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ON CYCLE PACKINGS AND FEEDBACK VERTEX SETS

GLENN G. CHAPPELL, JOHN GIMBEL, AND CHRIS HARTMAN

Abstract. For a graph G, let fvs and cp denote the minimum size of
a feedback vertex set in G and the maximum size of a cycle packing in
G, respectively. Kloks, Lee, and Liu conjectured that fvs(G) ≤ 2 cp(G)
if G is planar. They proved a weaker inequality, replacing 2 by 5. We
improve this, replacing 5 by 3, and verifying the resulting inequality for
graphs embedded in surfaces of nonnegative Euler characteristic. We
also generalize to arbitrary surfaces. We show that, if a graph G embeds
in a surface of Euler characteristic c ≤ 0, then fvs(G) ≤ 3 cp(G) +
103(−c). Lastly, we consider what the best possible bound on fvs might
be, and give some open problems.

1. Background

All graphs will be finite and undirected. We will allow loops and multiple
edges. A cycle packing in a graph G is a set of vertex-disjoint cycles in G.
We denote the maximum cardinality of a cycle packing in G by cp(G). A
feedback vertex set in G is a set of vertices of G that meets every cycle in
G. We denote the minimum cardinality of a feedback vertex set in G by
fvs(G).

It is easily seen that fvs(G) ≥ cp(G). Thus, knowing the value of cp(G),
places a lower bound on fvs(G). Does it also place an upper bound on
fvs(G)? Erdős and Pósa [1] answered this question in the affirmative by
showing the following.

Theorem 1.1 (Erdős & Pósa 1965 [1]). The maximum value of fvs(G),
over all graphs G with cp(G) = k, is Θ(k log k).

Kloks, Lee, and Liu [2] sought a better upper bound for planar graphs.
They made the following conjecture, known as “Jones’ Conjecture”1.

Conjecture 1.2 (Jones’ Conjecture—Kloks, Lee & Liu 2002 [2, Conj. 2]).
Let G be a planar graph. Then

fvs(G) ≤ 2 cp(G).
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If this conjecture holds, then the inequality is sharp, as shown by K4—
or, more generally, a disjoint union of copies of K4, possibly with pendant
vertices of degree 1 added.

Kloks, Lee, and Liu [2, Thm. 11] verified Conjecture 1.2 for the special
case of outerplanar graphs. For planar graphs in general, they proved a
weaker result [2, Thm. 8]: fvs(G) ≤ 5 cp(G). We improve this last result,
replacing 5 with 3. We also generalize to graphs on other surfaces, and we
state a number of open problems.

We denote the vertex set of graph G by V (G). We denote the degree of
a vertex v by d(v), and the length of a face f by `(f). An embedding of a
graph G in a surface is a 2-cell embedding if the interior of each face of G is
homeomorphic to an open disk.

2. Surfaces of Nonnegative Euler Characteristic

We show that fvs(G) ≤ 3 cp(G) if G embeds in a surface with nonnegative
Euler characteristic.

We begin with a technical lemma showing the existence of certain con-
figurations in a graph. We will make use of this lemma in our proof of the
above result.

Lemma 2.1. Let G be a connected simple graph, 2-cell embedded in a closed
surface S with nonnegative Euler characteristic. Let G have minimum degree
at least 3 and girth at least 4. Then one of the following holds.

(i) G has either
(a) a face of length 6 with all vertices having degree 3,
(b) a face of length 5 with at least 3 vertices of degree 3, counting

multiplicities, or
(c) a face of length 4 with at least 1 vertex of degree 3.

(ii) Every face of G has length 4, and every vertex of G has degree 4.

Proof. Let G and S be as in the statement of the result. Assign a charge ch to
the vertices and faces of G as follows. For each vertex v, let ch(v) = 4−d(v).
For each face f , let ch(f) = 4 − `(f). Then the sum of all the vertex and
face charges is 4V − 4E + 4F (where V , E, and F count the vertices, edges,
and faces of G, respectively), which is 4 times the Euler characteristic of the
surface S, and thus is nonnegative.

