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DOMINATION VALUE IN GRAPHS

EUNJEONG YI

Abstract. A set D ⊆ V (G) is a dominating set of G if every vertex
not in D is adjacent to at least one vertex in D. A dominating set of G
of minimum cardinality is called a γ(G)-set. For each vertex v ∈ V (G),
we define the domination value of v to be the number of γ(G)-sets to
which v belongs. In this paper, we study some basic properties of the
domination value function, thus initiating a local study of domination
in graphs. Further, we characterize domination value for the Petersen
graph, complete n-partite graphs, cycles, and paths.

1. Introduction

Let G = (V (G), E(G)) be a simple, undirected, and nontrivial graph with
order |V (G)| and size |E(G)|. For S ⊆ V (G), we denote by 〈S〉 the subgraph
of G induced by S. The degree of a vertex v in G, denoted by degG(v), is
the number of edges that are incident to v in G; an end-vertex is a vertex
of degree one, and a support vertex is a vertex that is adjacent to an end-
vertex. We denote by ∆(G) the maximum degree of a graph G. For a vertex
v ∈ V (G), the open neighborhood N(v) of v is the set of all vertices adjacent
to v in G, and the closed neighborhood N [v] of v is the set N(v) ∪ {v}. A
set D ⊆ V (G) is a dominating set (DS) of G if for each v 6∈ D there exists
a u ∈ D such that uv ∈ E(G). The domination number of G, denoted by
γ(G), is the minimum cardinality of a DS in G; a DS of G of minimum
cardinality is called a γ(G)-set. For earlier discussions on domination in
graphs, see [1, 2, 4, 8, 11]. For a survey of domination in graphs, refer to
[5, 6]. We generally follow [3] for notation and graph theory terminology.
Throughout the paper, we denote by Pn, Cn, and Kn the path, the cycle,
and the complete graph on n vertices, respectively.

In [12], Slater introduced the notion of the number of dominating sets
of G, which he denoted by HED(G) in honor of Steve Hedetniemi; further,
he also used #γ(G) to denote the number of γ(G)-sets. In this paper, we
will use τ(G) to denote the total number of γ(G)-sets, and by DM(G) the
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collection of all γ(G)-sets. For each vertex v ∈ V (G), we define the dom-
ination value of v, denoted by DVG(v), to be the number of γ(G)-sets to
which v belongs; we often drop G when ambiguity is not a concern. See [9]
for a discussion on total domination value in graphs. For a further work on
domination value in graphs, see [13]. In this paper, we study some basic
properties of the domination value function, thus initiating a local study of
domination in graphs. When a real-world situation can be modeled by a
graph, the locations (vertices) with high domination values are of interest.
One can use domination value in selecting locations for fire departments
or convenience stores, for example. Though numerous papers on domina-
tion have been published, no prior systematic local study of domination is
known. However, in [10], Mynhardt characterized the vertices in a tree T
whose domination value is 0 or τ(T ). It should be noted that finding dom-
ination value of any given vertex in a given graph G can be an extremely
difficult task, given the difficulty attendant to finding τ(G) or just γ(G).

2. Basic properties of domination value: upper and lower
bounds

In this section, we consider the lower and upper bounds of the domi-
nation value function for a fixed vertex v0 and for v ∈ N [v0]. Clearly,
0 ≤ DVG(v) ≤ τ(G) for any graph G and for any vertex v ∈ V (G). We will
say the bound is sharp if equality is obtained for a graph of some order in
an inequality. We first make the following observations.

Observation 2.1.
∑

v∈V (G)

DVG(v) = τ(G) · γ(G).

Observation 2.2. If there is an isomorphism of graphs carrying a vertex v
in G to a vertex v′ in G′, then DVG(v) = DVG′(v′).

Examples of graphs that admit automorphisms are cycles, paths, and the
Petersen graph. The Pertersen graph, which is often used as a counter-
example for conjectures, is vertex-transitive ([7], p.27). Let P denote the
Petersen graph with labeling as in Figure 1.
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Figure 1. The Petersen graph
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It is easy to check that γ(P) = 3. We will show that DV (v) = 3 for
each v ∈ V (P). Since P is vertex-transitive, it suffices to compute DVP(1).
For the γ(P)-set Γ containing the vertex 1, one can easily check that no
vertex in N(1) belongs to Γ. Further, notice that no three vertices from
{1, 2, 3, 4, 5} form a γ(P)-set. Keeping these two conditions in mind, one
can readily verify that the γ(P)-sets containing the vertex 1 are {1, 3, 7},
{1, 4, 10}, and {1, 8, 9}, and thus DV (1) = 3 = DV (v) for each v ∈ V (P).

