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A GRAPH THEORETIC PROOF OF THE COMPLEXITY

OF COLOURING BY A LOCAL TOURNAMENT WITH AT

LEAST TWO DIRECTED CYCLES

JØRGEN BANG-JENSEN, GARY MACGILLIVRAY, AND JACOBUS SWARTS

Abstract. In this paper we give a graph theoretic proof of the fact
that deciding whether a homomorphism exists to a fixed local tourna-
ment with at least two directed cycles is NP-complete. One of the main
reasons for the graph theoretic proof is that it showcases all of the tech-
niques that have been built up over the years in the study of the digraph
homomorphism problem.

1. Introduction

Let H be a fixed directed graph. A homomorphism from a digraph D
to H is a mapping f : V (D) → V (H) such that xy ∈ A(D) implies that
f(x)f(y) ∈ A(H). The existence of such a homomorphism is denoted by
D → H.

The H-colouring problem (HOMH) is the problem of deciding whether a
homomorphism exists from an input digraph D to the target digraph H.

Problem 1.1 HOMH

Instance: A digraph D.
Question: Does there exist a homomorphism f : D → H?

In the case where H is an undirected graph we have the following result
by Hell and Nešetřil.

Theorem 1.1 (Hell and Nešetřil [17, 18]). Let H be a graph with loops
allowed.

• If H is bipartite or contains a loop, then the H-colouring problem
has a polynomial time algorithm.
• Otherwise the H-colouring problem is NP-complete.
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It has been a goal of researchers to try and extend the result by Hell
and Nešetřil to the directed case. This seems to be a very hard problem
and only partial results are known. One example of this is the theorem
by Bang-Jensen, Hell and MacGillivray [6] on the complexity of colouring
by semi-complete digraphs. A semi-complete digraph has the property that
between every pair of vertices there is at least one arc; parallel arcs and
loops are not allowed, but a pair of symmetric arcs is allowed.

Theorem 1.2 (Bang-Jensen, Hell and MacGillivray [6]). Let H be a semi-
complete digraph.

• If H contains at most one directed cycle, then H-colouring is poly-
nomial time solvable.
• Otherwise H-colouring is NP-complete.

There is the related notion of a locally semi-complete digraph. A digraph
H, is said to be locally semi-complete if for every vertex v of H, both the in-
neighbours of v and the out-neighbours of v induce semi-complete digraphs
(separately). A special case of this is that of a local tournament. A local
tournament, H, is a digraph such that between every pair of vertices there
is at most one arc and that for every vertex v of H both N+(v) and N−(v)
induce tournaments.

Bang-Jensen introduced the notion of locally semicomplete digraphs in [2]
where it was shown that many of the known results on tournaments general-
ize to this family of digraphs. Since their introduction locally semicomplete
digraphs have been studied by many authors, see [4] for a large collection of
results on these digraphs.

In [7] the present authors generalized Theorem 1.2 to the class of locally
semicomplete digraphs. In order to state the generalization, we need the
following notation for a unicyclic locally semicomplete digraph.

Let T be a connected unicyclic locally semicomplete digraph and let C
be the cycle in T . Then C is induced and forms the unique non-trivial
strong component in T . It is not difficult to check (see e.g. [4]) that T =
H[D1, D2, . . . , Dl], where Dj = C for some j and |Di| = 1 for all i 6= j
and H is an acyclic local tournament (the composition H[D1, D2, . . . , Dl] is
defined on page 111). In particular, if l ≥ 2 we must have that C is either
a 2-cycle or a 3-cycle as every vertex of C either dominates or is dominated
by some other vertex. If T = C then T -colouring is polynomial so we may
assume that C is either a 2-cycle or a 3-cycle.

The unicyclic locally semicomplete digraph T may also be viewed as fol-
lows. Let S be the set of neighbours (in- and out-neighbours) of the cycle
in T , including vertices in C. Then V (T ) \ S is the union of two disjoint
sets of vertices: those that come before S in the ordering shown above, call
these A, and those that come after S in the ordering above, call these B.
Define the following three induced sub-digraphs: T1 = T [A], T2 = T [S] and
T3 = T [B]. Each Ti is a locally semicomplete digraph and T1 and T3 are
acyclic as well. Note that T1 or T3 may be empty. This general structure
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is illustrated in Figure 1 (with a 3-cycle) where we have written Dt = {yt}
for t ∈ {1, 2, . . . , l} \ {j}. Note that the arc yj−1yj+1 may or may not be
present depending on whether T2 is or isn’t semicomplete. Furthermore,
since T is a locally semicomplete digraph, yi+1, . . . , yj−1 dominate the cycle
and yj+1, . . . , yk are dominated by the cycle.

yi

y1

...

Dj

yj+1

...

yj−1

yi+1

...

...

yk

yk+1

T2

yl

T1

T3

Figure 1. The structure of a unicyclic local tournament
that is not a directed cycle.

One part of the theorem in [7] follows from a result of Barto, Kozik, and
Niven [8] cited below. In order to state their result we need the following
concepts.

If H ′ is a subgraph of H, then a retraction of H to H ′ is a homomorphism
ρ : H → H ′ such that ρ(x) = x for every x ∈ V (H ′). In this case we say
that H retracts to H ′ or that H ′ is a retract of H. A digraph H is said to
be a core if H does not retract to a proper subgraph. It turns out that a
digraph is a core if and only if it is not homomorphic to a proper subgraph
and that every digraph H has a unique retract that is also a core [18]. This
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retract is called the core of H. If H ′ is the core of H, then H and H ′ have
equivalent homomorphism problems: G→ H if and only if G→ H ′.

A digraph H is said to be smooth if there are no sources or sinks present in
H. The complexity of HOMH in this case was conjectured by Bang-Jensen
and Hell in [5] and proved recently in [8] using techniques from universal
algebra.

Theorem 1.3 (Barto, Kozik, and Niven [8]). Let H be a smooth digraph.
If the core of H is a directed cycle, then H-colouring is in P. Otherwise
H-colouring is NP-complete.

The generalization of Theorem 1.2 can now be stated.

Theorem 1.4 (Bang-Jensen, MacGillivray and Swarts [7]). Let T be a con-
nected locally semicomplete digraph.

• If T is acyclic, then T -colouring is polynomial.
• If T is unicyclic and T is a directed cycle or T has the structure

shown in Figure 1 with T2 semicomplete and at least one of T1 and
T3 is empty, then T -colouring is polynomial. Otherwise T -colouring
is NP-complete.
• If T contains at least two cycles, then T -colouring is NP-complete.

The third point above follows from the result of Barto, Kozik, and Niven
[8]. Our goal in this paper is to prove the third point for local tournaments
without having to appeal to other results (and in particular using only graph
theoretic tools). We are only able to deal with local tournaments, since one
of the tools we used (indicators equal to directed paths of length two—see
Section 2.1) breaks down under the presence of two-cycles.

Given the fact that the third point in Theorem 1.4 has already been
established, one might wonder why it would be interesting to find different
NP-completeness proofs in the case when the local tournament T has at
least two directed cycles. One reason is that the analysis makes careful use
of the local tournament structure, and therefore helps pinpoint where the
complexities arise. Another is that it showcases all of the techniques that
have been built up over the last two decades in the study of the complexity
of graph homomorphisms. Our paper’s motivation is similar to the one
by Hell and Rafiey [19]. In their paper Hell and Rafiey give a proof of
Bulatov’s dichotomy result [11] for list homomorphisms (also established
using universal algebra). Their proof is a mixture of graph theory and
universal algebra. To quote Paul Halmos [1]:

Combinatorics, the finite case, is where the genuine, deep
insight is. Generalizing, making it infinite, is sometimes in-
tricate and sometimes difficult, and I might even be willing
to say that it’s sometimes deep, but it is nowhere near as
fundamental as seeing the finite structure.

There is also a related, more significant, reason. The proof of the smooth
digraph conjecture uses results from [12], [20] and [21] which imply that if
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a digraph H does not admit a weak near-unanimity function (see [8] for
the definition), then HOMH is NP-complete. Such functions have been
conjectured by Bulatov, Jeavons and Krokhin [12] (although not in terms
of weak near-unanimity functions) to be the dividing line between polyno-
mial and NP-complete digraph homomorphism problems. Assuming that
P 6= NP, no directed graph H such that HOMH is NP-complete admits a
weak near-unanimity function. In his Ph.D. thesis [24], Swarts developed
a method for translating any NP-completeness proof that uses the three
Hell-Nešetřil constructions into a proof that H has no weak near unanimity
function, provided that the base cases—the ones where NP-completeness is
proved directly using polynomial time reductions—can be handled. That is,
Swarts’ method allows the assumption that P 6= NP to be removed. He also
showed that all digraphs for which the results in [15] provide polynomial
algorithms admit a weak near-unanimity function. We therefore think there
is value in our long detailed argument since it uses the these three construc-
tions and, if the base cases can be handled, makes it possible to directly
determine precisely which local tournaments admit such a function.

For terms not defined in this paper, the reader may consult [4] for di-
graphs, [18] for homomorphisms and [13] for complexity theory.

2. Some Tools

Hell and Nešetřil [17] introduced a number of powerful tools for proving
that a given digraph has an NP-complete homomorphism problem. The aim
of this section is to introduce these and other tools that will be useful in our
proof.

2.1. The Indicator Construction. Let I be a fixed digraph with two
specified vertices i and j. The indicator construction (with respect to the
indicator I, i, j) transforms a digraph H to the digraph H∗ as follows. The
vertex set of H∗ is the same as that of H. Arcs are defined by the following
rule: xy is an arc of H∗ if and only if there exists a homomorphism from I
to H mapping i to x and j to y. We then have the following result.

Lemma 2.1 (Hell and Nešetřil [17, 18]). If the H∗-colouring problem is
NP-complete, then the H-colouring problem is also NP-complete.

2.2. The (Vertex) Sub-indicator Construction. Let J be a fixed di-
graph with specified vertices k1, k2, . . . , kt and j. The sub-indicator con-
struction (with respect to the sub-indicator J, k1, k2, . . . , kt, j) transforms a
digraph H with specified vertices x1, x2, . . . , xt to an induced subgraph H+

defined as follows. Let W be the digraph obtained from a copy H and a
copy of J by identifying each ki with the corresponding xi for i = 1, 2, . . . , t.
Then H+ is the subgraph of H induced by those vertices u for which some
retraction of W to H maps j to u.
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Lemma 2.2 (Hell and Nešetřil [17, 18]). Let H be a digraph that is a core.
If the H+-colouring problem is NP-complete, then the H-colouring problem
is also NP-complete.

Often, when using the sub-indicator construction, we take the vertices k1,
k2, . . ., kt above to be a set of isolated vertices in J . This has the effect that
the digraph W above is H ∪ (J−{k1, k2, . . . , kt}). In considering retractions
of W to H, we see that we are actually considering homomorphisms of
J − {k1, k2, . . . , kt} to H.

