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CARDS, PERMUTATIONS, AND SUMS

BILL SANDS

Abstract. We are given four cards, each containing four nonnegative
real numbers, written one below the other, so that the sum of the num-
bers on each card is 1. We are allowed to put the cards in any order
we like, then we write down the first number from the first card, the
second number from the second card, the third number from the third
card, and the fourth number from the fourth card, and we add these four
numbers together. We wish to find real intervals [a, b] with the following
property: there is always an ordering of the four cards so that the above
sum lies in [a, b]. We prove that the intervals [1, 2] and [2/3, 5/3] are
solutions to this problem. It follows that

[0, 1], [1/3, 4/3], [2/3, 5/3], and [1, 2]

are the only minimal intervals which are solutions. We also discuss
a generalization to n cards, and give an equivalent formulation of our
results in matrix terms.

1. Introduction

The following problem (slightly paraphrased) appeared in Lenza and
Sands [2]:

The n-card problem. Let n ≥ 4 be an integer, and suppose
you are given n cards, each containing n nonnegative real
numbers, written one below the other, so that the sum of the
numbers on each card is 1. You are allowed to put the cards
in any order you like, then you write down the first number
from the first card, the second number from the second card,
. . . , and the nth number from the nth card, and you add
these n numbers together. What are the minimal intervals
[a, b] with the property that, no matter which cards you are
given, there is always an ordering of the cards so that the
sum will lie in [a, b]?

Note that every such interval [a, b] must contain 1, since if we take any n
identical cards, the sum is 1 no matter what order we use.
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If, for some integer n, an interval [a, b] is a solution to the n-card problem,
we say that [a, b] has the n-card property. In [2], Lenza and Sands proved
that the interval [1/3, 4/3] has the 4-card property, and asked whether the
intervals [2/3, 5/3] and [1, 2] also have the 4-card property. In this note we
settle these two cases in the affirmative.

Theorem 1.1. The interval [1, 2] has the 4-card property.

Theorem 1.2. The interval [2/3, 5/3] has the 4-card property.

Both of these intervals are best possible. As a result, we will see that the
list of all minimal intervals with the 4-card property is

[0, 1], [1/3, 4/3], [2/3, 5/3], and [1, 2].

2. History and Preliminaries

This problem began as a weak form of the 3-card problem in the 2000
Calgary Junior Mathematics Contest, an annual contest for students from
the Calgary area in Grade 9 or under.1 A slightly stronger version was then
submitted to the Canadian problems journal Crux Mathematicorum with
Mathematical Mayhem, where it was published in 2001 as Problem 2620 [4]:

You are given three cards, each containing three nonnegative
real numbers, written one below the other, so that the sum
of the numbers on each card is 1. You are allowed to put
the cards in any order you like, then you write down the
first number from the first card, the second number from the
second card, and the third number from the third card, and
you add these three numbers together. Show that, no matter
which cards you are given, there is always an ordering of the
cards so that the sum will lie in [1/2, 3/2].

A solution to this problem appeared in Crux in March, 2002 [4].

Note: For the rest of this paper, when referring to a set of cards satisfying
the conditions of the n-card problem, for simplicity we shall say something
like “a set of n cards,” taking it to be understood that each card has n
nonnegative numbers on it adding to 1.

In 2003, Eric Lenza, an undergraduate mathematics student at the Uni-
versity of Calgary, was given the general problem as an NSERC summer
research project. Lenza found a new proof that [1/2, 3/2] is a solution for
the 3-card problem. Lenza’s solution to the 3-card problem appears in [2],
and uses the facts that, for any set of three cards,

• at most 2 of the 3! = 6 sums are greater than 3/2 and
• at most 3 of the sums are less than 1/2.

1The contest website is http://math.ucalgary.ca/community/outreach/junior-

math-contest.



CARDS, PERMUTATIONS, AND SUMS 3

Thus, at least one of the six sums must lie in [1/2, 3/2].
Here is an example. Suppose the three cards are

1
0
0

1
0
0

0
1/2
1/2

.

With the cards ordered this way, the sum is 3/2. But if the cards are ordered

0
1/2
1/2

1
0
0

1
0
0

,

the sum is 0. In fact, the six orderings of these three cards all give sums of
3/2 or 0.

On the other hand, for the three cards

1
0
0

0
1/2
1/2

0
1/2
1/2

,

all sums are either 1/2 or 2.
These two examples show that the interval [1/2, 3/2] in the above Crux

problem is best possible, that is, cannot be replaced by any proper subin-
terval.

More generally, Lenza and Sands [2] found all minimal intervals [a, b] with
the 3-card property. They are:

[0, 1], [1/2, 3/2], and [1, 2].

The case of [0, 1] is easy, in fact for arbitrary n (see Lemma 2.1 below).
To do [1, 2], show that for any three cards, at most four of the six sums can
be less than 1, and at most one sum can be greater than 2. This was left to
the reader in [2], and we shall do the same here.