Observation 2.3. Let G be the disjoint union of two graphs G1 and G2.
Then γ(G) = γ(G1) + γ(G2) and τ(G) = τ(G1) · τ(G2). For v ∈ V (G1),
DVG(v) = DVG1(v) · τ(G2).

Proposition 2.4. For a fixed v0 ∈ V (G), we have

τ(G) ≤
∑

v∈N [v0]

DVG(v) ≤ τ(G) · γ(G),

and both bounds are sharp.

Proof. The upper bound follows from Observation 2.1. For the lower bound,
note that every γ(G)-set Γ must contain a vertex in N [v0]: otherwise Γ fails
to dominate v0.

For sharpness of the lower bound, take v0 to be an end-vertex of P3k for
k ≥ 1 (see Theorem 5.1 and Corollary 5.2). For sharpness of the upper
bound, take as v0 the central vertex of (A) in Figure 2. �
Proposition 2.5. For any v0 ∈ V (G),∑

v∈N [v0]

DVG(v) ≤ τ(G) · (1 + degG(v0)),

and the bound is sharp.

Proof. For each v ∈ N [v0], DVG(v) ≤ τ(G) and |N [v0]| = 1 + degG(v0).
Thus,∑

v∈N [v0]

DV (v) ≤
∑

v∈N [v0]

τ(G) = τ(G)
∑

v∈N [v0]

1 = τ(G)(1 + degG(v0)).

The upper bound is achieved for a graph of order n for any n ≥ 1. Let Gn

be a graph on n vertices containing an isolated vertex. To see the sharpness
of the upper bound, take as v0 one of the isolates vertices, then the upper
bound follows by Observation 2.3 and degG(v0) = 0. �

We will compare two examples, where each example attains the upper
bound of Proposition 2.4 or Proposition 2.5, but not both. Let v0 be the
central vertex of degree 3, which is not a support vertex as in the graph (A)
of Figure 2. Then

∑
v∈N [v0]

DVG(v) = 3. Note that τ(G) = 1, γ(G) = 3,

and degG(v0) = 3. Proposition 2.4 yields the upper bound τ(G) · γ(G) =
1 · 3 = 3, which is sharp. But, the upper bound provided by Proposition 2.5
is τ(G) · (1 + degG(v0)) = 1 · (1 + 3) = 4, which is not sharp in this case.
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Figure 2. Examples of local domination values and their
upper bounds

Now, let v0 be an isolated vertex as labeled in the graph (B) of Fig-
ure 2. Then

∑
v∈N [v0]

DVG′(v) = 2. Note that τ(G′) = 2, γ(G′) = 4,

and degG′(v0) = 0. Proposition 2.5 yields the upper bound τ(G′) · (1 +
degG′(v0)) = 2 · (1+ 0) = 2, which is sharp. But, the upper bound provided
by Proposition 2.4 is τ(G′) · γ(G′) = 2 · 4 = 8, which is not sharp in this
case.

Proposition 2.6. Let H be a subgraph of G with V (H) = V (G). If γ(H) =
γ(G), then τ(H) ≤ τ(G).

Proof. By the first assumption, every DS for H is a DS for G. By γ(H) =
γ(G), it’s guaranteed that every DS of minimum cardinality for H is also a
DS of minimum cardinality for G. �

The complement G = (V (G), E(G)) of a graph G is the graph such that
V (G) = V (G) and uv ∈ E(G) if and only if uv 6∈ E(G). We recall the
following.

Theorem 2.7. Let G be any graph of order n. Then

(i) ([8], Jaegar and Payan) γ(G) + γ(G) ≤ n+ 1, and
(ii) ([2], p.304) γ(G) ≤ n−∆(G).

Proposition 2.8. Let G be a graph on n = 2m ≥ 4 vertices. If G or G is
mK2, then

DVG(v) +DVG(v) = n− 1 + 2n/2−1.

Proof. Without loss of generality, assume G = mK2 and label the vertices
of G by 1, 2, . . . , 2m. Further assume that the vertex 2k − 1 is adjacent to
the vertex 2k, where 1 ≤ k ≤ m. Then DVG(1) = 2m−1, which consists of
the vertex 1 and one vertex from each path K2. By Observation 2.2 and
Observation 2.3, DVG(v) = 2m−1 = 2n/2−1 for any v ∈ V (G).

