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COMPUTATION OF ATOMIC FIBERS OF Z-LINEAR

MAPS

ELKE EISENSCHMIDT, RAYMOND HEMMECKE, AND MATTHIAS KÖPPE

Abstract. For given matrix A ∈ Zd×n, the set Pb = { z : Az = b, z ∈
Zn
+ } describes the preimage or fiber of b ∈ Zd under the Z-linear map

fA : Zn
+ → Zd, x 7→ Ax. The fiber Pb is called atomic if it has no

nontrivial Minkowski decomposition, that is, Pb = Pb1 +Pb2 implies b =
b1 or b = b2. In this paper we present a novel algorithm to compute such
atomic fibers. An algorithmic solution to subproblems, computational
examples and applications in optimization and algebra are included as
well.

1. Introduction

Following [13], we study the family of integer point sets

Pb := { z : Az = b, z ∈ Zn+ }

for a given matrix A ∈ Zd×n and varying right-hand sides b ∈ Zd. The set Pb
thus is the preimage or fiber of b ∈ Zd under the Z-linear map fA : Zn+ → Zd,
x 7→ Ax.

We study this infinite family under the operation of taking Minkowski
sums. We call a fiber Pb atomic or indecomposable if Pb = Pb1 +Pb2 implies
b = b1 or b = b2. Note that Pb = Pb1+Pb2 means that every lattice point of Pb
is the sum of a lattice point of Pb1 and a lattice point of Pb2 (and vice versa).
This is indeed a very strong condition, but it was shown that there are only
finitely many (nonempty) atomic fibers for a given matrix A [13]. Note
that atomic fibers are not only minimal (with respect to decomposability)
within the given family, but also generate every fiber Pb in this family as a

Minkowski sum Pb =
∑k

i=1 αiPbi , αi ∈ Z+, where αiPbi stands for iterated
Minkowski-addition of Pbi with itself.
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Atomic fibers appear in the computation of minimal vanishing sums of
roots of unity [18]. Atomic fibers also appear in the capacitated design
of telecommunication networks for a given communication demand under
survivability constraints [5, 6]. A variant of the notion of atomic fibers
appears in [3] to construct strong SAGBI bases for subalgebras of polynomial
rings. We explain the detailed relation of this variant and other notions of
decomposition and their applications in Section 2.

Next we introduce the notion of atomic extended fibers. We call the set

Qb := { z : Az = b, z ∈ Zn }
an extended fiber of the linear map of A. We call it atomic if (Qb ∩ Oj) =
(Qb1 ∩Oj) + (Qb2 ∩Oj) holds for all the 2n orthants Oj of Rn, then b = b1
or b = b2. Here, as well, it can be shown that there are only finitely many
(nonempty) extended atomic fibers for a given matrix. Extended atomic
fibers have an important application in the primal integer programming
theory of stochastic integer optimization. The set H∞ constructed in [10]
for use in two-stage stochastic integer programming is in fact the set of
extended atomic fibers of the family of extended fibers

{ (x, y) : x = b, Tx+Wy = 0, x ∈ Zm, y ∈ Zn }
where T and W are kept fixed and where b varies.

Outline. In this paper, we are mainly concerned about designing fast al-
gorithms for computing atomic and atomic extended fibers. The outline of
the paper is as follows. In Section 3 we first define a hierarchy of partially
extended fibers that interpolate between fibers and extended fibers. This
hierarchy not only generalizes the notions of fibers and extended fibers, but
also plays a significant role in our algorithms. Motivated by our applica-
tion in survivable network design, we define decomposability with respect
to a given finitely generated monoid of feasible right-hand side vectors. We
prove that, in this more general situation as well, there are only finitely
many atomic fibers. We also present an algorithmic way to decompose a
fiber into a Minkowski sum of atomic fibers.

In Section 4 we present a first algorithm to compute the atomic extended
fibers of a given matrix, following the pattern of a completion procedure. By
restricting the atomic extended fibers to the positive orthants and perform-
ing a simple reduction step, the atomic fibers (or partially extended fibers)
of a matrix can be easily obtained. However, this method is not a very
efficient one for computing atomic fibers as we will illustrate in Section 7.
Therefore, we present a more efficient way to compute atomic fibers via a
project-and-lift approach in Sections 5 and 6.

Both our algorithms enable us to compute not only the atomic fibers Pb
but also atomic fibers P̃b according to the definition in [3] for the application
in SAGBI bases. This will be shown at the end of Section 4.

Finally, in Section 7, we compare both algorithms with the help of first
computational results.
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2. Related Notions of Decomposition of Polyhedra

In this section, we discuss the relation of atomic fibers to other notions
of Minkowski decompositions of polyhedra and their integer points.

A classic notion is that of linear decomposition of polyhedra. Two poly-
hedra P,Q ⊆ Rn are called homothetic if P = λQ + t for some λ > 0 and
t ∈ Rn. Here, a polyhedron P is called indecomposable if any decomposition
P = Q1 +Q2 implies that both Q1 and Q2 are homothetic to P . It can be
shown that there are only finitely many indecomposable rational polyhedra
that are not homothetic to each other. For further details on this type of
decomposition, we refer the reader to, for example, [7, 11, 12, 14, 15, 17].

Let us now come to a more restrictive decomposition. Here we consider
only polyhedra of the form {x ∈ Rn : Ax ≤ b } for a given matrix A ∈ Zd×n
and varying b ∈ Zd. To emphasize that we only consider integer right-hand
sides, we say that a polyhedron P is integrally indecomposable if any de-
composition P = Q1 + Q2 (into polyhedra with integer right-hand sides)
implies that both Q1 and Q2 are homothetic to P . This decomposition is
more restrictive than the linear decomposition, since only such polyhedra Q1

and Q2 are allowed that have an integer right-hand side. Henk, Köppe, and
Weismantel [11] showed finiteness of the system of integrally indecomposable
polytopes. This result implies important applications: total dual integrality
(TDI-ness) of each member of a family of systems Ax ≤ b, b ∈ Zd, can be
concluded from the TDI-ness of the integrally indecomposable systems. Fur-
thermore the finiteness of the system of integrally indecomposable polytopes
enables us to compute a finite representation of a test set for a mixed-integer
linear optimization problem.

Another important application of integral decomposition of polyhedra
is that of factorizing a multivariate polynomial, see for example [2] and
the references therein. Here, one considers only polyhedra of the form
{x ∈ Rn : Ax ≤ b } for given matrix A ∈ Zd×n and varying b ∈ Zd,
where each polyhedron is integral, that is, where each polyhedron has only
integral vertices. Note that the notion of integral decomposability is re-
stricted to integral polyhedra in this application whereas the definition of
[11] is valid for arbitrary rational polyhedra with integral right-hand side.
The reason for this restriction is the simple observation that the so-called
Newton polytope Newt(f) := conv{αi ∈ supp(f)} associated to a polyno-
mial f =

∑
i∈I aix

αi with supp(f) = {αi : ai 6= 0} is integral by definition.
Moreover, the relation f = gh among the three polynomials f , g, and h
implies Newt(f) = Newt(g) + Newt(h), a theorem due to Ostrowski [16].

A direct generalization of the above notion of integral decomposition of
integral polyhedra was introduced by [3]. The authors considered polytopes

P̃b := conv{ z : Az = b, z ∈ Zn+ }

called the fibers of b under the linear map fA : Zn+ → Zd, x 7→ Ax. A fiber

P̃b is called atomic if P̃b = P̃b1 + P̃b2 implies b = b1 or b = b2. Note that
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P̃b = P̃b1 + P̃b2 means that every vertex of P̃b is the sum of a vertex of

P̃b1 and a vertex of P̃b2 (and vice versa). Atomic fibers were used by the
authors of [3] to construct strong SAGBI bases for subalgebras of polynomial
rings. They proved that the family of atomic fibers is finite and also gave
an algorithm to compute atomic fibers via certain standard pairs. Via this
algorithm, the authors of [3] computed the atomic fibers of the twisted cubic,
see Example 3.7.

In the present paper, we consider the variant of the notion of atomic fibers

that was introduced by [13]. Instead of considering convex hulls P̃b of the
preimages

Pb :=
{
z : Az = b, z ∈ Zn+

}
of the map fA : Zn+ → Zd, x 7→ Ax, we consider the preimages Pb themselves.
In the more general terminology of [13], the sets Pb are called ((0), A)-fibers.

3. (Partially Extended) Atomic Fibers

Let us now start our treatment with a formal definition of partially ex-
tended fibers.

Definition 3.1. Let A ∈ Zd×n be a matrix, b ∈ Zd and 0 ≤ k ≤ n.

(i) The set

Q
(k)
b :=

{
z : Az = b, z ∈ Zk+ × Zn−k

}
is called a partially extended fiber of order k of the matrix A. The

set Qb := Q
(0)
b is called an extended fiber, and Pb := Q

(n)
b is called

a fiber of the matrix A.
(ii) Let 0 ≤ l ≤ n. For u, v ∈ Rn, we say that u vl v if u(i)v(i) ≥ 0 and

|u(i)| ≤ |v(i)| for all components i = 1, . . . , l. We will abbreviate vn
by v. For U, V,W ⊆ Rn, we say that

U = V
(l)
⊕W

and call U the l-restricted Minkowski sum of V and W if for all
u ∈ U there exist v ∈ V , w ∈W with v, w vl u and u = v+w. Note
that V ⊕(0)W is just the ordinary Minkowski sum V +W . We will
abbreviate ⊕(n) by ⊕.