Lenza and Sands also began serious study of the 4-card problem by prov-
ing that [1/3, 4/3] has the 4-card property [2]. Their method of proof was
similar to Lenza’s 3-card solution: they showed that, for any set of four
cards,

• at most 12 of the 4! = 24 sums are greater than 4/3 and
• at most 11 of the 24 sums are less than 1/3;

thus at least one of the 24 sums must lie in [1/3, 4/3]. This interval is again
best possible, and moreover, both the numbers 12 and 11 in the proof are
best possible: the cards

1
0
0
0

1
0
0
0

0
1/3
1/3
1/3

0
1/3
1/3
1/3
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have 12 sums of 5/3 (and 12 sums of 1/3), and the cards

1
0
0
0

0
1
0
0

0
0
1
0

1/4
1/4
1/4
1/4

have 11 sums of 1/4 (and all other sums > 1).
We next give a simple proof that the interval [0, 1] has the n-card property

for every integer n ≥ 2, and is minimal.

Lemma 2.1. [a, b] = [0, 1] is a solution to the n-card problem for every
n ≥ 2.

Proof. Since the sum of the numbers on every card is 1, the average of all n!
permutation sums arising from ordering the cards must be 1. Thus at least
one permutation sum must lie in [0, 1]. Any set of n identical cards shows
that the upper bound 1 cannot be reduced, since every sum for such a set
would be exactly 1, and the set of n cards

(
1, 0, 0, . . . , 0

)
(n− 1 cards),

(
0,

1

n− 1
,

1

n− 1
, . . . ,

1

n− 1

)
(1 card)

shows that the lower limit 0 cannot be increased, since all sums for these n
cards are either 0 or greater than 1. Thus [0, 1] is a minimal solution to the
n-card problem. �

Theorem 1 is proved in the next section, and Theorem 2 is handled in
Section 4. In the final section we give some open problems, and point out
how to rephrase our problems and results in matrix terms.

3. Proof of Theorem 1.1

In this section we prove that [1, 2] has the 4-card property. Proceeding as
in [2], we prove this theorem by finding upper bounds on how many sums
can be less than 1, and how many can be greater than 2. The first part is
easy. We have the following general result.

Lemma 3.1. Let n ≥ 2 be an integer. For a set of n cards as in the n-card
problem, consider all the n! sums arising from the n! arrangements of these
cards. Then at most n!− (n− 1)! of these sums can be less than 1.
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Proof. Denote the cards by

C1 = (c11, c12, . . . , c1n),

C2 = (c21, c22, . . . , c2n),

...

Cn = (cn1, cn2, . . . , cnn).

Then an arrangement of the cards will result in a sum of the form

c1π(1) + c2π(2) + · · ·+ cnπ(n),

where π = (π(1)π(2) · · ·π(n)) is a permutation of {1, 2, . . . , n}. Here, for
each i, the π(i)th number on card i has been chosen. In what follows, we
shall frequently refer to this permutation instead of to the sum itself.

The n! permutations can be arranged into (n− 1)! sets of n permutations
each, where each set contains a permutation and its cyclic shifts:

(π(1)π(2) · · ·π(n)),

(π(2)π(3) · · ·π(n)π(1)),

...

(π(n)π(1)π(2) · · ·π(n− 1)).

We call such a set of n permutations a cyclic n-tuple. The corresponding
sums for these cards are

c1π(1) + c2π(2) + · · ·+ cnπ(n),

c1π(2) + c2π(3) + · · ·+ cnπ(1),

...

c1π(n) + c2π(1) + · · ·+ cnπ(n−1).

Thus the sum of all these numbers is just the sum of all numbers on all the
cards, which is 1 + 1 + · · ·+ 1 = n.

Now suppose that more than n!−(n−1)! of the permutation sums are less
than 1. Then the corresponding permutations must include one complete
set of n cyclic shifts, so the sum of all numbers involved in the corresponding
n sums must be exactly n. But this contradicts the assumption that each
permutation sum in this set is strictly less than 1. Thus at most n!−(n−1)!
permutation sums less than 1 are possible. �

Note that Lemma 3.1 is best possible, in that n! − (n − 1)! permutation
sums less than 1 can be attained. Consider the set of n cards consisting of
n−1 cards of the form (1/n, 1/n, . . . , 1/n) and one card (1, 0, 0, . . . , 0). Then
all permutation sums are either (n− 1)/n = 1− 1/n or 2− 1/n, depending
on whether 0 or 1 in the last card is chosen. The number of permutations
in which a 0 is chosen is exactly n!− (n− 1)!.
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In the case n = 4, Lemma 3.1 says that, for any four cards, at most 18 of
the 24 permutation sums can be less than 1. One more lemma will complete
the proof of Theorem 1.1.

As the rest of this paper deals almost exclusively with the case n = 4 (that
is, sets of four cards), we change notation and from now on will denote the
cards by A,B,C,D, where for example the four numbers on card A are
a1, a2, a3, a4 in that order. Thus a permutation π = (π(1)π(2)π(3)π(4)) of
{1, 2, 3, 4} will correspond to the sum aπ(1) + bπ(2) + cπ(3) + dπ(4).

Lemma 3.2. For any four cards, there are at most four sums greater than 2.

