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MONOCHROMATIC EVEN CYCLES

ANDRÁS GYÁRFÁS AND DÖMÖTÖR PÁLVÖLGYI

Abstract. We prove that any r-coloring of the edges of Km contains
a monochromatic even cycle, where m = 3r + 1 if r is odd and m =
3r if r is even. We also prove that Km−1 has an r-coloring without
monochromatic even cycles.

An easy exercise, perhaps folkloristic, says that in any r-coloring of the
edges of K2r+1 there is a monochromatic odd cycle (and this is not true for
K2r).

This note explores what happens if we ask the same question for even cy-
cles. Let f(r) denote the smallest integer m for which there is a monochro-
matic even cycle in every edge coloring of Km.

Theorem 1. For odd r, f(r) = 3r + 1 and for even r, f(r) = 3r.

Every graph with n vertices and with more than m = b3(n− 1)/2c edges
contains a Θ-graph, i.e. three internally vertex disjoint paths connecting the
same pair of vertices (see [1], Exercise 10.1). Since a Θ-graph obviously
contains an even cycle, any graph with n vertices and more than m edges
contains an even cycle. This easily implies that the stated values are upper
bounds of f(r) in Theorem 1. Indeed, considering the majority color, one
can easily check that⌈(
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if r is even.

Therefore to prove Theorem 1 we need a construction, a partition of the
edge set of K3r (K3r−1) into r graphs, each without even cycles. Let H1 be a
triangle with vertices v1, v2, v3. For odd r > 1 let Hr be the graph formed by
three vertex disjoint copies of (r−1)/2 triangles sharing one common vertex
vi, i = 1, 2, 3 and the triangle v1, v2, v3 which is called the central triangle of
Hr. Note that each block (maximal biconnected subgraph or cut-edge) of
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Hr is a triangle, so it has no even cycles. Thus for odd r Theorem 1 follows
from the next proposition.

Proposition 2. For odd r, K3r can be partitioned into r copies of Hr.

Proof. The proof is based on a well-known construction of Steiner triple
systems on 6t + 3 vertices (see [2], Theorem 9.1). Set r = 2t + 1, then
3r = 6t + 3. The vertex set of K = K3r is partitioned into {ai, bi, ci}, for
i = 1, 2, . . . , 2t + 1. For r = 1, {ai, bi, ci} is an H1, for r > 1 consider a near
factorization of a complete graph S2t+1 with vertex set {1, 2, . . . , 2t+1} into
factors Fi, where Fi avoids vertex i. To each factor Fi we define a copy of
H i

r as follows. Place the edges of the following triangles to H i
r:

(1) {biakal, cibkbl, aickcl : kl ∈ Fi}, {aibici}.

One can easily see that H i
r is isomorphic to Hr and for i = 1, . . . , 2t + 1

they give a partition on the edge set of K (in fact their blocks are triangles
forming a Steiner triple system on K). �

For r = 2 note that K5 can be partitioned into two pentagons. However,
K5 can be also partitioned into two “bulls”, which is a triangle with two
pendant edges (see Figure 1). This latter works well to reduce the even case
to the odd one in Proposition 3.

For even r define the graph Ar from Hr−1 by removing the edges of its
central triangle v1, v2, v3 and adding two new vertices u,w together with
the five edges v1v2, uvi, wv2 (see Figure 2). Let Br be the graph with r − 1
triangles sharing a common vertex x plus r pendant edges, one from x and
one from each triangle (from a vertex different from x). Note that Ar, Br

Figure 1. A bull with its complementary bull dotted, drawn
as later used.
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Figure 2. The Hr−1, Ar and Br monochromatic subgraphs
for r = 6.
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have 3r − 1 vertices and their blocks are cut-edges and triangles so they do
not have even cycles. The graphs A2, B2 are both bulls.

Proposition 3. For even r, K3r−1 can be partitioned into r − 1 copies of
Ar and one copy of Br.

Proof. Let r be even and consider the construction of Proposition 2 for r−1
colors. This gives a partition of K3r−3 into r−1 copies of Hr−1. Notice that
the central triangles Ti = {ai, bi, ci} of the i-th copies are vertex disjoint
(i = 1, 2, . . . , r − 1). Adding two new vertices d, e to V (K3r−3) transform
the i-th copy of Hr−1 as follows: remove the edges aici, bici from Ti and add
dai, dbi, dci, ebi. This gives r − 1 copies of Ar for (i = 1, 2, . . . , r − 1). The
“missing edges”, de, eai, eci, aici, bici for i = 1, 2, . . . , r − 1 define one copy
of Br. �

Proposition 3 shows that for even r, f(r) ≥ 3r, thus completing the proof
of Theorem 1.
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