(iii) For 0 ≤ m ≤ n, we will denote by πm : Rn → Rm with (x1, . . . , xn) 7→
(x1, . . . , xm) the projection onto the first m components.

Now we will go on defining atomic partially extended fibers with respect to
a certain monoid M ⊆ Zd. To accompany the hierarchy of partially extended
fibers, we define a hierarchy of notions of decomposition that interpolates
between ordinary Minkowski sums and orthant-wise Minkowski sums.

Definition 3.2. Let A ∈ Zd×n be a matrix, b ∈ Zd and 0 ≤ k, l ≤ n.
Additionally, let M ⊆ Zd be a monoid.
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(i) We call Q
(k)
b atomic with respect to ⊕(l) and M if there is no de-

composition

Q
(k)
b = Q

(k)
b1

(l)
⊕Q(k)

b2

with b1, b2 ∈ M and πl(Q
(k)
b1

), πl(Q
(k)
b2

) 6= πl(Q
(k)
0 ). By E

(k)
l (A,M)

we denote the set of partially extended fibers of order k which are
atomic with respect to ⊕(l) and M .

(ii) We denote by E(k)(A,M) the set E
(k)
n (A,M) and call it the set of

partially extended atomic fibers with respect to the monoid M . We
denote by F (A,M) the set E(n)(A,M) and call it the set of atomic
fibers with respect to M .

Note that Definition 3.2 also applies to the special case where the monoid
M is a lattice. In this paper we will develop two algorithms to compute the
atomic fibers for this special case. However, in [5] the second algorithm is
generalized in such a way that the atomic fibers of a matrix with respect to
a monoid may be computed using it.

As a first step, we prove a generalization of the finiteness result for the
family of atomic fibers.

Lemma 3.3. Let 0 ≤ k ≤ n be fixed. There are only finitely many partially

extended fibers Q
(k)
b which are atomic with respect to a finitely generated

monoid M .

The proof of this lemma is based on the following nice theorem.

Theorem 3.4 ([13]). Let k be a field. Let I be an infinite family of mono-
mial ideals in a polynomial ring k[x1, . . . , xn]. Then there must exist ideals
I, J ∈ I with I ⊆ J .

To apply this theorem in our situation of partially extended fibers which
are atomic with respect to a certain finitely generated monoid M , we intro-
duce the following definition.

Definition 3.5. Let A ∈ Zd×n and M = 〈m1, . . . ,mt〉 ⊆ Zd a finitely
generated monoid. Let 0 ≤ k ≤ n be fixed.

(i) Let α, α ∈ Zt+ with

b :=
t∑
i=1

αimi and b :=
t∑
i=1

αimi.

We say that
(
α,Q

(k)

b

)
reduces

(
α,Q

(k)
b

)
and denote(

α,Q
(k)

b

)
E
(
α,Q

(k)
b

)
if α v α and Q

(k)
b = Q

(k)

b
⊕Q(k)

b−b. In particular, b− b ∈M .
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(ii) We call a pair
(
α,Q

(k)
b

)
irreducible with respect to E if there is no

pair
(
α,Q

(k)

b

)
different from

(
α,Q

(k)
b

)
and

(
0, Q

(k)
0

)
with(

α,Q
(k)

b

)
E
(
α,Q

(k)
b

)
.

Lemma 3.6. Let 0 ≤ k ≤ n be fixed. Let A =
{(
α1, Q

(k)
b1

)
,
(
α2, Q

(k)
b2

)
, . . .

}
be a set of pairs.

(i) Let
(
αi, Q

(k)
bi

)
5
(
αj , Q

(k)
bj

)
for all

(
αi, Q

(k)
bi

)
,
(
αj , Q

(k)
bj

)
∈ A with

i < j. Then A is finite.

(ii) There are only finitely many pairs
(
α,Q

(k)
b

)
which are irreducible

with respect to E.

Proof. (i): We associate with a pair
(
αj , Q

(k)
bj

)
the monomial ideal

Iα =
〈
x(z1,...,zk,z

+
k+1,z

−
k+1,...,z

+
n ,z
−
n ,α

j
1,...,α

j
t )

: Az =

t∑
i=1

αjimi( = bj), z ∈ Zk+ × Zn−k
〉
⊆ Q[x1, . . . , x2n−k+t],

where z+i = max{0, zi} and z−i = max{0,−zi}. Then
(
αj , Q

(k)
bj

)
5
(
αl, Q

(k)
bl

)
if Iαj is not contained in Iαl . Consider the set I = {Iα1 , Iα2 , . . .} of ideals
associated to the elements in the set A. The set I then is an antichain of
ideals and is thus finite according to Theorem 3.4 (see [13]). The finiteness
of A follows from the finiteness of I.

(ii): A pair
(
α,Q

(k)
b

)
is irreducible with respect to E if and only if(

α,Q
(k)
b

)
5
(
α,Q

(k)

b

)
for any α 6= α. Let A =

{(
α1, Q

(k)
b1

)
,
(
α2, Q

(k)
b2

)
, . . .

}
be the set of pairs which are irreducible with respect to E. Part (i) then
yields that A is finite. �

We are now ready to prove Lemma 3.3.

Proof of Lemma 3.3. It is sufficient to show that for every Q
(k)
b atomic with

respect to M , there exists α ∈ Zt+ with b =
∑t

i=1 αimi such that
(
α,Q

(k)
b

)
is

irreducible with respect to E. Then there is an injective mapping from the

set of atomic extended fibers Q
(k)
b into the set of irreducible pairs

(
α,Q

(k)
b

)
and, thus, there are only finitely many extended atomic fibers with respect
to M .

Let b be fixed with Q
(k)
b an extended atomic fiber with respect to M . Let

α ∈ Zt+ with b =
∑t

i=1 αimi be minimal with respect to v, i.e., there is

no Zt+ 3 α 6= α with α v α and b =
∑t

i=1 αimi. We claim that the pair(
α,Q

(k)
b

)
is irreducible with respect to E. Suppose that it is not. Then

there is
(
α,Q

(k)

b

)
E
(
α,Q

(k)
b

)
, i.e., α v α and Q

(k)
b = Q

(k)

b
⊕Q(k)

b−b implying

b− b ∈M . As Q
(k)
b is an extended atomic fiber we may assume w.l.o.g. that



42 ELKE EISENSCHMIDT, RAYMOND HEMMECKE, AND MATTHIAS KÖPPE

b = b and b− b = 0. Therefore b =
∑t

i=1 αimi and as α is minimally chosen
with respect to v we have α = α. This proves our claim. �

Example 3.7. In [3], it was shown how atomic fibers could be used to con-
struct strong SAGBI bases for monomial subalgebra over principal ideal do-
mains. As an example, they computed the atomic fibers of the matrix

A =

(
3 2 1 0
0 1 2 3

)
by hand via an approach different from the one we present below.

In the following table, we list the right-hand sides and all (finitely many)
elements in these 18 atomic fibers.

Fiber Element

(0,3) {(0, 0, 0, 1)}
(1,2) {(0, 0, 1, 0)}
(2,1) {(0, 1, 0, 0)}
(2,4) {(0, 1, 0, 1), (0, 0, 2, 0)}
(3,0) {(1, 0, 0, 0)}
(3,3) {(1, 0, 0, 1), (0, 1, 1, 0)}
(3,6) {(1, 0, 0, 2), (0, 1, 1, 1), (0, 0, 3, 0)}
(4,2) {(0, 2, 0, 0), (1, 0, 1, 0)}
(4,5) {(0, 2, 0, 1), (0, 1, 2, 0), (1, 0, 1, 1)}
(4,8) {(0, 2, 0, 2), (1, 0, 1, 2), (0, 1, 2, 1), (0, 0, 4, 0)}
(5,4) {(1, 1, 0, 1), (0, 2, 1, 0), (1, 0, 2, 0)}
(6,3) {(2, 0, 0, 1), (1, 1, 1, 0), (0, 3, 0, 0)}
(6,6) {(2, 0, 0, 2), (0, 3, 0, 1), (1, 1, 1, 1), (1, 0, 3, 0),

(0, 2, 2, 0)}
(6,9) {(2, 0, 0, 3), (0, 3, 0, 2), (1, 1, 1, 2), (1, 0, 3, 1),

(0, 2, 2, 1), (0, 1, 4, 0)}
(6,12) {(2, 0, 0, 4), (0, 3, 0, 3), (1, 1, 1, 3), (1, 0, 3, 2),

(0, 2, 2, 2), (0, 1, 4, 1), (0, 0, 6, 0)}
(8,4) {(2, 1, 0, 1), (0, 4, 0, 0), (1, 2, 1, 0), (2, 0, 2, 0)}
(9,6) {(3, 0, 0, 2), (1, 3, 0, 1), (2, 1, 1, 1), (2, 0, 3, 0),

(1, 2, 2, 0), (0, 4, 1, 0)}
(12,6) {(4, 0, 0, 2), (2, 3, 0, 1), (3, 1, 1, 1), (3, 0, 3, 0),

(2, 2, 2, 0), (0, 6, 0, 0), (1, 4, 1, 0)}

Thus, for example, the fiber given by the right-hand side (8, 7) is not
atomic, since it can be decomposed into atomic fibers as

P( 87 ) = P( 24 ) ⊕ P( 63 ).

