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A BIJECTION BETWEEN NONCROSSING AND
NONNESTING PARTITIONS OF TYPES A, B AND C

RICARDO MAMEDE

ABSTRACT. The total number of noncrossing partitions of type ¥ is

equal to the nth Catalan number 4+ (*") when ¥ = A,_1, and to the

corresponding binomial coefficient (2:) when ¥ = B,, or C,. These
numbers coincide with the corresponding number of nonnesting parti-
tions. For type A, there are several bijective proofs of this equality; in
particular, the intuitive map, which locally converts each crossing to a
nesting, is one of them. In this paper we present a bijection between
nonnesting and noncrossing partitions of types A, B and C that gen-
eralizes the type A bijection that locally converts each crossing to a
nesting.

1. INTRODUCTION

The poset of noncrossing partitions can be defined in a uniform way for
any finite Coxeter group W. More precisely, for u,w € W, let v < w
if there is a shortest factorization of w as a product of reflections in W
having as prefix such a shortest factorization for u. This partial order turns
W into a graded poset Abs(W) having the identity 1 as its unique minimal
element, where the rank of w is the length of a shortest factorization of w into
reflections. Let ¢ be a Coxeter element of W. Since all Coxeter elements in
W are conjugate to each other, the interval [1, c|] in Abs(W) is independent,
up to isomorphism, of the choice of ¢. We denote this interval by NC(W) or
by NC(¥), where VU is the Cartan-Killing type of W, and call it the poset of
noncrossing partitions of W. It is a self-dual, graded lattice which reduces
to the classical lattice of noncrossing partitions of the set [n] = {1,2,...,n}
defined by Kreweras in [10] when W is the symmetric group &,, (the Coxeter
group of type A,_1), and to its type B and C analogues, defined by Reiner
[12] when W is the hyperoctahedral group. The elements in NC(WW) are
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counted by the generalized Catalan numbers,

kdi+h
d;

Cat(W) =

i=1
where k is the number of simple reflections in W, h is the Coxeter num-
ber and di,...,d; are the degrees of the fundamental invariants of W' (see
[1, 7, 8, 12] for details on the theory of Coxeter groups and noncrossing
partitions). When W is the symmetric group, Cat(&,,) is equal to the usual

nth Catalan number n%rl(%?), and in types B, and C,, this number is the

binomial coefficient (2:)

Nonnesting partitions were defined by Postnikov (see [12, Remark 2]) in
a uniform way for all irreducible root systems associated with Weyl groups.
If ® is such a system, ®T is a choice of positive roots, and A is the simple
system in ®T, define the root order on ® by o < S if o,3 € ®' and
B — « is in the positive integer span of the simple roots in A. Equiped with
this partial order, ®* is the root poset of the associated Weyl group W. A
nonnesting partition on ® is defined as an antichain in root poset (@7, <),
that is, a set of pairwise incomparable elements. Denote by NN(W) or by
NN(¥), where VU is the Cartan-Killing type of W, the set of all nonnesting
partitions of W. Postnikov showed that the nonnesting partitions in NN()
are also counted by the generalized Catalan number Cat(W).

In the case of the root systems of type A, different bijective proofs of the
equality between the cardinals | NN(A4,,_1)| = |[NC(A4,_1)| are known (see
[1, 2, 3,9, 14]), and more recently several bijections between noncrossing and
nonnesting partitions of classical types have been constructed (see [6, 11, 13,
14]) but all of them have different designs and settings. Our contribution
in this paper is to present a uniform proof that | NN(¥)| = |NC(¥)|, for
U = A,_1, B, or C, that generalizes the bijection presented by Armstrong
in [1]. Our ideas have been used to construct a bijection between noncrossing
and nonnesting partitions of type D [5]. This paper is the complete version
of the extended abstract [11] and, moreover, contains an extention of the
bijection to the type C.

2. NONCROSSING AND NONNESTING SET PARTITIONS

A set partition of [n] is a collection of nonempty disjoint subsets of [n],
called blocks, whose union is [n]. The type of a set partition m of [n] is the
integer partition formed by the cardinals of the blocks of . A set partition of
[n] of type (2,...,2,1,...,1) is called a partial matching, and a set partition
of [2n] of type (2,2,...,2) is said to be a (perfect) matching of [2n].

A set partition can be graphically represented by placing the integers
1,2,...,n along a line and drawing arcs above the line between i and j when-
ever 7 and j lie in the same block and no other element between them does so.
A singleton of a set partition is a block which has only one element, so it cor-
responds to an isolated vertex in the graphical representation. For instance,
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the graphical representation of the set partition 7 = {{1,3,4},{2,6},{5}}
of type (3,2,1) is displayed below:

1 2 3 4 5 6

Given a set partition 7, let

op(m) = {least block elements of 7},

cl(m) = {greatest block elements of 7}, and
tr(m) = [n] \ (op(m) U cl(x)).

The elements of op(7), cl(w), and tr(rm) are called openers, closers and tran-
sients, respectively. Graphically, the openers correspond to singletons and to
vertices from which one arc begin and no arc ends, the closers correspond to
singletons and to vertices to which one arc ends, and no arc begins, and the
transients are the vertices from which one arc ends an another one begins.
In the example above, op(m) = {1,2,5},cl(m) = {4,5,6} and tr(7) = {3}.
The triples ¥(7) = (op(m), tr(m), cl(m)) encode useful information about the
partition w. For instance, the number of blocks is |op(w)| = |cl(m)]|, the
number of singletons is |op(7) N cl(7)|, 7w is a partial matching if and only
if tr(mr) = @, and 7 is a (perfect) matching if and only if ¢r(7) = @ and
op(m) Nel(r) = @.