Now redistribute the vertex charge. For each vertex v, add ch(v)/d(v) to
the charge of each face on which v lies, counting multiplicities, and set the
charge of v to 0. Denote this revised charge by ch′. Then for each face f ,

ch′(f) := 4− `(f) +
∑
v∈f

4− d(v)

d(v)
,

where “v ∈ f” means that v is a vertex in the facial walk of f , and the sum
counts multiplicities.
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The total ch′ charge is the same as the total ch charge; in particular, it
is nonnegative. Since ch′(v) = 0 for each vertex v, there must be a face f+
with ch′(f+) ≥ 0.

Let k be the number of vertices of degree 3 lying on f+, counting multi-
plicities. Since vertices of degree 4 or more had nonpositive ch charge, we
have

0 ≤ ch′(f+) ≤ 4− `(f+) +
1

3
k,

and so

(2.1) k ≥ 3`(f+)− 12.

If `(f+) > 6, then inequality (2.1) implies that k > `(f+), which is impossi-
ble, and so we must have 4 ≤ `(f+) ≤ 6.

If `(f+) = 6, then inequality (2.1) becomes k ≥ 6, and so statement (i)(a)
in our result holds, and we are done. If `(f+) = 5, then inequality (2.1)
becomes k ≥ 3, and so statement (i)(b) holds, and again, we are done. We
may thus assume that every face with a nonnegative ch′, has length 4. If
some face of length 4 contains a vertex of degree 3, then statement (i)(c)
holds, and we are done; we therefore suppose that there is no such face.

Suppose there is a face with a nonzero ch′. Since the sum of the face
charges is nonnegative, there must be a face with a positive ch′. For a face
of length 4, this can only happen if the face has a vertex of degree 3; however,
we have already ruled this out.

We are left with the case in which every face has ch′ charge 0, and hence,
by our assumption above, length 4. No such face contains a vertex of degree
3; thus, every vertex in G must have degree 4, and so statement (ii) holds.

�

We will apply the following fact, which has been used by any number of
authors, often without being stated formally.

Lemma 2.2. Let G be a connected graph that embeds in a closed surface S
of Euler characteristic c. Then G can be 2-cell embedded in some surface
S∗ of Euler characteristic c∗ ≥ c.

Proof. If S is orientable, then let S∗ be the orientable surface of minimum
genus in which G can be embedded. Our conclusion then follows from a
theorem of Youngs [8, Thm. 4.3], which states that every embedding of
a connected graph in an orientable surface of minimum genus is a 2-cell
embedding.

If S is nonorientable, and G is not a tree, then let S∗ be the nonorientable
surface of minimum genus in which G can be embedded. Our conclusion
follows from a theorem of Parsons, Pica, Pisanski, and Ventre [6, Thm. 2],
which states—among other things—that for a connected graph G, either G
is a tree, or some embedding of G in a nonorientable surface of minimum
genus is a 2-cell embedding.

Lastly, if G is a tree, then G is planar; let S∗ be a sphere. �
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See Mohar & Thomassen [5, Sect. 3.4] for an exposition of the above ideas.
Now we can prove our first theorem.

Theorem 2.3. Let G be a graph that embeds in a closed surface of nonneg-
ative Euler characteristic. Then

fvs(G) ≤ 3 cp(G).

Proof. Our proof uses an improvement of a method of Kloks, Lee, and Liu [2,
proof of Thm. 8].

Let G be a graph embedded in a closed surface of nonnegative Euler
characteristic. We may assume that G is connected; if it is not, then add
edges joining different components; this alters neither fvs nor cp. We may
also assume that the embedding is a 2-cell embedding; if it is not, then, by
Lemma 2.2, graph G can be 2-cell embedded in some surface of greater or
equal (and thus still nonnegative) Euler characteristic.

We will construct a set P of cycles of G, and F ⊆ V (G), so that P is a
cycle packing, F is a feedback vertex set in G, and |F | ≤ 3|P|. This will
suffice to prove our result.

We proceed by induction on the order of G. In the base case, G has order
0; we let P and F be empty sets. Now suppose that G has order at least 1.

The remainder of this proof is divided into a number of cases. In each case,
we will construct a graph G∗ of strictly smaller order, apply the induction
hypothesis to obtain sets P∗ and F ∗ meeting the requirements for G∗, and
then use these to construct P and F . If we form P by adding 0 or more
cycles to P∗, then we will construct F by adding to F ∗ at most 3 vertices
from each new cycle. Then it will suffice to verify, first, that each new cycle
in P is vertex-disjoint from every other cycle in P, and second, letting T be
the set of vertices that lie neither in V (G∗) nor in F , that each vertex in T
is adjacent to at most 1 vertex in V (G∗) ∪ T—and thus that G contains no
cycles that fail to meet F .