2.3. The Arc-sub-indicator Construction. Let J be a fixed graph with
a specified arc jj′ and t specified vertices k1, k2, . . . , kt. The arc-sub-indicator
construction (with respect to the arc-sub-indicator J, k1, k2, . . . , kt, jj

′) trans-
forms a digraph H with t specified vertices x1, x2, . . . , xt into its subgraph
H− determined by the images of the arc jj′ under retractions of W (defined
as above) to H. This construction is therefore an arc version of the (vertex)
sub-indicator outlined above.

Lemma 2.3 (Hell and Nešetřil [17]). Let H be a core. If the H−-colouring
problem is NP-complete, then so is the H-colouring problem.

2.4. Colouring by Wheels is NP-complete. Let H be the wheel-graph
shown below in Figure 2. H has vertices {0, 1, 2, . . . , n} and arcs 0i, i0 for
i = 1, 2, . . . , n, j(j + 1) for j = 1, 2, . . . , n− 1 and n1.

1 2

3

4n− 1

n

0

Figure 2. The target H.

Theorem 2.4. H-colouring is NP-complete, even for acyclic inputs.

Proof. The proof is via a reduction from not-all-equal 3-SAT without negated
variables which is known to be NP-complete [23].

Throughout let k ∈ {1, 2, . . . , n} and define

k+ =

{
k + 1 if 1 ≤ k < n,
1 if k = n,
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and

k− =

{
k − 1 if 1 < k ≤ n,
n if k = 1.

We only have the following transitive triples in H: 0kk+, k0k+ and kk+0.
Let F be the digraph shown below in Figure 3

a

b

cd

e

Figure 3. The gadget F .

If F → H, then c 67→ 0: if c 7→ 0, then b 7→ k and a 7→ k+. This implies
that d 7→ k and e 7→ k+. Therefore the arc eb is mapped to k+k which is
not an arc of H.

On the other hand there is a homomorphism f : F → H in which f(c) =
k, where k ∈ {1, 2, . . . , n}. This homomorphism is given by: f(a) = 0,
f(b) = k+, f(c) = k, f(d) = k− and f(e) = 0.

Let G be the digraph shown in Figure 4.

u v w

x y z

Figure 4. The gadget G.

If G → H, then (x, y, z) 6= (0, 0, 0) as this would force u, v and w to all
map to nonzero vertices and no transitive triple on nonzero vertices alone
exists. Also if G→ H, then (x, y, z) 6= (k, k, k). If this was the case then u, v
and w are forced to map to {0, k+} and no such transitive triple exists. On
the other hand homomorphisms from G to H are shown in Table 1 where
x, y and z have been pre-coloured with {0, k} using a majority of 0’s or a
majority of k’s.

We are now ready to exhibit the reduction. Let an instance of not-all-
equal 3-SAT without negated variables be given by:
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Table 1. Homomorphisms of the gadget G to H.

u v w k k+ 0 k 0 k+ 0 k k+

x y z 0 0 k 0 k 0 k 0 0

u v w k+ 0 k++ 0 k k+ k 0 k+

x y z k k 0 k 0 k 0 k k

The variables: X = {x1, x2, . . . , x`}
The clauses: C1, C2, . . . , Cm

Each clause Ci = {xi1 , xi2 , xi3} with xi1 , xi2 , xi3 ∈ X and i = 1, 2, . . . ,m.
Construct a digraph D as follows: Take a copy of F and add vertices

x1, x2, . . . , x` to F as well as the arcs cxi i = 1, 2, . . . ,m. For each clause
Ci = {xi1 , xi2 , xi3} take a copy of G and identify x, y, z in G with the
corresponding xi1 , xi2 , xi3 . This is illustrated in Figure 5.

xi1

c

. . . . . .
xi3xi2 x`x1

Figure 5. The digraph D.

If D → H, then c 7→ k ∈ {1, 2, . . . , n} which in turn implies that x1, x2,
. . ., x` → {0, k+}. The clause gadget G prevents all of the x’s in the same
clause from being mapped to the same vertex. This allows one to read off a
satisfying truth assignment: 0 = “False” and k+ = “True”.

If there exists a satisfying truth assignment we identify “True” with the
vertex 1 in H and “False” with the vertex 0 in H. This produces a pre-
colouring on the vertices x1, x2, . . . , x` in D which can be extended to a
homomorphism D → H.
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Therefore there exists a satisfying truth assignment for not-all-equal 3-
SAT without negated variables if and only if D → H. Thus H-colouring is
NP-complete (even for acyclic inputs). �

2.5. The Frobenius-Schur Index. The result discussed in this section is
a purely number theoretic result. It will help in choosing the correct lengths
for directed paths that are to act as indicators and sub-indicators.

Given a set of relatively prime positive integers B = {a1, a2, . . . , an}, a
linear combination of these integers is an expression of the form

(2.1) x1a1 + x2a2 + · · ·+ xnan,

where each xi ∈ {0, 1, 2, . . .}. A natural question to ask is for the smallest
integer φ such that each every integer t ≥ φ can be represented as a lin-
ear combination of the form (2.1). The existence of such an integer φ is
guaranteed by a result of Schur (see [10]).

Lemma 2.5. Let S be a nonempty set of positive integers which is closed
under addition. Let d be the greatest common divisor of the integers in S.
Then there exists a positive integer N such that td is in S for every integer
t ≥ N .

Since the set of all linear combinations of elements in B is closed under
addition, Schur’s result guarantees a threshold above which every integer is
of the form (2.1).

Frobenius (according to [9]) then posed the problem of finding the smallest
integer φ = φ(a1, a2, . . . , an) such that every integer t ≥ φ is of the form
(2.1) (or at least good bounds this number). The integer φ is known as the
Frobenius-Schur index of the set B [10] or as the conductor of the set B
[25]. Equivalently, one may ask for the largest integer not representable as
(2.1). In general, this is a very hard problem with a rich literature [22]. The
problem sometimes also goes by the name of the money changing problem.
Given a fixed set of coins (the set B) what is the largest amount of money
that cannot be changed using the coins in B? See [16] or [25] for more on
this.

We are typically interested in finding the Frobenius-Schur index of the
cycle lengths of a strong round local tournament D. By Lemma 3.6 we
know that the cycle lengths of D is an interval of integers, {`, `+ 1, . . . , n},
where ` is the girth of D and n = |V (D)|. Fortunately, in this case, the
Frobenius-Schur index is known exactly.

Lemma 2.6 (Brauer [9]). Let ` be a positive integer. Then

φ(`, `+ 1, . . . , n) =

⌊
n− 2

n− `

⌋
`.

We would like to give a short justification of this result as this may aid
the reader later on when we apply this result to local tournaments.

Consider the following table. Row k of the table contains numbers that
can be written as a linear combination using k numbers from {`, `+1, . . . , n}.
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`, `+ 1, `+ 2, . . ., n = ` + (n− `).
2`, 2`+ 1, 2`+ 2, . . ., 2n = 2` + 2(n− `).
3`, 3`+ 1, 3`+ 2, . . ., 3n = 3` + 3(n− `).

...
k`, k`+ 1, k`+ 2, . . ., kn = k` + k(n− `).

(k + 1)`, (k + 1)`+ 1, (k + 1)`+ 2, . . ., (k + 1)n = (k + 1)` + (k + 1)(n− `).
...

Note that each row is a list of consecutive integers. Therefore each number
that cannot be written as a linear combination has to occur somewhere
between the rows of the table. Between the last entry of a row and the first
entry of the next row there is a “gap” of integers that cannot be written as
a linear combination. The size of the gap also decreases as one moves down
the table so that it is inevitable that it eventually closes.

We now ask what is the largest integer that occurs somewhere between
the rows of the table. This integer has to occur in a gap of size at least two
(a gap of size one corresponds to two consecutive integers). So what is the
largest integer k such that between rows k and (k+ 1) there is still a gap of
size at least two. That is,

(k + 1)`− kn = (k + 1)`− k(`+ n− `) = `− k(n− `) ≥ 2,

implying

k =

⌊
`− 2

n− `

⌋
.

So as soon as we move beyond this row, every integer can be written as a
linear combination. Therefore the smallest integer φ defined above occurs
at (k + 1)`. That is,

φ(`, `+ 1, `+ 2, . . . , n) =

(⌊
`− 2

n− `

⌋
+ 1

)
` =

⌊
n− 2

n− `

⌋
`.

3. Local Tournaments

Since we aim to give a graph theoretic proof of the complexity of HOMH

where H is a local tournament, it comes as no surprise that the structure
of local tournaments plays a central role in this proof. In this section we
state the results on the structure of locally semi-complete digraphs (since
local tournaments are a special case of these) that we need. Bang-Jensen
and Gutin [4] is a standard reference on these matters.

A digraph D is said to be strong or strongly connected if for every pair of
vertices x and y in D, there is directed path joining x to y and a directed
path joining y to x.

A strong component of a digraph D is a maximal induced sub-digraph of
D that is strong.

The strong components of a digraph D are disjoint and can be labeled as
D1, D2, . . . Dt such that there is no arc from Di to Dj unless i < j. We call
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such an ordering an acyclic ordering of the strong components of D. This
ordering is unique for every connected local tournament (see e.g. [2, 4]).

We also use the following standard notation: out-neighbours (in-neighbours)
of the vertex v: N+(v) (N−(v)); maximum (minimum) in-degree: ∆− (δ−);
maximum (minimum) out-degree: ∆+ (δ+).

Theorem 3.1 (Guo and Volkmann [4, 14]). Let D be a connected locally
semi-complete digraph that is not strong and let D1, D2, . . . , Dp be the acyclic
ordering of the strong components of D. Then D can be decomposed into
r ≥ 2 induced subgraphs D′1, D

′
2, . . . , D

′
r as follows:

D′1 = Dp, λ1 = p, λi+1 = min{j | N+(Dj) ∩ V (D′i) 6= ∅},

and

D′i+1 = D
〈
V (Dλi+1

) ∪ V (D(λi+1)+1) ∪ · · · ∪ V (Dλi−1)
〉
.

The sub-digraphs D′1, D
′
2, . . . , D

′
r satisfy the properties below:

(a) D′i consists of some strong components of D and is semi-complete
for i = 1, 2, . . . , r.

(b) D′i+1 dominates the initial component of D′i and there exists no arc
from D′i to D′i+1 for i = 1, 2, . . . , r − 1.

(c) If r ≥ 3, then there is no arc between D′i and D′j for i, j satisfying

|j − i| ≥ 2.