A noncrossing partition of the set [n] is a set partition of [n] such that
there are no a < b < ¢ < d, with a, ¢ belonging to some block of the partition
and b, d belonging to some other block. The set of noncrossing partitions of
[n], denoted by NC(n), is a lattice for the refinement order. A nonnesting
partition of the set [n] is a partition of [n] such that if a < b < ¢ < d and
a, d are consecutive elements of a block, then b and ¢ are not both contained
in some other block. The set of nonnesting partitions of [n] will be denoted
by NN(n). Graphically, the noncrossing condition means that no two of the
arcs cross, while the nonnesting condition means that no two arcs are nested
one within the other.

The partition 7 = {{1,3,4},{2,6},{5}} represented above is neither
noncrossing nor nonnesting since two of the arcs cross, and two of the
arcs are nested one within the other. The partitions {{2,3},{1,4,5}} and
{{1,3},{2,4,5}}, represented below, are examples of noncrossing and non-
nesting partitions of [5]:

S ANA <N
1 2 3 4 5 1 2 3 4 5

As pointed out in [1], the intuitive map that locally converts each crossing
to a nesting



NONCROSSING AND NONNESTING PARTITIONS OF TYPES A, B AND C 73

defines a bijection between noncrossing and nonnesting set partitions that
preserves the number of blocks. We will refer to this bijection as the L-map.

A B, set partition 7 is a set partition of [£n] := {£1,£2,...,£n} which
has at most one block (called the zero block) fixed by negation and is such
that for any block B of m, the set —B, obtained by negating the elements
of B, is also a block of w. The type of a B,, set partition 7 is the integer
partition whose parts are the cardinalities of the blocks of 7, including one
part for each pair of nonzero blocks B, —B. Given a B, set partition m,
let the set of openers op(m) be formed by the least element of all blocks
of m having only positive integers; let the set of closers cl(m) be formed by
the greatest element of all blocks of 7 having only positive integers and by
the absolute values of the least and greatest elements of all blocks having
positive and negative integers; and finally let the set of transients tr(m) be
formed by all elements of [n] which are not in op(m) U cl(r).

Identifying the sets [+n] and [2n] through the map i — i for ¢ € [n] and

i—n—iforie {—1,-2,...,—n}, we may represent B, set partitions graph-
ically using the conventions made for its type A analogs, placing the integers
—-1,-2,...,—m,1,2,...,n along a line instead of the usual 1,2,...,2n.

Example 2.1. The Bs set partition

= {{_17 1}7 {27 3, 5}7 {_27 -3, _5}’ {4}> {_4}}7

represented below, has type (3,2,1), set of openers op(w) = {2,4}, closers
c(r) = {1,4,5} and transients tr(w) = {3}. The openers, closers and
transients can be visualized as in type A by looking only at the arcs on the
positive half of the representation of .

3. NONCROSSING AND NONNESTING PARTITIONS OF TYPES A, B AND C

We will now review the usual combinatorial realizations of the Coxeter
groups of types A, B and C, referring to [8] for any undefined terminol-
ogy. The Coxeter group W of type A,_1 is realized combinatorially as the
symmetric group &,,. The permutations in &,, will be written in cycle nota-
tion. The simple generators of G,, are the transpositions of adjacent integers
(ii+1), fori=1,...,n—1, and the reflections are the transpositions (i j)
for 1 < i < j < n. To any permutation # € &,, we associate the parti-
tion of the set [n] given by its cycle structure. This defines an isomorphism
between the posets NC(&,,) of noncrossing partitions of &,,, defined in the
introduction, and NC(n), with respect to the Coxeter element ¢ = (12---n)
[4, Theorem 1].

Denoting by ey, ..., e, the standard basis of R”, the root system of type
A,,_1 consists of the set of vectors

O ={ej—ej:i#j,1<i,j<n},
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each root e; — e; defining a reflection that acts on R" as the transposition
(¢ 7). We shall identify the root e; —e; with the corresponding transposition
(7 j). Take

(I)+:{€i—€j€¢):i>j}
for the set of positive roots and, defining r; :=e;41 —€;, 1 =1,...,n—1, we
obtain the simple system A = {ry,...,r,—1} for &,. Note that

i—1
6i—€j:ZTk ifi>j.
k=j

The correspondence between the antichains in the root poset (®T, <) and
the set of nonnesting partitions of [n] is given by the bijection which sends
the positive root e; —e; to the set partition of [n] having ¢ and j in the same
block. For instance, consider the root poset (®1, <) of type Ay4:

€5 — €1
/N
€4 — €1 €5 — €9
NN
e3 — e €4 — €2 €5 — €3
SN N SN
€2 — €1 €3 — €2 €4 — €3 €5 — €4

The antichain ez —ej corresponds to the transposition (13) in the symmet-
ric group S5, and thus to the nonnesting set partition {{1,3}, {2}, {4}, {5}},
while the antichain {e3 — e1,e4 — €2, e5 — €4} corresponds to the product of
transpositions (13)(24)(45) = (13)(245) in &5, and thus to the nonnesting
set partition {{1,3},{2,4,5}}.

Given a positive root o = ¢; — ej € ®T, define the support of a as the
set supp(a) = {j,j +1...,i —1}. The elements in supp(«) correspond to
the indices of the simple roots that appear with nonzero coefficient in the
expansion of « as a linear combination of simple roots. The integers j and
1 — 1 will be called, respectively, the initial and terminal indices of a. We
have the following lemma.