Small Girth or Minimum Degree: Suppose that G has a cycle C of
length at most 3 (this case includes a cycle of length 1 whose edge is a loop,
as well as a cycle of length 2 containing parallel edges). Remove the vertices
of C from G to obtain G∗, and apply the induction hypothesis to obtain
P∗ and F ∗. Let P be P∗ along with C, and let F be F ∗ along with all the
vertices of C, and we are done.

We may now assume that G has girth at least 4; in particular, G is simple.
Suppose that G has a vertex v of degree at most 2. If v has degree 0 or

1, then remove v from G to obtain G∗. Let P = P∗ and F = F ∗, and we
are done.

If v has degree 2—say v has neighbors x and y—then, because G has
girth at least 4, vertices x and y must be nonadjacent. We obtain G∗ by
“unsubdividing an edge”: remove v from G and add an edge between x and
y. Apply the induction hypothesis. Let P contain the same cycles as P∗,
modified by subdividing, if necessary: if the cycle contains edge xy, then
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Figure 1. A face of length 6 with all vertices having degree
3. The small circle around each vertex emphasizes the fact
that the vertex has degree 3.

Figure 2. Faces of length 5 having at least 3 vertices of
degree 3.

replace edge xy by vertex v and edges vx and vy. Let F = F ∗. Clearly, we
have |F | ≤ 3|P|. Since the cycles of G are precisely the cycles of G∗, with
v added if the cycle in G∗ uses edge xy, we see that F is a feedback vertex
set in G, and we are done.

Applying Lemma 2.1: We may now assume that G has minimum degree
at least 3. Since we are also assuming that G has girth at least 4, we may
apply Lemma 2.1.

If statement (i) of the lemma holds for some face, then let C be the
facial walk of this face. Suppose a vertex v appears more than once in C.
Statement (i) requires facial length at most 6, so we can begin at vertex
v, follow at most 3 edges of C, and end at v again; we have found a cycle
of length 3 or less in G. But we have assumed that G has girth at least
4. Thus, no vertex is repeated; C is in fact a cycle. Remove C from G to
obtain G∗. Let P be P∗ along with C.

If C has length 6, and all its vertices have degree 3 (see Figure 1), then
let F be F ∗ plus 3 vertices of C, no 2 of which are consecutive on C, and
we are done.
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Figure 3. A face of length 4 having at least one vertex of
degree 3.

If C has length 5 and at least 3 vertices of degree 3 (see Figure 2), then
there must be 2 such vertices that are not consecutive on C; let F be F ∗

plus the other 3 vertices of C, and, again, we are done.
If C has length 4 and at least 1 vertex of degree 3 (see Figure 3), then let

F be F ∗ plus the other 3 vertices of C, and once again we are done.

Square Grids: It remains only to handle the case when statement (ii) of
the lemma holds: every face of G has length 4, and every vertex of G has
degree 4. (Note: We observe that this is possible only when G is embedded
in a surface with Euler characteristic 0. Thus, for surfaces of positive Euler
characteristic, our proof is actually complete at this point.)

We will make use of the following claim.

Claim. If G contains vertex-disjoint 4-cycles C1, C2, and there are distinct,
nonincident edges e1, e2 in G, each of which has one endpoint in each Ci,
then we may construct P and F as required.

To see that this claim holds, remove the vertices of C1, C2 from G to
obtain G∗, and apply the induction hypothesis as usual. Let P be P∗ plus
C1, C2, and let F be F ∗ plus all vertices of C1, C2, except for the endpoint
of e1 in C1 and the endpoint of e2 in C2. Note that we form P by adding
cycles to P∗, and we construct F by adding to F ∗ exactly three vertices
from each new cycle.

We can now check that P and F are the required sets by verifying the
conditions given near the beginning of this proof. First, each new cycle is
vertex-disjoint from every other cycle in P. Second, let T be the set of
vertices that lie neither in V (G∗) nor in F ; so T contains the endpoint of
e1 in C1 and the endpoint of e2 in C2. Each vertex in T has 3 neighbors
among those added to F . Every vertex of G has degree 4; hence each vertex
in T is adjacent to at most 1 vertex in V (G∗) ∪ T . Thus P and F satisfy
the required conditions. We conclude that the claim holds. (See Figure 4
for an illustration.)