Now, consider G and the vertex labeled 1 for ease of notation. Since
∆(G) = n − 2, γ(G) > 1. Noting that {1, α} as α ranges from 2 to 2m
enumerates all dominating sets of G containing the vertex 1, we have γ(G) =
2 and DVG(1) = n− 1. By Observation 2.2, DVG(v) = n− 1 holds for any

v ∈ V (G). Therefore, DVG(v) +DVG(v) = n− 1 + 2n/2−1. �
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Next we consider domination value of a graph G when ∆(G) is given.

Observation 2.9. Let G be a graph of order n ≥ 2 such that ∆(G) = n−1.
Then γ(G) = 1 and DV (v) ≤ 1 for any v ∈ V (G). Equality holds if and
only if degG(v) = n− 1.

Proposition 2.10. Let G be a graph of order n ≥ 3 such that ∆(G) = n−2.
Then γ(G) = 2 and DV (v) ≤ n− 1 for any v ∈ V (G). Further, if deg(v) =
n− 2, then DV (v) = |N [w]| where vw /∈ E(G).

Proof. Let degG(v) = ∆(G) = n − 2, then γ(G) > 1 and there is only one
vertex w such that vw /∈ E(G). Clearly, {v, w} is a γ(G)-set; so γ(G) =
2. Noticing that v dominates N [v], we see that the number of γ(G)-sets
containing v is |N [w]|; i.e., DV (v) = |N [w]| ≤ n− 2. �
Theorem 2.11. Let G be a graph of order n ≥ 4 and ∆(G) = n− 3. Fix a
vertex v with degG(v) = ∆(G).

(i) If G is disconnected, then γ(G) = 2 with DV (v) = 2 or γ(G) = 3
with DV (v) ≤ n− 3.

(ii) If G is connected, then γ(G) = 2 with DV (v) ≤ n − 2 or γ(G) = 3
with DV (v) ≤ ((n− 1)/2)2.

Proof. Since degG(v) = ∆(G) = n− 3, there are two vertices, say α and β,
such that vα, vβ 6∈ E(G). We consider four cases.

(C) Case 3

α

ββ

α

β

α vvv

x

(A) Case 1 (B) Case 2

Figure 3. Cases 1, 2, and 3 when ∆(G) = n− 3

Case 1 : Neither α nor β is adjacent to any vertex in N [v].
Let G′ = 〈V (G)−{α, β}〉. Then degG′(v) = n− 3 with |V (G′)| = n− 2.
By Observation 2.9, γ(G′) = 1 and DVG′(v) = 1. First suppose α and
β are isolated vertices in G. (Consider (A) of Figure 3 with the edge
αβ being removed.) Observation 2.3, together with γ(〈{α, β}〉) = 2
and τ(〈{α, β}〉) = 1, yields γ(G) = 3 and DVG(v) = 1. Next assume
that G has no isolated vertex, then αβ ∈ E(G) (see (A) of Figure 3).
Observation 2.3, together with γ(〈{α, β}〉) = 1 and τ(〈{α, β}〉) = 2,
yields γ(G) = 2 and DVG(v) = 2.

Case 2 : Exactly one of α and β is adjacent to a vertex in N(v).
Without loss of generality, assume that α is adjacent to a vertex in N(v).
First suppose that G is not connected. Then αβ 6∈ E(G). (Consider (B)
of Figure 3 with the edge αβ being removed.) Let G′ = 〈V (G) − {β}〉.
Then degG′(v) = n − 3 with |V (G′)| = n − 1. By Proposition 2.10,
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γ(G′) = 2 and DVG′(v) = |N [α]| ≤ n − 3. Observation 2.3, together
with γ(〈{β}〉) = 1 and τ(〈{β}〉) = 1, yields γ(G) = 3 and DVG(v) =
|N [α]| ≤ n−3. Next suppose that G is connected. Then αβ ∈ E(G) and
α is a support vertex of G. (See (B) of Figure 3.) Since ∆(G) < n − 1,
γ(G) > 1. Since {v, α} is a γ(G)-set, γ(G) = 2. Noting that v dominates
V (G)−{α, β}, the number of γ(G)-sets containing v equals the number
of vertices in G that dominates both α and β. Thus DVG(v) = 2.

Case 3 : There exists a vertex in N(v), say x, that is adjacent to both α and
β.