Lemma 3.1. Let oy, an be two roots in ®T with initial and terminal in-
dices i1, j1 and io, jo, respectively, such that i1 < ia. Then, ay,as form an
antichain if and only if i1 <2 and j1 < jo.

Consider now the Coxeter group W of type B,,, with its usual combina-
torial realization as the hyperoctahedral group of signed permutations of
[£n] = {£1,+2,...,£n}.
These are permutations of [£n| which commute with the involution i — —i.
We will write the elements of W in cycle notation, using commas between
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elements. The simple generators of W are the transposition (—1, 1) and the
pairs (—i — 1, —i)(i, i+ 1), for i = 1,...,n — 1. The reflections in W are
the transpositions (—i, i), for ¢ = 1,...,n, and the pairs of transpositions
(ia ])(_]a _Z')7 for i 7é .7

Identifying the sets [+n] and [2n] through the map i — ¢ for ¢ € [n] and
i+ n—iforie {—1,-2,...,—n}, allows us to identify the hyperoctahedral
group W with the subgroup U of &3, which commutes with the permutation
(IL,n+1)(2,n+2)---(n,2n). For example, the signed permutations (1, 3)
and (2,—3)(—2,3) in the hyperoctahedral group of type Bs correspond to
the permutations (1 3) and (2 6)(5 3) in the symmetric group &g. The set
NC(U) is a sublattice of NC(Say,), isomorphic to NC(WW) (see [1]). It follows
that the map sending a signed permutation of [£n] to the B,, set partition
of [£n] given by its cycle structure defines an isomorphism between NC(W)
and the B,, set partitions in which no two arcs cross.

The type B, root system consists on the set of 2n? vectors

O ={te;:1<i<njU{Fe;xe;:i#j,1<4,j5<n},
and we take
Pt ={e:1<i<n}U{ete;:1<j<i<n}

as a choice of positive roots. Changing the notation slightly from the one
used for &, let 71 := ey and ; :=¢; —e;_1, for i = 2,...,n. The set

A:={ry,re,...,mn}

is a simple system for W, and easy computations show that

i
€ = E Tk,
k=1

i
€ —ej = ZTk if i > 7,
k=j+1
J i
€i+€j:227'k—|— Z Tk if’i>j.
k=1 k=j+1

Each root e;,e; — e; and e; + e; defines a reflection that acts on R" as the
permutation (i, —i), (i, j)(—4, —j) and (i, —j)(—1i, j), respectively, and
we will identify the roots with the corresponding permutations.

A graphical representation of a nonnesting partition 7 € NN(B,,) can
be drawn by placing the integers —n, ..., —2,—1,0,1,2,...,n, in this order,
along a line and arcs between them as follows: for i,57 € [n], we include
an arc between ¢ and j, and between —i and —j, if 7 contains the root
e; — e;; an arc between ¢ and —j, and between —i and j if 7 contains the
root e; + e;; and arcs between ¢ and 0 and —i and 0 if 7 contains the
root e;. The presence of 0 in the ground set for nonnesting partitions is
necessary to correctly represent (when present) the arc between a positive
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number i an its negative (see [2]). The chains of successive arcs in the
diagram become the blocks of a B, set partition, after dropping 0, which
is the partition we associate to w. This map defines a bijection between
nonnesting partitions of W and B,, set partitions whose diagrams, in the
above sense, contain no two arcs nested one within the other. We call this
diagram the nonnesting graphical representation of 7, to distinguish it from
the graphical representation of the B,, set partition associated to .

Example 3.2. Consider the root poset of type Bs is displayed below:

LN
NaY
/N

In this root poset, the antichain {es + e1,e3} corresponds to the Bs set
partition m = {{3, =3}, {1, -2}, {—1,2}}, and thus to signed permutation
(3,=3)(1,—-2)(—1,2). The nonnesting graphical representation of w is given

by
3 -2 -1 0 1 2 3
Given the positive root e; + e;, with ¢ > j, define its support by
Supp(e’i + 63) = {1da 2da ce ajdaj + 17 s 7i}a

and let supp(e; + ej) = {1,2,...,4}. As in type A, the integers 1,...,3
correspond to the set of indices of the simple roots that appear with nonzero
coefficient in the expansion of « as a linear combination of simple roots, and
the symbol k¢ indicates that the coefficient of rj, in such decomposition is 2.
The positive root e; +e; is said to have double coefficients, and the integer j
is called the terminal double index of e; 4+ e;. We will need also to consider
the set De,ie; = {2,...,7}. For the other two kinds of positive roots, e;
and e; — e;, we define the correspondent support by supp(e;) = supp(e;) =
{1,...,i}, supp(e; —e;) = supp(e;—e;j) = {j+1,...,i}, and D¢, = De;—¢; =
@. The initial and terminal indices of @ € ®* are, respectively, the least
and greatest elements in supp(«). We have the following lemma.

Lemma 3.3. Let a and B be two roots in ®1 with initial indices i,i’ and
terminal indices j,j’, respectively, such that i < 1i'. If neither o nor 3 have
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double coefficients, then {«, B} is an antichain if and only if i < i’ and
j < j'. If a has double coefficients, then {a, 8} is an antichain if and only
if j < j' and Dy D Dg.

