[1] that there exists a coordinate system such that the vertices of D are the
eight vertices of a cube (±1,±1,±1) and twelve other vertices (0,±τ,±τ−1),
(±τ−1, 0,±τ) and (±τ,±τ−1, 0). Then the twelve faces of D are contained in
the planes with equations ±τX±Z = τ2, ±τZ±Y = τ2 and ±τY ±X = τ2.

Let a = (τ−1, 0, τ), b = (1,−1, 1), c = (1, 1, 1), a′ = (−τ−1, 0, τ), b′ =
(−1,−1, 1) and c′ = (−1, 1, 1) be six vertices of D.

If l illuminates only one vertex of D, then l can be arbitrarily close to
that vertex, hence ‖l‖D tends to 1. In this case e(l) < 1, but e(l) can be
arbitrarily close to 1.

If l illuminates two endpoints of an edge of D, then we prove that ‖l‖D ≥
τ. Without loss of generality we may assume that l illuminates the edge aa′.
This means that l ∈ L = π−abc ∩ π

−
a′ab ∩ π

−
a′ac ∩ π

−
a′b′c′ . (The set L looks like

an infinite sloping roof whose ridge has endpoints (0,±τ, τ2).)
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The points of π−abc satisfy the inequality

(1) τX + Z − τ2 > 0,

while the points of π−a′b′c′ satisfy the inequality

(2) −τX + Z − τ2 > 0.

Hence L is contained in the open half-space Z > τ2. But D is contained
in the half-space Z ≤ τ, so ‖l‖D ≥ τ2/τ = τ. On the other hand, l could
be arbitrarily close to the point (0, 0, τ2), and in this case ‖l‖D tends to τ.
Hence e(l) < 2/τ =

√
5− 1, but e(l) can be arbitrarily close to 2/τ.

If l illuminates two vertices, v and w of D with d(v, w) = 2, then without
loss of generality we may assume that l illuminates the edges aa′ and ab.
Thus l satisfies the inequalities (1) and (2), and also satisfies

(3) X − τY − τ2 > 0,

because the plane X−τY = τ2 contains the vertex b and a face of D. Hence
l satisfies

1

τ
(X − τY − τ2) +

1

τ
(τX + Z − τ2) + (−τX + Z − τ2) > 0,

and so l is contained in the open half-space

−Y + τZ > τ2 + 2τ.

But D is contained in the half-space −Y + τZ ≤ τ2, so

‖l‖D ≥
τ2 + 2τ

τ2
=
√

5.

On the other hand, l could be arbitrarily close to the point (0,−τ, τ2)
in the open infinite cone formed by those five planes, which meet D in
the neighbouring faces of the face D ∩ πaa′b. In this case ‖l‖D tends to√

5, and l illuminates each of the five vertices of the face D ∩ πaa′b. Hence
e(l) < 5/

√
5 =
√

5, but e(l) can be arbitrarily close to
√

5.
If l illuminates a star, then we prove that ‖l‖D ≥

√
5 + 2 > 4. Without

loss of generality we may assume that l illuminates the star with centre a.
Thus l satisfies the inequalities (2) and (3), and also satisfies

(4) X + τY − τ2 > 0,

because the plane X+τY = τ2 contains the vertex c and a face of D. Hence
l satisfies

X > τ2 and Z > τX + τ2 > τ3 + τ2 = τ4,

so l is contained in the open half-space

X + τ2Z > τ2 + τ6.

But D is contained in the half-space X + τ2Z ≤ τ−1 + τ3, so

‖l‖D ≥
τ6 + τ2

τ−1 + τ3
= τ3 =

√
5 + 2.
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On the other hand, l could be arbitrarily close to the point (τ2, 0, τ4) in the
open infinite cone formed by the three planes −τX +Z = τ2, X − τY = τ2

and X + τY = τ2. In this case ‖l‖D tends to
√

5 + 2, and l illuminates each
vertex of the star with centre a. Hence e(l) < 4/(

√
5 + 2) < 1.