Proof. Suppose for some set of four cards there are five sums greater than
2, and consider the corresponding five permutations. First observe that
no two of these permutations can be disjoint, that is, we cannot have two
permutations π and τ among these five permutations so that for each i,
π(i) 6= τ(i). For if this occurred, then the corresponding sums aπ(1) +bπ(2) +
cπ(3) + dπ(4) and aτ(1) + bτ(2) + cτ(3) + dτ(4) would contain eight different
entries from the four cards, so their sum would be at most the sum of all
the entries on the cards, which is 4, contradicting the assumption that each
sum is greater than 2.

Thus every pair of the five permutations must have at least one entry
in common. Suppose that each pair of these permutations has exactly one
entry in common: how many permutations are possible? We may assume
that (1234) and (1342) are two of the permutations. It can be easily checked
that the only permutations that can be added which agree with each of
these two permutations in exactly one place are (1423), (2314), (3241) and
(4132), and since these four permutations are pairwise disjoint, only one of
them can be added to the list, so the list cannot be extended beyond three
permutations. Thus if we are to obtain five permutation sums greater than
2, we certainly need two permutations which agree in two places.

So we may assume that two of the five permutations are (1234) and (1243).
Now the only permutations which agree in at least one place with each of
these are

(1342), (1423), (1432), (1324), (3241), (4213), (4231), and (3214).

These can be arranged as the vertices of the following bipartite graph:

�
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s s s s
s s s s

3214 4213 4231 3241

1342 1432 1423 1324

Here the edges denote that the two permutations are disjoint. Thus we need
to find three of these permutations which form an independent set in this
graph. The only such sets are contained in either the bottom or top level
of this graph. But group the four vertices in each of these levels into pairs,
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with the pairs (1342), (1423) and (1432), (1324) in the top level and the
pairs (3241), (4213) and (4231), (3214) in the bottom level. Then if we
choose three vertices from one of these levels, we must choose both entries
in one of these pairs. However, this is impossible; none of these pairs can
be combined with both (1234) and (1243). For example, the pair (1342),
(1423) cannot be combined with (1234), because this would say that

a1 + b3 + c4 + d2 > 2,

a1 + b4 + c2 + d3 > 2,

and

a1 + b2 + c3 + d4 > 2,

and thus

6 < 3a1 + (b2 + b3 + b4) + (c2 + c3 + c4) + (d2 + d3 + d4)

≤ 3a1 + 1 + 1 + 1,

which implies that a1 > 1, a contradiction. Note that the three permutations
(1234), (1342), (1423) all agree in one coordinate and pairwise differ in all
other coordinates (we call such a triple of permutations a cyclic triple). The
above proof shows that a cyclic triple cannot all give sums greater than 2.
Cyclic triples similarly occur with the other three pairs above.

Therefore, at most four sums can be greater than 2, as claimed. �

From Lemma 3.1, at most 18 sums can be less than 1. This and Lemma
3.2 account for only 22 of the 24 permutations of the four cards, so at least
two of the permutations must give a sum lying in [1, 2]. This completes the
proof of Theorem 1.1.

(Intersecting permutations, which occur in the proof of Lemma 3.2, have
been studied in numerous papers, for example [1].)

Note that Lemma 3.2 is best possible, in that four sums greater than 2
can be attained: use two cards (1, 0, 0, 0), one card (0, 1, 0, 0), and one card
(1/4, 1/4, 1/4, 1/4); then these four cards have four sums equal to 9/4 and
all other sums less than 2.

We generalize this example to arbitrary integers n > 4. If n is odd, choose (1, 0, . . . , 0) (n− 1)/2 cards,
(0, 1, 0, . . . , 0) (n− 1)/2 cards,
(1/n, 1/n, . . . , 1/n) one card.

Then there are(
n− 1

2

)(
n− 1

2

)
(n− 2)! =

(n− 1)(n− 1)!

4
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permutations giving a sum of 2 + 1
n . If n is even, similarly choose (1, 0, . . . , 0) n/2 cards,

(0, 1, 0, . . . , 0) (n− 2)/2 cards,
(1/n, 1/n, . . . , 1/n) one card.

Then there are (n
2

)(n− 2

2

)
(n− 2)! =

n(n− 2)(n− 2)!

4

permutations giving a sum of 2 + 1/n. If n ≥ 5, then
(n− 1)(n− 1)!

4
≥ (n− 1)! (n odd),

n(n− 2)(n− 2)!

4
≥ (n− 1)! (n even).

Note that the number of sums that are greater than 2 in the above example
(at least (n− 1)!), plus the number of permutation sums that are less than
1 in the example following Lemma 3.1 (n!− (n− 1)!), totals to at least n!.
This means that, if we are to prove that the interval [1, 2] has the n-card
property for any n ≥ 5, we will not be able to use the same technique as for
Theorem 1.1.

4. Proof of Theorem 1.2

Now we look at the interval [2/3, 5/3]. This will be harder to settle,
although our proof will again use the same method as in Theorem 1.1.