If D is a connected locally semi-complete digraph that is not strong, then
the unique sequence D′1, D

′
2, . . . , D

′
r defined in Theorem 3.1 is called the

semi-complete decomposition of D.
A digraph on n vertices is said to be round if we can label its vertices

v1, v2, . . . , vn so that for each i, N+(vi) = {vi+1, . . . , vi+d+(vi)} and N−(vi) =
{vi−d−(vi), . . . , vi−1}, where all subscripts are taken modulo n.

Let D be a digraph with vertex set {v1, v2, . . . , vn} and let G1, G2, . . . , Gn
be digraphs which are pairwise vertex disjoint. The composition D[G1, G2,
. . ., Gn] is the digraph H with vertex set V (G1)∪ V (G2)∪ · · · ∪ V (Gn) and
arcs ( n⋃

i=1

A(Gi)
)
∪
{
gigj | gi ∈ V (Gi), gj ∈ V (Gj), vivj ∈ A(D)

}
.

A locally semi-complete digraph D is round decomposable if there exists
a round local tournament R on r ≥ 2 vertices such that D = R[S1, . . . , Sr],
where each Si is a strong semi-complete digraph.

For a strong digraph D a set S ⊆ V (D) is a separator or separating set if
D − S is not strong.

Lemma 3.2 (Bang-Jensen, Guo, Gutin and Volkmann [3, 4]). Let D be a
strong locally semi-complete digraph which is not semi-complete. Then D is
not round decomposable if and only if the following conditions are satisfied:
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(a) There is a minimal separating set S such that D − S is not semi-
complete and for each such S, D〈S〉 is semi-complete and the semi-
complete decomposition of D − S has exactly three components D′1,
D′2, D′3;

(b) There are integers α, β, µ, ν with λ2 ≤ α ≤ β ≤ p − 1 and p + 1 ≤
µ ≤ ν ≤ p+ q such that

N−(Dα) ∩ V (Dµ) 6= ∅ and N+(Dα) ∩ V (Dν) 6= ∅,

or

N−(Dµ) ∩ V (Dα) 6= ∅ and N+(Dµ) ∩ V (Dβ) 6= ∅,

where D1, D2, . . . , Dp and Dp+1, . . . , Dp+q are the acyclic orderings
of the strong components of D − S and D〈S〉, respectively, and Dλ2

is the initial component of D′2.

The structure described in Lemma 3.2 is illustrated in Figure 6.

Theorem 3.3 (Bang-Jensen, Guo, Gutin and Volkmann [3, 4]). Let D be a
connected locally semi-complete digraph. Then exactly one of the following
possibilities holds.

(a) D is round decomposable with a unique round decomposition given
by

D = R[D1, D2, . . . , Dα],

where R is a round local tournament on α ≥ 2 vertices and Di is a
strong semi-complete digraph for i = 1, 2, . . . , α;

(b) D is not round decomposable and not semi-complete and it has the
structure described in Lemma 3.2;

(c) D is a semi-complete digraph which is not round decomposable.

Proposition 3.4 (Bang-Jensen, Guo, Gutin and Volkmann [3, 4]). Let D
be a strong non-round decomposable locally semi-complete digraph and let S
be a minimal separating set of D such that D−S is not semi-complete. Let
D1, D2, . . . , Dp be the acyclic ordering of the strong components of D − S
and Dp+1, Dp+2, . . . , Dp+q be the acyclic ordering of the strong components
of D〈S〉. Suppose that there is an arc s → v from S to D′2 with s ∈ V (Di)
and v ∈ V (Dj), then

Di ∪Di+1 ∪ · · · ∪Dp+q 7→ D′3 7→ Dλ2 ∪ · · · ∪Dj .

Here, A 7→ B, means that A dominates B and there are no arcs from B
to A.

Lemma 3.5 (Bang-Jensen and Gutin [4]). Let R be a strong round local
tournament and let C be a shortest cycle of R and suppose C has k ≥
3 vertices. Then for every round labeling v0, v1, . . . , vn−1 of R such that
v0 ∈ V (C) there exist indices 0 < a1 < a2 < · · · < ak−1 < n so that
C = v0va1va2 · · · vak−1

v0.
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Dα

Dβ

Dp−1

Dλ2

Dp+1

Dµ

Dν

Dp+q

D1 Dp

D′1

D′2

D′3

S

Dλ2−1

...

...

...

...

...

...

...

Figure 6. The structure of a strong locally semi-complete
digraph that is not semi-complete and not round decompos-
able.
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Lemma 3.6 (Bang-Jensen and Gutin [4]). A strong round local tournament
R on r vertices has cycles of length k, k+ 1, . . . , r, where k is the girth of R.

Lemma 3.7 (Bang-Jensen and Gutin [4]). If a strong round local tourna-
ment with r vertices has a cycle of length k through a vertex v, then it has
cycles of all lengths k, k + 1, . . . , r through v.

Strictly speaking a round digraph is also round decomposable (all |Di| =
1). We prefer to distinguish between round and round decomposable di-
graphs. So when a local tournament is said to be round decomposable then
at least one |Di| ≥ 3. Furthermore, since a connected locally semi-complete
digraph that is not strongly connected is round decomposable (consider the
unique acyclic ordering of its strong components), a round local tourna-
ment (in our sense) is strongly connected and therefore Hamiltonian (by
Lemma 3.6).

In proving some of our results, we will use the sub-indicator construction
(both the vertex and arc versions). A glance at Lemmas 2.2 and 2.3 confirms
the fact that in order to apply a sub-indicator to a digraph H, one has to
know that H is a core.

Proposition 3.8 (Bang-Jensen, MacGillivray and Swarts [7]). A connected
locally semi-complete digraph D is a core.

4. Connected vs. Disconnected Local Tournaments

When H is a disconnected local tournament such that each component
of H (all of which are local tournaments themselves) is polynomial time
solvable, then HOMH is also polynomial time solvable. NP-completeness
results for disconnected local tournaments are much harder to obtain.

The NP-completeness results that follow are all for connected local tour-
naments since we only give polynomial time transformations from NP-com-
plete problems to HOMH when H is connected. A natural conjecture would
be: if a disconnected local tournament H contains at least one compo-
nent that is NP-complete, then HOMH is NP-complete. The difficulty in
proving this lies with constructing a polynomial transformation from some
NP-complete problem. In general, it is hard to set up the transformation
without forcing certain vertices of the transformed instance to map to a
specific component of H. This may have the unintended consequence of
restricting the images of one or more vertices of the transformed instance
too severely.

On the other hand one can easily obtain a polynomial time Turing re-
duction. Here, an instance of some NP-complete problem Q is transformed
into many different instances of HOMH . The transformation has to run in
polynomial time and furthermore an instance I of Q is a yes instance if and
only if at least one the transformed instances is a yes instance of HOMH .
Let H be a disconnected local tournament that is also a core and let H ′

be a component of H such that HOMH′ is NP-complete. The polynomial
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time Turing reduction is from HOMH′ to HOMH . Let G be an instance of
HOMH′ . We now form |V (H ′)| instances of HOMH as follows: take |V (H ′)|
copies each of G and H ′, let v ∈ V (G) and V (H ′) = {h1, h2, . . . , hn}. De-
note by Fi the graph obtained by identifying the vertex v in G with the
vertex hi in H ′, 1 ≤ i ≤ n.

It is now easy to see that G→ H ′ if and only if there exists at least one
i ∈ {1, 2, . . . , n} such that Fi → H.

This shows that for a disconnected local tournament with at least one
NP-complete component, HOMH is polynomial time solvable if and only
if P=NP. Therefore solving HOMH in polynomial time for a disconnected
local tournament H with at least one NP-complete component, is highly
unlikely.

From now on we assume that all local tournaments are connected.

5. Round Local Tournaments

Let D be a round local tournament containing at least two cycles, and
let ` denote the length of the shortest cycle. The proof of NP-completeness
proceeds as follows. If D has a unique cycle of length `, the result follows.
Otherwise, we show a minimum counterexample has δ+ < `, ∆+ < `, and
φ = `, where φ is the Frobenius-Schur index of the cycle lengths of D. From
this it follows that no counterexample exists.

Lemma 5.1. Let D be a round local tournament containing at least two
cycles. If D has a unique cycle of shortest length, then D-colouring is NP-
complete.

Proof. Let v0, v1, . . . , vn−1 be a round labeling of V (D), C be a shortest
cycle in D and ` be the length of C. Since D is strongly connected, by
Lemma 3.5 there exist indices 0 < a1 < a2 < · · · < a`−1 < n so that
C = v0va1va2 · · · va`−1

v0.
Since D has at least two cycles, there must be vertices of D not on C.
The proof is divided into two cases. Firstly, we consider the situation

where there are three indices i, i+ 1 and i+ 2 (mod `) such that ai+2− ai+1

≥ 2 and ai+1−ai ≥ 2. Therefore there are vertices of D, not on C, between
ai and ai+1 and between ai+1 and ai+2. Once this has been dealt with,
what then remains is the case where these vertices do not exist. This will
imply the existence of four indices i, i+ 1, i+ 2 and i+ 3 (mod `) such that
ai+3 − ai+2 = 1, ai+2 − ai+1 ≥ 2 and that ai+1 − ai = 1. That is, vai+3 and
vai+2 are consecutive, as are vai+1 and vai , and there exists a vertex of D
not on C between vai+1 and vai+2 .

Case 1 : ai+2 − ai+1 ≥ 2 and ai+1 − ai ≥ 2:
Let u be any vertex between ai and ai+1 and let w be the successor

of ai+1 on the outer n-cycle (w is between ai+2 and ai+1). This is
illustrated in Figure 7.
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D

vai

vai+1

vai+2

u

w

Figure 7. The first case where D has a unique cycle of
shortest length

We handle this case by assuming the lemma is false and examining
a minimum counterexample. That is assume that there exists a round
local tournament D with at least two cycles and a unique cycle of short-
est length that is of the form shown in Figure 7. In addition to this
we assume that D has the minimum number of vertices possible. Also,
D-colouring is not NP-complete.

We apply the sub-indicator J shown in Figure 8 to D. Note that the
vertex on the left is identified with vertex ai+1 in D and that the vertex
j of J is the vertex on the right. The sub-indicator is constructed by
starting with a directed path of length `(`−1). Skip the first two vertices
and then attach ` directed `-cycles to the next ` vertices, skip the next
vertex, and then attach ` directed `-cycles to the next ` vertices, and
so on.

t1vai+1 . . . t2 . . . t3 . . .t`−2 s1 s` t`−1 j. . .

︸ ︷︷ ︸
`

︸ ︷︷ ︸
`

︸ ︷︷ ︸
`

Figure 8. The sub-indicator for the first case.

We now consider all retractions of J to D, where the first vertex of J
maps to vai+1 . The vertices of the path that are attached to the `-cycles
have to map to C. If we map all vertices of J from the first up to s`
onto C, then s` 7→ vai−1 . Therefore j is able to map to u and vai+1 (at
least).