In the remainder of this proof, we will proceed in a series of five steps. In
each, we will apply the above claim if G meets certain conditions; otherwise
we will proceed to the next step.
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e1

e2

C1 C2

e1

e2

C1 C2

e1

e2

C1 C2

Figure 4. An illustration of the Claim in the “Square
Grids” section of the proof of Theorem 2.3. Graph G contains
vertex-disjoint 4-cycles C1 and C2, and distinct, nonincident
edges e1 and e2, each of which has one endpoint in each Ci.
Three possibilities are shown: the endpoints of e1 and e2 are
consecutive in both cycles, in neither cycle, or in exactly one
of the cycles. In each case, sets P and F , as constructed in
the proof, have the required properties. Circled vertices are
elements of T , that is, the vertices not added to F . Note
that each such vertex has at most 1 neighbor outside those
pictured.

Let f0 be a face of G. Then f0 has length 4, and every vertex on f0
has degree 4. Furthermore, each face adjacent to f0 has these same two
properties. See Figure 5 for an illustration of this situation.

The central face in Figure 5 is f0. Because G is simple, the 4 vertices on
f0 are all distinct. These 4 vertices are also distinct from every other vertex
in the figure, since otherwise G would contain a cycle of length at most 3.
However, it is possible that not all vertices shown in the figure are distinct.

Step 1. Consider Figure 6. Each of the three drawings in this figure is a
representation of the same vertices and edges as those in Figure 5.

Suppose that the circled vertices in the left-hand drawing in Figure 6 are
all distinct. Then the two 4-cycles shown in the center drawing satisfy the
requirements of our claim; we may thus apply the claim, and we are done.
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Figure 5. From the proof of Theorem 2.3, in the “Square
Grids” section of the proof. The central face, denoted by
f0, has length 4. Each neighboring face also has length 4,
and each vertex has degree 4. The four central vertices in
the figure are all distinct from each other and from the other
vertices shown. However, the remaining eight vertices may
not be all distinct.

1

2 1

2′

Figure 6. From the proof of Theorem 2.3. Square Grids,
Step 1.

On the other hand, if the circled vertices in the left-hand drawing are not
all distinct, then, because G has girth at least 4, some diagonally opposite
pair of vertices must be identical. Without loss of generality, say those
vertices labeled 1 in the right-hand drawing are identical. We label the
other two vertices 2 and 2′; these two vertices may or may not be identical.

Step 2. Consider Figure 7. The left-hand drawing represents the same
situation as in the right-hand drawing in Figure 6, but with 4 vertices circled.
Suppose that these circled vertices are all distinct. Then we may apply the
claim to the two 4-cycles shown in the center drawing, and we are done.
(Note that these really are cycles, since the two points labeled 1, actually
represent the same vertex.)

On the other hand, if the circled vertices in the left-hand drawing are not
all distinct, then we can see that the right-hand vertex at the bottom, must
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1
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2

Figure 7. From the proof of Theorem 2.3. Square Grids,
Step 2.

1
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2′
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1
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1
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2′

2

2′

Figure 8. From the proof of Theorem 2.3. Square Grids,
Step 3.

be identical to the vertex labeled 2; we label it 2 also (see the right-hand
drawing). Since we now have 2 and 2′ at distance two from each other in
our diagram, these two vertices must be distinct.

Step 3. Consider Figure 8. As before, the left-hand drawing represents the
same situation as in the right-hand drawing in the previous figure, but with
4 vertices circled. Apply much the same reasoning as in the previous step.
If the circled vertices in the left-hand drawing are all distinct, then apply
the claim to the two 4-cycles in the center drawing, and we are done.

Otherwise, the left-hand vertex at the top must be identical to the vertex
labeled 2′; we label it 2′ also.

Step 4. Consider Figure 9. Once again, the left-hand drawing represents
the same situation as in the right-hand drawing in the previous figure, but
with 4 vertices circled. Apply much the same reasoning as in Step 1. If
the circled vertices in the left-hand drawing are all distinct, then apply the
claim to the two 4-cycles in the center drawing, and we are done.

Otherwise, the two vertices labeled 3 in the right-hand drawing must be
identical; the common label indicates this fact.