We get the illumination parameter of D if we cover the vertices of ΓD

in the most effective way. The faces U,W,X and Y cover 18 vertices (see
Figure 1). If we illuminate each of these faces by its own light-source and
the remaining two vertices by two light-sources, then we get a set of six
light-sources such that the sum of their norms tends to 4

√
5 + 2. We prove

that this is the most effective way.
It follows from the previous computations that the most effective light-

sources illuminate five vertices of a face of D. If the covering contains at least
five faces, then the sum of the norms of the corresponding light-sources is at
least 5

√
5 > 4

√
5 + 2. On the other hand, if the covering contains 0 ≤ f ≤ 3

faces, then at least 20− 5f vertices are not covered by them. Each optimal
covering of these vertices contains at most b(20 − 5f)/2c edges, hence the
sum of the norms of the light-sources is at least

f ·
√

5 +

⌊
20− 5f

2

⌋
·
√

5 + 1

2
+ 2

(
20− 5f

2
−
⌊

20− 5f

2

⌋)
· 1 > 4

√
5 + 2.

Now consider those coverings that contain exactly four faces. First we
prove that the maximum number of pairwise disjoint faces in the covering
is three. If two opposite faces are chosen, then any other face is a neighbour
of exactly one of them. Suppose that the covering does not contain opposite
faces. Then without loss of generality we may assume, that the faces X and
Y are chosen (see Figure 1). Then they have eight neighbours in all, hence
there are only two possible choices for the remaining faces, U and W, but
these two are neighbours.

If the covering contains less than three pairwise disjoint faces, then the
four faces cover at most 16 vertices. Thus the sum of the norms of the
light-sources is at least

4 ·
√

5 + 2 ·
√

5 + 1

2
> 4
√

5 + 2.

If the covering contains three pairwise disjoint faces, then because of the
symmetry we may assume that these are X,Y and U. They cover 15 vertices,
the remaining five vertices form a star with centre a and a singleton p (see
Figure 1). The fourth face covers either p or at most three vertices of the
star with centre a. In both cases there are two non-covered vertices whose
distance is at least 2. Hence the sum of the norms of the light-sources is at
least 4

√
5 + 2.

This finishes the proof of the theorem. �

Theorem 3.2. The illumination parameter of the regular icosahedron is 12.
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Proof. Let I be a regular icosahedron, and let ΓI be the edge-graph of I
(see Figure 2). It is easy to see that for any two vertices v and w of ΓI

d(v, w) ≤ 3, and equality holds if and only if v and w are opposite vertices.

X

W

U

Y

a

bc

d

e

f

g

h

j

Figure 2. Icosahedral graph

If d(v, w) ≥ 2, then there are two parallel faces of I such that one of them
contains v and the other contains w. Hence no light-source can illuminate
v and w simultaneously. This implies that no light-source can illuminate
more than three vertices of I, because any subset of more than three vertices
contains a pair of vertices having distance at least 2.

Let l be a light-source illuminating some vertices of I. We estimate ‖l‖I. It
is well-known [1] that there exists a coordinate system such that the vertices
of I are the points (0,±τ,±1), (±1, 0,±τ) and (±τ,±1, 0).

Let a = (τ, 1, 0). Then the five neighbours of a are b = (0, τ, 1), c =
(0, τ,−1), d = (1, 0,−τ), e = (τ,−1, 0) and f = (1, 0, τ). Let g = (−τ, 1, 0),
h = (−1, 0, τ) and j = (0,−τ, 1) be three other vertices. Then the triangles
bgh, bhf and fhj are faces of I.

If l illuminates only one vertex of I, then l can be arbitrarily close to that
vertex, hence ‖l‖I tends to 1. In this case e(l) < 1, but e(l) can be arbitrarily
close to 1.
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If l illuminates two endpoints of an edge of I, then we prove that ‖l‖I ≥
τ2 = (

√
5 + 3)/2. Without loss of generality we may assume, that l illumi-

nates the edge ab. This means that l ∈M = π−acd∩π
−
ade∩π

−
aef∩π

−
bcg∩

−
bgh∩π

−
bhf .

The points of π−ade satisfy the inequality

(5) τ2X − Z − τ3 > 0,

while the points of π−bgh satisfy the inequality

(6) −X + Y + Z − τ2 > 0.

Hence M is contained in the open half-space

τ(τ2X − Z − τ3) + τ2(−X + Y + Z − τ3) > 0.

Rearranging the coefficients, we get

τX + τ2Y + Z > 2τ4.

But I is contained in the half-space τX + τ2Y + Z ≤ 2τ2, so

‖l‖I ≥
2τ4

2τ2
= τ2.

On the other hand, l could be arbitrarily close to the point (τ3/2, τ4/4,
τ2/2), and in this case ‖l‖D tends to τ2. Hence e(l) < 2/τ2 < 1.