Notice that n ≥ 6 in this case, since vx, αx, βx ∈ E(G) and degG(v) =
∆(G) (see (C) of Figure 3). Since {v, x} is a γ(G) set, γ(G) = 2. If
αβ 6∈ E(G), then DV (v) = |N [α] ∩ N [β]| ≤ n − 3. If αβ ∈ E(G), then
|N [α]∩N [β]| ≤ n−4 since ∆(G) = n−3. Noting both {v, α} and {v, β}
are γ(G)-sets, we have DV (v) = 2 + |N [α] ∩N [β]| ≤ n− 2.

vα α

ββ

x0x0y0 y0

(A) Subcase 4.1 (B) Subcase 4.2

v

Figure 4. Subcases 4.1 and 4.2 when ∆(G) = n− 3

Case 4 : There exist vertices in N(v) that are adjacent to α and β, but no
vertex in N(v) is adjacent to both α and β.

Let x0 ∈ N(v)∩N(α) and y0 ∈ N(v)∩N(β). We consider two subcases.
Subcase 4.1. αβ 6∈ E(G) (see (A) of Figure 4).

First, assume γ(G) = 2. This is possible when {x0, y0} is a γ(G)-set
satisfying N [x0] ∪N [y0] = V (G). Notice that there is no γ(G)-set con-
taining v when γ(G) = 2 since there is no vertex in G that is adjacent
to both α and β. Thus DV (v) = 0. Second, assume γ(G) > 2. Since
{v, α, β} is a γ(G)-set, γ(G) = 3. Noticing that every γ(G)-set contains
a vertex in N [α] and a vertex in N [β] and that N [α] ∩N [β] = ∅, we see

DV (v) = |N [α]| · |N [β]| ≤
(
|N [α]|+ |N [β]|

2

)2

≤
(
n− 1

2

)2

,

where the first inequality is the arithmetic-geometric mean inequality
(i.e., (a+ b)/2 ≥

√
ab for a, b ≥ 0).

Subcase 4.2. αβ ∈ E(G) (see (B) of Figure 4).
Since {v, α} is a γ(G)-set, γ(G) = 2. Since there is no vertex in N(v)
that is adjacent to both α and β, there are only two γ(G)-sets containing
v, i.e., {v, α} and {v, β}. Thus DV (v) = 2.

�



36 EUNJEONG YI

Remark. In the proof of Theorem 2.11, we observe that one may have
DV (v) = 0 even though degG(v) = ∆(G) ≤ n− 3. See Figure 5 for a graph
of order n, degG(v) = ∆(G) = n− 3, γ(G) = 2, and DV (v) = 0.

y0

α

β

v

x0

Figure 5. A graph of order 9, degG(v) = ∆(G) = 6,
DV (v) = 0 with a unique γ-set {x0, y0}

3. Domination value on complete n-partite graphs

For a complete n-partite graph G, let V (G) be partitioned into n-partite
sets V1, V2, . . . , Vn, and let ai = |Vi| ≥ 1 for each 1 ≤ i ≤ n, where n ≥ 2.

Proposition 3.1. Let G = Ka1,a2,...,an be a complete n-partite graph with
ai ≥ 2 for each i (1 ≤ i ≤ n). Then

τ(G) =
1

2

( n∑
i=1

ai

)2

−
n∑

i=1

a2i

 and DV (v) =

(
n∑

i=1

ai

)
− aj if v ∈ Vj .

Proof. Since ∆(G) < |V (G)| − 1, γ(G) > 1. Any two vertices from different
partite sets form a γ(G)-set, so γ(G) = 2. If v ∈ Vj , then

(3.1) DV (v) = degG(v) =

(
n∑

i=1

ai

)
− aj .

From Observation 2.1 and (3.1), we have

n∑
j=1

∑
v∈Vj

DV (v) = 2τ(G) ⇐⇒
n∑

j=1

(
aj

n∑
i=1

ai − a2j

)
= 2τ(G)

⇐⇒

(
n∑

i=1

ai

) n∑
j=1

aj

−
n∑

j=1

a2j = 2τ(G),

and thus the formula for τ(G) follows. �
Proposition 3.2. Let G = Ka1,a2,...,an be a complete n-partite graph such
that ai = 1 for some i, say aj = 1 for j = 1, 2, . . . , k, where 1 ≤ k ≤ n.
Then τ(G) = k, and

DV (v) =

{
1 if v ∈ Vj (1 ≤ j ≤ k),
0 if v ∈ Vj (k + 1 ≤ j ≤ n).
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Proof. Since ∆(G) = |V (G)| − 1 by Observation 2.9, γ(G) = 1 and DV (v)
follows. By Observation 2.1, together with γ(G) = 1, we have τ(G) =∑

v∈V (G)DVG(v) = k. �

If ai = 1 for each i (1 ≤ i ≤ n), then G = Kn. As an immediate
consequence of Proposition 3.2, we have the following.