Step 5. Consider Figure 10. This represents the same situation as in
the right-hand drawing in Figure 9, but with two 4-cycles shown. Vertices
1, 2, 3, 2′ do, in fact, form a 4-cycle, in that order, because of the adjacencies
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Figure 9. From the proof of Theorem 2.3. Square Grids,
Step 4.

1

2 1

2′

2

2′

3

3

Figure 10. From the proof of Theorem 2.3. Square grids,
step 5.

we have established between them. We may thus apply the claim to the two
4-cycles, and we are done. �

Note that, in the final section of the above proof, where we deal with
4-regular graphs in which each face has length 4, we could, instead, have
based the argument on a classification of the square grids on the torus and
Klein bottle. Classifications of such graphs have been done—albeit under
restrictions a bit too strong for our proof—by Thomassen [7, Thm. 4.1] and
by Márquez, de Mier, Noy, and Revuelta [4, Thm. 1].

Theorem 2.3 is sharp—at least for graphs with one particular order—on
the projective plane, torus, and Klein bottle, as shown by K5 (and also
2K5, for the Klein bottle). However, we do not know whether it is sharp
on the plane, other than the trivial case when graph G is a forest. If Jones’
Conjecture (Conjecture 1.2) is true, then Theorem 2.3 is not sharp on the
plane.

3. Arbitrary Surfaces

We can generalize Theorem 2.3 to arbitrary surfaces. We show that, for
a graph G on a surface of genus g, we have fvs(G) ≤ 3 cp(G) + O(g).
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Theorem 3.1. Let G be a graph that embeds in a closed surface with Euler
characteristic c ≤ 0. Then

fvs(G) ≤ 3 cp(G) + 103(−c).
Proof. The early part of this proof uses reasoning very similar to that in the
proof of Theorem 2.3. Arguments from that proof will not be repeated in
their entirety here; the reader is referred to the earlier proof for details.

Let G, c be as in the statement of the result; we may assume that G is
connected.

By Lemma 2.2, graph G has a 2-cell embedding in some surface with
Euler characteristic c∗ ≥ c; proving our result for c∗ will imply the desired
statement for c. If c∗ ≥ 0, then apply Theorem 2.3, and we are done. Thus,
we may assume that G is 2-cell embedded, and that c = c∗ < 0.

As in the proof of Theorem 2.3, we proceed by induction on the order of
G, which we denote by n. The base case is n = 0, in which case an empty
cycle packing and an empty feedback vertex set show that our result holds.
Suppose that n ≥ 1.

We define the charge ch′ just as in the proof of Lemma 2.1: each vertex
has charge 0, while, for each face f ,

ch′(f) := 4− `(f) +
∑
v∈f

4− d(v)

d(v)
,

where the sum counts multiplicities. As in Lemma 2.1, we have
∑

f ch
′(f) =

4c.
If e is an edge in G, then e lies in the facial walk of two faces, counting

multiplicities. These two faces are said to be adjacent. For each face f , there
are `(f) faces adjacent to f , counting multiplicities; some of these may be
f itself.

As in the proof of Theorem 2.3, we may apply the induction hypothesis
(and thus we are done) if G contains any of the following.

• A vertex of degree at most 2.
• A cycle of length at most 3.
• A face of length 6, all of whose vertices have degree 3 (see Figure 1).
• A face of length 5, at least 3 of whose vertices have degree 3, counting

multiplicities (see Figure 2).
• A face of length 4 with at least 1 vertex of degree 3 (see Figure 3).
• A face of length 4 in which all vertices have degree 4, and each

adjacent face also has these properties—length 4, all vertices having
degree 4 (see Figure 5).

Hence we may assume that G contains none of the above configurations,
which we will call forbidden configurations. In particular, G is simple, with
minimum degree at least 3 and girth at least 4. Furthermore, G has no face
f with ch′(f) > 0. Every face of G with ch′ = 0 has length 4 and 4 vertices
of degree 4. Lastly, for each face of G with ch′ = 0, there is an adjacent face
with ch′ < 0.
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Note: The final property in the preceding paragraph holds because other-
wise, there is a face with ch′ = 0 such that every adjacent face has ch′ = 0.
That is, there is a face of length 4 with 4 vertices of degree 4 such that each
adjacent face is of this form as well. This is the last forbidden configuration
in the list above. Such a configuration is forbidden since, if it exists, then
we may apply the argument from the “Square Grids” section of the proof of
Theorem 2.3.