We claim that j 67→ w. To see why this is the case, consider what
happens when j 7→ w. If this was to happen, then s` 7→ vai (if not,
we either get a cycle of length less than ` or another ` cycle different
from C). If s` 7→ vai , then s1 7→ vai+1 . Therefore the image of J
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between the first vertex and vertex s1 is a closed directed walk, W ,
of length `(` − 2) − 1. Denote by J ′ the subgraph of J induced by
V (J)− {s2, s3, . . . , s`, t`−1, j}.

The walk W can be decomposed into directed cycles. The length of
each of these directed cycles is either ` or `+ 1. To see why this is the
case consider any group of ` + 3 consecutive vertices on J ′. Any such
group will include at least ` + 1 of the vertices with ` cycles attached
to them (also keep in mind that the first vertex is mapped onto vai+1).
These vertices can only map to V (C) and so the images (of the vertices
in J ′) can not be distinct. This implies that the longest cycle that
vertices in J ′ can map to is at most ` + 2. In order for ` + 2 vertices
in J ′ to map to an `+ 2 cycle in D, one needs `+ 2 vertices in J ′ that
can have distinct images. Such a group of ` + 2 vertices only occurs
between consecutive ti’s (see Figure 8). In order for the group to map
to an (`+ 2)-cycle ti and the vertex following ti+1 must have the same
image. That means that ti is mapped to a vertex on V (C) and so the
`+ 2 vertices do not have distinct images. This shows that the directed
cycles in the decomposition of W can only be of length ` and `+ 1.

Since W can be decomposed into ` and ` + 1 cycles, we have that
`(`−2)−1 = k1`+k2(`+1) = (k1 +k2)`+k2 where k1 is the number `-
cycles and k2 the number of (`+1)-cycles in such a decomposition. Note
that 0 ≤ k1, k2 ≤ `− 2. This means that `(`− 1) = (k1 +k2)`+ (k2 + 1)
or that ` divides (k2 + 1), but 1 ≤ (k2 + 1) ≤ ` − 1, so we have a
contradiction. Therefore if the first vertex of J maps to vai+1 , then j
cannot map to w.

We now also claim that j can map to every vertex of C. From before
we already know that j 7→ vai+1 . If we map t1 to w and then all
other vertices of J to C, we find that j 7→ vai : if t1 7→ w, the vertex
preceding t2 maps to vai+1 and the length of the path that remains in J
is `(`−2)−1, a multiple of ` minus 1. In general by mapping t1, t2, . . . , tk
to w and all other vertices (from the first up to the vertex preceding
tk+1) to C, we find that the vertex preceding tk maps to vai+1 . The
length of the path remaining in J is `(`−1)− (k`+k) = `(`−1−k)−k
(we have used k`+ k+ 1 vertices or k`+ k arcs up to this point). If we
now map all the remaining vertices to C we see that j 7→ vai+1−k

.

The result of this sub-indicator, D+, contains (at least) the subgraph
induced by C∪{u}, but not the vertex w. ThereforeD+ contains at least
two cycles and also has a unique shortest cycle of length `. Since D has
the minimum number of vertices for a counterexample, D+-colouring is
NP-complete, implying D-colouring is NP-complete, a contradiction.

Case 2 : ai+3 − ai+2 = 1, ai+2 − ai+1 ≥ 2 and that ai+1 − ai = 1:
This case is illustrated in Figure 9.
The proof in this case is via a reduction from not all equal `-SAT

without negations.
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D

vai+2

vai+3

vai
vai+1

Figure 9. The second case where D has a unique cycle of
shortest length

In carrying out the proof we need to construct the gadget Z shown
in Figure 10. The gadget Z is constructed from a copy of D and two
directed paths of length two, say a′ua and z′vz. Identify a′ and z′,
attach directed `-cycles to vertices z′, v and z and finally identify a
with vai+2 .

vai+2

C` C`C`

D

vai+3

vai
vai+1

z′ z

Figure 10. The gadget Z

In a retraction of Z to D, the vertex z′ can only map to vai+1 or vai .
This forces the pair of vertices (z′, z) to map to the pair (vai , vai+2) or
the pair (vai+1 , vai+3).

We also need the gadget K shown in Figure 11 (it is the same as the
sub-indicator used in the first case).

Let f : K → D be a homomorphism from K to D. If f(r) = vai ,
then f(s) 6= vai+1 . If f(s) = vai+1 , then f(t`−1) = vai . This means
that the image of K under f corresponds to a closed walk from vai
to vai of length `(` − 1) − 1. Through a similar technique as in the
previous case, one can show that this is impossible: the walk of length
`(`− 1)− 1 can only be decomposed into ` and `+ 1 cycles (because of
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t1r . . . t2 . . . t3 . . .t`−2 s1 s` t`−1 s. . .

︸ ︷︷ ︸
`

︸ ︷︷ ︸
`

︸ ︷︷ ︸
`

Figure 11. The gadget K

the placement of the `-cycles) and this is impossible. As in case one, it
is possible to show that if f(r) = vai , then s can map to every vertex of
C except vai+1 . This accomplished by mapping the ti’s of K “into” the
gap between vai+1 and vai+2 . On the other hand if f(r) = vai+1 , then
s can map to any vertex of C (again the ti’s are mapped into the gap
between vai+1 and vai+2). In a similar way it is possible to show that
if f(s) = vai+3 , then f(r) can map to any vertex of C except vai+2 and
that if f(s) = vai+2 , then r can map to any vertex of C.

Next, we construct a new gadget F from two copies of K, say with
end-vertices r1, s1 and r2, s2 respectively. To construct F identify vertex
s1 with vertex r2 and call this vertex c. This is shown in Figure 12.

s1 = r2 = c

s2r1

Figure 12. The gadget F

The gadget F has the property that if the pair (r1, s2) maps to the
pair (vai , vai+2), under a homomorphism from F to D, then the vertex
c can map to any vertex on C, except vai+1 . If the pair (r1, s2) maps to
(vai+1 , vai+3), then c can map to any vertex on C except vai+2 .

As mentioned earlier, the proof is via a reduction from not all equal `-SAT
without negated variables. So let an instance of not all equal `-SAT without
negated variables be given by:

The variables: Z = {z1, z2, . . . , za},
The clauses: K1,K2, . . . ,Kb.

Each clause Kj = {zj1 , zj2 , . . . , zj`} for each j ∈ {1, 2, . . . , b}.
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We now construct an instance of D-colouring. For each variable zj take a
copy of the gadget Z. Identify all copies of D. Label the z and z′-vertices in
the copies of Z as z1, z2, . . . , za, z

′
1, z
′
2, . . . , z

′
a. These vertices correspond to

variables in the instance of not all equal `-SAT without negated variables.
This produces the variable gadget.

For each clause Kj = {zj0 , zj1 , . . . , zj`−1
} take ` copies of the gadget F ,

say Fj1 , Fj2 , . . . , Fj` with end-vertices (rj11 , sj21), (rj12 , sj22), . . . , (rj1` , sj2`)
and top-vertices cj1 , cj2 , . . . , cj` , respectively. Now identify rj1i with z′ji and
sj2i with zji and form an `-cycle through cj1 , cj2 , . . . , cj` . This produces the
instance H of D-colouring shown in Figure 13.

D

vai
vai+1

cj1

cji

cj`

z′1

z′j1

z′ji

z′j`

z1

zj1

zji

zj`

...

...

...

...

z′a

za

vai+3

v
a
i+

2

Figure 13. The instance H

We now show that H → D if and only if there exists a satisfying truth
assignment for the instance of not all equal `-SAT without negated variables.
Define the pair (vai , vai+2) (in D) to be T and the pair (vai+1 , vai+3) to be F .

If H → D, then each pair (z′i, zi) maps to T or to F . Furthermore for a
given clause Kj = {zj1 , zj2 , . . . , zj`} it is not the case that all pairs (z′ji , zji),
1 ≤ i ≤ `, map to T . If this was the case, none of the cjis are allowed
to map to vai+1 and since there is a unique `-cycle in D, we won’t be able
to complete the `-cycle through the cjis. In a similar way it is possible to
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show that the pairs (z′ji , zji), 1 ≤ i ≤ ` cannot all map to F (here we would

be missing the vertex vai+2 on the `-cycle). Therefore in every clause there
is at least one pair that maps to T and at least one pair that maps to F .
A satisfying truth assignment can now be recovered by assigning “True”
(“False”) to variable zi if (z′i, zi) maps to T (F ).

Conversely, let a satisfying truth assignment be given. Pre-colour the
pair (z′i, zi) by T (F ) if zi is assigned the value “True” (“False”). For the
clause gadget corresponding to clause Kj = {zj1 , zj2 , . . . , zj`} we extend the
colouring as follows. Locate two consecutive vertices cjk and cjk+1

such that
(z′jk , zjk) maps to F and (z′jk+1

, zjk+1
) maps to T (all subscripts are taken

modulo `). Map the corresponding Fjk in such a way that cjk maps to vai+1

and map Fjk+1
in such a way that cjk+1

maps to vai+2 . Now map Fjk+2
such

that cjk+2
maps to vai+3 , Fjk+3

such that cjk+3
maps to vai+4 , . . . , Fjk−1

such
that cjk−1

maps to vai . By the properties of F and K discussed earlier, this
is always possible. The remaining vertices of H map in an obvious way to
D. Therefore H → D. �

To complete the proof that colouring by a round local tournament is NP-
complete, we assume that the result is false and examine a smallest coun-
terexample (minimum number of vertices and minimum number of arcs).
Being a counterexample, the corresponding colouring problem is not NP-
complete. We derive additional properties of the counterexample to see
that it cannot exist and in doing so we can then conclude that the colouring
problem is in fact NP-complete.

The first property of this counterexample follows from Lemma 5.1.

Lemma 5.2. Every vertex of a smallest counterexample is on a shortest
cycle.

Proof. Let D be a smallest counterexample. Since D-colouring is not NP-
complete, by Lemma 5.1, there are two cycles of length `. If D has vertices
not on these shortest cycles, apply the sub-indicator C` to obtain an induced
proper subgraph D′. Since D has at least two shortest cycles, D′ has at
least two cycles. Moreover D′ is round as it is an induced subgraph of D.
Thus D′-colouring is NP-complete implying D-colouring is NP-complete, a
contradiction. �

The next property deals with the minimum out-degree of the smallest
counterexample.

Lemma 5.3. Let D be a smallest counterexample and denote by δ+ the
minimum out-degree of D. Then δ+ < `, where ` is the length of a shortest
cycle in D.

Proof. Assume that D has δ+ ≥ ` ≥ 3. To prove the lemma we apply
the arc-subindicator shown in Figure 14 (a transitive tournament on δ+ + 1
vertices with the two arcs spanning end-to-end as shown), with respect to
the dashed arc, to D. Since every vertex in D has out-degree at least δ+,
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0 1 2 3 δ+. . .