Corollary 3.3. If G = Kn (n ≥ 1), then τ(G) = n and DV (v) = 1 for each
v ∈ V (Kn).

If n = 2, then G = Ka1,a2 is a complete bi-partite graph.

Corollary 3.4. If G = Ka1,a2, then

τ(G) =

 a1 · a2 if a1, a2 ≥ 2,
2 if a1 = a2 = 1,
1 if {a1, a2} = {1, x}, where x > 1.

If a1, a2 ≥ 2, then

DV (v) =

{
a2 if v ∈ V1,
a1 if v ∈ V2.

If a1 = a2 = 1, DV (v) = 1 for any v in K1,1. If {a1, a2} = {1, x} with
x > 1, say a1 = 1 and a2 = x, then

DV (v) =

{
1 if v ∈ V1,
0 if v ∈ V2.

4. Domination value on cycles

Let the vertices of the cycle Cn be labeled 1 through n consecutively in
counterclockwise order, where n ≥ 3. Observe that the domination value
is constant on the vertices of Cn, for each n, by vertex-transitivity. Recall
that γ(Cn) = dn/3e for n ≥ 3 (see [3], p.364).

Example.

(1) DM(C4) = {{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}} since γ(C4) =
2; so τ(C4) = 6 and DV (i) = 3 for each i ∈ V (C4).

(2) γ(C6) = 2, DM(C6) = {{1, 4}, {2, 5}, {3, 6}}; so τ(C6) = 3 and
DV (i) = 1 for each i ∈ V (C6).

Theorem 4.1. For n ≥ 3,

τ(Cn) =


3 if n ≡ 0 (mod 3),

n

(
1 +

1

2

⌊n
3

⌋)
if n ≡ 1 (mod 3),

n if n ≡ 2 (mod 3).

Proof. First, let n = 3k, where k ≥ 1. Here γ(Cn) = k; a γ(Cn)-set Γ
comprises k K1’s and Γ is fixed by the choice of the first K1. There exists
exactly one γ(Cn)-set containing the vertex 1, and there are two γ(Cn)-sets
omitting the vertex 1 such as Γ containing the vertex 2 and Γ containing
the vertex n. Thus τ(Cn) = 3.
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Second, let n = 3k + 1, where k ≥ 1. Here γ(Cn) = k + 1; a γ(Cn)-set Γ
is either comprised of (k − 1) K1’s and one K2, or of (k + 1) K1’s.
Case 1 : 〈Γ〉 ∼= (k − 1)K1 ∪K2.

Note that Γ is fixed by the choice of the single K2. Choosing a K2 is the
same as choosing its initial vertex in the counterclockwise order. Thus
τ = 3k + 1

Case 2 : 〈Γ〉 ∼= (k + 1)K1.
Note that, since each K1 dominates three vertices, there are exactly two
vertices, say x and y, each of whom is adjacent to two distinct K1’s in Γ.
And Γ is fixed by the placements of x and y. There are n = 3k+1 ways
of choosing x. Consider the P3k−2 (a sequence of 3k − 2 slots) obtained
as a result of cutting from Cn the P3 centered about x. Vertex y may be
placed in the first slot of any of the d(3k− 2)/3e = k subintervals of the
P3k−2. As the order of selecting the two vertices x and y is immaterial,
τ = k(3k + 1)/2.

Summing over the two disjoint cases, we get

τ(Cn) = (3k + 1) +
(3k + 1)k

2
= (3k + 1)

(
1 +

k

2

)
= n

(
1 +

1

2

⌊n
3

⌋)
.

Finally, let n = 3k + 2, where k ≥ 1. Here γ(Cn) = k + 1; a γ(Cn)-set
Γ comprises of only K1’s and is fixed by the placement of the only vertex
which is adjacent to two distinct K1’s in Γ. Thus τ(Cn) = n. �

Corollary 4.2. Let v ∈ V (Cn), where n ≥ 3. Then

DV (v) =



1 if n ≡ 0 (mod 3),

1

2

⌈n
3

⌉(
1 +

⌈n
3

⌉)
if n ≡ 1 (mod 3),

⌈n
3

⌉
if n ≡ 2 (mod 3).