This can be quickly verified by looking at the elements in these fibers:

{(2, 1, 0, 2), (2, 0, 2, 1), (1, 1, 3, 0), (1, 2, 1, 1), (0, 4, 0, 1), (0, 3, 2, 0)}
= {(0, 1, 0, 1), (0, 0, 2, 0)} ⊕ {(2, 0, 0, 1), (1, 1, 1, 0), (0, 3, 0, 0)}.
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Indeed, we have

(2, 1, 0, 2) = (0, 1, 0, 1) + (2, 0, 0, 1),

(2, 0, 2, 1) = (0, 0, 2, 0) + (2, 0, 0, 1),

(1, 1, 3, 0) = (0, 0, 2, 0) + (1, 1, 1, 0),

(1, 2, 1, 1) = (0, 1, 0, 1) + (1, 1, 1, 0),

(0, 4, 0, 1) = (0, 1, 0, 1) + (0, 3, 0, 0),

and

(0, 3, 2, 0) = (0, 0, 2, 0) + (0, 3, 0, 0).

In Example 3.7 above, it was easy to verify whether a given fiber is a
summand in the decomposition of another fiber by simply checking the
finitely many elements in the fiber for a decomposition. If the fibers are
not bounded, however, this would not give a finite procedure. The following
lemma tells us how to solve this problem via the (finitely many!) v-minimal
elements in the given fibers.

Definition 3.8. Let A ∈ Zd×n and b ∈ Zd. Let 0 ≤ k ≤ l ≤ n.

(i) An element v ∈ Q(k)
b is called minimal with respect to vl if there is

no w ∈ Q(k)
b with v 6= w and w vl v.

(ii) We define z, z̃ ∈ Q(k)
b to be equivalent if and only if πl(z) = πl(z̃).

For l < n, there are infinitely many vl-minimal elements in general. There-
fore we have to restrict ourselves to representatives of equivalence classes of

vl-minimal elements. Let R
(k)
b,l denote a set of representatives of the equiv-

alence classes of the vl-minimal elements in Q
(k)
b . Let these representatives

be chosen arbitrarily but fixed.

Remark: Let A ∈ Zd×n, b ∈ Zd and 0 ≤ k, l ≤ n. Then the set of repre-

sentatives of vl-minimal elements in Q
(k)
b , R

(k)
b,l , is finite by the Lemma of

Gordan–Dickson (see for example [4]).

Lemma 3.10. Let 0 ≤ k ≤ l ≤ n and let Q
(k)
b1
6= ∅, Q

(k)
b2
6= ∅. Then

Q
(k)
b1+b2

= Q
(k)
b1
⊕(l)Q

(k)
b2

if and only if for every vl-minimal vector v ∈
R

(k)
b1+b2,l

there is a vector w ∈ Q(k)
b1

with w vl v.

Proof. Let v ∈ Q(k)
b1+b2

. Then there is v ∈ R(k)
b1+b2,l

with v vl v. Thus, by the

assumption in the lemma, there is some w ∈ Q(k)
b1

such that w vl v vl v. As

k ≤ l we have v−w ∈ Zk+×Zn−k and thus v−w ∈ Q(k)
b2

with v−w vl v vl v.

We now claim that v = (w + v − v) + (v − w) with w + v − v ∈ Q
(k)
b1

,

v − w ∈ Q(k)
b2

, w + v − v vl v, and v − w vl v, is a desired representation of
v. The first two relations are trivial, if we keep in mind that Av = Av = b,
Aw = b1, b = b1 + b2 and k ≤ l. We get the other two relations as follows:
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(a) w+ v− v vl v+ v− v = v, since by construction πl(w) and πl(v− v)
lie in the same orthant, and

(b) v − w vl v vl v, since w vl v.

Thus, we have constructed for arbitrary v ∈ Q(k)
b1+b2

a valid representation

of v as a sum of two elements from Q
(k)
b1

and Q
(k)
b2

whose projection onto the
first l components lie in the same orthant as the projection of v onto its first
l components. This concludes the proof. �

Using this lemma repeatedly, we are now able to find, for a given right-

hand side b ∈M , a decomposition Q
(k)
b =

⊕s
i=1 αiQ

(k)
bi

, αi ∈ Z+, that is, we
can find a decomposition of a partially extended fiber into a sum of partially
extended fibers which are atomic with respect to the monoid M .

Algorithm 3.1 Algorithm to decompose extended fibers into sums of ex-
tended atomic fibers

Input: A, right-hand sides {b1, . . . , bs} of the set of extended atomic fibers

E(k)(A,M)

Output: α1, . . . , αs such that Q
(k)
b =

s⊕
i=1

αiQ
(k)
bi

1: α1 := · · · := αs := 0
2: for i = 1 to s do
3: while Q

(k)
b = Q

(k)
bi
⊕Q(k)

b−bi and b− bi ∈M do
4: b := b− bi
5: αi := αi + 1
6: end while
7: end for
8: return α1, . . . , αs.

It remains to state an algorithm that computes the finitely many v-

minimal elements in Q
(k)
b for fixed k. We will do this in the following para-

graphs.
We have to find for some l ∈ {1, . . . , n} and some k ∈ {1, . . . , l} all vl-

minimal elements in (projections of) fibers of the form

πl(Q
(k)
b ) =

{
(x, y) ∈ Zk+ × Z(l−k) : ∃ z ∈ Z(n−l) with A(x, y, z) = b

}
.

If b = 0, then 0 is the only vl-minimal element. If not, we reduce this
problem to the problem of finding a Hilbert basis of a cone. It is not hard
to show that all vl-minimal elements (x, y, z) correspond to the elements
(x, y+, y−, z, 1) in a Hilbert basis of the cone{

(x, y+, y−, z, u) ∈ Zn+(l−k)+1 : A(x, y+− y−, z)− bu = 0;x, y+, y−, u ≥ 0
}
.

In general, this is not a pointed rational polyhedral cone (and thus need
not have a unique inclusion-minimal Hilbert basis), since there can be linear
relations among the (free) variables z. However, projected onto the space
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of the variables x, y+, y−, u, the nonnegativity constraints lead to a pointed
rational polyhedral cone that possesses a unique inclusion-minimal Hilbert
basis. Such a minimal Hilbert basis can be computed for example with 4ti2

(see [1]).
Note that the splitting of y into y+ and y− is only used for exposition

here. In practice, one can directly use y when computing the vl-minimal
elements, see [9, Section 2.6] for more details.

4. Computation of (Extended) Atomic Fibers

In the following we show how to compute the finitely many (extended)
atomic fibers of a matrix A ∈ Zm×n In this section we will present a simple
algorithm; we will give a more complex and much more efficient algorithm
in the following sections. Both algorithms use the algorithmic pattern of a
completion procedure.

We will denote the columns of matrix A by A1, . . . , An ∈ Zm. Note that
the function normal-form(s,G) in Algorithm 4.2 is listed in Algorithm 4.3.

Algorithm 4.2 Algorithm to compute extended atomic fibers

Input: F := {±A1, . . . ,±An}
Output: A set G, such that {Qb : b ∈ G } contains all extended atomic

fibers of A
1: G := F
2: C :=

⋃
f,g∈G

{f + g} /* Forming S-vectors */

3: while C 6= ∅ do
4: s := an element in C
5: C := C \ {s}
6: f := normal-form (s,G)
7: if f 6= 0 then
8: G := G ∪ {f}
9: C := C ∪

⋃
g∈G{f + g} /* Adding S-vectors */

10: end if
11: end while
12: G := G ∪ {0}
13: return G.

Algorithm 4.3 Normal form algorithm

Input: s, G
Output: A normal form of s with respect to G

1: while there is some g ∈ G such that Qs = Qg ⊕Qs−g do
2: s := s− g
3: end while
4: return s
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Lemma 4.1. Algorithm 4.2 terminates and computes a set G such that
{Qb : b ∈ G } contains all atomic fibers of A.

Proof. Associate with b ∈ AZn the monomial ideal

IA,b :=
〈
x(z

+,z−) : Az = b, z ∈ Zn
〉
⊆ Q[x1, . . . , x2n],

where (z+)j = max(0, zj) and (z−)j = max(0,−zj) for all components j =
1, . . . , n. Algorithm 4.2 generates a sequence {f1, f2, . . .} in G \F such that
Qfj 6= Qfi ⊕ Qfj−fi whenever i < j. Thus, the corresponding sequence

{IA,f1 , IA,f2 , . . .} of monomial ideals satisfies IA,fj * IA,fi whenever i < j.
We conclude, by Theorem 3.4 [13], that this sequence of monomial ideals
must be finite and, thus, Algorithm 4.2 must terminate.

It remains to prove correctness. For this, let G denote the set that is
returned by Algorithm 4.2. Moreover, let Qb be an extended atomic fiber of

A with b 6= 0. We will show that b ∈ G.
Since F \ {0} ⊆ G \ {0}, we know that Qb =

∑
Qbj for finitely many

(not necessarily distinct) bj ∈ G\{0}. This implies in particular, that every
z ∈ Qb can be written as a sum z =

∑
vj with vj ∈ Qbj . We will show that

we can find vectors bj ∈ G such that every z ∈ Qb can be written as a sum
z =

∑
vj with vj ∈ Qbj and vj v z. This implies Qb =

⊕
Qbj . Since Qb

is atomic, this representation must be trivial, that is, it has to be Qb = Qb,

and therefore we conclude b ∈ G.
With Lemma 3.10 it is sufficient to consider the v-minimal elements in

Qb, R
(0)

b,n
= {z1, . . . , zk}, to decide if it decomposes with respect to ⊕. From

all representations Qb =
∑

j∈J Qbj with bj ∈ G\{0}, choose a representation

and elements vi,j ∈ Qbj with zi =
∑

j∈J vi,j , i = 1, . . . , k, such that the sum

(4.1)
k∑
i=1

∑
j∈J
‖vi,j‖1

is minimal. By the triangle inequality, we have that

(4.2)

k∑
i=1

∑
j∈J
‖vi,j‖1 ≥

k∑
i=1

‖zi‖1.