The root system of type C,, is obtained from the root system of type B,
by replacing the roots e; by 2e;,
O ={+2¢:1<i<n}U{xe; £ej:i#j,1<1i,j<n}
For n > 3, the two root systems are not congruent, but their corresponding
Weyl groups, generated by reflections orthogonal to the roots, are clearly the

same. Thus, the relations between roots of type C}, and signed permutations
of [+n] is the same as in type B,. We let

<I>+:{2ei:1§i§n}u{ei:tej:1§j<i§n}
as a choice of positive roots, and put r1 := 2e; and r; := ¢; — e;_1, for
i=2,...,n. The set
A:={ry,re,...,rn}

is a simple system for W, and easy computations show that

3
2e; =11+ Z 27,
k=2

%
€ —ej = E Tk if >4,
k=j+1

] 7
ei—l—ejzm—}—z%’k—i— Z ry if 1> g,
k=2 k=j+1
i
e +e = Z Tk-
k=1
The notions of C,, set partition and noncrossing partitions of type C,

coincide with its type B,, analogs, as well as the notions of opener, closer
and transient. Also, the nonnesting diagram associated to a nonnesting
partition 7 € NN(C,,) is determined as in type B,, except that ¢ and —i
are connected by an arc if 7 contains 2e; and that 0 does not appear in the
diagram. Again, this map defines a bijection between nonnesting partitions
of type C}, and C,, set partitions whose diagrams, in the above sense, contain
no two arcs nested one within the other.
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Example 3.4. Consider the root poset of type Cs:

263

AN

e3 + ez

/ AN
es +e1

\ VRN

ey + e; €3 — €

NN
er — e es3 — e

In this root poset, the antichain {2ea,e3 + e1} corresponds to the Cs set
partition m = {{2, -2}, {1, -3}, {—1,3}}, and thus to the signed permutation
(2,-2)(1,-3)(—1,3). Its nonnesting diagram is represented by

3 -2 -1 1 2 3

Note that this set partition 7 is not a nonnesting partition of type Bs,
since, considered in type Bs, there would be an arc linking 0 to 2 which
would be nested by the arc linking —1 to 3.

Import to type C the notions of double coefficient and support of a positive
root. We have the following lemma.

Lemma 3.5. Let o and 3 be two roots in ®T with first indices 1,7’ and last
indices j,j', respectively, such that i < i'. If neither a nor 8 have double
coefficients, then {«, 8} is an antichain if and only if i <i' and j < j'. If
has double coefficients, then {«, 8} is an antichain if and only if j < j' and
D, D Dﬁ.

Although the root systems of type B,, and C), are not congruent, there is a
simple connection between the antichains in NN(B,,) and those in NN(C,,).

Proposition 3.6. There is a bijection T between antichains in the root
posets of types By, and C,, which preserves the triples (op,cl,tr).

Proof. First, notice that if 7 € NN(B,,) does not have the positive root e,
for k € [n], then the set 7(7) := 7 is also an antichain in NN(C,,) which
does not have the positive root 2eg, and both 7w and 7(7) correspond to the
same B, (Cy) set partition. In particular, T(7) = T(7(7)).

Similarly, if m possesses the root eg, but it does not have any root with
double coefficients, then the set 7(7), obtained by replacing ey by 2eg, is
again an antichain in NN(C},) and both 7 and 7(7) correspond to the same
B, (Cy,) set partition. Again, we find that T(m) = T(7(m)).
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Assume now that m € NN(B,,) has a positive root with double coefficients
and also has the root e, for some k € [n]. Notice that in this case, by lemma
3.5, the By, (C},) set partition associated with 7 does not correspond to an
antichain in NN(C),). Let 7' = {a1,aq,...,ap} be the antichain formed by
all the roots in 7 having double coefficients and by the root ej. If

o) =€qgtey, g =¢€ecteg, ag=e€cteyr, ..., 1 =¢€g+ep oy=eg
withg<---<e<c<a<b<<d< f<---<h<k, then define the
following C), roots

o) =2ep, ah =eq+eq, a3 =ectep, ..., ay=ey+ e

Let 7(m) be the set formed by replacing each root a;, i = 1,..., ¢, in 7 by the
Cy roots af, i =1,...,¢. By lemma 3.5, 7() is an antichain in NN(C},) and
it is straightforward to see that T(m) = T(7(7)). Also, notice that by lemma
3.3, the B, (Cy,) set partition associated with 7(7) does not correspond to
an antichain in NN(B,,).

This map 7 is clearly injective, and since both NN(B,,) and NN(C},) have
the same cardinality, it establishes a bijection between antichains in the root
posets of types B,, and C),, which preserves the triples (op, cl, tr). [l

Example 3.7. Consider the antichain
m={ez+e3,e4,65 — €2}

is NN(Bs), associated to the Bs (Cs) set partition
{{4> _4}> {_3> 2, 5}a {_5a -2, 3}a {1}’ {_1}}'

Its nonnesting diagram is represented by

L 4 -3 -2 -1 0 1 2 3 4 5

Note that this set partition does not correspond to a nonnesting diagram of
type Cs, since in this case the arc linking —4 to 4 would nest the arc between
—3 and 2. Applying the construction given in the proposition above, we get
the antichain

7(m) = {2e3, €4 + e2,e5 — €2}
in NN(C5), corresponding to the Bs (Cs) set partition

{{37 _3}7 {_47 2, 5}, {—5, -2, 4}, {1}7 {_1}}7

whose nonnesting diagram is represented by

S5 4 3 -2 -1 1 2 3 4 5

As before, the By (Cs) set partition associated with T(m) does not corresponds
to a nonnesting diagram of type Bs, since in this case the arc linking —3 to
0 would be nested by the arc linking —4 to 2.
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In what follows we will identify antichains in the root posets of types
B, and C), by the bijection 7, i.e., if 7 is an antichain in NN(C,,), we will
consider its image 7(7) in NN(B,,).