Proof. It follows by Observation 2.1, Observation 2.2, and Theorem 4.1. �

5. Domination value on paths

Let the vertices of the path Pn be labeled 1 through n consecutively. Re-
call that γ(Pn) = dn/3e for n ≥ 2.

Example.

(1) γ(P4) = 2, DM(P4) = {{1, 3}, {1, 4}, {2, 3}, {2, 4}}; so τ(P4) = 4
and DV (i) = 2 for each i ∈ V (P4).

(2) γ(P5) = 2, DM(P5) = {{1, 4}, {2, 4}, {2, 5}}; so τ(P5) = 3, and

DV (i) =

 1 if i = 1, 5,
2 if i = 2, 4,
0 if i = 3.
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Remark. Since Pn ⊂ Cn with the same vertex set, by Proposition 2.6, we
have τ(Pn) ≤ τ(Cn) for n ≥ 3, as one can verify from the theorem below.

Theorem 5.1. For n ≥ 2,

τ(Pn) =



1 if n ≡ 0 (mod 3),

n+
1

2

⌊n
3

⌋(⌊n
3

⌋
− 1
)

if n ≡ 1 (mod 3),

2 +
⌊n
3

⌋
if n ≡ 2 (mod 3).

Proof. First, let n = 3k, where k ≥ 1. Then γ(Pn) = k and a γ(Pn)-set Γ
comprises k K1’s. In this case, each vertex in Γ dominates three vertices,
and no vertex of Pn is dominated by more than one vertex. Thus none of
the end-vertices of Pn belongs to any Γ, which contains and is fixed by the
vertex 2; hence τ(Pn) = 1.

Second, let n = 3k + 1, where k ≥ 1. Here γ(Pn) = k + 1; a γ(Pn)-set Γ
is either comprised of (k − 1) K1’s and one K2, or of (k + 1) K1’s.
Case 1 : 〈Γ〉 ∼= (k − 1)K1 ∪K2, where k ≥ 1.

Note that Γ is fixed by the placement of the single K2, and none of the
end-vertices belong to any Γ, as each component with cardinality c in
〈Γ〉 dominates c+ 2 vertices. Initial vertex of K2 may be placed in one
of the n ≡ 2 (mod 3) slots. Thus τ = k.

Case 2 : 〈Γ〉 ∼= (k + 1)K1, where k ≥ 1.
A Γ containing both end-vertices of the path is unique (no vertex is
doubly dominated). The number of Γ containing exactly one of the end-

vertices (one doubly dominated vertex) is 2
(
k
1

)
= 2k. The number of Γ

containing none of the end-vertices (two doubly dominated vertices) is(
k
2

)
= k(k − 1)/2. Thus τ = 1 + 2k + k(k − 1)/2.

Summing over the two disjoint cases, we get

τ(Pn) = k +

(
1 + 2k +

k(k − 1)

2

)
= 3k + 1 +

k(k − 1)

2

= n+
1

2

⌊n
3

⌋(⌊n
3

⌋
− 1
)
.

Finally, let n = 3k + 2, where k ≥ 0. Here γ(Pn) = k + 1, and γ(Pn)-
set Γ comprises of (k + 1) K1’s. Note that there is no Γ containing both
end-vertices of Pn. The number of Γ’s containing exactly one of the end-
vertices (no doubly dominated vertex) of the path is two. The number of
Γ’s containing neither of the end-vertices (one doubly dominated vertex) is
k. Summing the two disjoint cases, we have τ(Pn) = 2+ k = 2+ bn/3c. �

For the domination value of a vertex on Pn, note that DV (v) = DV (n+
1− v) for 1 ≤ v ≤ n as Pn admits the obvious automorphism carrying v to
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n + 1 − v. More precisely, we have the classification result which follows.
First, as an immediate consequence of Theorem 5.1, we have the following
result.

Corollary 5.2. Let v ∈ V (P3k), where k ≥ 1. Then

DV (v) =

{
0 if v ≡ 0, 1 (mod 3),
1 if v ≡ 2 (mod 3).

