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STRONG d-COLLAPSIBILITY

MARTIN TANCER

Abstract. We introduce a notion of strong d-collapsibility. Using this
notion, we simplify the proof of Matoušek and the author [4] showing
that the nerve of a family of sets of size at most d is d-collapsible.

1. Introduction

Simplicial complexes and d-collapsibility. A finite simplicial complex
K is a collection of subsets (called faces or simplices) of a finite set X which
is downwards closed, i.e, if σ ∈ K and τ ⊂ σ then τ ∈ K. The dimension
of a face σ ∈ K is defined to be the value |σ| − 1. The dimension of K is
the maximum of the dimensions of faces contained in K. Zero-dimensional
faces are called vertices. Often it is assumed that X is the set of vertices; in
particular we will work with this assumption.

Wegner, in his seminal 1975 paper [7], introduced d-collapsible simplicial
complexes. To define this notion, we first introduce an elementary d-collapse.
Let K be a simplicial complex and let σ, τ ∈ K be faces (simplices) such that

(i) dimσ ≤ d− 1,
(ii) τ is an inclusion-maximal face of K,
(iii) σ ⊆ τ , and
(iv) τ is the only face of K satisfying (ii) and (iii).

Then we say that σ is a d-collapsible face of K and that the simplicial
complex K′ := K \ {η ∈ K : σ ⊆ η ⊆ τ} arises from K by an elementary

d-collapse. If we want to emphasize σ, we write K
σ−→ K′ (note that K′ is

uniquely determined by σ and K). A simplicial complex K is d-collapsible
if there exists a sequence of elementary d-collapses that reduces K to the
empty complex ∅.

The motivation of introducing d-collapsibility comes from combinatorial
geometry as a tool for studying intersection patterns of convex sets. Our
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task in this short note is not to describe this interesting connection; however,
we refer, e.g., to [2, 3, 6, 7] for more background.

A nerve and its d-collapsibility. Given a finite collection C = {C1, . . . ,
Cn} of sets, the nerve N(C) of this collection is a simplicial complex where C
is the (multi)set of its vertices and where its faces are collections Ci1 , . . . , Cik
of vertices such that Ci1 ∩ · · · ∩ Cik is non-empty. We emphasize that it is
allowed that Ci = Cj for i 6= j; i.e., C is a multiset. In particular for such
Ci and Cj there are two (twin) vertices in the nerve.

Matoušek and the author [4] studied how far is the notion of d-collapsibility
from its geometrical motivation. As one of the main tools they proved the
following proposition.

Proposition 1.1. Suppose that C is a collection of sets of size at most d.
Then N(C) is d-collapsible.

We will introduce a notion of strong d-collapsibility and using this notion
we simplify the proof of Matoušek and the author. We also hope that this
notion can be used in a different context as well.

Strong d-collapsibility.1 Assume that η is a face of a complex K. The
link of η in K is a simplicial complex defined by lk(η,K) = {ϑ ∈ K : ϑ ∩
η = ∅, ϑ ∪ η ∈ K}. Assume that v is a vertex of K such that lk({v},K)
is (d − 1)-collapsible. By an elementary strong d-collapse of K we mean
the simplicial complex K′ obtained by removing all faces containing v, i.e.,
K′ = K − v = {ϑ ∈ K : v 6∈ ϑ}. If we want to emphasize v, we write

K
v

=⇒ K′. A simplicial complex is strongly d-collapsible if it can be vanished
by a sequence of elementary strong d-collapses.2

We will prove the following results.

Proposition 1.2. Let d be a non-negative integer. Assume that a simplicial
complex K is strongly d-collapsible then it is d-collapsible as well.

Theorem 1.3. Let d be a positive integer. Suppose that C is a collection of
sets of size at most d. Then N(C) is strongly d-collapsible.

Proposition 1.1 is an obvious consequence of these two results.

1Coincidentally, during the review process, the author learnt that Eckhoff [2] uses the
notion strongly d-collapsible complex for a different mathematical object. The author,
however, wishes to keep this name for simplicial complexes defined in this note, since this
definition is analoguous to strong collapsibility in topology [1].

2In an elementary strong d-collapse we could also use an inductive definition where
lk({v},K) would be assumed to be strong (d−1)-collapsible and strong 0-collapsible would
mean being a simplex. Thus we would get a similar (but perhaps different) notion of strong
d-collapsibility. The forthcoming results would remain unchanged.
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2. Properties of Strong d-collapsibility

First, we prove Proposition 1.2.

Proof. It is sufficient to show that an elementary strong d-collapse K
v

=⇒ K′

can be simulated by a sequence of elementary d-collapses. Let L = lk({v},K).

We know that L is (d − 1)-collapsible. Let L
σ1−→ L2

σ2−→ · · · σk−→ ∅ be a
sequence of elementary d-collapses. Then it is routine to check that

K
σ1∪{v}−−−−−→ K2

σ2∪{v}−−−−−→ · · · σk∪{v}−−−−−→ K′

is a sequence of elementary d-collapses which indeed ends up with K′. (For
this, we remark that Ki = K′ ∪ {ϑ ∪ {v} : ϑ ∈ Li}.) �

We remark that there are complexes which are d-collapsible, but not
strongly d-collapsible. An example of such a complex is drawn in Figure 1.
The thick lines are identified according to the arrows. There are higher-
dimensional analogues of this complex; see the construction of complex C(ρ)
in [5].

Figure 1. A complex which is 2-collapsible, but not strongly
2-collapsible.

3. Strong d-collapsibility of a nerve

Here we prove Theorem 1.3. Let a be a point which is not contained in
the vertex set of a given complex K. The cone of K is a simplicial complex
given by aK = K ∪ {σ ∪ {a} : σ ∈ K}.

Lemma 3.1. If K is d-collapsible, then aK is d-collapsible as well.

Proof. Let K
σ1−→ K2

σ2−→ · · · σk−→ ∅ be a sequence of elementary d-collapses

of K. Then aK
σ1−→ aK2

σ2−→ · · · σk−→ a∅ = ∅ is a sequence of elementary
d-collapses of aK.3 �

3Purely formally, one has to be a bit careful here and distinguish a simplicial complex
{∅} containing a single empty face from ∅ containing no face.
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Proof of Theorem 1.3. We proceed by induction on d and on the size of C.
Theorem 1.3 is surely true if C contains a single set or if d = 1.

Let C1 ∈ C be a set of maximal size. We only want to show that

N(C) C1=⇒ N(C \ {C1}),
since N(C \ {C1}) is strongly d-collapsible by induction.

It is sufficient to check that lk(C1,N(C)) is (d − 1)-collapsible. Let us
denote CC1 = {C ∩ C1 ∈ C : C ∈ C \ {C1}}. Then lk(C1,N(C)) = N(CC1).
If there is no set of size d in CC1 , then lk(C1,N(C)) is (d− 1)-collapsible by
induction and we are done.

Otherwise, let D = {D1, . . . , Dm} ⊆ CC1 be the collection of all sets of
size d in CC1 . For every D ∈ D we thus have D = C1. It means that
lk(C1,N(C)) = D1D2 . . . DmN(CC1 \D), where D1D2 . . . Dm stands for (iter-
ated) cone with vertices D1, . . . , Dm. By Lemma 3.1 and induction it follows
that lk(C1,N(C)) is (d− 1)-collapsible. �
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