4. MAIN RESULT

Let ® denote a root system of type A, B or C, and let ® and A be defined
as above. In view of lemmas 3.1 and 3.3, we consider antichains {a, ..., am}
in @' as ordered m-tuples numbered so that if i, is the terminal index of
ay, then i1 < -+ < ip,.

Definition 4.1. Given two positive roots o and 3, with B having no double
coefficient, and such that the intersection of their supports is monempty,
define their @-sum, denoted o ® 3, and their ©-difference, denoted a & (3,
as the positive roots with supports

supp(a @ f3) := supp () U (supp(f) \ supp(a))
and
supp(ar © 3) := supp(«r) N supp(f),
respectively. If moreover o has double coefficients, then define also the &%-
difference, denoted o &% B, as the positive root with support

supp(a &7 B) := Dy N supp(B).

Example 4.2. Given the type Bs positive roots a = es+es and B = e4 — €1
we have

a®B=es4e, aoB=ec3—e1, and a0 B =rey—e;.

An antichain (a1, ..., q,) is said to be connected if the intersection of the
supports of any two adjacent roots a;, a;41 is non empty. The connected
components

(al,...,ai), (ozi+1,...,aj), ceey (Oék,.. . ,am)

of an antichain a = (a1, ..., a;) are the connected sub-antichains of « for
which the supports of the union of the roots in any two distinct components
are disjoint. For instance, the antichain (es, e3—ej, e4—e3) has the connected
components (eg,e3 — e1) and eg — e3. We will use lower and upper arcs to
match two roots in a connected antichain in a geometric manner. Two roots
linked by a lower [respectively upper]| arc are said to be l-linked [respectively,
u-linked]. In what follows we will identify each root with the correspondent
permutation.

For clarity of the exposition, we start by presenting the map for type A.

Definition 4.3. Define the map f from the set NN(A,_1) into NC(Ap_1)
recursively as follows. When «ay is a positive root we set f(aq) := ag.
If a« = (au,...,qu) is a connected antichain with m > 2, then define

fla) = ( & ak) F(@2, . am),

k=1
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where @ = ap_1 O ag fork=2,...,m.
For the general case, if (a1,...,05), (Qig1,--.,05), ..., (Qk, ..., 0uy) are
the connected components of (aq,...,an), let
floa, ... o) = flat, ..., 0) f(Qig1, .., 05) - [y ooy Q).
By its definition, it is clear that (@, ..., @, ) is an antichain, which need

not be connected. In the next definition we will generalize the map f to
types By, and C,,. Before, however, lets consider the following example.

Example 4.4. Consider the antichain
o = (e3 —e1,e4 — €2,66 — €3,€7 — €4, €8 — €5)

in the root poset of type Az, corresponding to the permutation (136)(247)(58)
in the symmetric group Sg. Applying the map f to a, we get the noncrossing
partition

f(@)

= (eg —e1)f(e3 —e2,e4 —e€3,66 — €4,67 — €5)
= (68 — 61)(63 — 62)(64 — eg)f(€6 — €4,€7 — 65)
= (es —e1)(e3 — e2)(es — e3)(e7 — ea)(e6 — €5)
— (18)(2347)(56),

whose graphical representation is given by

1 2 3 4 b} 6 7 8 -

Consider now the general case, where ® denotes a root system of type
A,BorC.

Definition 4.5. Define the map f from the set NN(®) into NC(P) re-
cursiwely as follows. When a1 is a positive root we set f(ai) := ay. If
a = (a1,...,qpy) is a connected antichain with m > 2, we have two cases:

(a) If there are no double coefficients in the antichain, then as in the
previous definition we set

m

fla) = (k@lak> f(@z,...,am),
where Q@ = a1 O ag fork=2,...,m.

(b) Assume now that aq, ..., oy have double coefficients, for some £ > 1,
and ayy1, ..., amy have none. Let Ty = (ag,...,ap) and T' :=
(g1, am). We start by introducing I-links as follows.

Let m' be the largest index of elements in I' such that the follow-
ing holds: o, has initial index i # 1, so that there is a rightmost
element in Ty, say oy, with i € Dy, . If there is such an integer m/,
[-link oy, with oy, . Then, ignore oy and o, and proceed with the
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remaining roots as before. This procedure terminates after a finite
number of steps (and not all elements of o need to be l-linked).

Next proceed by introducing u-links in «. The starting point of
u-links, which we consider drawn from right to left, will be elements
in I' that have no initial index 1 and are not I-linked. We will refer
to these elements as admissible roots. So, let m' be the smallest
integer such that the following holds: o, is an admissible root with
initial index i # 1 so that there is a leftmost element, say oy, not
yet u-linked to an element on its right and such that i € supp(ay).
If there is such an integer m’, u-link ay, with a,. Remove au, from
the set of admissible roots and proceed as before. Again this process
terminates after a finite number of steps.

Finally, let T = {t; < --- < t,} be the collection of all terminal
double indices of the roots in I'y not l-linked, and all the terminal
indices of the roots in « not u-linked to an element on its right.
Then, define

fla)=m--mymob1---04 f(Og41,-..,0s),

where for j =1,...,¢, mj = ej +ejn, with j' and j" respectively the
leftmost and rightmost integers in T' not considered yet; my is either
the root e;;, if the initial index of apyy is 1, with i; the only integer
in T' not used yet for defining the roots 7j, or the identity otherwise;
each 0, j = 1,...,q 1is the al-difference of I-linked roots, starting
from the rightmost one in 'y, and each 0;, j = q+1,...,s is the
O-difference of u-linked roots, starting from the leftmost one in I'.