If l illuminates three vertices of a face of I, then without loss of generality
we may assume that l illuminates a, b and f. Thus l satisfies the inequalities
(5) and (6), and also satisfies

(7) −Y + τ2Z − τ3 > 0,

because the plane πfhj has equation −Y + τ2Z = τ3. Hence l satisfies

(τ + 2)(τ2X − Z − τ3) + 2τ2(−X + Y + Z − τ2) + (−Y + τ2Z − τ3) > 0,

and so l is contained in the open half-space

X + Y + Z > 3τ2.

But I is contained in the half-space X + Y + Z ≤ τ2, so

‖l‖I ≥
3τ2

τ2
= 3.

On the other hand, l could be arbitrarily close to the point (τ2, τ2, τ2)
in the open infinite cone π−ade ∩ π

−
bgh ∩ π

−
fhj . In this case l ∈ M also holds,

hence because of the rotational symmetry, l illuminates each vertex of the
face I ∩ πabf , and ‖l‖I tends to 3. Thus e(l) < 3/3 = 1, but e(l) can be
arbitrarily close to 1.

We get the illumination parameter of I if we cover the vertices of ΓI in
the most effective way. It follows from the previous computations that the
most effective light-sources illuminate either a single vertex or three vertices
of a face of I. In both cases e(l) tends to 1 for any light-source. Hence
IP(I) ≥ 12. On the other hand, if each vertex v of I has its own light-source
lv, then lv could be arbitrarily close to v, hence IP(I) = 12. �
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It is easy to see that the vertices of ΓI can be covered by four faces U ,
W , X and Y (see Figure 2). Thus the most effective illumination of I is not
unique; we can mix the two types of light-sources having efficiency 1. Hence
the number of light-sources in a set of optimal configuration could be 4, 6,
8, 10 or 12.

There are 13 semiregular convex polyhedra, the so-called Archimedean
solids. Ten of them are centrally symmetric. Most of these can be con-
structed from the Platonic solids by truncation. For a more detailed de-
scription of the Archimedean solids we refer to [8].

The following simple observation is very useful when we estimate the
illumination parameters of these polyhedra.

Proposition 3.3. Let P be a convex polytope in Ed with vertex set V =
{v1, v2, . . . , vk}. Let Nv1 = {vi : v1vi is an edge of P} be the set of the neigh-
bouring vertices of v1. Suppose that there exists a hyperplane H such that
H∩v1vi = wi ∈ relint(v1vi) holds for each vi ∈ Nv1, and let P′ be the convex
hull of V \ {v1} ∪ {wi : vi ∈ Nv1}. (This means that H cuts off the vertex v1
of P.) If a light-source l illuminates the vertex v1 of P, then l illuminates
the vertices wi of the polytope P′, as well.

We do not determine the exact values of the illumination parameters, but
give upper estimates. These estimates come from constructions of the set of
light-sources. Most of these sets are highly symmetric configurations, and
we conjecture that they give the optimal solutions.

Theorem 3.4. There are sets of light-sources which give upper estimates
on the illumination parameters of the 10 centrally symmetric Archimedean
solids as follows.

Name of the polyhedron
Upper estimate on the Number of

illumination parameter light-sources

Truncated cube 24(
√

2− 1) ≈ 9.941 8

Truncated octahedron 9 6

Truncated dodecahedron (68
√

5 + 10)/15 ≈ 10.804 6

Truncated icosahedron 12 4

Cuboctahedron 12 4 or 12

Rhombicuboctahedron 12 4

Truncated cuboctahedron 12 4

Icosidodecahedron 3(
√

5 + 1) ≈ 9.708 6

Truncated icosidodecahedron 15(3
√

5 + 1)/11 ≈ 10.511 6

Rhombicosidodecahedron 12 4

Proof. We omit the elementary computation. The starting positions of the
light-sources are as follows:
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• For the truncated cube and octahedron, the light-sources are at the
vertices of the corresponding cube and octahedron.
• For the truncated dodecahedron and icosahedron, the light-sources

are at the same positions as in Theorems 3.1 and 3.2.
• For the cuboctahedron, rhombicuboctahedron, truncated cubocta-

hedron and rhombicosidodecahedron, the light-sources are at the
vertices of the circumscribed regular tetrahedron.
• For the icosidodecahedron and the truncated icosidodecahedron, the

light-sources are at the midpoints of six corresponding edges of the
circumscribed regular dodecahedron.

Finally, in each case we have to push the light-sources away from the corre-
sponding polytope slightly. �

These results support our concluding conjecture.

Conjecture 3.5.
IP(d) = 3 · 2d−1.
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