Contributions to Discrete Mathematics

Volume 7, Number 1, Pages 48-50 ISSN 1715-0868

MONOCHROMATIC EVEN CYCLES

ANDRÁS GYÁRFÁS AND DÖMÖTÖR PÁLVÖLGYI

Abstract

We prove that any r-coloring of the edges of K_{m} contains a monochromatic even cycle, where $m=3 r+1$ if r is odd and $m=$ $3 r$ if r is even. We also prove that K_{m-1} has an r-coloring without monochromatic even cycles.

An easy exercise, perhaps folkloristic, says that in any r-coloring of the edges of $K_{2^{r}+1}$ there is a monochromatic odd cycle (and this is not true for $K_{2^{r}}$.

This note explores what happens if we ask the same question for even cycles. Let $f(r)$ denote the smallest integer m for which there is a monochromatic even cycle in every edge coloring of K_{m}.

Theorem 1. For odd $r, f(r)=3 r+1$ and for even $r, f(r)=3 r$.
Every graph with n vertices and with more than $m=\lfloor 3(n-1) / 2\rfloor$ edges contains a Θ-graph, i.e. three internally vertex disjoint paths connecting the same pair of vertices (see [1], Exercise 10.1). Since a Θ-graph obviously contains an even cycle, any graph with n vertices and more than m edges contains an even cycle. This easily implies that the stated values are upper bounds of $f(r)$ in Theorem 1. Indeed, considering the majority color, one can easily check that

$$
\left\lceil\frac{\binom{3 r+1}{2}}{r}\right\rceil>\left\lfloor\frac{3(3 r)}{2}\right\rfloor \quad \text { if } r \text { is odd }
$$

and

$$
\left\lceil\frac{\binom{3 r}{2}}{r}\right\rceil>\left\lfloor\frac{3(3 r-1)}{2}\right\rfloor \quad \text { if } r \text { is even. }
$$

Therefore to prove Theorem 1 we need a construction, a partition of the edge set of $K_{3 r}\left(K_{3 r-1}\right)$ into r graphs, each without even cycles. Let H_{1} be a triangle with vertices v_{1}, v_{2}, v_{3}. For odd $r>1$ let H_{r} be the graph formed by three vertex disjoint copies of $(r-1) / 2$ triangles sharing one common vertex $v_{i}, i=1,2,3$ and the triangle v_{1}, v_{2}, v_{3} which is called the central triangle of H_{r}. Note that each block (maximal biconnected subgraph or cut-edge) of

Received by the editors May 23, 2011.
2000 Mathematics Subject Classification. 05C15: Coloring of graphs and hypergraphs.
The second author acknowledges support from OTKA CNK 77780.
H_{r} is a triangle, so it has no even cycles. Thus for odd r Theorem 1 follows from the next proposition.

Proposition 2. For odd $r, K_{3 r}$ can be partitioned into r copies of H_{r}.
Proof. The proof is based on a well-known construction of Steiner triple systems on $6 t+3$ vertices (see [2], Theorem 9.1). Set $r=2 t+1$, then $3 r=6 t+3$. The vertex set of $K=K_{3 r}$ is partitioned into $\left\{a_{i}, b_{i}, c_{i}\right\}$, for $i=1,2, \ldots, 2 t+1$. For $r=1,\left\{a_{i}, b_{i}, c_{i}\right\}$ is an H_{1}, for $r>1$ consider a near factorization of a complete graph $S_{2 t+1}$ with vertex set $\{1,2, \ldots, 2 t+1\}$ into factors F_{i}, where F_{i} avoids vertex i. To each factor F_{i} we define a copy of H_{r}^{i} as follows. Place the edges of the following triangles to H_{r}^{i} :

$$
\begin{equation*}
\left\{b_{i} a_{k} a_{l}, c_{i} b_{k} b_{l}, a_{i} c_{k} c_{l}: k l \in F_{i}\right\},\left\{a_{i} b_{i} c_{i}\right\} . \tag{1}
\end{equation*}
$$

One can easily see that H_{r}^{i} is isomorphic to H_{r} and for $i=1, \ldots, 2 t+1$ they give a partition on the edge set of K (in fact their blocks are triangles forming a Steiner triple system on K).

For $r=2$ note that K_{5} can be partitioned into two pentagons. However, K_{5} can be also partitioned into two "bulls", which is a triangle with two pendant edges (see Figure 1). This latter works well to reduce the even case to the odd one in Proposition 3.

For even r define the graph A_{r} from H_{r-1} by removing the edges of its central triangle v_{1}, v_{2}, v_{3} and adding two new vertices u, w together with the five edges $v_{1} v_{2}, u v_{i}, w v_{2}$ (see Figure 2). Let B_{r} be the graph with $r-1$ triangles sharing a common vertex x plus r pendant edges, one from x and one from each triangle (from a vertex different from x). Note that A_{r}, B_{r}

Figure 1. A bull with its complementary bull dotted, drawn as later used.

Figure 2. The H_{r-1}, A_{r} and B_{r} monochromatic subgraphs for $r=6$.
have $3 r-1$ vertices and their blocks are cut-edges and triangles so they do not have even cycles. The graphs A_{2}, B_{2} are both bulls.

Proposition 3. For even r, $K_{3 r-1}$ can be partitioned into $r-1$ copies of A_{r} and one copy of B_{r}.

Proof. Let r be even and consider the construction of Proposition 2 for $r-1$ colors. This gives a partition of $K_{3 r-3}$ into $r-1$ copies of H_{r-1}. Notice that the central triangles $T_{i}=\left\{a_{i}, b_{i}, c_{i}\right\}$ of the i-th copies are vertex disjoint $(i=1,2, \ldots, r-1)$. Adding two new vertices d, e to $V\left(K_{3 r-3}\right)$ transform the i-th copy of H_{r-1} as follows: remove the edges $a_{i} c_{i}, b_{i} c_{i}$ from T_{i} and add $d a_{i}, d b_{i}, d c_{i}, e b_{i}$. This gives $r-1$ copies of A_{r} for $(i=1,2, \ldots, r-1)$. The "missing edges", $d e, e a_{i}, e c_{i}, a_{i} c_{i}, b_{i} c_{i}$ for $i=1,2, \ldots, r-1$ define one copy of B_{r}.

Proposition 3 shows that for even $r, f(r) \geq 3 r$, thus completing the proof of Theorem 1.

References

1. L. Lovász, Combinatorial problems and exercises, 2nd ed., North-Holland, 1993.
2. W. D. Wallis, One-Factorizations, Kluwer Academic Publishers, 1997.
Alfréd Rényi Institute, Hungarian Academy of Sciences,
Budapest, P.O. Box 127, Budapest, Hungary, H-1364.
E-mail address: gyarfas@renyi.hu
Computer Science Department, Institute of Mathematics,
Eötvös Loránd University, Pázmány Péter sétány 1/c,
Budapest, Hungary, H-1117.
E-mail address: dom@cs.elte.hu