(c) For the general case, if (a1, ...,0), (Qig1,---05), -y (Qky -y Q)
are the connected components of (aq,...,am), let

flon, .. o) = flan, ... 0q) f(aigr, ..oy 05) - fQy oo aom).

Remark: (i) Notice that the type A case is given by conditions (a) and (c) of
the above definition. Also, note that if all roots in o have double coefficients
then condition (b) is vacuous and the map f reduces to the identity map.
We point out that the number of roots in f(«) is equal to the number of
roots in the antichain «.

(ii) The sequence (aza, ..., Q) obtained in step (a) is a (not necessarily
connected) antichain. It is easy to check that after all l-links and all u-links
are settled, the set T has an odd number of elements if and only if the initial
index of ayyq is 1. Thus, the root 7y given in condition (b) is well defined.

We will show that f establishes a bijection between the sets NN(¥) and
NC(¥), for ¥ = A,,_1, B, or C,. Before, however, we present some exam-
ples.

Example 4.7. Consider now the antichain

a = (es5+eq,e6+ e, e7,8 — €2,€9 — €3)
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in the root poset Bg. Following definition 4.5, we get the l-links and the

u-links
a = (e5s+eq,e6 +e€2,e7,68 — €2,€9 — €3)

Therefore, T = {2,6,7,8,9} and the application of f to « yz’elc'is
fa) = (eg + e2)(es + e6)(e)(es — e3) f(e5 — €2)
= (2,-9)(—2,9)(6, —8)(—6,8)(7, —7)(3,4)(—3, —4)(2,5)(~2, —5)
= (2,5,-9)(~2, —5,9)(6, —8)(—6,8)(7, —7)(3,4)(—3, —4).

The image f(a) is a noncrossing partition in [+9], as we may check in its

representation
-

2N
-1-2-3-4-5-6-7T-8-91 2 3 4 5 6 7 8 9-
Example 4.8. For a final example, consider the antichain

a = (e + e5,e7 + €4, €5 + €3,€9 — €1,€10 — €4, €11 — €6)

in the root poset of type Bi1. The l-links and u-links are shown below, so
that T = {4,6,8,9,10,11}:

/———\

o = (eg + e5,€7 + €4,€8 + €3,€9 — €1,€10 — €4,€11 — €6)
\W
Therefore, the application of f to a gives
fa) = (e11 + ea)(e10 + €6) (€9 + es)(e3 — e1)(es — ea) fe7 — es)
and thus, f(«) is the noncrossing partition
(4, —11)(—4,11)(6, —10)(—6,10)(8, —9)(—8,9)
-(1,3)(=1,-3)(4,5)(—4, =5)(6,7)(—6,-7)
= (4,5, —11)(—4, —5,11)(6,7, —10)
- (=6, —-7,10)(8,-9)(=8,9)(1,3)(-1,-3)

represented by

A3 % 5% 4 —9—1&@3\(\5 7

9 10 11 -
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Lemma 4.9. If o« € NN(B,,)) then f(a) € NC(B,,), and T(a) = T(f(a)).

Proof. Let o = (a,...,q;,) be an antichain in the root poset of type By,
and let (a,..., ) be its first connected component. Start by assuming
that 1 ¢ supp(«;), for all ¢ = 1,...,m. We will use induction on m > 1
to show that in this case f(a) is a noncrossing partition on the set {i —
1,...,¢,—( —1),...,—q}, where ¢ is the initial index of a; and ¢ is the
terminal index of a,;, and such that each positive integer is sent to another
positive integer. The result is clear when m = 1. So, let m > 2 and assume
that the result holds for antichains of length less than, or equal to m — 1.
Then, we may write

fa) = <k§1ak> F@2s- e ) F(Quits - ),y

where each ap = ar_1 © ag, for K = 2,...,w. By the inductive step,
f(@ag, ..., @) =m and f(Quw+1, ..., Q) = T are noncrossing partitions on
the sets

{a—1,...,b,—(a—1),...,=b} and {p—1,...,q,—(p—1),...,—q},

respectively, where a and p are the initial indices of @2 and w41, respec-
tively, and b and ¢ are the terminal indices of @, and «,,, respectively.
Moreover, all positive integers are sent to positive ones by m; and my. De-
noting by j the terminal index of «,,, we get

w . . . .

k@lak =€ —€-1= (Z - 1’])(_(7’ - 1)7 _j)
withi—1<a—1<b<j<p—1<gq. Therefore

fla) = (0= 1,5)(=( = 1), =j)mm
is a noncrossing partition on the set {i — 1,...,q,—(i —1),...,—q} sending
each positive integer to another positive integer.

Note that for the rest of the proof, we may assume without loss of gen-
erality that « is connected, since none of the connected components of an
antichain, except possibly for the first one, have double coefficients, and
therefore their images are noncrossing partitions sending each positive inte-
ger to another positive integer.

Suppose now that 1 € supp(«;). We will show that f(«) is a noncrossing
partition on the set {i — 1,...,¢,—(i — 1),...,—q}, where i is the initial
index of as and ¢ is the terminal index of a;,, and such that one and only
one positive integer is sent to a negative one. The result is certainly true
for m = 1, and when m > 1 we have

)= (B o) 1@

where @' ;o = (¢,—¢q), and o = ap_1 © oy for k = 2,...,m. By
the previous case, f(@a,...,@;,) = 7 is a noncrossing partition on the set
{i—1,...,5,—(@ —1),...,—j}, with ¢ the initial index of as and j < ¢
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the terminal index of ay,—1. Therefore, f(a) = (¢, —q)7 is a noncrossing
partition satisfying the desired conditions.