Proposition 5.3. Let v ∈ V (P3k+1), where k ≥ 1. Write v = 3q + r,
where q and r are non-negative integers such that 0 ≤ r < 3. Then, noting
τ(P3k+1) = (k2 + 5k + 2)/2, we have

DV (v) =



1

2
q(q + 3) if v ≡ 0 (mod 3),

(q + 1)(k − q + 1) if v ≡ 1 (mod 3),

1

2
(k − q)(k − q + 3) if v ≡ 2 (mod 3).

Proof. Let Γ be a γ(P3k+1)-set for k ≥ 1. We consider two cases.

Case 1 : 〈Γ〉 ∼= (k − 1)K1 ∪K2, where k ≥ 1.
Denote by DV 1(v) the number of such Γ’s containing v. Noting τ = k
in this case, we have

(5.1) DV 1(v) =

 q if v ≡ 0 (mod 3),
0 if v ≡ 1 (mod 3),
k − q if v ≡ 2 (mod 3).

We prove by induction on k. One can easily check (5.1) for k = 1.
Assume that (5.1) holds for G = P3k+1 and consider G′ = P3k+4. First,
notice that each Γ of the k γ(P3k+1)-sets of G induces a γ(P3k+4)-set
Γ′ = Γ ∪ {3k + 3} of G′. Additionally, G′ has the γ(P3k+4)-set Γ∗ that
contains and is determined by {3k + 2, 3k + 3}, which does not come
from any γ(P3k+1)-set of G. The presence of Γ∗ implies that DV 1

G′(v) =
DV 1

G(v)+1 for v ≡ 2 (mod 3), where v ≤ 3k+1. Clearly, DV 1
G′(3k+2) =

1, DV 1
G′(3k + 3) = k + 1, and DV 1

G′(3k + 4) = 0.
Case 2 : 〈Γ〉 ∼= (k + 1)K1, where k ≥ 1.

Denote by DV 2(v) the number of such Γ’s containing v. First, suppose
both end-vertices belong to the unique Γ and denote by DV 2,1(v) the
number of such Γ’s containing v. Then we have

(5.2) DV 2,1(v) =

{
0 if v ≡ 0, 2 (mod 3),
1 if v ≡ 1 (mod 3).

Second, suppose exactly one end-vertex belongs to each Γ; denote by
DV 2,2(v) the number of such Γ’s containing v. Then, noting τ = 2k in
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this case, we have

(5.3) DV 2,2(v) =

 q if v ≡ 0 (mod 3),
k if v ≡ 1 (mod 3),
k − q if v ≡ 2 (mod 3).

We prove by induction on k. One can easily check (5.3) for k = 1.
Assume that (5.3) holds for G = P3k+1 and consider G′ = P3k+4. First,
notice that each Γ of the k γ(P3k+1)-sets of G containing the left end-
vertex 1 induces a γ(P3k+4)-set Γ′ = Γ ∪ {3k + 3} of G′. Second, each
Γ of k γ(P3k+1)-sets of G containing the right end-vertex 3k+1 induces
a γ(P3k+4)-set Γ′ = Γ ∪ {3k + 4} of G′. Third, a γ(P3k+1)-set Γ of G
containing 1 and 3k + 1 (both left and right end-vertices of G) induces
a γ(P3k+4)-set Γ

∗1 = Γ∪ {3k+ 3} of G′ (making 3k+ 2 the only doubly
dominated vertex in G′). Additionally, Γ∗2 = {v ∈ V (P3k+1) | v ≡
2 (mod 3)} ∪ {3k + 2, 3k + 4} is a γ(P3k+4)-set for G′, which does not
come from any γ(P3k+1)-set of G. The presence of Γ∗1 and Γ∗2 imply
that

DV 2,2
G′ (v) =

 DV 2,2
G (v) if v ≡ 0 (mod 3),

DV 2,2
G (v) + 1 if v ≡ 1, 2 (mod 3),

for v ≤ 3k + 1. Clearly, DV 2,2
G′ (3k + 2) = 1, DV 2,2

G′ (3k + 3) = k + 1, and

DV 2,2
G′ (3k + 4) = k + 1.

Third, suppose no end-vertex belongs to Γ; denote by DV 2,3(v) the

number of such Γ’s containing v. Then, noting τ =
(
k
2

)
in this case and

setting
(
a
b

)
= 0 when a < b, we have

(5.4) DV 2,3(v) =


1
2(q − 1)q if v ≡ 0 (mod 3),
q(k − q) if v ≡ 1 (mod 3),
1
2(k − q − 1)(k − q) if v ≡ 2 (mod 3).