. . .

Figure 14. The arc-subindicator.

the result of this arc-subindicator is a digraph D′ in which every vertex has
out-degree at least 2 (the two vertices following the given vertex in the round
enumeration). Every vertex also loses its out-neighbour furthest away from
it in the round enumeration. This implies that D′ has at least two cycles and
is a round local tournament. Furthermore D′ has at least one vertex with
out-degree less than δ+ (these are the vertices in D that have out-degree
exactly δ+) and so has fewer arcs than D. Since D has the minimum number
of arcs possible for a counterexample, D′ cannot be a counterexample and
so D′-colouring is NP-complete. By the arc-subindicator construction this
implies that D-colouring is also NP-complete, a contradiction. �

Next, we prove that a similar result holds for ∆+.

Lemma 5.4. Let D be a smallest counterexample and denote by ∆+ the
maximum out-degree of D. Then ∆+ < `, where ` is the length of a shortest
cycle in D.

Proof. Assume that D has ∆+ ≥ `. By the previous result this implies that
there exist two vertices x and y in D such that d+(x) < ` and d+(y) ≥ `.
Without loss of generality, d+(vn−1) < ` and d+(v0) ≥ `.

Let’s say that d+(v0) = m ≥ ` and d+(vn−1) = a < `. We then use the
sub-indicator formed by taking a copy of D and attaching a path of length
` to vertex v0 and letting j be the final vertex on the path of length `. This
is shown below in Figure 15.

Every vertex is on a shortest cycle (an `-cycle). In particular, v0 is on one
and moreover there is a shortest cycle containing v0 that uses the arc v0vm.
To see this consider any shortest cycle through v0, if it is not using v0vm
then there is at most one vertex of this cycle between v0 and vm (otherwise
we can find a shorter cycle). Call this vertex u. The vertex u is adjacent to
some vi with i > m, otherwise there is a shorter cycle. This also means that
vm is adjacent to vi. By replacing the arc v0u with v0vm and then following
the rest of the `-cycle, we now have a shortest cycle that uses v0vm. Let C
be such a shortest cycle through v0. Label the vertices on C (starting with
v0) as v0 = u0, vm = u1, . . . , u`−1.

It is easy to see that vertex j maps to v`, v`+1, . . . , vm by using the outer n-
cycle together with the arcs v`−1vi where i ∈ {`, `+1, . . . ,m}. Furthermore,
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j
v0

v1

va−1

va

vn−1
. . .

vm = u1
u2

u3

u+
k

vt

uk

P`︷ ︸︸ ︷

Figure 15. The sub-indicator.

j maps to any vt with m < t ≤ n − 1: for a given vt, let s = max{x | x <
t and vx ∈ C}. Since vs ∈ C, vs = uk for some 1 ≤ k ≤ ` − 1. The idea is
that uk is the first vertex on C, not including vt, that is encountered when
moving backwards along C. The successor uk on C, u+

k = vi, with i ≥ t.
This implies that ukvt is an arc of D. In order to obtain a walk of length
` from v0 = u0 to vt we first proceed along the n-cycle from v0 to v`−(k+1)

(0 ≤ `− (k + 1) < m). Next, we use the arc v`−(k+1)vm = v`−(k+1)u1, then
proceed along C to uk and finally use the arc ukvt.

By using C, it is clear that j maps to v0. The resulting digraph derived
from using this sub-indicator, contains C. It therefore has at least one cycle.

We now show that vertex j does not map to va. Here we have that
N−(va) ⊆ {v0, v1, . . . , va−1}. In order to obtain a contradiction assume that
W = x0x1 · · ·x`−1 is walk of length ` from v0 to va. That is,

x0 = v0, x1 = vj1 , x2 = vj2 , . . . , x`−2 = vj`−2
, and x`−1 = va.

Let k = max{0, j1, j2, . . . , j`−2, a}. Note that k > a, otherwise ji ≤ a and W
is a walk of length ` inside the transitive tournament D[v0, v1, . . . , va]. Fur-
thermore vkva is not an arc of D, for if it was then d+(vn−1) ≥ `. Therefore
d(vk, va) ≥ 2 and so the length of the sub-walk of W from v0 to vk is at most
` − 2. In order to complete W , vkvi ∈ A(D) for some i ∈ {0, 1, . . . , a − 1}.
This implies that vkv0 ∈ A(D) which means that there is a closed walk from
v0 to itself of length at most ` − 1. This is clearly not possible and so j
cannot map to va.

Now, if d+(v0) > l, then the result, say D′, of this sub-indicator has at
least two cycles, but does not contain va. Since it is smaller than D it is not a
counterexample and so D′-colouring is NP-complete. Therefore D-colouring
is NP-complete, a contradiction. Thus d+(v0) = l.

On the other hand, if there is a vertex vi ∈ {vm = v`, v`+1, . . . , vn−2}
with d+(vi) ≥ 2, then the result of the sub-indicator will again have at
least two cycles and as above this leads to D-colouring being NP-complete,
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a contradiction. This shows that D[vm = v`, v`+1, . . . , vn−1] is an induced
path. Note that, in this case, vn−1 is the predecessor of v0 on the `-cycle C
above.

If we now have that d+(vn−1) ≥ 2, j will map to v1 by using C. Therefore,
the sub-indicator results in a digraph with at least two cycles and fewer
vertices than D (j still does not map to va). Once again, we conclude that
D-colouring is NP-complete, a contradiction. Hence, d+(vn−1) = 1.

We now apply the sub-indicator shown below in Figure 16. This is formed
using a copy of D and attaching an oriented path as shown to v0.

v0

v1

vn−1

vm = v`

P`−1︷ ︸︸ ︷
jx

. . .

Figure 16. The new sub-indicator.

No vertex between v0 and v` is adjacent to a vertex vi with i > ` + 1,
otherwise v` has out-degree at least two. Therefore any vertex between v0

and v` is adjacent to v`+1 so that it can be on a cycle of length `. Also note
that the vertex x shown above can map to any of {v0, v1, . . . , v`−1}.

The distance between v` and v0 is exactly `− 1, because of the `-cycle C
through v0. This allows j to map to v0: first map x to vi ∈ {v1, . . . , v`−1},
then use viv`+1 together with the path of length ` − 2 from v`+1 to v0. It
is also possible to map j to vi ∈ {v`−1, v`, . . . , vn−1}: first map x to vi−(`−1)

(0 ≤ i − (` − 1) ≤ n − 1 − (` − 1) = n − ` = ` − 1), then follow the outer
n-cycle from vi−(`−1) to vi.

This sub-indicator therefore guarantees that we have at least the `-cycle
C through v0 and the vertex v`−1. Thus the result has at least two cycles.

We now note that j does not map to v1, otherwise there exists a directed
walk of length ` − 1 from vi ∈ {v0, v1, . . . , v`−1} (since x can only map
to vi) to v1 and such a walk does not exist. Therefore the result has at
least one fewer vertex and so its colouring problem is NP-complete, forcing
D-colouring to be NP-complete, a contradiction. �

The next two results deal with the Frobenius-Schur index of the cycle
lengths of a minimum counterexample. The first one may seem somewhat
artificial, but it is needed to establish the second.
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Lemma 5.5. Let D be a round local tournament on the vertex set {0, 1,
. . . , n− 1} with n = 2`− 2, where ` is the length of a shortest cycle in D.
If for every v ∈ {` − 2, ` − 1, . . . , n − 2}, N+(v) = v + 1 (mod n), then D
cannot be a minimum counterexample to the D-colouring problem.

Proof. Let φ(`, ` + 1, . . . , n) = φ be the Frobenius-Schur index of the cycle
lengths of D. Recall that φ is the smallest integer such that every integer
x ≥ φ can be written as a linear combination of `, ` + 1, . . . , n. By the
minimality of φ, φ − 1 cannot be written as such a linear combination.
Therefore D does not possess a closed walk of length φ − 1. If it did, this
closed walk can be decomposed into arc disjoint cycles with lengths in the set
{`, `+ 1, . . . , n}. This is equivalent to writing φ− 1 as a linear combination
of `, `+ 1, . . . , n which is not possible.

We assume that D is a minimum counterexample and derive a contradic-
tion. Since n = 2`− 2,

φ =

⌊
n− 2

n− `

⌋
` = 2`.

Therefore φ − 1 = 2` − 1 = n + 1. Also, since 0 has to be on an `-cycle,
0(` − 1) ∈ A(D) and by the local tournament property 0a ∈ A(D) where
a ∈ {1, 2, . . . , ` − 1}. To derive the contradiction, we use a sub-indicator
construction. This sub-indicator is constructed from a copy of D and by
attaching a path of length φ− 1 to vertex 0 and taking the end of this path
to be the vertex j. Some of the possible images of j are: 1, 2, . . . `− 1. This
is accomplished by going around the n-cycle once back to 0 and then using
the arc 0a, a ∈ {1, 2, . . . , `− 1}. To map j to vertex x, where ` ≤ x ≤ n− 1,
we proceed as follows: use an (n− (x− `+ 1))-cycle to go from 0 to 0 (` ≤
n−(x−`+1) ≤ n−1). Then use the remaining φ−1−(n−(x−`+1)) = x−`+2
arcs (2 ≤ x − ` + 2 ≤ n − ` + 1) first to go from 0 to ` − 1 and then from
` − 1 to x along the n-cycle. Its impossible for j to map to 0 since this
would correspond to a closed walk from 0 to 0 of length φ−1. Therefore the
result of applying this sub-indicator is D − {0}. Furthermore, since `− 2 is
not adjacent to `, 1 is not adjacent to `. In order for 1 to be on an `-cycle,
(n− 1) is adjacent to 1. Therefore D−{0} has at least two cycles. Since D
is a minimum counterexample, (D − {0})-colouring is NP-complete, and so
D-colouring is NP-complete, a contradiction. �

Lemma 5.6. If D is a minimum counterexample, then the Frobenius-Schur
index, φ, of the cycle lengths of D satisfies φ = `, where ` is the length of a
shortest cycle in D.

Proof. Label the vertices of D as {0, 1, . . . n− 1}. By Lemma 2.6,

φ = kl where k =

⌊
n− 2

n− `

⌋
.

We assume now that φ ≥ 2`, and derive a contradiction.
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If φ ≥ 2`, then

k =

⌊
n− 2

n− `

⌋
≥ 2,

and this happens if and only if (n − 2)/(n − `) ≥ 2 which is equivalent
to 2` ≥ n + 2. To obtain the sought after contradiction we employ as an
indicator a directed path of length φ − 1. This indicator has the property
that its result will not contain loops by the fact that D has no closed walks
of length φ− 1.