Next, assume that « satisfies condition (b) of definition 4.5, and consider
its image

fla)=my - memo 10 f(Og41,...,05).

By the construction of the set T, it follows that each D, , j = 1,...,¢, is
contained in D, for some ¢ = 1,...,¢, and that m - - - m,mp is a noncrossing
partition, sending each nonfixed positive integer to a negative one. Note
also that the support of each 0;, j = 1,...,q, is contained in some D,,,
it =1,...,¢, and therefore, in some D,,, 7 = 1,...,¢. Moreover, the supports
of any two roots 0; and 0;, 1 < i, j < g, are either disjoint, or one of them is
contained into the other one. Therefore 0, - - -6, is a noncrossing partition
sending each nonfixed positive integer into another positive integer. By
the previous cases, f(fq+1,...,0s) is also a noncrossing partition sending
each nonfixed positive integer into another positive integer. Again by the
construction of the set T, we find that the support of each 0;, j = ¢+1,...,s,
is either contained in some Dy, or it does not intersect D,,. For each
j=1,...,qgand i = ¢+ 1,...,s, either we have supp(6;) Nsupp(§;) = @,
or supp(#;) 2 supp(d;), this last case happening when §; arises from the
©-difference of two u-linked roots a,, € I'y and «,, € I, and there is some
Qpir €T, k> 1, Llinked to oy, whose &%-difference gives ;. Therefore, it
follows that f(«) is noncrossing.

To see that T(a) = T(f(«)), notice that if a € op(a), then o must have
a root e, — €4, for some b > a + 1, and cannot have neither a root with
terminal double index equal to a nor a root with terminal index equal to a.
By its construction, the same is true for the sequence f(«), and therefore
a € op(f(a)). Assume now that a € tr(a). Then, a must appear either
as the terminal index or terminal double index of a root, and a + 1 as the
initial index of another root. Again the same will happen in the sequence

f(a), and thus a € tr(f(«)). It follows that T(a) = T(f(«)). O

With some minor adaptations, the proof of lemma 4.9, in the case where
1 ¢ supp(oy) fori =1,...,m, gives the type A analog of the previous result,
and its type C analog is obtained through the bijection 7.

Corollary 4.10. If o € NN(U) then f(a) € NC(V), for U = A,,_1 or Cy,
and (o) = T(f(a)).

We will now construct the inverse function of f, thus showing that f es-
tablishes a bijection between the sets NN(¥) and NC(¥), for ¥ = A,,_1, By,
or Cp. For that purpose, recall the following property.

Lemma 4.11. Two distinct transpositions (a,b) and (i,7) in &, commute
if and only if the sets {i,j} and {a,b} are disjoint.

If 71 - - -7y, is the cycle structure of a signed permutation m, then for each
cycle m; = (i - - - k) there is another cycle m; = (—i—j---—k). Denote by 7,
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the cycle in {m;, 7;} having the smallest positive integer (when m; = 7; then

7} is just m;), and call positive cycle structure to the subword of 7 - -,

formed by the cycles w,. Extend this definition to permutations in &,, by
identifying positive cycle structure with cycle structure.

Theorem 4.12. The map f : NN(V) — NC(V), for V= A,_1, B, or C,,
is a bijection between sets which preserves the triples (op(m),cl(n),tr(n)).

Proof. We will construct the inverse map g : NC(¥) — NN(U) of f, for
U = B,. The other cases are analogous. Given m € NC(B,,), let 71 -7
be its positive cycle structure. Replace each cycle m; = (ijig---ix) by
(ilig)(igig) s (ik—lik); ifip>0for/=1,...,k, or by
mi = (ivij1) (indo) (iis) - - - (i5-1%5) (ij41%542) - - (ik—1ik),

ifip>0for£=1,...,7,and iy < 0 for £ = j+1,..., k. Next, bearing in
mind lemma 4.11 and recalling that 7 is noncrossing, move all transpositions
(4,7), with i > 0 and j < 0 (if any), to the leftmost positions and order them
by its least positive element, and order all remaining transpositions (i, ),

with 7,7 > 0, by its least positive integer. Replace each transposition (ij)
by its correspondent root in the root system of type ¥, and let

(4.1) (a1y ooy p)(Qprty ey p) e (Qmy ey a)

be the correspondent sequence of roots, divided by its connected compo-
nents. Note that given two distinct roots in (4.1), the sets formed by the
initial and terminal indices, if there are no double coefficients, or by the
terminal and terminal double indices, otherwise, are clearly disjoint.

We start by considering that the sequence (4.1) has only one connected
component (aq,...,a). Let 'y = (ai,...,a;) be the subsequence formed
by the roots having double coefficients, and denote by I' = (cy1,..., k)
the remaining subsequence. Define I'" = I, = @. If I'y is not empty and
r # k, apply the following algorithm:

Let T’ be the subsequence of I' obtained by striking out the root a1
if its initial index is 1. While T’ # @, repeat the following steps:

(i) Let a; be the leftmost root in I' and check if supp(e;) € Da,,
for some oj € Ty \ T,

(ii) If so, let a; be the rightmost root in I'y \ I'; with this property.
Update I by including in it the rightmost root @ of ' whose
support is contained in supp(c;). Update T by striking out the
root @ and update I", by including in this set the root Q.

(iii) Otherwise, update T' by striking out the root «.