Recall that, given four cards A,B,C and D, we may consider the per-
mutation π = (π(1)π(2)π(3)π(4)) of {1, 2, 3, 4} instead of the sum aπ(1) +
bπ(2) + cπ(3) + dπ(4) that arises from the permutation. Moreover, we shall
think of a set of k such permutations as if they were arranged into a k by 4
matrix, with each permutation forming a row of the matrix. Thus we shall
speak of the “columns” of a set of permutations. For example, column 1 of
such a set would consist of the first entries in each of the permutations.

With this understanding, we proceed to the upper bound 5/3 of our in-
terval.

Proposition 4.1. Given any four cards, at most eight of the 24 permutation
sums can be strictly greater than 5/3.

Proof. For a given set of four cards, let S be the set of all permutations
giving sums greater than 5/3.

Step 1: First we note that no three permutations in S can together have
at most one repeated entry; we call such a triple of permutations almost
disjoint. We prove this by contradiction.
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Case (i): Suppose without loss of generality that there are three per-
mutations in S so that 1 appears twice and 2 appears once in the
first column, while the other three columns contain no repeated entries.
Then the total of the corresponding three sums would be greater than
3(5/3) = 5, the sum corresponding to the first column (that is, the sum of
the entries from card A used in the sums) would be 2a1+a2, and the sum
of every other column would be at most 1. This yields 2a1 + a2 + 3 > 5,
so 2 < 2a1 + a2 ≤ 2(a1 + a2) ≤ 2, a contradiction.

Case (ii): If there are three permutations in S which are pairwise dis-
joint, then the total of all entries in these three permutations is again
greater than 5, but this time the sum of each column is at most 1, so the
sum of all entries is at most 4, which is again a contradiction.

Step 2: Next we show that there cannot be 7 permutations in S where some
entry in some column (say 1 in the first column) occurs six times. For then
the seventh permutation (say 2134) together with two of the permutations
containing 1 (in this case 1342 and 1423) would form an almost disjoint
triple in S, which is impossible by Step 1. All other cases are handled by
permuting the last three columns.

Step 3: Now suppose that S contains nine permutations. From Step 2, no
entry can appear six times in any column.

Suppose that, among the nine permutations in S, some entry (say 1 in
column 1) appears exactly five times; without loss of generality, the five
permutations 1234, 1243, 1324, 1342, and 1423 are in S, while 1432 is not.
Of the remaining 18 permutations, just six of them can be added to these
five without forming an almost disjoint triple: 2143, 2314, 3124, 3241, 4213,
and 4321. So the remaining four permutations in S must come from this set
of six. However, we can partition these six permutations into three sets of
two, add one of the original five permutations to each pair and obtain the
following almost disjoint (in fact disjoint) triples:

{1234, 2143, 4321}, {1342, 3124, 4213}, {1423, 2314, 3241}.

Thus at most three of the permutations 2143, 2314, 3124, 3241, 4213, and
4321 can be added to the five 1234, 1243, 1324, 1342, 1423; nine permuta-
tions in S are impossible this way.

So, in S, every entry can appear at most four times in every column. If no
entry appears four times in any column, then the sum corresponding to each
column will be at most 3, so the sum of all the entries of the corresponding
sums will be at most 12, while the sum of all these entries must be greater
than 9(5/3) = 15, a contradiction.

Thus some entry (say 1 in column 1) must appear exactly four times. By
symmetry, there are two choices for the four permutations in S in which this
entry appears:

1234, 1243, 1324, 1342 and 1234, 1243, 1342, 1423.
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First assume the four permutations 1234, 1243, 1324, 1342 are in S. To
these, none of the permutations 2413, 2431, 3412, 3421, 4123, 4132 can be
added because each would create an almost disjoint triple in S. This leaves
12 remaining permutations, from which we wish to choose five to be in S.
Partition these 12 into four sets of three, as follows:

{2134, 3241, 4213}, {2143, 3214, 4231}, {2341, 3142, 4312}, and

{2314, 3124, 4321}.
For each of these triples, any two of its permutations together with one of
the permutations 1234, 1243, 1324, 1342 already in S will form an almost
disjoint triple:

• With {2134, 3241, 4213}, use 1324.
• With {2143, 3214, 4231}, use 1342.
• With {2341, 3142, 4312}, use 1234.
• With {2314, 3124, 4321}, use 1243.

Thus we cannot add more than four permutations to the above four, and S
contains at most eight permutations, as claimed.

So assume instead that S contains the four permutations 1234, 1243, 1342,
1423. This time each of the following nine permutations would create an
almost disjoint triple:

2134, 2341, 2413, 3142, 3214, 3421, 4123, 4231, 4312.

So none of these can be in S. The remaining nine permutations can be
grouped into the following sets of three:

{2314, 3241, 4132}, {2143, 3412, 4321}, and {2431, 3124, 4213}.
No more than one permutation from each of these groups can be added to
S, because any two of each group forms an almost disjoint (in fact disjoint)
triple, as follows:

• With {2314, 3241, 4132}, use 1423.
• With {2143, 3412, 4321}, use 1234.
• With {2431, 3124, 4213}, use 1342.

So we cannot add more than three permutations to S, and there are at most
seven permutations in S this time.