Herein, equality holds if and only if all vi,j have the same sign pattern as zi,
i = 1, . . . , k, that is, if and only if we have vi,j v zi for all i and all j. Thus, if
we have equality in (4.2) for such a minimal representation Qb =

∑
j∈J Qbj ,

then vi,j ∈ Qbj and vi,j v zi for all occurring vi,j , and we are done.
(It should be noted that we have required bj ∈ G \ {0} for all appearing

bj , that is, in particular, bj 6= 0. Those bj will be sufficient to generate all v-
minimal elements in the extended fiber Qb. We get the remaining elements
in Qb by adding elements from Q0.)
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Therefore, let us assume that

(4.3)

k∑
i=1

∑
j∈J
‖vi,j‖1 >

k∑
i=1

‖zi‖1.

In the following we construct a new representation Qb =
∑

j′∈J ′ Qb′j and

elements v′i,j whose corresponding sum (4.1) is smaller than the minimally

chosen sum. This contradiction proves that we have indeed equality in (4.2)
and our claim is proved.

From (4.3) we conclude that there are indices i0, j1, j2 and a component

m ∈ {1, . . . , n} such that v
(m)
i0,j1
· v(m)
i0,j2

< 0. As bj1 , bj2 ∈ G, the sum bj1 + bj2
has been built and the extended fiber Qbj1+bj2 has either been reduced to

Q0 by sets Qbj′′ , j
′′ ∈ J ′′, during the Algorithm 4.3 or bj1 + bj2 has been

added to G. In the latter case we set J ′′ := {j′′} with bj′′ := bj1 + bj2 . This
gives representations

vi,j1 + vi,j2 =
∑
j′′∈J ′′

wi,j′′ with wi,j′′ ∈ Qbj′′ and wi,j′′ v vi,j1 + vi,j2

for i = 1, . . . , k. As all wi,j′′ lie in the same orthant of Rn as vi,j1 + vi,j2 , we
get ∥∥∥ ∑

j′′∈J ′′
wi,j′′

∥∥∥
1

= ‖vi,j1 + vi,j2‖1 ≤ ‖vi,j1‖1 + ‖vi,j2‖1,

with strict inequality for i = i0.
Thus, replacing in Qb =

∑
j∈J Qbj the term Qbj1 +Qbj2 by

∑
j′′∈J ′′ Qbj′′ ,

we arrive at a new representation Qb =
∑

j′∈J ′ Qbj′ whose corresponding

sum (4.1) is at most

k∑
i=1

∑
j′∈J ′

‖vi,j′‖1 <
k∑
i=1

∑
j∈J
‖vi,j‖1,

contradicting the minimality of the representation Qb =
∑

j∈J Qbj . This
concludes the proof. �

Remark: One may use Algorithm 4.2 for the problem of finding all extended
fibers that are atomic with respect to a certain lattice Λ ⊆ Zm. Let b1, . . . , bs
be a lattice basis of the lattice Λ ∩ AZn. Then Algorithm 4.2 with input
set F = {±b1, . . . ,±bs} computes the right-hand sides of all extended fibers
that are atomic with respect to the lattice Λ.

Having an algorithm available that computes all extended atomic fibers,
we can use it to compute partially extended atomic fibers with respect to

⊕: if Q
(k)
b is atomic then so is Qb, as any decomposition of Qb, restricted

to Zk+ × Zn−k, would give a decomposition of Q
(k)
b . This way of computing

partially extended atomic fibers of a given matrix A ∈ Zm×n is illustrated
in Figure 1 and formalized in Algorithm 4.4.
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Algorithm 4.4 Computing partially extended atomic fibers

Input: F := {±A1, . . . ,±An}, k ∈ Z+

Output: A set G∗ such that {Q(k)
b : b ∈ G∗ } contains all partially extended

fibers of order k which are atomic with respect to ⊕
1: Apply Algorithm 4.2 to the set F . Let G denote the output.
2: G∗ := ∅.
3: for b ∈ G with Q

(k)
b 6= ∅ do

4: if Q
(k)
b 6= Q

(k)
g ⊕Q(k)

b−g for all g 6= b ∈ G then

5: G∗ := G∗ ∪ {b}
6: end if
7: end for
8: return G∗

+ ⊕

{Qb}b∈G

completion
restriction
dropping
reducible

{Q(k)
b }b∈G∗{Qb}b∈F

Figure 1. Computing (partially extended) atomic fibers via
extended atomic fibers

The solid arrow from the bottom up in Figure 1 stands for the completion
procedure which is given by Algorithm 4.2. The dashed arrow from the
top to the bottom illustrates the procedure of intersecting the extended
atomic fibers with Zk+ × Zn−k and dropping the reducible (or empty) fibers
afterwards.

Being given the atomic fibers Pb of a matrix A it is easy to compute the

atomic fibers P̃b which have been defined in [3]. Recall that P̃b := conv{ z :

Az = b, z ∈ Zn+ } and that P̃b is said to be atomic if each decomposition

P̃ = P̃b1 + P̃b2 implies either b = b1 or b = b2.

Lemma 4.3. If P̃b is an atomic fiber of the matrix A then Pb is atomic, too.
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Proof. Suppose Pb = Pb1 + Pb2 (and b1, b2 6= 0). Then we have: P̃b =

conv(Pb) = conv(Pb1 + Pb2) = conv(Pb1) + conv(Pb2) = P̃b1 + P̃b2 which is a
contradiction. �

Lemma 4.3 enables us to compute the atomic fibers P̃b via Algorithm 4.5.

Algorithm 4.5 Computing the atomic fibers P̃b

Input: F := {b1, . . . , bs} with Pbi is an atomic fiber

Output: A set G = {b1, . . . , bt} such that P̃bi is an atomic fiber.
1: Set G := ∅.
2: for all b ∈ F do
3: if P̃b 6= P̃g + P̃b−g for all b 6= g ∈ F then
4: G := G ∪ {b}
5: end if
6: end for
7: return G

5. Preliminaries of the project-and-lift algorithm

The way of computing atomic fibers presented in Section 4, however, is
pretty slow, since there are far more extended atomic fibers than atomic
fibers. A similar behavior can be observed when one extracts the Hilbert
basis of the cone {x : Ax = 0, x ∈ Rn+ } from the Graver basis of A, as the
Graver basis is usually much bigger than the Hilbert basis one is interested
in. Hemmecke [8] showed that one can reduce this difference in sizes by a
project-and-lift algorithm. With this algorithm, bigger Hilbert bases, even
those with more than 500,000 elements, can be computed nowadays.

In this section and in the following one, we will present an algorithm to
compute the atomic fibers of a given matrix A ∈ Zd×n which is significantly
faster than Algorithm 4.4.

During the algorithm we consider partially extended fibers

Q
(k−1)
b =

{
z ∈ Zk−1+ × Zn−k+1 : Az = b

}
with varying b ∈ Zm with respect to k-restricted Minkowski-sums. The
algorithm proceeds in n individual steps. The k-th step is illustrated in
Figure 2.

The k-th lifting step follows the arrows in the figure. It starts by perform-
ing a “preprocessing step” in which the input set is prepared for the main
part of this lifting step. This process is illustrated by the dotted arrow and
will be explained in more detail in Section 6.3.

The k-th lifting step continues as follows: it performs a completion step
similar to the one we presented in Algorithm 4.2, which is illustrated by the
solid arrow going from the bottom up. This step will be explained in more
detail in Section 6.1.
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k

{Q(k−1)
b }b∈Gk−1

{Q(k−1)
b }b∈Fk−1

{Q(k)
b }b∈Fk

{Q(k−1)
b }b∈F̃k−1

(k−1)
⊕

(k)

⊕

k − 1

Figure 2. The k-th step of the project-and-lift algorithm

The dashed arrow, finally, stands for a step where we drop all elements
of the fibers having a negative k-th component. It might happen that an
atomic partially extended fiber becomes empty or reducible when processing
this last step. Therefore we have to perform another reducibility test. The
details of this subroutine will be given in Section 6.2.

Having performed the k-th lifting step we continue performing the (k+1)-
st lifting step. The whole project-and-lift algorithm is presented in Algo-
rithm 5.6 and is illustrated in Figure 3. After having performed n of these
lifting steps we arrive at the finitely many atomic fibers of the matrix A.

Algorithm 5.6 The project-and-lift algorithm

Input: An integral matrix A ∈ Zd×n.
Output: A set G ⊂ Zd containing the right-hand sides of all atomic fibers.

1: F0 := ∅
2: for i = 1 to n do
3: Apply the procedure described in Section 6.3 to Fi−1. The output set

is denoted by F̃i−1.