Next, let ' = {t; > --- > t,} be the set formed by all terminal double
indices of the roots in I'q \ I/, and by the terminal indices of the roots in I'";
let Fgy = {fr+1 < --- < fr} be the set formed by the initial indices of the
roots in I', and let Ly = {¢; < --- < i} be the set formed by the terminal
indices of the roots in (I'\ I') UT; and by the terminal double indices of
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the roots in I",. By this construction, we have f; < ¢; for i =1,...,r, and
fi<dt;, fori=r+1,..., k. Then, define

g(m) = (an,...,ak),

where for i =1,...,7, a; = eg, +ey, and fori =r+1,..., k, a; = ey, —ey,_1.
For the general case define
g(m)=g(a1,...,ap)g(pt1, - ap) - g(am, ..., an).

It is clear from this construction that g(7) is an antichain in the root
poset of type W. Moreover, a closer look at the construction of the map
f shows that g is the inverse of f. Thus, f (and g) establishes a bijection
between nonnesting and noncrossing partitions of types A, B and C. (I

In the following examples we illustrate the application of the map g.

Example 4.13. Consider the cycle structure of the moncrossing partition
m = (18)(2347)(56) in the symmetric group Sg used in example 4.4. Fol-
lowing the proof of Theorem 4.12, write

m = (18)(2347)(56)
= (18)(23)(34)(47)(56)
= (es —e1)(e3 — e2)(eq — e3)(er — eq) (e — €5).

Note that ™ has only one connected component, and there are no double
coefficients. Next define the sets

Fy ={1,2,3,4,5} and Ly = {2,3,5,6,7}.
Thus, we find that the image of m by the map g is the antichain
g(m) = (e3 —e1,e4 — e2,e6 — €3,67 — €4,€8 — €5).
Example 4.14. Consider now the noncrossing partition
= (2,5,-9)(—2,—5,9)(6,—8)(—6,8)(7,—7)(3,4)(—3,—4)
obtained in Example 4.7. Its positive cycle structure is
(2,—9)(2,5)(6, —8) (7, ~7)(3,4) = (2, ~9)(6, ~8) (7, ~7)(2,5)(3, 4.
and thus we get
T = (€9 + eg, €5 + €6, €7, 65 — €2, €4 — €3).
Next, construct the sets
T ={4,2}, Fo ={1,3,4}, and Lg = {5,6,7,8,9}.
Therefore, the image of ™ by the map g is the antichain
(e5s + e, e6 + €2,e7,€8 — €2, €9 — €3).

Finally, in the next result we prove that the map f generalizes the bijec-
tion that locally converts each crossing to a nesting.

Theorem 4.15. When restricted to the type A,_1 case, the map f coincides
with the L-map.
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Proof. Let a = (aq, ..., ap,) be an antichain in the root poset of type A,,_1.
The result will be handled by induction over m > 1. Without loss of gener-
ality, we may assume that « is connected, since otherwise there is an integer
1 < k < n — 1 such that each integer less (resp. greater) than k is sent by
a to an integer that still is less (resp. greater) that k. Therefore, the same
happens with the image of a by either the map f or the L-map.

The result is vacuous when m = 1, and when m = 2, the only connected
nonnesting partition which does not stay invariant under the maps f and L
is o = (ey41 — €;)(ejr41 — €j), for some integers 1 <i < j < <j <n-—1.
In this case, the equality between f and the L-map is obvious. So, let m > 2
and assume the result for antichains of length < m — 1. Let ¢ and j be,
respectively, the first and last indices of a; and «y,. Then,

f(Oé) = (€j+1 - ei)f(a% s 7am)7

where each ay = arp_1 © o for k > 2, and the antichain (ao,...,a@,) is
clearly nonnesting, and not necessarily connected. By the inductive step,
f(ag,...,ay) = L(ag,...,an). Moreover, note that converting, from left

to right, each local crossing between the first root and the leftmost root in
« whose arcs cross, into a nesting gives, precisely,

(€j+1 — ei)L(ag, . ,am),

and this operation may be considered the first step of the L-map. Thus, we
find that f(a) = L(«). O

Example 4.16. Consider the antichain o = (e4 —e1, e — ez, €7 — €3, €8 —€5)
in the root poset of type A7. Applying the map f we get
f(a) = (es —e1)f(es — ea,e6 — €3,e7 — €5)
= (eg —e1)(er —e2)f(es — e3,e6 — €5)
= (eg —e1)(er — e2)(eq —e3)(es — e5) = (18)(27)(34)(56).

On the other hand, applying the L-map to each crossing between the first
root and the leftmost root in o whose arcs cross, we get successively

%
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

%m%
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

Thus, in the first step of the L-map, we get
L(a) = (eg —e1)L(eq — e2,e6 — €3,e7 — €5).

Continuing the application of the L-map, now replacing, by a nesting, each
crossing between the second root and the leftmost root in o whose arcs cross,
we get
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and therefore, we have

L(a) = (es — e1)(er — ea)(es — e3)(es — e5) = f(a).

5. CONCLUDING REMARKS

The three bijections [6, 11, 14] between noncrossing and nonnesting par-
titions are all distinct, and preserve different statistics. While our bijection
preserves the triples (op, cl, tr) formed by the openers, closers and transients
of the partitions, for the types A, B and C, and therefore also the number of
blocks, the one by Alex Fink and Benjamin Giraldo [6] preserves the type of
the partitions but not the triples (op, cl, tr). For the types A and B, Stump’s
bijection does not preserve neither the type nor the triples (op, cl,tr). Our
construction coincides with the bijection defined by M. Rubey and C. Stump
[13], but both constructions have very different designs and settings.
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