Thus, for any four cards, the maximum number of permutation sums
greater than 5/3 is eight, as claimed. �

Proposition 4.1 is best possible; the four-card sets

(1, 0, 0, 0), (1, 0, 0, 0), (0, 1/3, 1/3, 1/3), (0, 0, 1/2, 1/2)

and

(1, 0, 0, 0), (1, 0, 0, 0), (0, 1, 0, 0), (0, 1, 0, 0)

each have eight permutation sums greater than 5/3.
Next we will handle the lower bound 2/3. For this we will need the

following observations.
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Lemma 4.2. For any set of four cards, the following sets of permutations
cannot all correspond to sums less than 2/3:

(i) Six (or fewer) permutations with all four columns complete: that
is, x permutations of {1, 2, 3, 4}, where x ∈ {4, 5, 6}, so that, when
arranged in matrix form, each of the four columns contains each of
1, 2, 3 and 4 at least once.

(ii) Nine permutations with three columns doubly complete: that is, nine
permutations of {1, 2, 3, 4} so that three of the four columns contain
each of 1, 2, 3 and 4 at least twice.

Proof. (i) If column i contains all of 1, 2, 3, 4 at least once, it means that
each entry of card i appears at least once in the corresponding sums, so the
sum of these entries must be at least 1. Let x ∈ {4, 5, 6}. So x permutations
with four complete columns would have to correspond to a total sum of at
least 4. However, if x such permutation sums were all less than 2/3, then
the total of all x sums would be less than x(2/3) ≤ 4, a contradiction.

(ii) Similarly, if nine such permutation sums were all less than 2/3, then
the total of all nine sums would be less than 9(2/3) = 6, while the sum of
the three doubly complete columns is at least 2 · 3 = 6, a contradiction. �

A special case of (i) would be any cyclic 4-tuple such as (1234), (2341),
(3412), (4123). A special case of (ii) would be three cyclic triples with
different leading fixed points, such as

(1234), (1342), (1423); (2134), (2341), (2413); or (3124), (3241), (3412).

Proposition 4.3. Given any four cards, at most 15 of the 24 permutation
sums can be less than 2/3.

Proof. We first make the following general observation. If we are given
a set of n cards as in the n-card problem, then there are n! sums to be
considered. Rearranging the cards we are given obviously does not change
these sums. Also, rearranging the numbers on each card in the same way
(that is, applying the same permutation to the numbers on each card) will
not change the n! sums either. For example, we could switch the first and
second numbers on each card without affecting the n! sums.

Now let n = 4. For a given set of four cards, we will consider the set S of
all permutations giving sums less than 2/3. We classify the permutations in
S according to the number of permutations starting with each of 1, 2, 3 and
4. Let the type of S be the quadruple n = [n1, n2, n3, n4], where ni is the
number of permutations π in S whose first element π(1) is i. That is, ni is
the number of times the ith number on the first card is used in a sum less
than 2/3. Then

∑4
i=1 ni is the number of permutations in S. We want to

eliminate all possible types n, where
∑4

i=1 ni = 16, as the type of S.
Note that, from the above observation, rearranging the numbers on each

card in the same way would give us a permutation of the ni’s without af-
fecting the sums. Thus, without loss of generality, we can assume that the
type n of S satisfies n1 ≥ n2 ≥ n3 ≥ n4.
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Also, by rearranging the cards, the sums are unchanged but a different
card may become the first card and thus would determine the ni’s, so we
could get a different type n.

Altogether, for a given four cards, we have up to four possible types n
such that n1 ≥ n2 ≥ n3 ≥ n4. Of these, we choose the type n for which n4
is as small as possible.

We now proceed to eliminate all possible n’s with
∑4

i=1 ni = 16 that
might occur as the type of S. We do so in the following order, where ≥ is
componentwise:

• [n1, n2, n3, n4] ≥ [5, 5, 5, 0] (so n = [5, 5, 5, 1] and [6, 5, 5, 0]).
• [n1, n2, n3, n4] ≥ [6, 6, 3, 0] (so n = [6, 6, 3, 1] and [6, 6, 4, 0]).
• [n1, n2, n3, n4] ≥ [6, 5, 1, 1] (so n = [6, 6, 2, 2], [6, 5, 4, 1], [6, 5, 3, 2]).
• [n1, n2, n3, n4] ≥ [5, 5, 3, 1] (so n = [5, 5, 4, 2] and [5, 5, 3, 3]).
• [n1, n2, n3, n4] ≥ [5, 4, 4, 1] (so n = [5, 4, 4, 3] and [6, 4, 4, 2]).
• [n1, n2, n3, n4] ≥ [6, 4, 3, 1] (so n = [6, 4, 3, 3]).
• [n1, n2, n3, n4] = [4, 4, 4, 4].

Case 1: [n1, n2, n3, n4] ≥ [5, 5, 5, 0]: If n1 = 5 it means that only one of the
six permutations starting with 1 is missing from S, so there must be
a cyclic triple (either (1234), (1342), (1423) or (1243), (1432), (1324))
included in S. Similarly there are cyclic triples in S starting with 2 and
3. This is a contradiction to (ii) of Lemma 4.2.