4: Apply Algorithm 6.8 to the set F̃i−1. The output set is denoted by Gi.
5: Apply Algorithm 6.9 to the set Gi. The output set is denoted by Fi.
6: end for
7: return G := Fn

In [5] the project-and-lift algorithm given in Table 5.6 has been generalized
in such a way that one may compute the fibers of a matrix that are atomic
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k 3 n

�k+1

(2)

⊕
(3)

⊕

0 1 2

· · ·

�k

(n)

⊕
(1)

⊕

{Q(1)
b }b∈F̃1

{Q(2)
b }b∈F̃2

{Q(3)
b }b∈F̃3

{Q(1)
b }b∈F1 {Q(3)

b }b∈F3 {Q(n)
b }b∈G∗

{Q(0)
b }b∈G0 {Q

(1)
b }b∈G1 {Q

(2)
b }b∈G2 {Q(n−1)

b }b∈G(n−1)

{Q(2)
b }b∈F2{Q(0)

b }b∈F0

(0)

⊕

{Q(0)
b }b∈F̃0

Figure 3. The scheme of the project-and-lift algorithm

with respect to a certain monoid. This generalization gives rise to new
algorithmic subproblems, e.g. the equivalence relation on the set of right-
hand sides of the fibers that is introduced in the following paragraph and
studied in more detail in Subsection 6.3 is replaced by a preorder on this set
of right-hand sides.

Dealing with infinitely many atomic fibers. Let A ∈ Zd×n be an inte-
gral matrix. The project-and-lift algorithm will deal with partially extended
fibers with respect to l-restricted Minkowski sums where l ≤ n. Recall from

Definition 3.2 that Q
(k)
b is atomic with respect to ⊕(l) if there is no decom-

position

Q
(k)
b = Q

(k)
b1

(l)
⊕ Q(k)

b2

with b1, b2 ∈ Zm and πl
(
Q

(k)
b1

)
, πl
(
Q

(k)
b2

)
6= πl

(
Q

(k)
0

)
. Note that for l < n

there are usually some b ∈ Zm with πl
(
Q

(k)

b

)
= πl

(
Q

(k)
0

)
. Therefore, if

Q
(k)
b is atomic with respect to ⊕(l) then so are Q

(k)

b+b
, Q

(k)

b+2b
, . . . . This

means that for l < n we usually have infinitely many partially extended
fibers which are atomic with respect to ⊕(l). It is clear that no terminating
algorithm may compute the whole set of atomic partially extended fibers
with respect to ⊕(l). Therefore we introduce an equivalence relation 'l (i.e.,
a reflexive, symmetric and transitive binary relation) on the set of right-

hand side vectors b ∈ M with non-empty partially extended fiber Q
(k)
b and

perform the l-th step of the project-and-lift algorithm with respect to the
equivalence relation 'l.
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Definition 5.1. Let S(k) ⊆ Zm be the subset of Zm with Q
(k)
b 6= ∅ for

b ∈ S(k). Let A ∈ Zd×n, 0 ≤ k ≤ l ≤ n and let b, b ∈ S(k). We say that
b 'l b if b− b ∈ {λl+1Al+1 + · · ·+ λnAn : λi ∈ Z }.

Note that b 'l b is a different way of expressing πl
(
Q

(k)

b

)
= πl

(
Q

(k)
b

)
and

Q
(k)
b = Q

(k)

b
⊕(l)Q

(k)

b−b.

The relation 'l defines an equivalence relation on the set of right-hand
sides b ∈ Zm with non-empty partially extended fibers of order k.

Lemma 5.2. Let A ∈ Zm×n be an integral matrix.

(i) Let 0 ≤ k ≤ l ≤ n and let M ⊇ F = {b1, b2, . . .} be a set of vectors
with bi 6'l bj for all i < j. Then F is finite.

(ii) Let 0 ≤ k ≤ l ≤ n and let F = {b1, b2, . . .} be a set of right hand

sides satisfying Q
(k)
bi

is atomic with respect to ⊕(l) and bi 6'l bj for
all bi 6= bj. Then F is finite.

Proof. (i): Let bi, bj ∈ F with i < j and let αi, αj ∈ Z2n
+ with

bi =
∑n

k=1
αi2k−1Ak + αi2kAk and bj =

∑n

k=1
αj2k−1Ak + αj2kAk.

Then
(
αi, Q

(k)
bi

)
5
(
αj , Q

(k)
bj

)
. Suppose this is not the case. Then we have

αi v αj and Q
(k)
bj

= Q
(k)
bi
⊕Q(k)

bj−bi which implies that Q
(k)
bj

= Q
(k)
bi
⊕(l)Q

(k)
bj−bi .

But this last relation contradicts the fact that bi 6'l bj . Therefore
(
αi, Q

(k)
bi

)
5(

αj , Q
(k)
bj

)
for all bi, bj ∈ F for i < j. Finiteness of F follows with Lemma

3.6(i).

(ii): This is a direct consequence of (i). �

Our algorithm will work with sets of vectors F which have the property
claimed in Lemma 5.2. Additionally they will admit the following property:

if b ∈ M is the right-hand side of a partially extended fiber Q
(k)
b which is

atomic with respect to ⊕(l) then there is b ∈ F with b 'l b.

6. The k-th step of the project-and-lift algorithm

In the following subsections we will explain the individual steps the project-
and-lift algorithm performs during one lifting step.

6.1. The completion procedure. In this subsection we will explain the
so-called “completion procedure” in the k-th step of the algorithm. This
part is illustrated in Figure 4.

We denote by S(k) = { b ∈ Zm : Q
(k)
b 6= ∅ } the subset of all right-hand

sides b ∈ Zm admitting non-empty partially extended fibers of order k. For
0 ≤ l ≤ n, let L(l) denote the set {λl+1Al+1 + · · ·+ λnAn : λi ∈ Z }.
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(k−1)
⊕

k − 1 k

{Q(k−1)
b }b∈F̃k−1

{Q(k−1)
b }b∈Gk−1

(k)

⊕

Figure 4. The completion procedure of the k-th lifting step

Definition 6.1. We introduce a weight function ωm for partially extended

fibers Q
(k)
b (m ≤ k ≤ n) by

ωm
(
Q

(k)
b

)
= min

{
||πm(v)||1 : v ∈ Q(k)

b

}
.

Remark: Actually, it suffices to determine ||πm(v)||1 for vm-minimal ele-

ments v in Q
(k)
b to determine the value of ωm

(
Q

(k)
b

)
. To see this, sup-

pose there is w ∈ Q
(k)
b non-minimal with respect to vm. Then there is

v ∈ Q(k)
b with v vm w and thus 0 ≤ vj ≤ wj for j = 1, . . . , k. Therefore

||πm(v)||1 ≤ ||πm(w)||1.

Algorithm 6.7 The normal-form algorithm

Input: s,Gω=0, Gω≥1

Output: A normal form of s with respect to Gω=0 ∪Gω≥1

1: if ∃ g ∈ Gω≥1 with Q
(k−1)
s = Q

(k−1)
g ⊕(k)Q

(k−1)
s−g then

2: return 0
3: else
4: while ∃ g ∈ Gω=0 with Q

(k−1)
s = Q

(k−1)
g ⊕(k)Q

(k−1)
s−g do

5: s := s− g
6: end while
7: return s
8: end if
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Algorithm 6.8 The completion procedure to compute atomic partially ex-
tended fibers

Input: A set F̃k−1 ⊆ S(k−1) with the following properties:

(i) For every right-hand side b ∈ S(k−1) there exists b̃ ∈ Zm with

b̃ 'k b and

(6.1) Q
(k−1)
b̃

=
⊕(k−1)

i
Q

(k−1)
bi

with bi ∈ F̃k−1.

(ii) bi 6'k bj for bi, bj ∈ F̃k−1 with bi 6= bj .

Output: A set Gk−1 ⊆ S(k−1) with the properties:

(i) For every right-hand side b ∈ S(k−1) of a partially extended fiber

Q
(k−1)
b which is atomic with respect to ⊕(k) there exists b̃ ∈ Gk−1

with b̃ 'k b.
(ii) bi 6'k bj for bi 6= bj ∈ Gk−1.

1: G
ω=0

:= { f ∈ F̃k−1 : ωk−1(Q
(k−1)
f ) = 0 }

2: Cω=0 :=
⋃
f,g∈Gω=0 {f + g}

3: while Cω=0 6= ∅ do
4: s := an element in Cω=0

5: Cω=0 := Cω=0 \ {s}
6: f := normal-form (s,G

ω=0
,∅)

7: if f /∈ L(k) then

8: G
ω=0

:= G
ω=0 ∪ {f}

9: Cω=0 := Cω=0 ∪
⋃
g∈Gω=0 {f + g}

10: end if
11: end while
12: Gω=0 := ∅
13: for all b ∈ Gω=0

do
14: if Q

(k−1)
b 6= Q

(k−1)
g ⊕(k)Q

(k−1)
b−g for all b 6= g ∈ Gω=0

then

15: Gω=0 := Gω=0 ∪ {b}
16: end if
17: end for
18: G

ω≥1
:= { f ∈ F̃k−1 : ωk−1(Q

(k−1)
f ) > 0 }, Gω≥1 = ∅

19: for all g ∈ Gω≥1 do
20: Gω≥1 = Gω≥1 ∪ normal-form (g,Gω=0,∅)
21: end for
22: Cω≥1 :=

⋃
f,g∈Gω≥1 {f + g}

23: while Cω≥1 6= ∅ do

24: s := an element in Cω≥1 with smallest weight ωk−1(Q
(k−1)
s )

25: Cω≥1 := Cω≥1 \ {s}
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Algorithm 6.8 (cont.)