In the proof of Theorem 2.3, we used the fact that
∑

ch′ = 4c ≥ 0 to
show that all the possibilities were covered. However, here we have c < 0,
and so other cases remain.

We will handle all remaining cases as base cases in the induction, directly
constructing a feedback vertex set and a cycle packing. Specifically, we will
show that, for a graph G containing no forbidden configuration, we have
n ≤ 103(−c). Thus, forming a feedback vertex set using every vertex of
G, and forming a cycle packing using no cycles, we may conclude that G
satisfies the required inequality.

For each face f of G, we define

ϕ(f) :=
∑
v∈f

1

d(v)
,

where the sum counts multiplicities. Then
∑

f ϕ(f) = n. (We may thus

consider ϕ(f) to be the contribution of face f to the order of G.)
Note that

−ch′(f) = −

4− `(f) +
∑
v∈f

4− d(v)

d(v)


= `(f)− 4−

∑
v∈f

[
4

d(v)
− 1

]
= 2`(f)− 4− 4

∑
v∈f

1

d(v)

= 2`(f)− 4− 4ϕ(f).

Upper Bounds: Our goal in this section of the proof is to find upper
bounds for ϕ(f)/[−ch′(f)] and `(f)/[−ch′(f)], for all faces f with ch′(f) <
0. In the following section, we will use these bounds to prove our result.

Using the above expansion of −ch′(f), we obtain

ϕ(f)

−ch′(f)
=

ϕ(f)

2`(f)− 4− 4ϕ(f)
(3.1)

and

`(f)

−ch′(f)
=

`(f)

2`(f)− 4− 4ϕ(f)
.(3.2)
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If ch′(f) is negative and `(f) is fixed, then each of the two quantities above
increases as ϕ(f) increases. Thus, for fixed `(f), we can find upper bounds
for the quantities by computing their values when ϕ(f) is maximized.

In order to maximize ϕ(f), we reason using the forbidden configurations,
and the requirement that ch′(f) < 0, to bound the number of vertices on
face f that have degree 3. We will usually maximize ϕ by assuming the
maximum number of vertices of degree 3, and giving all remaining vertices
degree 4. If there cannot be any vertices of degree 3, then we will assume
the maximum number of vertices of degree 4, and give all remaining vertices
degree 5.

Now we compute our upper bounds. We consider four cases: `(f) ≥ 7,
`(f) = 6, `(f) = 5, and `(f) = 4.

Case 1. If `(f) ≥ 7, then all vertices on face f can have degree 3; this
does not result in the existence of any forbidden configuration. Thus, the
greatest possible value of ϕ(f) is

ϕ(f) = `(f) · 1

3
.

Using this value, along with equations (3.1) and (3.2), we obtain

ϕ(f)

−ch′(f)
=

`(f)

2`(f)− 12
;

`(f)

−ch′(f)
=

3`(f)

2`(f)− 12
.

The right-hand sides above are both maximized when `(f) = 7. Thus, for
each fixed `(f) ≥ 7, we have

ϕ(f)

−ch′(f)
≤ 7

2 · 7− 12
=

7

2
;

`(f)

−ch′(f)
≤ 3 · 7

2 · 7− 12
=

21

2
.

Case 2. If `(f) = 6, then it is impossible for all vertices on face f to have
degree 3; this would be a forbidden configuration. We maximize ϕ(f) with
5 vertices of degree 3 and 1 vertex of degree 4. Thus, when `(f) = 6 and
ϕ(f) is maximized, we again apply equations (3.1) and (3.2) to obtain the
following:

ϕ(f) = 5 · 1

3
+ 1 · 1

4
=

23

12
;

ϕ(f)

−ch′(f)
=

23

4
;

`(f)

−ch′(f)
= 18.
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Case 3. If `(f) = 5, then, again avoiding forbidden configurations, we max-
imize ϕ(f) with 2 vertices of degree 3 and 3 vertices of degree 4. Proceeding
as above, we obtain

ϕ(f) = 2 · 1

3
+ 3 · 1

4
=

17

12
;

ϕ(f)

−ch′(f)
=

17

4
;

`(f)

−ch′(f)
= 15.