Case 2: [n1, n2, n3, n4] ≥ [6, 6, 3, 0]: The three permutations in S starting
with 3 must contain two members of a cyclic triple. Say they are (3124)
and (3241). Then the following (multi-)set of nine permutations in S
satisfies (ii) of Lemma 4.2:

(3124), (3241), (3241), (1324), (1432), (1432), (2314), (2413), (2143).

We may permute columns 2, 3 and 4 to account for all other possibilities.

At this point we have eliminated all types where n4 = 0, so from now on
we can assume that n4 ≥ 1, and moreover (by the minimality of n4) every
column of S contains each of 1, 2, 3, 4 at least once.

Case 3: [n1, n2, n3, n4] ≥ [6, 5, 1, 1]: Without loss of generality, assume that
(2431) is the only permutation starting with 2 which is missing from
S. S contains all permutations starting with 1, and one permutation
starting with 3 and with 4. It won’t matter which permutation starting
with 4 is in S (we denote this permutation by (4∗∗∗)), so for each per-
mutation in S starting with 3 we give a set of 6 permutations satisfying
(i) of Lemma 4.2.

(3124), (1243), (1432), (2314), (2341), (4∗∗∗);
(3142), (1423), (1234), (2314), (2341), (4∗∗∗);
(3214), (1423), (1432), (2134), (2341), (4∗∗∗);
(3241), (1423), (1432), (2143), (2314), (4∗∗∗);
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(3412), (1234), (1423), (2134), (2341), (4∗∗∗);
(3421), (1243), (1432), (2143), (2314), (4∗∗∗).

Thus Case 3 is impossible.

Case 4: [n1, n2, n3, n4] ≥ [5, 5, 3, 1]: Of the three permutations starting with
3 which lie in S, two of them must belong to the same cyclic triple, so
(by permuting the last three columns) we may assume that they are
(3142) and (3214). Then:

• If we have (1423) ∈ S, then the subset (3142), (3214), (1423),
(2xy1) of S (where {x, y} = {3, 4}) has two complete columns;
column 4 and either column 2 or 3, depending on whether x = 3
or y = 3. (Here (2xy1) denotes any permutation of this form
which belongs to S, which must exist as there is only one per-
mutation (2∗∗∗) missing from S.) We now add a permutation
in S of the form (13∗∗) or (1∗3∗) to make all three columns 2,
3 and 4 complete, and this is always possible because there is
only one permutation (1∗∗∗) missing from S. Finally, adding
in the permutation (4∗∗∗) in S will give us six permutations in
S with all columns complete, and we are done by (i) of Lemma
4.2.
• Otherwise, S is missing (1423) but contains the other five per-

mutations starting with 1. Now if S contains (2431) we use

(1243), (1324), (2431), (3142), (3214), (4∗∗∗),

and otherwise we use

(1324), (1432), (2143), (2341), (3214), (4∗∗∗).

In either case these six permutations have all columns complete,
and we are again done by (i) of Lemma 4.2.

Case 5: [n1, n2, n3, n4] ≥ [5, 4, 4, 1]: If both 4’s contain cyclic triples, we
are done by (ii) of Lemma 4.2. So suppose that the permutations in S
starting with 3 do not contain a cyclic triple. This means that the two
permutations starting with 3 which are missing from S must agree in
two columns.

• Suppose S does not contain the two permutations (34∗∗) (that
is, (3412) and (3421)). Then if S contains (2413), we use (3124),
(3241), (2413) together with any permutation in S of the form
(1∗∗2). This set will contain two complete columns, namely
column 4 and either column 2 or column 3, and we can now add
in a permutation from S of the form (1∗∗∗) so as to obtain a
third complete column. The permutation (4∗∗∗) in S will now
complete column 1 and allow us to use (i) of Lemma 4.2. If we
have (2431) ∈ S, we similarly use

(3142), (3214), (2431), (1∗2∗), (1∗∗∗), (4∗∗∗),
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obtained from the previous construction by switching columns
3 and 4. If S misses both (2431) and (2413), then we use either

(3142), (3214), (2134), (2341), (1423), (4∗∗∗)
or

(3124), (3241), (2143), (2314), (1432), (4∗∗∗),
depending on which of (1423) or (1432) is present in S, and
Lemma 4.2(i) applies again. We can permute columns to handle
the cases where S misses (3∗4∗) or (3∗∗4).
• Suppose S misses (32∗∗); the argument here is very similar to

the previous case. If (2341) ∈ S then we use

(3124), (3412), (2341), (12∗∗), (1∗∗∗), (4∗∗∗),
and if (2314) ∈ S then we use

(3142), (3421), (2314), (12∗∗), (1∗∗∗), (4∗∗∗).
If S misses both (2341) and (2314), then we use either

(3142), (2413), (2431), (1324), (12∗∗), (4∗∗∗)
or

(3124), (2431), (2413), (1342), (12∗∗), (4∗∗∗),
depending on which of (1324) or (1342) is present in S. We
permute columns to handle the cases (3∗2∗) and (3∗∗2).