26: f := normal-form (s,Gω=0, Gω≥1)
27: if f 6= 0 then
28: Gω≥1 := Gω≥1 ∪ {f}
29: Cω≥1 := Cω≥1 ∪

⋃
g∈Gω=0∪Gω≥1 {f + g}

30: end if
31: end while
32: Gk−1 := Gω=0 ∪Gω≥1 ∪ {0}
33: return Gk−1

Lemma 6.3. Algorithm 6.8 with input set F̃k−1 := {b1, . . . , bs} terminates
and computes a set Gk−1 = Gω=0 ∪Gω≥1 ∪ {0} with properties (i) and (ii).

For the proof of Lemma 6.3, we have to introduce some more notation.

Notation 6.4. During the proof of Algorithm 6.8 we examine elements of
partially extended fibers. These elements will be denoted

Q
(k−1)
b 3 z = (z1, z2, z3) ∈ Zk−1+ × Z× Zn−k,

i.e., z1 ∈ Z(k−1)
+ denotes the first k − 1 components, z2 ∈ Z the k-th compo-

nent and z3 ∈ Z(n−k) denotes the last n− k components.

We are now in the position to prove Lemma 6.3.

Proof of Lemma 6.3. As the following proof will be slightly complex, con-
sider the following outline of the proof first:

(1) We show that Gk−1 ⊆ S(k−1).
(2) We show that the set Gω=0 is finite and that for all bi, bj ∈ Gω=0

with bi 6= bj we have bi 6'k bj .
(3) We show that Gk−1 is finite. This implies that Algorithm 6.8 ter-

minates. At the same time we show that the output set admits
property (ii), i.e., bi 6'k bj for bi 6= bj ∈ Gk−1.

(4) We show that if Q
(k−1)
b is an atomic partially extended fiber with

respect to ⊕(k) then there is b̃ 'k b with b̃ ∈ Gk−1. This is property
(i) of the output set.

Step 1.) It is clear that Algorithm 6.8 returns a set Gk−1 ⊆ Sk−1 as all
input vectors lie in this set.

Step 2.) We will now prove that the set Gω=0 is finite. To this aim we show

finiteness of G
ω=0

first. Consider the sequence

G
ω=0 \

{
f ∈ F̃k−1 : ωk−1

(
Q

(k−1)
f

)
= 0

}
= {f1, f2, . . .}

produced in lines 1–11 of the algorithm. Clearly fi ∈ S(k−1) for all i. Addi-

tionally fi 6'k fj for all i < j. Finiteness of G
ω=0

follows with Lemma 5.2.
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As Gω=0 ⊆ G
ω=0

it is clear now that Gω=0 is finite. Additionally lines
12–17 of Algorithm 6.8 guarantee that bi 6'k bj for all bi, bj ∈ Gω=0 with
bi 6= bj .

Step 3.) Let Gω=α := { b ∈ Gk−1 : ωk−1
(
Q

(k−1)
b

)
= α } for α ∈ Z+.

Furthermore let Gω≤α := { b ∈ Gk−1 : ωk−1
(
Q

(k−1)
b

)
≤ α } for α ∈ Z+. We

will show via induction that bi 6'k bj for bi, bj ∈ Gω≤α with bi 6= bj . Lemma
5.2 then yields that Gω≤α is finite. Clearly we have Gk−1 =

⋃
α∈Z+

Gω≤α.

Let bi, bj ∈ Gk−1 with bi 6= bj . Then there is α ∈ Z+ with bi, bj ∈ Gω≤α
yielding bi 6'k bj . The set Gk−1 admits property (ii) of the output set which
together with Lemma 5.2 yields that Gk−1 is finite.

We will show via induction that Gω≤α is finite. With Step 2 of the proof
we know that our claim is proved for α = 0. Suppose that our assertions
are true for all integers lower or equal than α. We will prove our claim for
α+ 1. Let bi, bj ∈ Gω≤α+1 and suppose bi 'k bj . There are several possible
cases:

(i) bi, bj ∈ F̃k−1
This contradicts input property (ii) of the input set F̃k−1.

(ii) bi ∈ F̃k−1, bj /∈ F̃k−1
This contradicts the if-clause of Algorithm 6.7 because bi then is an
appropriate reducer of bj .

(iii) bi /∈ F̃k−1, bj ∈ F̃k−1
As ωk−1(Q

(k−1)
bj−bi ) = 0 and as Gω=0 is completed before Gω≥1 we

know that there is b ∈ Gω=0 with b 'k bj − bi 'k bj . But this is a
contradiction to lines 18–21 of Algorithm 6.8 because in this case bj
would not have been added to Gω≥1 then.

(iv) bi, bj /∈ F̃k−1
Depending on whether either bi has been added to Gω=α+1 before
bj was added or not we either have a contradiction to the if-clause
of Algorithm 6.7 or to the else-clause of this algorithm.

We know via induction that Gω≤α admits property (ii) of the output set.
We will now show that this is also true for Gω≤α+1. Let bi, bj ∈ Gω≤α+1 and
suppose bi 'k bj . By induction, the previous discussion and monotonicity of
the weight-function ωk(·): bi ∈ Gω≤α and bj ∈ Gω=α+1. But this contradicts
the if-clause of Algorithm 6.7. Therefore Gω≤α+1 admits property (ii) of the
output set which had to be proved.

Step 4.) Let b ∈ S(k−1) such that Q
(k−1)
b is atomic with respect to ⊕(k)

and weight ωk−1
(
Q

(k−1)
b

)
=: αmin smallest such that there is no b ∈ Gk−1

with b ∼ b. We know from input property (i) that there is b̃ ∈ Zm, b̃ 'k b,
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admitting a representation (6.1):

Q
(k−1)
b̃

=

(k−1)⊕
i∈I

Q
(k−1)
bi

,

where bi ∈ F̃k−1. We will show that b̃ ∈ Gk−1 yielding a contradiction. The

above representation implies in particular that every z = (z1, z2, z3) ∈ Q(k−1)
b̃

can be written as (z1, z2, z3) =
∑

i∈I (zi1, z
i
2, z

i
3) with (zi1, z

i
2, z

i
3) ∈ Q

(k−1)
bi

. In
particular,

(6.2) (zi1, z
i
2, z

i
3) vk−1 (z1, z2, z3)

for all i. If Q
(k−1)
bi

3 (zi1, z
i
2, z

i
3) vk (z1, z2, z3) was valid this then would

imply: Q
(k−1)
b̃

=
⊕(k)

i∈I Q
(k−1)
bi

.

Let R
(k−1)
b̃,k

= {(z11, z12, z13), . . . , (zt1, zt2, zt3)} be the set of representatives of

thevk-minimal elements inQ
(k−1)
b̃

according to Definition 3.8. With Lemma

3.10 we know that it is sufficient to analyze the vk-minimal elements in a
partially extended fiber to decide decomposability with respect to ⊕(k).

From all representations Q
(k−1)
b̃

=
⊕(k−1)

j∈J Q
(k−1)
bj

with bj ∈ Gk−1 and

πk
(
Q

(k−1)
bj

)
6= πk

(
Q

(k−1)
0

)
and where the vk−1-minimal elements in R

(k−1)
b̃,k

are represented as (zi1, z
i
2, z

i
3) =

∑
j∈J (zi,j1 , zi,j2 , zi,j3 ) with (zi,j1 , zi,j2 , zi,j3 ) ∈

Q
(k−1)
bj

for i = 1, . . . , t, choose a representation and elements (zi,j1 , zi,j2 , zi,j3 )

such that the sum

(6.3)

t∑
i=1

∑
j∈J

∥∥(zi,j1 , zi,j2 )
∥∥
1

is minimal.
By the triangle inequality we have

(6.4)

t∑
i=1

∑
j∈J

∥∥(zi,j1 , zi,j2 )
∥∥
1
≥

t∑
i=1

∥∥(zi1, z
i
2)
∥∥
1

Herein equality holds if and only if all (zi,j1 , zi,j2 ) have the same sign pattern

as (zi1, z
i
2), i = 1, . . . , t, that is, if and only if we have (zi,j1 , zi,j2 , zi,j3 ) vk

(zi1, z
i
2, z

i
3) for all j ∈ J and all i = 1, . . . , t. Thus if we have equality

in (6.4) for such a minimal representation Q
(k−1)
b̃

=
⊕(k−1)

j∈J Q
(k−1)
bj

then

by Lemma 3.10 Q
(k−1)
b̃

=
⊕(k)

j∈J Q
(k−1)
bj

. As πk
(
Q

(k−1)
bj

)
6= πk

(
Q

(k−1)
0

)
, as

Q
(k−1)
b (and therefore Q

(k−1)
b̃

) is atomic with respect to ⊕(k), the above

representation must be trivial and we are done.
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Therefore let us assume, that

(6.5)
t∑
i=1

∑
j∈J

∥∥(zi,j1 , zi,j2 )
∥∥
1
>

t∑
i=1

∥∥(zi1, z
i
2)
∥∥
1

In the following, we construct a new representation Q
(k−1)
b̃

=
⊕(k−1)

j′∈J ′ Q
(k−1)
b′j

and elements (z̃i,j1 , z̃i,j2 , z̃i,j3 ) whose corresponding sum (6.3) is smaller than
the minimally chosen sum. This contradiction proves that we have indeed
equality in (6.4) and our claim is proved.