Note that φ − 1 = (k − 1)` + (` − 1). This implies that in applying the
indicator to D, we obtain an arc from 0 to `− 1 (use (k− 1) `-cycles to get
from 0 to 0, and then use the remaining (`− 1) arcs to get from 0 to `− 1).
Also, φ − 1 = (k − 2)` + (` + 1) + (` − 2). This produces an arc from 0 to
`− 2 when applying the indicator.

We now show that it is also possible to have arcs from ` − 1 to 0 and
from ` − 2 to 0. The number of arcs on the outer n-cycle from ` − 1 to 0
is n − ` + 1. Consider now φ − 1 − (n − ` + 1) = φ − (n − ` + 2). If it is
possible to write φ − (n − ` + 2) as a linear combination of cycle lengths,
then there will a closed walk from any vertex back to itself of this length. In
particular, there will be a walk of this length from `− 1 to `− 1. A further
n−`+1 arcs will then carry the walk from `−1 to 0 along the outer n-cycle.
Therefore, applying the indicator above will produce an arc from `− 1 to 0
provided that φ − (n − ` + 2) is a sum of cycle lengths. This is indeed the
case: We know that all x ≥ φ = k` is a sum of cycle lengths. Furthermore
(k − 1)`, (k − 1)` + 1, . . . , (k − 1)n are also linear combinations (of k − 1)
of the cycle lengths. Let t = k` − (k − 1)n, this represents the length of a
“gap” of integers that cannot be written as a linear combination of the cycle
lengths. We see that k(`− n) = t− n so that

k =
t− n
`− n

=
n− t
n− `

=
n− 2

n− `
− t− 2

n− `
.

Since

k =

⌊
n− 2

n− `

⌋
,

we get that (t − 2)/(n − `) < 1. Therefore t < n − ` + 2 or t ≤ n − ` + 1.
Further from 2` ≥ n+ 2 it follows that n− `+ 2 ≤ `. Thus

φ− (n− `+ 2) ∈ {(k − 1)` = φ− `, (k − 1)`+ 1, . . . , (k − 1)n = φ− t}
and so φ − (n − ` + 2) is a sum of cycle lengths. To obtain an arc from
` − 2 to 0, we are searching for a walk of length φ − 1 from ` − 2 to 0.
The number of arcs on the outer n-cycle from `− 2 to 0 is n− `+ 2. Here
φ−1− (n− `+2) = φ− (n− `+3). Also φ− (n− `+3) > φ− (n− `+2) > t
and φ− (n− `+ 3) ≤ `+ 1. If φ− (n− `+ 3) ≤ `, then

φ− (n− `+ 3) ∈ {(k − 1)` = φ− `, (k − 1)`+ 1, . . . , (k − 1)n = φ− t}.
This enables a closed walk from `− 2 to `− 2 of length φ− (n− `+ 3) to be
formed. The remaining n− `+ 2 arcs on the walk of length φ− 1 then goes
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from ` − 2 to 0. What remains at this point is the case n − ` + 3 = ` + 1,
or n − ` + 2 = `. This implies that the number of arcs on the n-cycle
from ` − 2 to 0 is `. If there exists a vertex in {` − 2, ` − 1, . . . , n − 2}
with out-degree at least two, then there exists a path of length ` − 1 from
`− 2 to 0. This path together with a closed walk of length φ− (n− `+ 2)
provides us with a walk of length φ − 1 from ` − 2 to 0. If there does
not exist a vertex in {` − 2, ` − 1, . . . , n − 2} with out-degree at least two,
then D[`− 2, `− 1, . . . , n− 1, 0] is an induced path. This is not possible by
Lemma 5.5.

We now see that using a path of length φ−1 as an indicator, produces the
arcs 0(`− 1), (`− 1)0, (`− 2)0 and 0(`− 2). The same, of course, applies to
any other vertex in D. Starting at vertex a, we have symmetric arcs between
a and a+(`−1) as well as between a and a+(`−2), where addition is done
modulo n. Again, if it is not possible to obtain a path of length `− 1 from
a+ (`−2) to a, then we are in the case dealt with by Lemma 5.5. If we now
apply as arc-subindicator the digraph with vertices {i, j} and arcs ij and
ji, with respect to the arc ij, the end result will be only the symmetric arcs
or in other words the undirected part of the indicator construction. This
undirected part contains the circulant on the vertices {0, 1, . . . , n−1} and the
edges a(a+(`−1)) and a(a+(`−2)). Such a circulant is not bipartite and so
colouring by the undirected portion of the indicator construction (that was
obtained through the sub-indicator construction) is NP-complete, and so
colouring by the whole result of the indicator construction is NP-complete.
This implies that D-colouring is NP-complete, which is a contradiction. �

The final contradiction is now obtained by noting that if D is a minimum
counterexample to the D-colouring problem, then D has ∆+ < ` and φ = `.
Here ` is the length of a shortest cycle in D and φ is the Frobenius-Schur
index of the cycle lengths of D. We show next that these two conditions on
D are incompatible, and so D does not exist.

Lemma 5.7. Let D be a round local tournament with the Frobenius-Schur
index of its cycle lengths φ(`, ` + 1, . . . , n) = φ = ` and ∆+(D) < `, where
` is the length of a shortest cycle in D. Then D cannot be a minimum
counterexample to the D-colouring problem.

Proof. We assume that D is a minimum counterexample and then derive a
contradiction.

Label the vertices of D as {0, 1, . . . , n− 1}. Since

φ =

⌊
n− 2

n− `

⌋
` = `,

(n − 2)/(n − `) < 2, that is 2` ≤ n + 1 or n − ` + 1 ≥ `. Also ∆+ < ` and
so every vertex has out-degree at most `− 1.

To obtain the contradiction we use an indicator that is equal to a path
of length ` − 1 with the two end-vertices of the path as the distinguished
vertices of the indicator. We see that the result of this indicator, D∗, has an
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arc from 0 to `− 1 (using the n-cycle from 0 to `− 1). Also, there is an arc
from 0 to ` in D∗: If there is at least one vertex in {0, 1, . . . , `−2} with out-
degree at least two, then there exists a path of length `− 1 from 0 to `. We
show that such a vertex exists. Assume that all vertices in {0, 1, . . . , `− 2}
have out-degree one. Then D[0, 1, . . . , ` − 1] is an induced path of length
`−1. In order for 0 to be on a cycle of length `, (`−1)0 ∈ A(D). This implies
that d+(`− 1) = n− (`− 1) ≥ `, which contradicts ∆+ < `. Therefore, the
required vertex exists and there is a path of length `− 1 from 0 to `.

Next, we show that there are also arcs from `− 1 to 0 and from ` to 0.
Let x0, x1, . . . , x`−1, x0 be an `-cycle starting at x0 = `−1. Since ∆+ < `,

N−(`− 1) ⊆ {0, 1, . . . , `− 2}. Let xk be the maximum of {x0, x1, . . . , x`−1}.
By the local tournament property x0, x1, . . . , xk, 0 is a path, say P , from `−1
to 0 of length at most `− 1. If P has length `− 1 we are done. Otherwise,
recall n − (` − 1) = n − ` + 1 ≥ `. Thus, there is at least one vertex, say
y ∈ {`, `+ 1, . . . , n− 1} \V (P ), between successive vertices of P , say x′ and
x′′. (Note x′ = xj , x

′′ = xj+1 or x′ = xk, x
′′ = 0.) By the local tournament

property x′y and yx′′ are arcs. Thus, P may be augmented with y to obtain
a path from ` − 1 to 0 of length `(P ) + 1. Continuing in this manner, one
obtains a path of length `− 1 from vertex `− 1 to 0.

To see that we will obtain an arc from vertex ` to vertex 0 we proceed in
a similar way as before. The length of the path from vertex ` to vertex 0
on the n-cycle is n− ` ≥ `− 1. As above, using an `-cycle through vertex `,
one can construct a path of length `− 1 from vertex ` to vertex 0.

The above, of course, also applies to any vertex a: we obtain symmetric
arcs between a and a+(`−1) and between a and a+`, where addition is done
modulo n. This implies that the result of the indicator construction, D∗,
contains the undirected circulant with edges a(a+ `− 1) and a(a+ `). This
circulant is not bipartite. If we now apply the arc sub-indicator with vertices
{i, j} and arcs ij and ji to D∗, this sub-indicator results in the undirected
portion, say D∗∗, of D∗ (which contains the circulant). D∗∗-colouring is
NP-complete, therefore D∗-colouring is NP-complete. Thus D-colouring is
NP-complete, a contradiction. �

Theorem 5.8. If D is a round local tournament, containing at least two
cycles, then D-colouring is NP-complete.

Proof. Since a minimum counterexample was shown not to exist, we con-
clude that the theorem is indeed true. �

6. Round Decomposable Local Tournaments

Let D = R[D0, D1, . . . , Dn−1] be a round decomposable local tournament
with at least two directed cycles. Here R is a round local tournament on
n ≥ 2 vertices and each Di is a strongly connected tournament. The proof
of NP-completeness in this case will proceed as follows:

• D-colouring is NP-complete if there exists at least one Di with
|Di| ≥ 4.
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• Therefore |Di| = 1, 3. If R is acyclic, D-colouring is NP-complete.
• If R contains a cycle and |Di| = 1, 3, then

– D-colouring is NP-complete if |Di| = 3 for at least two Di’s.
– Now |Di| = 3 for exactly one i.

∗ D-colouring is NP-complete if R =
−→
C n.

∗ D-colouring is NP-complete if R 6=
−→
C n.

Lemma 6.1. Let D = R[D0, D1, . . . , Dn−1] be a round decomposable local
tournament with |Di| ≥ 4 for at least one i ∈ {0, 1, . . . , n − 1}. Then the
D-colouring problem is NP-complete.

Proof. To prove this result we use the sub-indicator shown below in Figure
17. This is constructed using a copy of Di−1 and Di+1, provided that both
Di−1 and Di+1 exist. If only one of Di−1 and Di+1 exists (at least one exists),
use only the one that exists. Add to this a vertex j such that V (Di−1)
dominates j and j dominates V (Di+1). We take the vertices k1, k2, . . . , kt
of J to be exactly V (Di−1) ∪ V (Di+1).

Di−1 Di+1

k1, . . . , ks ks+1, . . . , ktj

Figure 17. The sub-indicator for the first round decompos-
able case.

Furthermore we take the vertices x1, x2, . . . , xt of D (required for the sub-
indicator construction) also to be V (Di−1)∪ V (Di+1). In this way when we
perform the sub-indicator construction we force the copy of Di−1 (Di+1)
in J to map to Di−1 (Di+1) in D. Since j retracts to every vertex of Di,
the result of the sub-indicator construction, D+, is exactly Di. Since Di

is a strong tournament on at least 4 vertices, Di-colouring is NP-complete.
Therefore D-colouring is NP-complete. �

We have now reduced the problem to that of considering round decompos-
able local tournaments D = R[D0, D1, . . . , Dn−1] (with at least two directed
cycles) where each |Di| = 1, 3.