So now we assume that S misses (31∗∗). If (2143) ∈ S then we use

(3214), (3421), (2143), (1∗∗2), (1∗∗∗), (4∗∗∗).
If (2134) ∈ S then we use

(3241), (3412), (2134), (1∗2∗), (1∗∗∗), (4∗∗∗).
So we assume that S misses both (31∗∗) and (21∗∗), which means S
contains all permutations of the forms (23∗∗), (24∗∗), (32∗∗) and (34∗∗).

Now, since S must have at least one 1 in column 2, S must contain
some permutation of the form (41∗∗). If S contains (1234) and (1423),
then we use

(1234), (1423), (2341), (3412), (41∗∗).
If S contains (1234) and (1342), then we use

(1234), (1342), (2413), (3421), (41∗∗).
If S misses (1234), then we use

(1243), (1324), (2431), (3412), (41∗∗).
All of these cases result in instances of (i) of Lemma 4.2.

Case 6: [n1, n2, n3, n4] ≥ [6, 4, 3, 1]: Consider the four permutations in S
that start with 2. Their associated cyclic shifts give us four permuta-
tions starting with 3, so one of these must belong to S, since S is only
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missing three permutations starting with 3. Thus S must contain some
permutation (2xyz) and two of its cyclic shifts (xyz2), (yz2x), (z2xy),
namely the ones starting with 3 and 1. These three permutations give
us three different numbers in each column, with the only missing num-
ber in each column being that number in the fourth cyclic permutation.
Now take the fourth cyclic permutation (starting with 4) and switch 4
and 1. The resulting permutation will start with 1 (and thus it will
be in S), and adding it to the three previously chosen permutations
will create two complete columns. The other two columns miss only 4
(column 1) and 1. The permutation in S starting with 4 supplies the 4
in column 1, and S must contain a permutation with 1 in the column
that needs it, because at this point we are assuming that all four num-
bers 1, 2, 3, 4 appear in every column at least once. So we can find six
permutations in S with all columns complete, as in (i) of Lemma 4.2.

This completes all types where n4 ≤ 3. So the only remaining type is the
following.

Case 7: [n1, n2, n3, n4] = [4, 4, 4, 4]: Now we can assume that every column
contains exactly four of each of 1, 2, 3, 4. Thus S must miss two of the
six permutations starting with 1.

Suppose that S misses both permutations (12∗∗), that is, (1234) and
(1243). Then S must contain (1324), (1342), (1423), (1432), and to
get enough 2’s in column 2 S must also contain (3214), (3241), (4213),
(4231). Now if S contains a permutation (21∗∗), then the five permu-
tations

(1324), (3241), (4213), (1432), (21∗∗)

in S have four complete columns, violating (i) of Lemma 4.2. So S
must miss both (2134) and (2143). Then S must contain (2314), (2341),
(2413), (2431), and (to get enough 1’s in column 2) S must also contain
(3124), (3142), (4123), and (4132). But now S contains a complete
4-cycle (1324), (3241), (2413), (4132), which is impossible by (i) of
Lemma 4.2.

Thus S cannot miss both (1234) and (1243). By symmetry we may
assume S misses (1234) and (1342), so S contains (1243), (1324), (1423),
(1432). Now look at the four permutations in S starting with 2. As
above, S cannot miss any pair of permutations that agree in exactly two
coordinates, so we have six possibilities for the two missed permutations
starting with 2:

(i) (2134), (2341);
(ii) (2134), (2413);

(iii) (2341), (2413);
(iv) (2143), (2431);
(v) (2143), (2314);

(vi) (2431), (2314).
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If S contains both (2413) and (2431), then (to avoid too many 4’s in
column 2) S must miss both (34∗∗)’s, which is impossible by the above
argument for (12∗∗). So S must miss one of (2413) and (2431), which
shows that (i) and (v) above are impossible. Similarly, if S contains
both (2413) and (2143), then (to avoid too many 3’s in column 4) S
must miss both (4∗∗3)’s, which is impossible by the above argument
for (12∗∗). So S must miss one of (2413) and (2143), which shows that
(vi) above is impossible.

Suppose (ii). Then S contains (2143), (2314), (2341), (2431). To get
enough 4’s in column 4 we need (3124) and (3214) in S. To get enough
3’s in column 3 we need (4132) and (4231) in S. But now S contains

(1243), (2431), (3124), (4132), (2314),

as in (i) of Lemma 4.2.
Suppose (iii). Then S contains (2134), (2143), (2314), (2431). To get

enough 4’s in column 3 we need both (3∗4∗)’s in S, and to get enough
3’s in column 2 we need both (43∗∗)’s in S. But now S contains

(1243), (2431), (3142), (4312), (1324),

as in (i) of Lemma 4.2.
Finally suppose (iv). Then S contains (2134), (2314), (2341), (2413).

To get enough 4’s in column 3 we need both (3∗4∗)’s in S, and to get
enough 3’s in column 3 we need both (4∗3∗)’s in S. But now S contains
a 4-cycle

(1324), (3241), (2413), (4132),

as in (i) of Lemma 4.2.