Case 4. If `(f) = 4, then vertices of degree 3 are forbidden; we maximize
ϕ(f) with 3 vertices of degree 4 and 1 vertex of degree 5. Then we have

ϕ(f) = 3 · 1

4
+ 1 · 1

5
=

19

20
;

ϕ(f)

−ch′(f)
=

19

4
;

`(f)

−ch′(f)
= 20.

Conclusion. In each of the four cases above, the following inequalities hold.

ϕ(f)

−ch′(f)
≤ 23

4
;(3.3)

`(f)

−ch′(f)
≤ 20.(3.4)

We conclude that, for every face f of G with ch′(f) < 0, inequalities (3.3)
and (3.4) both hold.

(The rather unlikely-looking value of 103 in the statement of our theorem,
will turn out to be 4 times the sum of the above two bounds; the 4 comes
from the fact that the sum of all the charge is 4c.)

Moving Charge Again: Next we define a new charge ch′′ on the faces of
G. We will place an upper bound on ϕ(f)/[−ch′′(f)], over all faces f of G.
Multiplying this upper bound by the sum of all the charge, we will obtain
an upper bound for n.

Below, t is some real number in the open interval (0, 1); we will restrict t
to a particular value later.

Rearrange the charge on G as follows. For each face f with ch′(f) < 0,
and each adjacent face f∗ with ch′(f∗) = 0, transfer charge [t/`(f)] · ch′(f)
from face f to face f∗. Call the resulting charge ch′′. As noted earlier, by
the absence of forbidden configurations, for each face with ch′ = 0, there
must be an adjacent face with ch′ < 0. Thus we have ch′′(f) < 0 for every
face f of G.
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We wish to place an upper bound on ϕ(f)/[−ch′′(f)]. We do this first for
faces with ch′ < 0, and then for faces with ch′ = 0.

If ch′(f) < 0, then ch′′(f) ≤ (1− t) · ch′(f) < 0, and we have

0 <
ϕ(f)

−ch′′(f)
≤ 1

1− t
· ϕ(f)

−ch′(f)

≤ 1

1− t
· 23

4
,

by inequality (3.3).
On the other hand, if ch′(f) = 0, then ch′′(f) ≤ [t/`(f∗)] · ch′(f∗), where

f∗ is some face adjacent to f , such that ch′(f∗) < 0. Further, f has length
4 and 4 vertices of degree 4, so that ϕ(f) = 4 · (1/4) = 1. Thus, we have

0 <
ϕ(f)

−ch′′(f)
≤ 1

t
`(f∗) · [−ch′(f∗)]

=
1

t
· `(f∗)

−ch′(f∗)

≤ 1

t
· 20,

by inequality (3.4).
Our work so far is valid for every t ∈ (0, 1). We now choose t so that the

above two bounds (that is, 1
1−t ·

23
4 and 1

t ·20) are equal. This happens when

t = 80/103, in which case both bounds become 103/4. Defining our charge
ch′′ using this value of t, we have

ϕ(f)

−ch′′(f)
≤ 103

4
,

for every face f of G.
Now we can bound the order of G.

n =
∑
f

ϕ(f)

=
∑
f

(
ϕ(f)

−ch′′(f)
· [−ch′′(f)]

)

≤ max
f

[
ϕ(f)

−ch′′(f)

]
·
∑
f

[
−ch′′(f)

]
.

Using our bound on ϕ(f)/[−ch′′(f)], and noting that
∑

f [−ch′′(f)] =

−
∑

f ch(f) = −4c, we see that

n ≤ 103

4
· (−4c) = 103(−c).

Hence, G has at most 103(−c) vertices. As noted earlier, we can form
a feedback vertex set using every vertex of G, and a cycle packing using



32 GLENN G. CHAPPELL, JOHN GIMBEL, AND CHRIS HARTMAN

no cycles. Thus, our graph G satisfies the required inequality; the desired
result follows. �

We can restate Theorems 2.3 and 3.1 using genus. An orientable surface
with genus g has Euler characteristic 2(1− g), while a nonorientable surface
with genus g has characteristic 2− g. Thus we obtain the following result.

Corollary 3.2. Let G be a graph embedded in a surface S.

(a) If S is an orientable surface of genus at most 1, or a nonorientable
surface of genus at most 2, then

fvs(G) ≤ 3 cp(G).

(b) If S is an orientable surface of genus g ≥ 1, then

fvs(G) ≤ 3 cp(G) + 206(g − 1).