From (6.5) and from (6.2), i.e., zi,j1 v zi1 for all i and j, we conclude that

there are indices i0, j1, j2 such that zi0,j12 · zi0,j22 < 0. As bj1 , bj2 ∈ Gω=0

the sum bj1 + bj2 was built during the algorithm. There are two cases to
consider:

(i) ωk−1

(
Q

(k−1)
bj1+bj2

)
= ωk−1

(
Q

(k−1)
bj1

)
+ ωk−1

(
Q

(k−1)
bj2

)
= 0 or

(ii) ωk−1

(
Q

(k−1)
bj1+bj2

)
= ωk−1

(
Q

(k−1)
bj1

)
+ ωk−1

(
Q

(k−1)
bj2

)
> 0

Consider case (i) first. We have

ωk−1

(
Q

(k−1)
bj1+bj2

)
= ωk−1

(
Q

(k−1)
bj1

)
+ ωk−1

(
Q

(k−1)
bj2

)
= 0

and thus there is no partially extended fiber with weight ωk−1 greater than

0 that reduces Q
(k−1)
bj1+bj2

. Consequently the partially extended fiber Q
(k−1)
bj1+bj2

was either reduced to Q
(k−1)
0 by sets Q

(k−1)
bj′′

, j′′ ∈ J ′′, during the else-clause

of the Algorithm 6.7 or the vector bj1 + bj2 has been added to the set G
ω=0

.

Then either bj1 + bj2 ∈ Gω=0 or we find sets Q
(k−1)
bj′′

, j′′ ∈ J ′′, with

Q
(k−1)
bj1+bj2

=

(k)⊕
j′′∈J ′′

Q
(k−1)
bj′′

with bj′′ ∈ Gω=0. In the former case, set J ′′ := {j′′} with bj′′ := bj1 + bj2 .
Now consider case (ii). Monotonicity of the weight-function ωk−1 implies

that ωk−1
(
Q

(k−1)
bj1+bj2

)
≤ αmin. Suppose that ωk−1

(
Q

(k−1)
bj1+bj2

)
< αmin. As there

are representatives of all equivalence classes of weight smaller than αmin

included in Gk−1 we find an index set J ′′ with bj′′ ∈ Gk−1 and

Q
(k−1)
bj1+bj2

=

(k)⊕
j′′∈J ′′

Q
(k−1)
bj′′

.

Therefore let us assume that ωk−1
(
Q

(k−1)
bj1+bj2

)
= αmin. In this case as well,

we either find an index set J ′′ with bj′′ ∈ Gk−1 and

Q
(k−1)
bj1+bj2

=

(k)⊕
j′′∈J ′′

Q
(k−1)
bj′′



COMPUTATION OF ATOMIC FIBERS OF Z-LINEAR MAPS 59

or bj1 + bj2 has been added to the set Gω≥1. In the latter case we set
J ′′ := {j′′} with bj′′ = bj1 + bj2 .

Each of these cases gives representations

(zi,j11 , zi,j12 , zi,j13 ) + (zi,j21 , zi,j22 , zi,j23 ) =
∑
j′′∈J ′′

(z̃i,j
′′

1 , z̃i,j
′′

2 , z̃i,j
′′

3 ),

(z̃i,j
′′

1 , z̃i,j
′′
, z̃i,j

′′

3 ) ∈ Q(k−1)
bj′′

,

(z̃i,j
′′

1 , z̃i,j
′′

2 , z̃i,j
′′

3 ) vk (zi,j11 , zi,j12 , zi,j13 ) + (zi,j21 , zi,j22 , zi,j23 )

for i = 1, . . . , t. As all
(
z̃i,j

′′

1 , z̃i,j
′′

2

)
lie in the same orthant as

(
zi,j11 , zi,j12

)
+(

zi,j21 , zi,j22

)
we get∥∥∥ ∑
j′′∈J ′′

(z̃i,j
′′

1 , z̃i,j
′′

2 )
∥∥∥
1

=
∥∥∥(zi,j11 , zi,j12 ) + (zi,j21 , zi,j22 )

∥∥∥
1

≤
∥∥∥(zi,j11 , zi,j12 )

∥∥∥
1

+
∥∥∥(zi,j21 , zi,j22 )

∥∥∥
1

with strict inequality for i = i0. So, by replacing in Q
(k−1)
b̃

=
⊕(k−1)

j∈J Q
(k−1)
bj

the term Q
(k−1)
bj1

⊕(k−1)Q
(k−1)
bj2

by
⊕(k)

j′′∈J ′′ Q
(k−1)
bj′′

we arrive at a new rep-

resentation Q
(k−1)
b̃

=
⊕(k−1)

j′∈J ′ Q
(k−1)
bj′

whose corresponding sum (6.3) is at

most
t∑
i=1

∑
j′∈J ′

∥∥(zi,j
′

1 , zi,j
′

2 )
∥∥
1
<

t∑
i=1

∑
j∈J

∥∥(zi,j1 , zi,j2 )
∥∥
1

contradicting the minimality of the representation Q
(k−1)
b̃

=
⊕(k−1)

j∈J Q
(k−1)
bj

.

Therefore we have equality in (6.4) and thus b̃ ∈ Gk−1 concluding our proof.
�

6.2. Intersecting with the appropriate orthant and testing reducibil-
ity. In this subsection we want to illustrate the step of the project-and-lift
algorithm which follows the completion procedure in each lifting step. This
“intersection and reducibility test” is illustrated by the dashed arrow in
Figure 5.

Lemma 6.5. Algorithm 6.9 with input set Gk−1 terminates and computes
a set Fk ⊆ S(k) with the properties (i) and (ii).

Proof. Termination of Algorithm 6.9 is clear. We have to show correctness

of the algorithm. If Q
(k)
b 6= ∅ then b ∈ S(k). Therefore Fk ⊆ S(k). If Q

(k)
b is

atomic with respect to ⊕(k), then Q
(k−1)
b is atomic with respect to ⊕(k) as

well, because Q
(k)
b ⊆ Q

(k−1)
b and every decomposition of Q

(k−1)
b would give

a decomposition of Q
(k)
b . This characteristic immediately implies property

(i) of the output set because we have property (i) of the input set.
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{Q(k−1)
b }b∈Gk−1

{Q(k)
b }b∈Fk

(k)

⊕

k

Figure 5. Intersecting with the appropriate orthant and
dropping reducible partially extended fibers

Algorithm 6.9 Intersecting and testing reducibility

Input: A set Gk−1 ⊆ S(k−1) with the properties:

(i) For every right-hand side b ∈ S(k−1) of a partially extended fiber

Q
(k−1)
b which is atomic with respect to ⊕(k) there exists b̃ ∈ Gk−1

with b̃ 'k b.
(ii) bi 6'k bj for bi, bj ∈ Gk−1 with bi 6= bj

Output: A set Fk ⊆ S(k) of right-hand sides with:

(i) For every right-hand side b ∈ S(k) of a partially extended fiber

Q
(k)
b which is atomic with respect to ⊕(k) there exists b̃ ∈ Fk

with b̃ 'k b.
(ii) bi 6'k bj for bi, bj ∈ Fk with bi 6= bj .

1: Fk := ∅
2: for all b ∈ Gk−1 with Q

(k)
b 6= ∅ do

3: if Q
(k)
b 6= Q

(k)
g ⊕(k)Q

(k)
b−g for all b 6= g ∈ Gk−1 then

4: Fk := Fk ∪ {b}
5: end if
6: end for
7: return Fk

To see property (ii) of the output set, suppose that there are b1, b2 ∈ Fk
with b2 'k b1. Then, Q

(k)
b1

= Q
(k)
b2
⊕(k)Q

(k)
b1−b2 and b1−b2 ∈ L(k). In this case
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either b1 or b2 would not have been added to Fk. This yields that bi 6'k bj
for all bi, bj ∈ Fk. Therefore Algorithm 6.9 is correct and terminates. �

6.3. Refining the equivalence relation. There is one more step to ex-
plain in the k-th lifting step of the project-and-lift algorithm. This step is
illustrated by the dotted arrow in Figure 6.

{Q(k)
b }b∈Fk

{Q(k)
b }b∈F̃k

(k)

⊕

k

Figure 6. Refining the equivalence relation to prepare the
k + 1-st lifting step

Having a set Fk ⊆ S(k) at hand admitting the following properties:

(i) for every right-hand side b ∈ S(k) of a partially extended fiber Q
(k)
b

which is atomic with respect to ⊕(k) there exists b̃ ∈ Fk with b̃ 'k b.
(ii) bi 6'k bj for bi, bj ∈ Fk,

we want to construct a set F̃k ⊆ S(k) with

(i) For every right-hand side b ∈ S(k) there is b̃ ∈ Zm with b̃ 'k+1 b and

Q
(k)

b̃
=
⊕(k)

i
Q

(k)
bi

where bi ∈ F̃k

(ii) bi 6'k+1 bj for all bi, bj ∈ F̃k with bi 6= bj .

Lemma 6.6. Let Q
(k)
b be atomic with respect to ⊕(k). Then there is b ∈ Fk

and λb ∈ Z such that b+ λbAk+1 'k+1 b.