This completes the proof of Proposition 4.3. �

Propositions 4.1 and 4.3 together give us the proof of Theorem 1.2. Note
that the set

(1, 0, 0, 0), (0, 1, 0, 0), (1/4, 1/4, 1/4, 1/4), (1/4, 1/4, 1/4, 1/4)

has 14 sums less than 2/3. We do not have an example of a set of four cards
that has 15 sums less than 2/3.

Problem 1. Can the number 15 in Proposition 4.3 be improved to 14?

More generally, we have the following problem.

Problem 2.

(i) For each real number k ∈ (0, 1], what is the maximum number of
sums less than k for any set of four cards?

(ii) For each real number k ∈ [1, 4), what is the maximum number of
sums greater than k for any set of four cards?

Of course, we could ask similar questions for n cards.
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5. Further results and open problems

The cases n = 3 and n = 4 (and also n = 2, as the reader can easily
check) certainly suggest the following:

Problem 3. For an arbitrary integer n ≥ 2, are the n intervals{
Ik =

[
k

n− 1
, 1 +

k

n− 1

]
: k = 0, 1, . . . , n− 1

}
the complete solution to the n-card problem in general?

If these intervals were solutions, then they would be best possible, and
moreover no other solutions would be possible, because of the following sets
of n cards, generalized from examples given in [2]. For each i ∈ {0, 1, . . . , n},
let the collection Si of n cards be made up of

(
1, 0, 0, . . . , 0

)
(n− i cards) and(

0,
1

n− 1
,

1

n− 1
, . . . ,

1

n− 1

)
(i cards).

Then for each i ∈ {1, 2, . . . , n− 1}, the sums for Si will all be either

i− 1

n− 1
or 1 +

i

n− 1
.

(The sums for S0 and Sn are all 1.) So Sk and Sk+1 show that no proper
subinterval of Ik can have the n-card property. Moreover, suppose that some
interval [a, b] has the n-card property, where 1 ≤ k ≤ n − 1 is an integer
such that

k − 1

n− 1
< a ≤ k

n− 1
.

Then the smaller sum (k − 1)/(n − 1) for Sk does not lie in [a, b], so the
larger sum must, that is,

1 +
k

n− 1
≤ b.

Thus [a, b] must contain our interval Ik. So if the intervals Ik all have the
n-card property, then they are the only minimal intervals that do. Thus we
know that the only minimal intervals with the 3-card and 4-card property
respectively are

{[0, 1], [1/2, 3/2], [1, 2]}
and

{[0, 1], [1/3, 4/3], [2/3, 5/3], [1, 2]} ,
as mentioned in Sections 1 and 2.

Two special cases of Problem 3 seem worth pointing out.

Problem 4. Is [1/2, 3/2] a solution to the n-card problem for all odd n?

Problem 5. Is [1, 2] a solution to the n-card problem for all n?
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Regarding Problem 5, as mentioned at the end of Section 3, the method
we use to show that [1, 2] has the n-card property for n = 3 and n = 4 will
not work for larger n. We can only prove the following weaker result.

Lemma 5.1. [a, b] = [1, 3] is a (perhaps non-minimal) solution to the n-card
problem for every n ≥ 2.

Proof. Since the sum on every card is 1, the average of all n! permutation
sums must be 1. Thus at least one permutation sum must be at least 1. Any
set of n identical cards shows that the lower bound 1 cannot be increased,
since every sum for such a set would be exactly 1. Now notice that if we
switch two terms of any permutation, the effect on the permutation sum is
at most 2 (either higher or lower), since all numbers on each card are at
most 1. Given any permutation, we can change it to any other permutation
by a sequence of transpositions. Thus, start with some permutation sum
S ≥ 1, and change it to some permutation sum at most 1 by a sequence of
transpositions. Then there must be some permutation sum along the way
lying in [1, 3]. �

Of course, one cannot help but notice the following further “special case”
of Problem 3.

Problem 6. Do all minimal intervals with the n-card property have length
exactly 1?

If the answer to this problem were yes, then the discussion above would
instantly show that the answer to Problem 3 is yes as well. It would then
have been unnecessary to go through the proofs of Theorems 1.1 and 1.2,
and we could have all gone home early!

Finally, we note that the n-card problem has a matrix formulation. Recall
that a stochastic matrix is a square matrix such that each row consists of
nonnegative real numbers whose sum is 1. Thus if we arrange a set of n
cards to form the rows of a matrix, we obtain a stochastic matrix. Then all
of our problems and results could be phrased in these terms. For example,
it is easy to see that Theorem 1.2 is equivalent to:

For every 4 by 4 stochastic matrix M , there is a 4 by 4
permutation matrix P so that trace(PM) ∈ [2/3, 5/3].

But the author does not know whether such a reformulation would simplify
the proof. (Many papers give results on trace inequalities, for example [3].)

Acknowledgements

Some of this research was performed while the author was visiting the
University of Winnipeg on sabbatical. The author thanks John Ginsburg
and the Department of Mathematics and Statistics of the University of Win-
nipeg for their hospitality. Thanks are also due to anonymous referees for
suggestions, including pointing out the references [1] and [3].



CARDS, PERMUTATIONS, AND SUMS 19

References
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