(c) If S is a nonorientable surface of genus g ≥ 2, then

fvs(G) ≤ 3 cp(G) + 103(g − 2).

We expect that a somewhat cleverer analysis could reduce the value 103
in the preceding results. However, it seems unlikely that the coefficient
of cp (i.e., 3) can be reduced without using a significantly different proof
technique.

4. What is the Best Bound?

We consider how small an upper bound for fvs(G) can be.

Theorem 4.1. Let g(G) denote either the orientable or the nonorientable
genus of graph G. Suppose that there exist a constant k and a function f ,
such that the following holds for every graph G:

fvs(G) ≤ k cp(G) + f(g(G)).

Then all of the following hold.

(a) k ≥ 2.
(b) f(g) is Ω(g).
(c) If k = 2, then f(g) ≥ g.

Proof. (a) Suppose for a contradiction that k < 2. Let s be a positive integer
greater than f(0)/(2−k). Then 2s > ks+f(0). Let G be the disjoint union
of s copies of K4; we have fvs(G) = 2s, cp(G) = s, and g(G) = 0. Hence,
fvs(G) > k cp(G) + f(g(G)), which is a contradiction.

(b) Let k, f be as in the statement of the result. Let f∗ be the smallest
function so that fvs ≤ k cp + f∗(g) holds for every graph. Clearly, f∗ is
nondecreasing. It follows from the Erdős-Pósa result (Theorem 1.1) that
there exists a graph H such that fvs(H) > k cp(H). Let q = fvs(H) −
k cp(H), and note that q > 0.
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For each positive integer t, let tH denote the disjoint union of t copies
of graph H. We have g(tH) = t g(H), cp(tH) = t cp(H), and fvs(tH) =
t fvs(H). Thus,

f∗(t g(H)) = f∗(g(tH))

≥ fvs(tH)− k cp(tH)

= t fvs(H)− tk cp(H)

= tq.

Since f∗ is nondecreasing, it follows that f∗(g) is Ω(g), and so is f(g).

(c) In this case we have a specific example; we do not need to apply the
Erdős-Pósa result. The graph consisting of g disjoint copies of K5 has genus
g, cp = g, and fvs = 3g. The desired statement follows. �

Applying Corollary 3.2 and Theorem 4.1(b), we obtain the following.

Corollary 4.2. Let g(G) denote either the orientable or the nonorientable
genus of graph G. Let f(g) be the smallest value so that

fvs(G) = 3 cp(G) + f(g(G))

holds for every graph G. Then f(g) is Θ(g).

It seems likely that the best coefficient for cp is actually 2. Thus we
propose the following generalization of Jones’ Conjecture.

Conjecture 4.3. Let g(G) denote either the orientable or the nonorientable
genus of graph G. Then there exists a function f(g) = Θ(g), so that

fvs(G) ≤ 2 cp(G) + f(g(G))

holds for every graph G.

If the above conjecture holds, then we can set f(0) = 0; this follows
from Theorem 4.1(c) and the fact that the disjoint union of planar graphs is
planar. Hence, Conjecture 4.3 implies Jones’ Conjecture (Conjecture 1.2).

If Conjecture 4.3 holds, then, by Theorem 4.1(c), we must have f(g) ≥ g.
Is it possible that f(g) = g?

Question 4.4. Can we set f(g) = g in Conjecture 4.3?

If the answer is “yes”, then the inequality fvs ≤ 2 cp+g is sharp for graphs
of arbitrarily high order, on both orientable and nonorientable surfaces,
as shown by the disjoint union of g copies of K5 and t copies of K4, for
arbitrarily high values of t.

There must be a positive number k such that the statement fvs(G) ≤
3 cp(G) + k g(G) (with g(G) appropriately defined) fails to hold for some
graph G. In particular, this follows from Corollary 4.2. However, we cannot
currently exhibit any such k.

Problem 4.5. Find a positive number k such that the following statement
fails to hold for some graph G: fvs(G) ≤ 3 cp(G) + k g(G).
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More specifically, while we have fvs(K5) = 3 cp(K5), we do not know
of any example of a graph with fvs > 3 cp. The Erdős-Pósa result (Theo-
rem 1.1) implies that such graphs exist, but does not provide a construction.

Problem 4.6. Find an explicit construction of a graph G such that fvs(G) >
3 cp(G).
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