Lemma 6.2. Let D = R[D0, D1, . . . , Dn−1] be a round decomposable local
tournament containing at least two directed cycles, and with each |Di| = 1, 3.
If R is acyclic, then D-colouring is NP-complete.

Proof. Since D contains at least two directed cycles and R is acyclic, there
are at least two Di’s with |Di| = 3 (each such Di is a directed triangle). For
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a given Di, let vi be the corresponding vertex in R. Let d = max{d(vi, vj) |
|Di| = |Dj | = 3} and define

k =

{
d if d 6≡ 0 (mod 3) ,

d+ 1 if d ≡ 0 (mod 3) .

We use as an indicator two directed C3s with a path of length k joining the
two C3s. Take as vertex a the first vertex of the path and as vertex b the
last vertex of the path. This is shown in Figure 18.

a b. . .︸ ︷︷ ︸
Pk

Figure 18. The indicator for the second round decompos-
able case.

Both vertex a and vertex b map to C3s in D. Furthermore by the choice of
k any vertex in a Di with |Di| = 3 is within a distance k of any other vertex
in a Dj with |Dj | = 3 where j ≥ i. Also, a and b cannot map to the same
vertex. Each C3 in D results in a C3 in D∗, either the C3 is preserved or its
direction is reversed, depending on whether k is congruent to 1 or 2 (mod 3),
respectively. Therefore, if D contains t ≥ 2 C3s, D∗ = Tt[C3, C3, . . . , C3],
where Tt is a transitive tournament on t vertices. Hence D∗-colouring is
NP-complete, and so D-colouring is NP-complete. �

We now consider the case where D = R[D0, D1, . . . , Dn−1] is a round
decomposable local tournament where each |Di| = 1, 3 and R contains at
least one cycle. The proof is much the same as the case where R is acyclic
except that more care is needed to ensure that one does not introduce loops
when using the indicator construction.

Lemma 6.3. Let D = R[D0, D1, . . . , Dn−1] be a round decomposable local
tournament such that R contains at least one cycle and |Di| = |Dj | = 3 for
i 6= j and i, j ∈ {0, 1, . . . , n− 1}. Then D-colouring is NP-complete.

Proof. Let ` be the length of a shortest cycle in R. Then for any u, v ∈ V (R),
u and v are within a distance b`/2c+ 1 of each other. This is accomplished
by using the arcs of a shortest cycle as well as the local tournament property.
Note also that `−1 ≥ b`/2c+1. Here we use one of the two indicators shown
in Figure 19, depending on whether `−1 6≡ 0 (mod 3) or `−1 ≡ 0 (mod 3).

The two vertices a and b, in either case, map to a 3-cycle in D. Also,
a and b never map to the same vertex: If the whole indicator maps to the
same C3 in D, then clearly a and b have different images (in both cases).
Therefore, in order for a and b to possibly map to the same vertex in D, the
image of the indicator has to involve vertices in D that are not all restricted
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a . . .︸ ︷︷ ︸
P`−1

b

a b. . .︸ ︷︷ ︸
P`−1

Figure 19. The two indicators for the third round decom-
posable case. The one on the left is used when ` − 1 6≡ 0
(mod 3), the one on the right when `− 1 ≡ 0 (mod 3).

to the same C3. This would imply though that there exists a closed walk in
R of length `− 1, which is not possible.

By mapping the whole indicator (in either case) to the same C3 in D,
we either preserve the C3, or reverse its orientation. Furthermore any two
vertices on two distinct C3s in D are within distance b`/2c+1 of each other.
Since ` − 1 ≥ b`/2c + 1, the result of applying the appropriate indicator,
D∗, will be a semi-complete digraph with at least two C3s. This means that
D∗-colouring is NP-complete, and so D-colouring is NP-complete. �

At this point we are left with a round decomposable local tournament
D = R[D0, D1, . . . , Dn−1], where exactly one |Di| = 3. This is dealt with in
two ways: first when R is a directed n-cycle, and secondly when R is not a
directed n-cycle.

Lemma 6.4. Let D = R[D0, D1, . . . , Dn−1] be a round decomposable local
tournament with exactly one |Di| = 3 and R = Cn. Then D-colouring is
NP-complete.

Proof. The proof is by induction on n. Without loss of generality we may as-
sume that |D0| = 3. That is, D0 = C3 and Dj = K1 for j ∈ {1, 2, . . . , n−1}.
Also, label the vertices of R = Cn as v0, v1, . . . , vn−1, so that vi corresponds
to Di for i = 0, 1, . . . , n−1. The first base case (n = 3) is actually a tourna-
ment and is shown below in Figure 20. Therefore in this case D-colouring
is NP-complete. The second base case (n = 4) is shown in Figure 21.

Here we first apply an indicator equal to a directed path of length 2, where
the vertices i and j of the indicator are taken to be the initial vertex of the
path and the terminal vertex of the path, respectively. This produces the
result, D∗, shown in Figure 22. Note that the orientation of the C3 changed,
and that there are symmetric arcs between v2 and the triangle and between
v1 and v3. These symmetric arcs are drawn as undirected edges. D∗ is also
a core.

At this point we apply a sub-indicator, J , that is also equal to a directed
path of length 2. We let j be the terminal vertex of the path and k1 the
initial vertex of the path. We also take x1 = v2. That is we identify k1

in J with v2 in D∗ and consider all retractions to D∗, keeping track of the
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D1 = v1D2 = v2

D0 = C3

Figure 20. The first base case for the fourth round decom-
posable case.

D1 = v1D3 = v3

D0 = C3

D2 = v2

Figure 21. The second base case for the fourth round de-
composable case.

possible images of j. The result, D∗+, is equal to D∗− v3, the core of which
is a wheel with three spokes (or a semi-complete digraph on four vertices
with at least two cycles). This sequence of digraphs is shown in Figure 22.

Since the wheel-colouring problem is NP-complete, we find that D∗-
colouring is NP-complete, and that ultimately, D-colouring is NP-complete.

This completes the two base cases. The rest of the proof proceeds in
exactly the same way as the second base case. The only exception is that
the end-result is not a wheel, but a smaller instance of the same problem.

Let D = Cn[C3,K1, . . . ,K1] and n ≥ 5. Assume that D′-colouring is NP-
complete for everyD′ = Cm[C3,K1, . . . ,K1] withm < n. As with the second
base case, we first apply an indicator, I, equal to a path of length 2, with
i and j equal to the initial and terminal vertices of the path, respectively.
The result, D∗, is shown in Figure 23. Note that, as before, the orientation
of the C3 (shown in the figure as the small triangle) changes. We also have
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v3

v2

v1

D∗ D∗+ The core of D∗+

Figure 22. The sequence of digraphs obtained for the sec-
ond base case.

the arcs v0v1, v0v2, vn−2v0, vn−1v0 and vn−1v1. In addition to these we also
have the arcs vivi+2 for i = 1, 2, . . . , n− 3.

D

vn−1

vn−2

v1

v2

v3

v4vn−4

vn−3

v0

D∗

vn−1

vn−2

v1

v2

v3

v4vn−4

vn−3

v0

Figure 23. Applying the indicator I to D yields D∗.

We now apply the sub-indicator, J , that is equal to a path of length n−2,
with the terminal vertex equal to j and the initial vertex equal to k1. We
also take x1 = v2 in D∗. Therefore we identify k1 and v2 and consider all
retractions to D∗, recording the images of j in the process. We now complete
the proof based on the parity of n.

Let n be even. Then v0 and v2 are on an (n/2)-cycle in D∗: v0v2v4 · · ·
vn−4vn−2. This means that there exists a path of length n/2 − 1 from v2
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to v0. Since n ≥ 5, n − 2 > n/2 − 1, and so j maps to every vertex on
the C3 (by varying where we enter the C3 and then wrapping around it).
Furthermore, v0 is on an (n/2)-cycle with all the vi’s where i is even and on
an (n/2 + 1)-cycle with all the vjs, j odd. Using the first n/2− 1 arcs of the
Pn−2 sub-indicator, we move from v2 to v0, this means that the remaining
(n − 2) − (n/2 − 1) = n/2 − 1 arcs can be used to go from v0 to every
vi, (i even) and from v0 to every vj (j odd) except vn−1. This is done by
wrapping around the C3 first, if needed. To see that j cannot map to vn−1,
note that the directed distance from v2 to vn−1 is n−1. The core of this can
be found by wrapping the path v0v1v3v5 · · · vn−3 around the C3. The result
of this sub-indicator, D∗+, has a core equal to Cn/2[C3,K1, . . . ,K1]. By the

induction hypothesis, D∗+-colouring is NP-complete, so that D∗-colouring
is NP-complete, implying that D-colouring is NP-complete in this case.

Let n be odd. Then v0 and v2 are on an ((n + 1)/2)-cycle in D∗ given
by v0v2v4 · · · vn−3vn−1. Therefore we have a path of length (n+ 1)/2− 1 =
(n − 1)/2 from v2 to v0. As before j maps to every vertex on the C3.
Now v0 is on an ((n + 1)/2)-cycle with the vi’s (i even). Also, v0 is on an
((n + 1)/2)-cycle with the vjs (j odd). Here we can use the first (n − 1)/2
arcs of the Pn−2 sub-indicator to go from v2 to v0. Then use the remaining
(n− 2)− (n− 1)/2 = (n− 3)/2 arcs to map j to v1, v2, . . . , vn−3 (again one
may have to wrap the path around the C3 first). It is also possible to map j
to vn−2, first go from v2 to vn−1 using the (n+1)/2−2 = (n−3)/2 arcs on the
cycle through the vi’s with i even. Now use the remaining (n−2)−(n−3)/2 =
(n − 1)/2 arcs on the Pn−2 for the following walk: vn−1v1v3v5 · · · vn−2. It
is not possible to map j to vn−1, first note that the shortest cycle through
vn−1 has length (n + 1)/2 (vn−1v0v2v4 · · · vn−3). Secondly, starting at v2,
one is forced to use the arcs v2iv2i+2 for i = 1, 2, . . . , (n − 3)/2 (a total of
(n − 3)/2 arcs). This takes us to vn−1. At this point, if j is going to map
to vn−1, the remaining (n − 2) − (n − 3)/2 = (n − 1)/2 arcs will have to
form a closed walk from vn−1 back to itself, which is not possible. Thus
the result of this sub-indicator, D∗+, is D∗ − vn−1. The core of this may
be obtained by wrapping the path v0v2v4 · · · vn−3 around the C3. This core
is equal to C(n+1)/2[C3,K1, . . . ,K1]. Therefore by the induction hypothesis,

D∗+-colouring is NP-complete, implying that D∗-colouring is NP-complete.
It now follows that D-colouring is NP-complete in this case.

