

Volume 7, Number 1, Pages 48–50 ISSN 1715-0868

MONOCHROMATIC EVEN CYCLES

ANDRÁS GYÁRFÁS AND DÖMÖTÖR PÁLVÖLGYI

ABSTRACT. We prove that any r-coloring of the edges of K_m contains a monochromatic even cycle, where m = 3r + 1 if r is odd and m = 3r if r is even. We also prove that K_{m-1} has an r-coloring without monochromatic even cycles.

An easy exercise, perhaps folkloristic, says that in any *r*-coloring of the edges of K_{2^r+1} there is a monochromatic odd cycle (and this is not true for K_{2^r}).

This note explores what happens if we ask the same question for even cycles. Let f(r) denote the smallest integer m for which there is a monochromatic even cycle in every edge coloring of K_m .

Theorem 1. For odd r, f(r) = 3r + 1 and for even r, f(r) = 3r.

Every graph with n vertices and with more than $m = \lfloor 3(n-1)/2 \rfloor$ edges contains a Θ -graph, i.e. three internally vertex disjoint paths connecting the same pair of vertices (see [1], Exercise 10.1). Since a Θ -graph obviously contains an even cycle, any graph with n vertices and more than m edges contains an even cycle. This easily implies that the stated values are upper bounds of f(r) in Theorem 1. Indeed, considering the majority color, one can easily check that

$$\left\lceil \frac{\binom{3r+1}{2}}{r} \right\rceil > \left\lfloor \frac{3(3r)}{2} \right\rfloor \quad \text{if } r \text{ is odd}$$

and

$$\left\lceil \frac{\binom{3r}{2}}{r} \right\rceil > \left\lfloor \frac{3(3r-1)}{2} \right\rfloor \quad \text{if } r \text{ is even.}$$

Therefore to prove Theorem 1 we need a construction, a partition of the edge set of K_{3r} (K_{3r-1}) into r graphs, each without even cycles. Let H_1 be a triangle with vertices v_1, v_2, v_3 . For odd r > 1 let H_r be the graph formed by three vertex disjoint copies of (r-1)/2 triangles sharing one common vertex $v_i, i = 1, 2, 3$ and the triangle v_1, v_2, v_3 which is called the *central triangle* of H_r . Note that each block (maximal biconnected subgraph or cut-edge) of

Received by the editors May 23, 2011.

²⁰⁰⁰ Mathematics Subject Classification. 05C15: Coloring of graphs and hypergraphs. The second author acknowledges support from OTKA CNK 77780.

 H_r is a triangle, so it has no even cycles. Thus for odd r Theorem 1 follows from the next proposition.

Proposition 2. For odd r, K_{3r} can be partitioned into r copies of H_r .

Proof. The proof is based on a well-known construction of Steiner triple systems on 6t + 3 vertices (see [2], Theorem 9.1). Set r = 2t + 1, then 3r = 6t + 3. The vertex set of $K = K_{3r}$ is partitioned into $\{a_i, b_i, c_i\}$, for $i = 1, 2, \ldots, 2t + 1$. For r = 1, $\{a_i, b_i, c_i\}$ is an H_1 , for r > 1 consider a near factorization of a complete graph S_{2t+1} with vertex set $\{1, 2, \ldots, 2t+1\}$ into factors F_i , where F_i avoids vertex i. To each factor F_i we define a copy of H_r^i as follows. Place the edges of the following triangles to H_r^i :

(1)
$$\{b_i a_k a_l, c_i b_k b_l, a_i c_k c_l : kl \in F_i\}, \{a_i b_i c_i\}.$$

One can easily see that H_r^i is isomorphic to H_r and for $i = 1, \ldots, 2t + 1$ they give a partition on the edge set of K (in fact their blocks are triangles forming a Steiner triple system on K).

For r = 2 note that K_5 can be partitioned into two pentagons. However, K_5 can be also partitioned into two "bulls", which is a triangle with two pendant edges (see Figure 1). This latter works well to reduce the even case to the odd one in Proposition 3.

For even r define the graph A_r from H_{r-1} by removing the edges of its central triangle v_1, v_2, v_3 and adding two new vertices u, w together with the five edges v_1v_2, uv_i, wv_2 (see Figure 2). Let B_r be the graph with r-1triangles sharing a common vertex x plus r pendant edges, one from x and one from each triangle (from a vertex different from x). Note that A_r, B_r

FIGURE 1. A bull with its complementary bull dotted, drawn as later used.

FIGURE 2. The H_{r-1} , A_r and B_r monochromatic subgraphs for r = 6.

have 3r - 1 vertices and their blocks are cut-edges and triangles so they do not have even cycles. The graphs A_2, B_2 are both bulls.

Proposition 3. For even r, K_{3r-1} can be partitioned into r-1 copies of A_r and one copy of B_r .

Proof. Let r be even and consider the construction of Proposition 2 for r-1 colors. This gives a partition of K_{3r-3} into r-1 copies of H_{r-1} . Notice that the central triangles $T_i = \{a_i, b_i, c_i\}$ of the *i*-th copies are vertex disjoint $(i = 1, 2, \ldots, r-1)$. Adding two new vertices d, e to $V(K_{3r-3})$ transform the *i*-th copy of H_{r-1} as follows: remove the edges a_ic_i, b_ic_i from T_i and add da_i, db_i, dc_i, eb_i . This gives r-1 copies of A_r for $(i = 1, 2, \ldots, r-1)$. The "missing edges", $de, ea_i, ec_i, a_ic_i, b_ic_i$ for $i = 1, 2, \ldots, r-1$ define one copy of B_r .

Proposition 3 shows that for even $r, f(r) \ge 3r$, thus completing the proof of Theorem 1.

References

L. Lovász, Combinatorial problems and exercises, 2nd ed., North-Holland, 1993.
W. D. Wallis, One-Factorizations, Kluwer Academic Publishers, 1997.

ALFRÉD RÉNYI INSTITUTE, HUNGARIAN ACADEMY OF SCIENCES, BUDAPEST, P.O. BOX 127, BUDAPEST, HUNGARY, H-1364. *E-mail address:* gyarfas@renyi.hu

Computer Science Department, Institute of Mathematics, Eötvös Loránd University, Pázmány Péter sétány 1/c, Budapest, Hungary, H-1117. *E-mail address*: dom@cs.elte.hu