Proof. Let Q
(k)
b be atomic w.r.t. ⊕(k). Then there is b ∈ Fk with b 'k b. If

b 'k+1 b we set λb := 0 and we are done. Now suppose b 6'k+1 b. Consider
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b− b =
∑

i≥k+1 λiAi, where λi ∈ Z and λk+1 6= 0. Setting λb := λk+1 yields

b+ λbAk+1 'k+1 b. �

Now we are in the position to define the set F̃k. If Ak+1,−Ak+1 6'k+1 0, we

set F̃k := Fk ∪ {±Ak+1}. If Ak+1 6'k+1 0, −Ak+1 6'k+1 0 or ±Ak+1 6'k+1 0

we set F̃k = Fk ∪ {−Ak+1}, F̃k = Fk ∪ {Ak+1} or F̃k = Fk.

Lemma 6.7. Let b ∈ S(k). There exists b̃ 'k+1 b with

Q
(k)

b̃
=

(k)⊕
i

Q
(k)
bi

with bi ∈ F̃k.

Proof. Consider a decomposition of Q
(k)
b into partially extended fibers that

are atomic w.r.t. ⊕(k):

Q
(k)
b =

(k)⊕
i

Q
(k)
bi
.

With Lemma 6.6 we know that for each bi in this decomposition there

is bi ∈ Fk and λbi ∈ Z such that bi 'k+1 bi + λbiAk+1. We set b̃ :=∑
i (bi + λbiAk+1). Then clearly b̃ 'k+1 b and furthermore

Q
(k)

b̃
=

(k)⊕
i

(
Q

(k)

bi

(k)
⊕ λbiQ

(k)
Ak+1

)
=

(k)⊕
i

Q
(k)

bi

(k)
⊕
(∑

i

λbi

)
Q

(k)
Ak+1

.

This proves our claim. �

7. Comparing the two algorithms

We have created an implementation of the “project-and-lift” algorithm.
The implementation is written in Allegro Common Lisp 8.0 and C. For the
computation of the minimal elements of partially extended fibers, we use the
library libzsolve, which is a part of 4ti2 [1], version 1.3.1. In this section,
we report on the computational experience with this code on several test
problems. All computation times are given in CPU seconds on a Sun Fire
V440 with UltraSPARC-IIIi processors running at 1.6 GHz.

7.1. Results for number-partitioning problems. We first consider the
problem of partitioning a natural number n into given parts (natural num-
bers) a1, . . . , ak (with possible multiplicity). To this end, consider the set

(7.1) Pn =
{

(x1, . . . , xk) ∈ Zk+ : n =
k∑
i=1

xi · ai
}
.

We are interested in a minimal set {n1, . . . , nq} of natural numbers such that
the set Pn of partitions of every number n is the Minkowski sum of some of
the sets Pnj . Thus we are interested in the atomic fibers corresponding to
the matrix

(7.2)
(
a1 a2 a3 · · · ak

)
.



COMPUTATION OF ATOMIC FIBERS OF Z-LINEAR MAPS 63

We consider this problem for various sets of numbers a1,. . . ,ak. The results
are shown in Table 1.

Table 1. Results for number-partitioning problems

Time (s)

Parts Atomic fibers Algorithm 4.4 Algorithm 5.6

1 1 1 1
1 2 2 1 1
1 2 3 4 1 1
1 2 3 4 9 1 1
1 2 3 4 5 32 ? 311
1 2 3 4 5 6 41 ? 30618
2 3 3 1 1
2 3 5 14 1 1
3 5 1 1 1
3 5 7 30 16 1
5 7 11 62 221 19
5 7 13 62 409 12

7.2. Results for homogeneous number-partitioning problems. We
consider the problem of partitioning a natural number n into given natural
numbers a1, . . . , ak (with possible multiplicity), where we prescribe the
number of summands. To this end, we consider the set

(7.3) Pmn =
{

(x1, . . . , xk) ∈ Zk+ : n =

k∑
i=1

xi · ai, m =

k∑
i=1

xi

}
.

We are interested in a minimal set {(m1, n1), . . . , (mq, nq)} of pairs (m,n)
such that the set Pmn of partitions of every number n into m summands is
the Minkowski sum of some of the sets P

mj
nj . Thus we are interested in the

atomic fibers corresponding to the matrix

(7.4)

(
1 1 · · · 1
a1 a2 · · · ak

)
.

Again we consider the problem for various sets of numbers a1,. . . ,ak. The
results are shown in Table 2. We remark that the problem data (1, 2, 3, 4)
correspond to a problem equivalent to the one from Example 3.7.

7.3. Results for Steinberger’s sums of roots of unity. One example
that appears and was solved in [18] is the computation of the atomic fibers
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Table 2. Results for homogeneous number-partitioning problems

Time (s)

Parts Atomic fibers Algorithm 4.4 Algorithm 5.6

1 1 1 1
1 2 2 1 1
1 2 3 4 1 1
1 2 3 4 18 2 1
1 2 3 4 5 79 5511 12
2 3 2 1 1
2 3 5 4 1 1
2 3 5 7 26 172 1
1 2 3 5 12 3 2
1 2 3 6 35 858 4
1 2 3 7 19 199 1
1 2 3 8 58 63861 89
1 2 3 9 28 6707 3
1 2 3 10 87 >2000000 1211
1 2 3 11 39 135375 18
1 2 3 13 52 ? 119
1 2 3 15 67 ? 770
1 2 3 17 84 ? 6331

of the matrix
1 −1 0 −1 1 0 0 0 0
0 1 −1 0 −1 1 0 0 0
0 0 0 1 −1 0 −1 1 0
0 0 0 0 1 −1 0 −1 1

 .

This matrix corresponds to a certain problem on 3×3 tables and has in fact
31 atomic fibers and 79 extended atomic fibers. The atomic fibers can be
computed with our implementation in less than one CPU second.

The next higher problem on 4× 4 tables leads to the matrix

1 −1 0 0 −1 1 0 0 0 0 0 0 0 0 0 0
0 1 −1 0 0 −1 1 0 0 0 0 0 0 0 0 0
0 0 1 −1 0 0 −1 1 0 0 0 0 0 0 0 0
0 0 0 0 1 −1 0 0 −1 1 0 0 0 0 0 0
0 0 0 0 0 1 −1 0 0 −1 1 0 0 0 0 0
0 0 0 0 0 0 1 −1 0 0 −1 1 0 0 0 0
0 0 0 0 0 0 0 0 1 −1 0 0 −1 1 0 0
0 0 0 0 0 0 0 0 0 1 −1 0 0 −1 1 0
0 0 0 0 0 0 0 0 0 0 1 −1 0 0 −1 1


.

Our implementation was able to compute the 12,675 atomic fibers for this
matrix within 6.5 CPU days.
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7.4. Network instances. Fibers of matrices arising from multicommodity
flow problems have been used by [5, 6] to reformulate nonlinear network
design problem as integer linear programs. The matrices corresponding to
these problems arise from fixed underlying digraphs with a prescribed com-
modity structure. Each commodity gives rise to a submatrix consisting of
a node-arc incidence matrix (modeling demand and flow conservation con-
straints) and an identity matrix (modeling capacity constraints). As the ca-
pacity constraints are inequalities, slack variables are introduced for all arcs
of the underlying digraph to formulate the capacity constraints as equal-
ity constraints. These slack variables give rise to a submatrix consisting of
an all-zero matrix (with respect to the demand and flow-conservation con-
straints) and an identity matrix (with respect to the capacity constraints).

We computed the set of atomic fibers for a few network instances (see
Table 3), the underlying graphs of which are depicted in Figure 7. The right-
hand sides stem from the lattice that is induced by the flow-conservation
constraints.

Note that circulations of flow are truncated in these examples, i.e., the
fibers consist just of those multicommodity flows that are circulation-free.
During the project-and-lift algorithm, elements in partially extended fibers
are truncated if they admit a circulation of flow on variables that are al-
ready lifted, i.e., that are non-negative. Correctness of the project-and-lift
algorithm follows from the following observation: let f be a circular solution

in Q
(k)
b . Then f is a representative of the set of solutions f + Q

(k)
0 . The

non-negativity on the first k components implies that every element in this
set admits a circulation of flow. Therefore, no circulation-free element is
removed by truncating the representative f .

For some network instances, we bounded the demand vector of the multi-
commodity flow problems. This means that we computed only those atomic
fibers with a demand vector less or equal than the bounding demand vec-
tor. The bounding demand vector is given in the column entitled “Demand
bounds” of Table 3. The column entitled “Commodities” gives the number
of commodities of the underlying multicommodity flow problem.

8. Conclusions

Our computational study in Section 7 shows that the development of the
algorithmic theory of lifting partially extended atomic fibers has led to a
dramatic improvement upon basic completion-type algorithms.

This algorithmic and computational study is only the beginning. We
hope that the new computational tools introduced in this paper will have
an impact not only on our own applications in optimization, but also on the
computer algebra community through the increased computational power
that is now available for constructing strong SAGBI bases.

An extension of the algorithm to compute the atomic fibers with respect
to monoids is introduced in [5].
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Magdeburg, Germany
E-mail address: eisensch@imo.math.uni-magdeburg.de

Zentrum Mathematik, M9, Technische Universität München,
Boltzmannstr. 3, 85747 Garching, Germany

E-mail address: hemmecke@ma.tum.de



COMPUTATION OF ATOMIC FIBERS OF Z-LINEAR MAPS 69

Department of Mathematics, University of California, Davis,
One Shields Avenue, Davis, CA 95616, USA

E-mail address: mkoeppe@math.ucdavis.edu