This completes the proof. �

We have now reached the final case for the round decomposable local
tournaments.

Lemma 6.5. Let D = R[D0, D1, . . . , Dn−1] be a round decomposable local
tournament with exactly one |Di| = 3 and R 6= Cn, but R contains at least
one cycle. Then D-colouring is NP-complete.

Proof. Label the vertices of R as v0, v1, . . . , vn−1. Then to each vertex vi
of R there corresponds a component Di of the round decomposition. As in
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the previous proof, we assume that D0 = C3 and that Di = K1 = vi for
i = 1, 2, . . . , n− 1.

Let P be the set of predecessors of v0 on the shortest cycles through v0

and define j = max{k | vk ∈ P}. Then vj is the “closest” predecessor of v0

on all the shortest cycles through v0. Denote the length of a shortest cycle
through v0 by `.

If there exists a vertex vi with 0 ≤ i ≤ j − 1 such that d+(vi) ≥ 2 (in R),
we use the following sub-indicator: a path of length `− 1 with the terminal
vertex equal to j and the initial vertex equal to k1. Also, let any vertex of
D0 = C3 be x1. Therefore we identify k1 with x1 and consider all retractions
of the path to D. The possible images of j are: exactly one vertex of D0 (by
wrapping around the 3-cycle in D0) and all vertices vt with t = 1, 2, . . . , j
(by wrapping around D0, if necessary, and then using one of the shortest
cycles through v0). This sub-indicator is illustrated in Figure 24.

v0 ≡ D0 = C3
. . . j︸ ︷︷ ︸
P`−1

vi

vj

Figure 24. An illustration of the first sub-indicator con-
struction in the fifth round decomposable case.

If 0 ≤ i ≤ j − 2, then since j 7→ vi, the result of this sub-indicator, D+,
is a round local tournament with at least two cycles. If i = j− 1 (that is no
vertex vt with 0 ≤ t ≤ j − 2 has d+(vt) ≥ 2 and d+(vj−1) ≥ 2), then vj−1

is the predecessor of vj on a shortest cycle through v0 and vj . This implies
that there exists a walk of length ` − 2 from v0 to vj−1. Also, vj−1 is not
adjacent to v0 as this would result in a shorter cycle through v0. Therefore
vj−1 has an out-neighbour (say v′) between vj and v0. By following the walk
of length ` − 2 by the arc vj−1v

′, we see that j 7→ v′. This again implies
that the result of this sub-indicator, D+, is a round local tournament with
at least two cycles. Therefore D+-colouring is NP-complete, implying that
D-colouring is NP-complete.

We are now left with the case where there does not exist a vertex vi with
0 ≤ i ≤ j− 1 such that d+(vi) ≥ 2 (in R). This would imply that v0v1 . . . vj
is an induced path (in R).

• If vj = vn−1, then d+(vj) = d+(vn−1) ≥ 2 since R 6= Cn. Here
we apply the same sub-indicator as above and the result is again a
round local tournament with at least two cycles.



136 JØRGEN BANG-JENSEN, GARY MACGILLIVRAY, AND JACOBUS SWARTS

• If vj 6= vn−1, then vj+1 6= v0. Denote the length of a shortest cycle
through vj+1 by s. Use as a sub-indicator a path of length s − 1,
with the terminal vertex equal to j and the initial vertex equal to k1.
Let x1 be equal to vj+1, so that we attach the path of length s−1 to
vj+1 and consider all retractions to D. Note that N−(vj+1) = {vj}
and since vjv0 ∈ A(R), we also have vj+1v0 ∈ A(R). Therefore the
possible images of j are: every vertex in D0 as well as each vt with
t = 1, 2, . . . , j. This sub-indicator is illustrated in Figure 25.

v0 ≡ D0 = C3...

vj+1

vj

j

Ps−1



Figure 25. An illustration of the second sub-indicator con-
struction in the fifth round decomposable case.

So the result of this sub-indicator, D+ = Cj+1[C3,K1,K1, . . . ,K1].
We know that D+-colouring is NP-complete, therefore D-colouring
is NP-complete.

�

7. Non-Round Decomposable Local Tournaments

In discussing the complexity of non-round decomposable local tourna-
ments, it’s not too surprising that the structural result in Lemma 3.2 plays
a central role. Note that a non-round decomposable local tournament has at
least two directed cycles, since a local tournament with at most one directed
cycle is round decomposable. The proof that colouring by a non-round de-
composable local tournament is NP-complete proceeds along a familiar line.
We assume that the result is false and examine a smallest counterexample
(one that has the minimum number of vertices). Such a counterexample is
then shown not to exist, and the result follows.

The counterexample will have the structure described in Lemma 3.2, since
it is non-round decomposable. Let S, D′1, D′2 and D′3 be the subsets of ver-
tices of D defined in Lemma 3.2. The first lemma deals with the possibilities
for in-and out-neighbours of the vertices in S.

Lemma 7.1. Let D be a non-round decomposable local tournament that is
also a minimum counterexample to the D-colouring problem. Then every
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vertex in S can only have in-neighbours or out-neighbours in D′2, but not
both.

Proof. Since D is a counterexample, D-colouring is not NP-complete.
D is not round decomposable so it has the structure described in Lemma

3.2. S, D′1, D′2 and D′3 are the subsets of vertices of D defined in Lemma
3.2.

Let s ∈ S and a, a′ ∈ D′2 such that as, sa′ ∈ A(D). D does not have
symmetric arcs, so a 6= a′. By Lemma 3.2 there is a vertex y ∈ D′1 with
ay, a′y, ys ∈ A(D). Lemma 3.2 and Proposition 3.4 imply that there is a
vertex x ∈ D′3 such that sx, xa′ ∈ A(D). This is illustrated in Figure 26.

a

a′

s

D′1

D′2

D′3

x y

S

Figure 26. Proving that no vertex in S can have both in-
and out-neighbours in D′2.

By Theorem 3.1 D′2 is a tournament. Therefore a and a′ are adjacent.

• If aa′ ∈ A(D), we use a sub-indicator equal to a directed path of
length 2, where the terminal vertex is equal to j and the initial vertex
is identified with vertex a in D. That is we consider all retractions
of this path of length 2 to D keeping track of the images of j and
identifying its initial vertex with vertex a in D. The vertex j maps
to (at least) the following vertices: s, a′, x, y but not the vertex a.
The result of this sub-indicator, D+, will have fewer vertices, but will
still contain at least two cycles (sxa′y and sa′y). Since D+ is smaller
than D it cannot be a counterexample, and so D+-colouring is NP-
complete, but this would imply that D-colouring is NP-complete, a
contradiction.
• If a′a ∈ A(D), we apply an indicator equal to a directed path of

length 2 to D. This will produce the following symmetric arcs: a′s
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(a′ys and sxa′), sa (sa′a and ays), ax (asx and xa′a), xy (xa′y
and ysx) and ya′ (ysa′ and a′ay). Therefore the result of the in-
dicator, D∗, contains an undirected 5-cycle, a′saxy, and so it is
not bipartite. The undirected portion of D∗ may be extracted us-
ing an arc sub-indicator equal to a pair of symmetric arcs. This
produces an undirected, non-bipartite graph D∗+. D∗+-colouring is
NP-complete, implying that D∗-colouring is NP-complete, which in
turn implies that D-colouring is NP-complete, a contradiction.

�

Theorem 7.2. Let D be a non-round decomposable local tournament, then
D-colouring is NP-complete.

Proof. Assume that the theorem is false. Among all counterexamples to the
theorem, let D be one with the minimum number of vertices.

Therefore D is a non-round decomposable local tournament such that D-
colouring is not NP-complete. Furthermore, D has the minimum number of
vertices possible.

Hence D has the structure described in Lemma 3.2. As before we let S,
D′1, D′2 and D′3 be the subsets of vertices of D defined in Lemma 3.2.

By Lemma 3.2 there are arcs between S and D′2, oriented in opposite
directions and with their vertices in specific locations with respect to one
another. That is there are vertices s, s′ ∈ S and a, a′ ∈ D′2 such that
sa, a′s′ ∈ A(D). By the previous lemma s 6= s′, but a may be equal to a′.
Furthermore, Lemma 3.2 implies the existence of a vertex y ∈ D′1 such that
ay, a′y, ys, ys′ ∈ A(D). Also, by Lemma 3.2 and Proposition 3.4, there exists
a vertex x ∈ D′3 together with the arcs sx, s′x, xa, xa′. We now distinguish
two cases: ss′ ∈ A(D) and s′s ∈ A(D) (by Lemma 3.2 S is semi-complete).

• Let ss′ ∈ A(D). Then s′, a ∈ N+(s) and since D is a local tourna-
ment, s′ and a have to be adjacent. The previous lemma forbids the
arc s′a and so as′ ∈ A(D). This is illustrated in Figure 27.

Apply a sub-indicator equal to a directed path of length 2, where
the terminal vertex is equal to j and the initial vertex is identified
with the vertex s in D. We retract the path to D and determine the
images of j. The images of j include the following vertices: s′, x, y, a
but not s. The result of this sub-indicator, D+, has fewer vertices
than D, but still contains at least two cycles (s′xay and s′xa). Since
its smaller, D+-colouring is NP-complete, implying that D-colouring
is NP-complete, a contradiction.
• Let s′s ∈ A(D). This is shown in Figure 28.

Here we apply an indicator equal to a directed path of length 2.
This produces the following symmetric arcs: s′x (s′sx and xa′s′), xy
(xay and ysx), ys (ys′s and say), sa (sxa and ays) and as′ (ays′

and s′xa). The result of this indicator, D∗, will therefore contain an
undirected 5-cycle, s′xysa. Thus the undirected portion of D∗ is not
bipartite. As before, we may extract the undirected portion with
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x ya

s

D′1D′3

D′2

s′

a′

S

Figure 27. The case ss′ ∈ A(D).

x ya

s

D′1D′3

D′2

s′

a′

S

Figure 28. The case s′s ∈ A(D).

an arc sub-indicator equal to a pair of symmetric arcs. All of this
implies that D∗-colouring is NP-complete which in turn says that
D-colouring is NP-complete, a contradiction.

This shows that the counterexample does not exist. Therefore the theorem
is true. �
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8. The Complexity of Colouring by Connected Local
Tournaments With At Least Two Directed Cycles

Theorem 3.3 guarantees that a local tournament with at least two directed
cycles falls into one of three categories:

(i) Round local tournaments (Section 5),
(ii) Round decomposable local tournaments (Section 6), or
(iii) Non-round decomposable local tournaments (Section 7).

Since these have all been covered above, we now have the following theorem.

Theorem 8.1. Let T be a connected local tournament with at least two
directed cycles, then HOMT is NP-complete.

Proof. A minimal counterexample was shown not to exist, therefore the
theorem is true. �
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