Again, we prove by induction on k. Since DV 2,3(v) = 0 for each
v ∈ V (P4), we consider k ≥ 2. One can easily check (5.4) for the
base case, k = 2. Assume that (5.4) holds for G = P3k+1 and consider

G′ = P3k+4, where k ≥ 2. First, notice that each Γ of the
(
k
2

)
γ(P3k+1)-

sets of G containing neither end-vertices of G induces a γ(P3k+4)-set
Γ′ = Γ ∪ {3k + 3} of G′. Additionally, each Γr of the k γ(P3k+1)-sets
of G containing the right-end vertex 3k + 1 of G induces a γ(P3k+4)-set
Γ′
r = Γr∪{3k+3} of G′ (making 3k+2 one of the two doubly-dominated

vertices in G′): If we denote by DV r
G(v) the number of such Γr’s con-

taining v in G, then one can readily check

DV r
G(v) =

 0 if v ≡ 0 (mod 3),
q if v ≡ 1 (mod 3),
k − q if v ≡ 2 (mod 3),
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again by induction on k. Thus, the presence of Γ′
r implies DV 2,3

G′ (v) =

DV 2,3
G (v) + DV r

G(v) for v ≤ 3k + 1. Clearly, DV 2,3
G′ (3k + 2) = 0 =

DV 2,3
G′ (3k + 4) and DV 2,3

G′ (3k + 3) =
(
k
2

)
+ k = k(k + 1)/2.

Summing over the three disjoint cases (5.2), (5.3), and (5.4) for 〈Γ〉 ∼=
(k + 1)K1, we have

(5.5) DV 2(v) =



q +
1

2
(q − 1)q if v ≡ 0 (mod 3),

1 + k + q(k − q) if v ≡ 1 (mod 3),

k − q +
1

2
(k − q − 1)(k − q) if v ≡ 2 (mod 3).

Now, by summing over (5.1) and (5.5), i.e., DV (v) = DV 1(v) +DV 2(v),
we obtain the formula claimed in this proposition. �

Proposition 5.4. Let v ∈ V (P3k+2), where k ≥ 0. Write v = 3q + r,
where q and r are non-negative integers such that 0 ≤ r < 3. Then, noting
τ(P3k+2) = k + 2, we have

DV (v) =

 0 if v ≡ 0 (mod 3),
1 + q if v ≡ 1 (mod 3),
k + 1− q if v ≡ 2 (mod 3).

Proof. Let Γ be a γ(P3k+2)-set for k ≥ 0. Then 〈Γ〉 ∼= (k+1)K1. Note that
no Γ contains both end-vertices of P3k+2.

First, suppose Γ contains exactly one end-vertex, and denote by DV ′(v)
the number of such Γ’s containing v. Noting τ = 2 in this case, for v ∈
V (P3k+2), we have

(5.6) DV ′(v) =

{
0 if v ≡ 0 (mod 3),
1 if v ≡ 1, 2 (mod 3).

Next, suppose Γ contains no end-vertices (thus k ≥ 1), and denote by
DV ′′(v) the number of such Γ’s containing v. Noting τ = k in this case, we
have

(5.7) DV ′′(v) =

 0 if v ≡ 0 (mod 3),
q if v ≡ 1 (mod 3),
k − q if v ≡ 2 (mod 3).

We prove by induction on k. One can easily check (5.7) for the base case,
k = 1. Assume that (5.7) holds for G = P3k+2 and consider G′ = P3k+5.
First, notice that each Γ of the k γ(P3k+2)-sets containing neither end-vertex
of G induces a γ(P3k+5)-set Γ′ = Γ ∪ {3k + 4}. Additionally, the only
γ(P3k+2)-set Γ of G containing the right-end vertex 3k + 2 of G induces
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a γ(P3k+5)-set Γ? = Γ ∪ {3k + 4} of G′ (making 3k + 3 the only doubly-
dominated vertex). The presence of Γ? implies that

DV ′′
G′(v) =

{
DV ′′

G(v) if v ≡ 0, 1 (mod 3),
DV ′′

G(v) + 1 if v ≡ 2 (mod 3),

for v ≤ 3k+2. Clearly, DV ′′
G′(3k+3) = 0 = DV ′′

G′(3k+5) andDV ′′
G′(3k+4) =

k + 1.

Now, by summing over the two disjoint cases (5.6) and (5.7), i.e., DV (v) =
DV ′(v) +DV ′′(v), we obtain the formula claimed in this proposition. �
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